JP2006030116A - U-turn detecting device and its u-turn detecting method - Google Patents

U-turn detecting device and its u-turn detecting method Download PDF

Info

Publication number
JP2006030116A
JP2006030116A JP2004212658A JP2004212658A JP2006030116A JP 2006030116 A JP2006030116 A JP 2006030116A JP 2004212658 A JP2004212658 A JP 2004212658A JP 2004212658 A JP2004212658 A JP 2004212658A JP 2006030116 A JP2006030116 A JP 2006030116A
Authority
JP
Japan
Prior art keywords
turn
vehicle
road
turning
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004212658A
Other languages
Japanese (ja)
Other versions
JP4440027B2 (en
Inventor
Koji Sewaki
光二 瀬脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2004212658A priority Critical patent/JP4440027B2/en
Publication of JP2006030116A publication Critical patent/JP2006030116A/en
Application granted granted Critical
Publication of JP4440027B2 publication Critical patent/JP4440027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a U-turn detecting device and its U-turn detecting method capable of determining a U-turn accurately in a short travel distance after start of the U-turn. <P>SOLUTION: A navigation system for detecting the U-turn of a vehicle calculates a turning angle from the turning start position of the vehicle to the present vehicle position, calculates an average curvature in the turning part, and determines that the U-turn has been performed when the turning angle is within a set angle range and the average curvature is smaller than a set curvature. The navigation system stops the U-turn determination when the vehicle exists on a pass. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はUターン検出装置及びそのUターン検出方法に係わり、特に、車両のUターンを検出するナビゲーションシステムのUターン検出装置及びそのUターン検出方法に関する。   The present invention relates to a U-turn detection device and a U-turn detection method thereof, and more particularly to a U-turn detection device of a navigation system that detects a U-turn of a vehicle and a U-turn detection method thereof.

ナビゲーション装置は、車両の現在位置に応じた地図データをDVD,HDD等の地図データ記憶部から読み出してディスプレイ画面に描画すると共に、走行に応じて車両マ−クを地図上で移動させ、あるいは車両マークをディスプレイ画面の一定位置(例えばディスプレイ画面の中心位置)に固定表示して地図をスクロ−ル表示する。
地図データは、(1) ノ−ドデータや道路リンクデータ、交差点データ等からなる道路レイヤと、(2) 地図上のオブジェクトを表示するための背景レイヤと、(3) 市町村名などを表示するための文字レイヤなどから構成され、ディスプレイ画面に表示される地図画像は、背景レイヤと文字レイヤに基づいて発生され、マップマッチング処理や誘導経路の探索処理は道路レイヤに基づいて行われる。
かかるナビゲ−ション装置において、車両の現在位置を測定することが不可欠である。このため、従来は、車両に搭載した距離センサと方位センサ(ジャイロ)を用いて車両位置を測定する測定法(自立航法)、衛星を用いたGPS(Global Positioning System)による測定法(衛星航法)、両者を併用した方法が実用化されている。
The navigation device reads map data corresponding to the current position of the vehicle from a map data storage unit such as a DVD or HDD, draws it on the display screen, and moves the vehicle mark on the map according to traveling, or The mark is fixedly displayed at a fixed position on the display screen (for example, the center position of the display screen), and the map is scrolled.
Map data includes (1) a road layer consisting of node data, road link data, intersection data, etc., (2) a background layer for displaying objects on the map, and (3) a name of the city, town, and village. A map image composed of the character layer and the like and displayed on the display screen is generated based on the background layer and the character layer, and map matching processing and guidance route search processing are performed based on the road layer.
In such a navigation device, it is essential to measure the current position of the vehicle. For this reason, conventionally, a measurement method (self-contained navigation) that measures the vehicle position using a distance sensor and an orientation sensor (gyro) mounted on the vehicle, and a measurement method (satellite navigation) using GPS (Global Positioning System) using a satellite A method using both of them has been put into practical use.

最近の車載ナビゲーション装置は自立航法と衛星航法を併用しており、通常は、自立航法により車両の位置、方位を推定すると共に、マップマッチング処理(パターンマッチング法と投影法を併用)により推定車両位置を修正して走行道路上の実車両位置を求めるようにしている。そして、何らかの原因でパターンマッチング法によるマップマッチングが不可能になると、マップマッチング処理を初期化すると共に車両位置をGPSにより測定された位置あるいは自立航法位置とし、以後、自立航法により車両の位置、方位を推定し、またマップマッチング処理を開始し、推定車両位置を走行道路上の実車両位置に修正する。   Recent in-vehicle navigation systems use both self-contained navigation and satellite navigation. Normally, the vehicle position and orientation are estimated by self-contained navigation, and the estimated vehicle position is determined by map matching processing (combining pattern matching and projection). Is corrected to obtain the actual vehicle position on the road. If map matching by the pattern matching method becomes impossible for some reason, the map matching process is initialized and the vehicle position is set to the position measured by the GPS or the self-contained navigation position. The map matching process is started, and the estimated vehicle position is corrected to the actual vehicle position on the traveling road.

自立航法においては、距離センサと相対方位センサの出力に基づき積算により以下のようにして車両位置を検出する。図9は自立航法による車両位置検出方法の説明図であり、距離センサは車両がある単位距離L0(たとえば10m)走行する毎にパルスを出力するものとし、また、基準方位(θ=0)をX軸の正方向、基準方位から反時計方向回りを+方向とする。前回の車両位置を点P0(X0,Y0)、点P0での車両進行方向の絶対方位をθ0、単位距離L0走行した時点での相対方位センサの出力をΔθ1であるとすると、車両位置の変化分は、
ΔX=L0・cos(θ0+Δθ1)
ΔY=L0・sin(θ0+Δθ1)
となり、今回の点P1での車両進行方向の推定方位θ1と推定車両位置(X1,Y1)は、
θ1=θ0+Δθ1 (1)
X1=X0+ΔX=X0+L0・cosθ1 (2)
Y1=Y0+ΔY=Y0+L0・sinθ1 (3)
としてベクトル合成により計算できる。従って、スタート地点での車両の絶対方位と位置座標をGPSにより与えれば、その後、車両が単位距離走行する毎に、(1)〜(3)式の計算を繰り返すことにより車両位置をリアルタイムで検出(推定)できる。
In the self-contained navigation, the vehicle position is detected by integration based on the outputs of the distance sensor and the relative azimuth sensor as follows. FIG. 9 is an explanatory diagram of a vehicle position detection method based on self-contained navigation. The distance sensor outputs a pulse every time the vehicle travels a certain unit distance L0 (for example, 10 m), and sets a reference direction (θ = 0). The positive direction of the X axis and the counterclockwise direction from the reference azimuth are defined as the + direction. Assuming that the previous vehicle position is point P0 (X0, Y0), the absolute azimuth in the vehicle traveling direction at point P0 is θ0, and the output of the relative azimuth sensor at the time of traveling the unit distance L0 is Δθ1, the change in the vehicle position Minutes
ΔX = L0 · cos (θ0 + Δθ1)
ΔY = L0 · sin (θ0 + Δθ1)
The estimated direction θ1 of the vehicle traveling direction and the estimated vehicle position (X1, Y1) at the current point P1 are
θ1 = θ0 + Δθ1 (1)
X1 = X0 + ΔX = X0 + L0 · cosθ1 (2)
Y1 = Y0 + ΔY = Y0 + L0 · sinθ1 (3)
Can be calculated by vector synthesis. Therefore, if the absolute azimuth and position coordinates of the vehicle at the start point are given by GPS, the vehicle position is detected in real time by repeating the calculations of equations (1) to (3) each time the vehicle travels a unit distance thereafter. (Estimated).

しかし、自立航法では走行するにつれて誤差が累積して推定車両位置が道路から外れる。そこで、マップマッチング処理により推定車両位置を道路データと照合して道路上の実車両位置に修正する。
図10は投影法によるマップマッチングの説明図である。現車両位置が点Pi−1(Xi−1,Yi−1)にあり、車両方位がθi−1であったとする(図では点Pi−1は道路RDaと一致していない場合を示す)。点Pi−1より一定距離L0(例えば10m)走行したときの相対方位がΔθiであれば、自立航法による推定車両位置Pi′(Xi′,Yi′)と、Pi′での推定車両方位θiは、次式
θi =θi−1+Δθi
Xi′=Xi−1+L0・cosθi
Yi′=Yi−1+L0・sinθi
により求められる。
However, in self-contained navigation, errors accumulate as the vehicle travels, and the estimated vehicle position deviates from the road. Therefore, the estimated vehicle position is collated with the road data by map matching processing to correct the actual vehicle position on the road.
FIG. 10 is an explanatory diagram of map matching by the projection method. It is assumed that the current vehicle position is at a point Pi-1 (Xi-1, Yi-1) and the vehicle direction is θi-1 (in the figure, the point Pi-1 does not coincide with the road RDa). If the relative azimuth when traveling a certain distance L0 (for example, 10 m) from the point Pi-1 is Δθi, the estimated vehicle position Pi ′ (Xi ′, Yi ′) by self-contained navigation and the estimated vehicle azimuth θi at Pi ′ are And the following equation θi = θi−1 + Δθi
Xi ′ = Xi−1 + L0 · cos θi
Yi ′ = Yi−1 + L0 · sinθi
Is required.

このとき、(a) 推定車両位置Pi′を中心に200m四方に含まれ、しかも、垂線を降ろすことのできるリンク(道路を構成するエレメント)であって、推定車両位置Pi′での推定車両方位θiとリンクの成す角度が一定値以内(たとえば450以内)で、かつ、推定車両位置Pi′からリンクに降ろした垂線の長さが一定距離(たとえば100m)以内となっているものを探す。ここでは道路RDa上の方位θa1のリンクLKa1(ノードNa0とNa1を結ぶ直線)と道路RDb上の方位θb1のリンクLKb1(ノードNb0とNb1を結ぶ直線)となる。ついで、(b) 推定車両位置Pi′からリンクLKa1,LKb1に降ろした垂線RLia、RLibの長さを求める。(c) しかる後、次式
Z=dL・20+dθ・20 (dθ≦250) (4)
Z=dL・20+dθ・40 (dθ>250) (4)′
により係数Zを演算する。なお、dLは推定車両位置Pi′からリンクに降ろした垂線の長さ(推定車両位置からリンクまでの距離)、dθは推定車両方位θiとリンクの成す角度であり、角度dθが大きいほど重み係数を大きくしている。
At this time, (a) a link (element constituting a road) that is included in a 200 m square with the estimated vehicle position Pi ′ as the center and that can be lowered, and the estimated vehicle direction at the estimated vehicle position Pi ′ A search is made for the angle formed by θi and the link within a certain value (for example, within 450), and the length of the perpendicular dropped from the estimated vehicle position Pi ′ to the link within a certain distance (for example, 100 m). Here, the link LKa1 (straight line connecting the nodes Na0 and Na1) on the road RDa and the link LKb1 (straight line connecting the nodes Nb0 and Nb1) on the road RDb. Next, (b) the lengths of the perpendicular lines RLia and RLib dropped from the estimated vehicle position Pi ′ to the links LKa1 and LKb1 are obtained. (c) After that, Z = dL ・ 20 + dθ ・ 20 (dθ ≦ 250) (4)
Z = dL ・ 20 + dθ ・ 40 (dθ> 250) (4) ′
The coefficient Z is calculated by DL is the length of the perpendicular line from the estimated vehicle position Pi ′ to the link (distance from the estimated vehicle position to the link), dθ is the angle formed by the estimated vehicle direction θi and the link, and the larger the angle dθ, the more the weight coefficient Has increased.

(d) 係数値Zが求まれば、以下の1),2),3)の条件、
1)距離dL≦75m(最大引き付け距離75m)
2)角度差dθ≦300(最大引き付け角度300)
3)係数値Z≦1500
を満足するリンクを求め、係数値が最小のリンクをマッチング候補(最適道路)とする。ここではリンクLKa1となる。(e) そして、点Pi−1と点Pi′を結ぶ走行軌跡SHiを垂線RLiaの方向に点Pi−1がリンクLKa1上(またはリンクLKa1の延長線上)に来るまで平行移動して、点Pi−1とPi′の移動点PTi−1とPTi′を求め、(f) 最後に、点PTi−1を中心にPTi′がリンクLKa1上(またはリンクLKa1の延長線上)に来るまで回転移動して移動点を求め、実車両位置Pi(Xi,Yi)とする。なお、実車両位置Piでの車両方位はθiのままとされる。また、図11の如く、前回の車両位置である点Pi−1が道路RDaにあるときは、移動点PTi−1は点Pi−1と一致する。
(d) Once the coefficient value Z is obtained, the following conditions 1), 2), 3)
1) Distance dL ≦ 75m (maximum attraction distance 75m)
2) Angular difference dθ ≦ 300 (maximum attraction angle 300)
3) Coefficient value Z ≦ 1500
A link satisfying the above is obtained, and a link having the smallest coefficient value is set as a matching candidate (optimum road). Here, the link LKa1 is obtained. (e) Then, the traveling locus SHi connecting the point Pi-1 and the point Pi ′ is translated in the direction of the perpendicular line RLia until the point Pi-1 is on the link LKa1 (or on the extension line of the link LKa1). −1 and Pi ′ are obtained as moving points PTi-1 and PTi ′. (F) Finally, the point PTi-1 is rotated around the point PTi-1 until it is on the link LKa1 (or on the extension line of the link LKa1). Thus, the moving point is obtained and set as the actual vehicle position Pi (Xi, Yi). Note that the vehicle orientation at the actual vehicle position Pi remains θi. Further, as shown in FIG. 11, when the point Pi-1 that is the previous vehicle position is on the road RDa, the moving point PTi-1 coincides with the point Pi-1.

図12〜図14はパターンマッチングによるマップマッチングの説明図である。パターンマッチング法は、走行軌跡(所定走行距離毎の自立航法による位置と方位)を保存しておき、該走行軌跡と同形の地図上の道路を求め、該道路上のポイントに車両マークをマップマッチングさせる方法である。走行軌跡パターンと候補道路パターンとのマッチングをとる場合、図12(a)に示すように走行軌跡LPのパターンを等長線分によって折線近似すると共に、車両周辺の所定エリア内に存在する候補道路を求める。そして、各候補道路RPのパターンを同様に図12(b)に示すように等長の線分によって折線近似する。ついで、図13に示すように、折線近似された候補道路RP′の先頭位置に折線近似された走行軌跡LP′の先頭位置が来るように走行軌跡LP′を平行移動し、走行軌跡LP′を所定角度θ(最初は00)回転する。この状態で、道路RP′と走行軌跡LP′の対応ポイント(pi,qi)、(lI,mi)間の距離の総和を演算する(i=1,2,・・・n)。以後、同様に、回転角度θを変えて距離の総和を求め、最も距離の総和Lmが小さくなる回転角度θmを求める(図14参照)。他の候補道路についても上記演算をおこなって距離の総和と回転角度を求める。しかる後、前記距離の総和が最も小さな候補道路、すなわち相関が最大の候補道路を求め、走行軌跡始点が該候補道路の先頭位置と重なるように平行移動した後、回転角度θm回転して車両位置を候補道路上にマップマッチングして処理を終了する。以上より、パターンマッチングにおいては相関を求めることを基本としている。 12 to 14 are explanatory diagrams of map matching by pattern matching. The pattern matching method saves the travel locus (position and orientation by self-contained navigation for each predetermined travel distance), obtains a road on the same map as the travel locus, and maps the vehicle mark to the points on the road It is a method to make it. When matching the travel locus pattern and the candidate road pattern, as shown in FIG. 12A, the pattern of the travel locus LP is approximated by a polygonal line, and candidate roads existing in a predetermined area around the vehicle are displayed. Ask. Then, the pattern of each candidate road RP is similarly approximated by a broken line by an equal-length line segment as shown in FIG. Next, as shown in FIG. 13, the traveling locus LP ′ is translated so that the leading position of the traveling locus LP ′ approximated to the broken line comes to the leading position of the candidate road RP ′ approximated to the broken line. It rotates by a predetermined angle θ (initially 0 0 ). In this state, the sum of the distances between corresponding points (pi, qi) and (lI, mi) between the road RP 'and the travel locus LP' is calculated (i = 1, 2,... N). Thereafter, similarly, the total sum of distances is obtained by changing the rotational angle θ, and the rotational angle θm with the smallest total distance Lm is obtained (see FIG. 14). For other candidate roads, the above calculation is performed to determine the sum of distances and the rotation angle. Thereafter, the candidate road having the smallest sum of the distances, that is, the candidate road having the largest correlation is obtained, and after the parallel movement is made so that the traveling locus start point overlaps the head position of the candidate road, the vehicle position is rotated by the rotation angle θm. The map is matched with the candidate road and the process is terminated. From the above, pattern matching is based on obtaining correlation.

パターンマッチング法によるマップマッチング処理は計算量が多いため、例えば、150m走行毎にあるいは数秒毎に行ない、投影法によるマップマッチングは10m走行毎にあるいは0.8秒毎に行なう。投影法によるマップマッチング処理は局所的にしか行なわないので、一度マッチングを間違うと以後、間違った道路上に車両位置を修正し続けてしまう。このため、パターンマッチングを併用して間違った道路上にマップマッチングし続けるのを防止するのである。   Since the map matching process by the pattern matching method has a large calculation amount, for example, the map matching process is performed every 150 m or every several seconds, and the map matching by the projection method is performed every 10 m or every 0.8 seconds. Since the map matching process by the projection method is performed only locally, once the matching is wrong, the vehicle position is continuously corrected on the wrong road. For this reason, the pattern matching is used together to prevent the map matching from continuing on the wrong road.

図15はマップマッチングの初期動作説明図である。初期時、GPSにより測定された位置を車両位置Pとし、該車両位置Pを中心とする所定サイズの矩形エリアSQARを設定し、垂線の足が該矩形エリア内に存在する道路を候補道路RDa,RDbとして求め、該垂線の足を候補道路の先頭位置Qa,Qbとする。以後、自立航法により車両の位置、方位を推定して等長ベクトル化し、所定距離走行後にパターンマッチング処理を行なって最も相関の大きな候補道路RDbを求め、推定車両位置PMを走行道路RDb上の実車両位置QMに修正する。以後、パターンマッチングと投影法によるマップマッチング処理を行なって車両位置を走行道路RDb上に修正し、パターンマッチングが不可能になれば、前記初期動作を行なう。なお、パターンマッチングが不可能になった後の初期動作では車両位置Pとして自立航法位置を用いる。 FIG. 15 is an explanatory diagram of an initial operation of map matching. Initially, a position measured by GPS is set as a vehicle position P, a rectangular area SQAR of a predetermined size centered on the vehicle position P is set, and a road having a perpendicular foot in the rectangular area is set as a candidate road RDA, Obtained as RDb and let the foot of the perpendicular line be the leading positions Qa and Qb of the candidate road. After that, the position and direction of the vehicle are estimated by self-contained navigation and converted into an isometric vector, and after running a predetermined distance, pattern matching processing is performed to obtain the candidate road RDb having the highest correlation, and the estimated vehicle position P M on the driving road RDb The actual vehicle position Q M is corrected. Thereafter, a map matching process using pattern matching and a projection method is performed to correct the vehicle position on the traveling road RDb. If pattern matching becomes impossible, the initial operation is performed. In the initial operation after the pattern matching becomes impossible, the autonomous navigation position is used as the vehicle position P.

ところで、パターンマッチング法と投影法を併用するマップマッチング法では、車両がUターンすると車両位置マークが実際の走行道路から間違った道路にミスマッチングしたり、実際の走行道路にマッチングするまでの距離が長くなり、自車位置精度が悪くなる問題がある。これは、パターンマッチングでは車両推定位置を前方に進める処理しか行なわないため、Uターン時にパターンマッチングの相関値が悪くなり、パターンマッチングを続けられなくなってやっと初期化するためである。図16は道路RDa走行中に交差点Aの手前でUターンしたとき、道路RDaから30〜40m離れた平行道路RDbにミスマッチングした例である。尚、図中黒丸は車両マークの軌跡である。図17は直線道路RD走行中にB地点でUターンした場合であり、点線が実際の自立航法位置の軌跡、黒丸が車両マークの軌跡で、Uターン後C地点まで長い距離走行してからマップマッチングが初期化されて車両マークがようやく走行道路上に修正される。以上から、早期にUターンを検出して初期化することにより上記ミスマッチングをなくし、また、実際の走行道路にマッチングするまでの距離を短くすることが必要となる。   By the way, in the map matching method using both the pattern matching method and the projection method, when the vehicle makes a U-turn, the vehicle position mark is mismatched from the actual traveling road to the wrong road, or the distance until the actual traveling road is matched. There is a problem that it becomes longer and the position accuracy of the own vehicle becomes worse. This is because in pattern matching, only the process of moving the vehicle estimated position forward is performed, so that the correlation value of the pattern matching is deteriorated at the time of the U-turn, and the pattern matching cannot be continued and is finally initialized. FIG. 16 shows an example in which when a U-turn is made before the intersection A while traveling on the road RDa, a mismatch is made with the parallel road RDb 30 to 40 m away from the road RDa. In the figure, the black circle is the locus of the vehicle mark. FIG. 17 shows a case where a U-turn is made at point B while traveling on a straight road RD. The dotted line is the actual self-contained navigation position trajectory, the black circle is the vehicle mark trajectory, and after traveling a long distance to point C after U-turn Matching is initialized and the vehicle mark is finally corrected on the road. From the above, it is necessary to eliminate the mismatching by detecting and initializing the U-turn at an early stage, and to shorten the distance until matching with the actual traveling road.

Uターンを検出する従来技術として幾つの方法が提案されている。第1従来技術は車両が所定角度以上旋回するとUターンと判定するものである(たとえば特許文献1参照)。又、第2従来技術は、車両現在位置前後の所定範囲内における道路の方位変化量θを求め、該θが例えば1800以下の場合にはUターン認定回数Nsを3回とし、1800以上の場合には車両が峠道あるいはインターチェンジにいるものとみなしてNs=10回とし、100m走行毎にUターン判定を行ない、所定時間内に目的地に向かっていない(出発地点に向かっている)と判定した回数NがNsより大きい時Uターンしたと判定するものである(たとえば特許文献2参照)。
特開平8−334357号公報 特開平8−145707号公報
Several methods have been proposed as conventional techniques for detecting a U-turn. The first prior art determines a U-turn when the vehicle turns more than a predetermined angle (see, for example, Patent Document 1). The second prior art, the vehicle obtains the orientation change amount θ of the road at the current position within a predetermined range before and after, and 3 times the U-turn certification number Ns in the case of the θ, for example, 180 0 or less, 180 0 or more In this case, it is assumed that the vehicle is on a road or interchange, and Ns = 10 times. A U-turn determination is made every 100 m, and it is not heading for the destination within a predetermined time (toward the departure point). It is determined that a U-turn has been made when the number N of times determined is greater than Ns (see, for example, Patent Document 2).
JP-A-8-334357 JP-A-8-145707

第1の従来技術は角度変化しか見ていないため、駐車場での旋回、曲がり角、インターネットチェンジ,峠道などで間違ったUターン判定をしやすい問題がある。
又、第2の従来技術はUターンしてからUターン判定が完了するまでの走行距離が長い問題がある。
以上から本発明の目的は、Uターン開始後短い走行距離で、かつ正確に、Uターン判定を行なえるようにすることである。
Since the first prior art only sees a change in angle, there is a problem that it is easy to make a wrong U-turn determination by turning in a parking lot, turning corner, Internet change, roadway, etc.
In addition, the second prior art has a problem that the travel distance from the U-turn to the completion of the U-turn determination is long.
From the above, an object of the present invention is to enable a U-turn determination accurately with a short travel distance after the start of a U-turn.

上記課題は本発明によれば、車両のUターンを検出するナビゲーションシステムのUターン検出方法において、車両の旋回開始位置から現車両位置までの旋回角度を算出し、かつ旋回部分における平均曲率を算出するステップ、旋回角度が設定角度範囲内にあり、かつ、平均曲率が設定曲率より小さい時、Uターンしたと判定するステップを有するUターン検出方法により達成される。上記Uターン検出方法は、更に、所定走行距離毎に車両の方位を保存するステップ、該保存データを参照して、車両現在位置から最も近い所定長の直線部分の終点を前記車両の旋回開始位置とするステップを有している。上記Uターン検出方法は、更に、車両が峠道に存在することを判断するステップを備え、峠道に存在する場合にはUターン判定を停止する。   According to the present invention, in the U-turn detection method of the navigation system for detecting the U-turn of the vehicle, the turning angle from the turning start position of the vehicle to the current vehicle position is calculated, and the average curvature at the turning portion is calculated. This is achieved by a U-turn detection method comprising a step of determining that a U-turn has been made when the turning angle is within a set angle range and the average curvature is smaller than the set curvature. The U-turn detection method further includes the step of storing the vehicle direction for each predetermined travel distance, and refers to the stored data to determine the end point of the straight portion of the predetermined length closest to the vehicle current position as the turning start position of the vehicle. It has a step. The U-turn detection method further includes a step of determining that the vehicle exists on the road, and stops the U-turn determination if the vehicle exists on the road.

上記課題は本発明によれば、車両のUターンを検出するナビゲーションシステムのUターン検出装置において、車両の位置と方位を検出し、走行軌跡として保存する手段、前記走行軌跡より車両の旋回開始位置を求め、車両の旋回開始位置から現車両位置までの旋回角度を算出し、かつ旋回部分における平均曲率を算出し、旋回角度が設定角度範囲内にあり、かつ、平均曲率が設定曲率より小さい時、Uターンしたと判定するUターン判定手段を備えたにより達成される。Uターン判定手段は、走行軌跡を参照して、車両現在位置から最も近い所定長の直線部分の終点を前記車両の旋回開始位置とする。また、Uターン判定手段は、車両が峠道に存在する場合にはUターン判定処理を停止する、   According to the present invention, in the U-turn detection device for a navigation system that detects a U-turn of a vehicle, the vehicle position and direction are detected and stored as a travel locus, and the vehicle turning start position is determined from the travel locus. When the turning angle from the turning start position of the vehicle to the current vehicle position is calculated, the average curvature at the turning portion is calculated, the turning angle is within the set angle range, and the average curvature is smaller than the set curvature This is achieved by providing a U-turn determination means for determining that a U-turn has been made. The U-turn determining means refers to the travel locus and sets the end point of the straight portion having a predetermined length closest to the current vehicle position as the turning start position of the vehicle. Further, the U-turn determination means stops the U-turn determination process when the vehicle exists on the road.

本発明によれば、車両の旋回開始位置から現車両位置までの旋回角度を算出し、かつ旋回部分における平均曲率を算出し、旋回角度が設定角度範囲内にあり、かつ、平均曲率が設定曲率より小さい時、Uターンしたと判定するから、Uターン後に短い走行距離で、かつ正確に、Uターン判定を行なうことができる。特に曲率をUターン判定の条件としたから、道路でないエリア、たとえば駐車場における旋回や、高速道路への合流における旋回をUターンと誤判定するミスをなくすことができる。
本発明によれば、車両が峠道に存在することを判定し、峠道に存在する場合にはUターン判定を停止するようにしたから、峠道における急カーブをUターンと誤判定するミスをなくすことができる。
According to the present invention, the turning angle from the turning start position of the vehicle to the current vehicle position is calculated, the average curvature at the turning portion is calculated, the turning angle is within the set angle range, and the average curvature is the set curvature. When it is smaller, it is determined that the U-turn has been made, so that the U-turn can be determined accurately with a short distance after the U-turn. In particular, since the curvature is set as a condition for determining the U-turn, it is possible to eliminate an error that erroneously determines a turn in an area other than a road, for example, a turn in a parking lot or a turn to a highway as a U-turn.
According to the present invention, since it is determined that the vehicle exists on the saddle road and the U-turn determination is stopped when the vehicle exists on the saddle road, a mistake that erroneously determines a sharp curve on the saddle road as a U-turn. Can be eliminated.

図1は本発明の実施形態説明図であり、自立航法位置算出/保存部29において位置/方位計算部29aは自立航法センサ8の出力に基づいて自車位置(推定車両位置)及び車両方位を計算し、所定走行距離(たとえば10m)毎にX,Y方向の相対距離及び方位を走行軌跡(等長ベクトル軌跡)として走行軌跡保存部29bに保存する。Uターン検出部36において、旋回開始位置算出部36aは、走行軌跡を参照して、車両現在位置から最も近い所定長の直線部分の終点を旋回開始位置として算出し、旋回角度/平均曲率算出部36bは、車両の旋回開始位置から現車両位置までの旋回角度を算出し、かつ旋回部分における平均曲率を算出し、Uターン判定部36cは旋回角度が設定角度範囲内にあり、かつ、平均曲率が設定曲率より小さい時、Uターンしたと判定する。この場合、Uターン判定部36cは、車両が峠道に存在するか判断し、峠道に存在する場合にはUターン判定を停止し、峠道におけるUターン誤検出を防止する。   FIG. 1 is an explanatory diagram of an embodiment of the present invention. In a self-contained navigation position calculation / storage unit 29, a position / orientation calculation unit 29a determines the vehicle position (estimated vehicle position) and vehicle direction based on the output of the self-contained navigation sensor 8. The relative distance and direction in the X and Y directions are calculated and stored in the travel locus storage unit 29b as a travel locus (equal length vector locus) for each predetermined travel distance (for example, 10 m). In the U-turn detection unit 36, the turning start position calculation unit 36a refers to the travel locus, calculates the end point of the straight portion of the predetermined length closest to the current vehicle position as the turning start position, and turns angle / average curvature calculation unit. 36b calculates a turning angle from the turning start position of the vehicle to the current vehicle position, and calculates an average curvature in the turning portion, and the U-turn determination unit 36c has the turning angle within the set angle range and the average curvature. Is smaller than the set curvature, it is determined that a U-turn has been made. In this case, the U-turn determination unit 36c determines whether the vehicle exists on the road, stops the U-turn determination if the vehicle exists on the road, and prevents erroneous U-turn detection on the road.

(A)ナビゲーションシステム
図2は本発明のUターン検出部を備えたナビゲーションシステムの構成図である。
ナビゲーション制御装置1、リモコン2、ディスプレイ装置(カラーモニター)3、ハードディスク(HDD) 4、HDD制御装置5、マルチビームアンテナ6、GPS受信機7、自立航法用センサ8、オーディオ部9を有している。ハードディスク(HDD)4には、地図データが記憶されている。自立航法センサ8は、車両回転角度を検出する振動ジャイロ等の相対方位センサ(角度センサ)8a、所定走行距離毎に1個のパルスを発生する距離センサ8bを備えている。
(A) Navigation System FIG. 2 is a configuration diagram of a navigation system provided with a U-turn detection unit of the present invention.
It has a navigation control device 1, a remote control 2, a display device (color monitor) 3, a hard disk (HDD) 4, an HDD control device 5, a multi-beam antenna 6, a GPS receiver 7, a self-contained navigation sensor 8, and an audio unit 9. Yes. The hard disk (HDD) 4 stores map data. The self-contained navigation sensor 8 includes a relative azimuth sensor (angle sensor) 8a such as a vibration gyro that detects a vehicle rotation angle, and a distance sensor 8b that generates one pulse for each predetermined travel distance.

ナビゲーション制御装置1において、地図読出制御部21は、自車位置あるいはフォーカス位置(スクロール時)等に基づいて、HDD制御装置5を制御してHDD 4より所定の地図情報を読み出す。地図バッファ22はHDDから読み出された地図情報を記憶し、地図スクロールができるように自車位置あるいはフォーカス位置周辺の複数枚(複数ユニット)の地図情報、例えば3×3ユニットの地図情報を記憶する。
地図描画部23は、地図バッファ22に記憶された地図情報を用いて地図画像を発生し、VRAM24は地図画像を記憶し、読出制御部25は画面中心位置(自車位置、フォーカス位置)に基づいてVRAM24より切り出す1画面分の位置を変えて自車位置の移動あるいはフォーカス移動に従って地図をスクロール表示する。
In the navigation control device 1, the map readout control unit 21 reads out predetermined map information from the HDD 4 by controlling the HDD control device 5 based on the vehicle position or the focus position (when scrolling). The map buffer 22 stores the map information read from the HDD, and stores multiple pieces (multiple units) of map information around the vehicle position or the focus position, for example, 3 × 3 units of map information so that the map can be scrolled. To do.
The map drawing unit 23 generates a map image using the map information stored in the map buffer 22, the VRAM 24 stores the map image, and the read control unit 25 is based on the screen center position (own vehicle position, focus position). The position of one screen cut out from the VRAM 24 is changed, and the map is scroll-displayed according to the movement of the own vehicle position or the focus movement.

交差点案内部26は接近中の交差点における交差点拡大図を表示して交差点での進行方向の案内をディスプレイ画像及び音声で行う。すなわち、実際の経路誘導時に、自車が接近中の交差点より所定距離内に接近した時、該交差点案内図(交差点拡大図、進行方向矢印)をディスプレイ画面に表示すると共に進行方向を音声で案内する。リモコン制御部27はリモコンの操作に応じて信号を受信して各部に指示する。GPS位置算出部28はGPS受信機から入力されるGPSデータに基づいて車両の現在位置(GPS位置)や方車両位を算出する。自立航法位置算出/保存部29は、GPS位置を初期位置として自立航法により車両位置および方位を算出する。すなわち、自立航法位置算出/保存部29は、自立航法センサ出力に基づいて自車位置(推定車両位置)および車両方位を計算し、所定走行距離(たとえば10m)毎にX,Y方向の相対距離及び方位を走行軌跡(等長ベクトル軌跡)として保存する。
マップマッチング制御部30は、地図バッファ22に読み出されている地図情報と推定車両位置、車両方位、走行軌跡を用いてマップマッチング処理を行って自車位置を走行道路上に位置修正する。マップマッチング処理はパターンマッチングと投影法を併用して行なうものとし、パターンマッチングは150mの走行毎に行い、投影法によるマップマッチングは0.8秒毎に行なう。また、マップマッチング制御部30は、Uターンが検出された時、マップマッチングを初期化して最初からやり直す(図15参照)。
The intersection guide unit 26 displays an enlarged view of the intersection at the approaching intersection and guides the traveling direction at the intersection using a display image and sound. That is, when the vehicle approaches within a predetermined distance from the approaching intersection, the intersection guide map (intersection enlarged view, travel direction arrow) is displayed on the display screen and the travel direction is guided by voice. To do. The remote controller control unit 27 receives a signal in response to an operation of the remote controller and instructs each unit. The GPS position calculation unit 28 calculates the current position (GPS position) of the vehicle and the vehicle position based on the GPS data input from the GPS receiver. The self-contained navigation position calculation / storage unit 29 calculates the vehicle position and direction by self-contained navigation with the GPS position as the initial position. That is, the self-contained navigation position calculation / storage unit 29 calculates the own vehicle position (estimated vehicle position) and vehicle direction based on the output of the self-contained navigation sensor, and the relative distance in the X and Y directions for each predetermined travel distance (for example, 10 m). And the azimuth are stored as a running locus (equal length vector locus).
The map matching control unit 30 performs map matching processing using the map information read to the map buffer 22, the estimated vehicle position, the vehicle orientation, and the travel locus to correct the position of the own vehicle on the travel road. The map matching processing is performed by using both pattern matching and the projection method, the pattern matching is performed every 150 m, and the map matching by the projection method is performed every 0.8 seconds. Further, when the U-turn is detected, the map matching control unit 30 initializes the map matching and starts over from the beginning (see FIG. 15).

誘導経路制御部31は、入力された出発地から目的地までの誘導経路(探索経路)の計算処理を行い、誘導経路メモリ32は誘導経路を記憶し、誘導経路描画部33は走行時、誘導経路メモリ32より誘導経路情報(ノード列)を読み出して誘導経路を描画する。操作画面発生部34は各種メニュー画面(操作画面)を発生し、画像合成部35は各種画像を合成して出力する。
Uターン検出部36は後述する処理フローに従ってUターン検出を行なう。峠道判定部37は、車両が峠道を通過中であるか判定する。峠道判定は、(1)走行軌跡を参照して、方位が設定角度以上変化する変曲点の数が所定距離内に設定数以上存在すれば峠道と判定し、あるいは、(2)地図情報に峠道開始/終了情報を含ませ、この情報を用いて峠道と判定し、あるいは、(3)車両前方の道路情報を解析して方位が設定角度以上変化する変曲点の数が所定距離内に設定数以上であれば峠道と判定する。
The guide route control unit 31 performs a calculation process of a guide route (search route) from the input departure point to the destination, the guide route memory 32 stores the guide route, and the guide route drawing unit 33 guides the vehicle during driving. The guide route information (node sequence) is read from the route memory 32 and the guide route is drawn. The operation screen generator 34 generates various menu screens (operation screens), and the image composition unit 35 synthesizes and outputs various images.
The U-turn detection unit 36 performs U-turn detection according to a processing flow described later. The lane determination unit 37 determines whether the vehicle is passing the lane. The saddle road judgment is (1) with reference to the running trajectory, if there are more than the set number of inflection points whose direction changes more than the set angle, it is judged as a saddle road, or (2) the map Include road start / end information in the information and use this information to determine the road, or (3) analyze the road information ahead of the vehicle and the number of inflection points where the direction changes more than the set angle If it is equal to or more than the set number within a predetermined distance, it is determined as a tunnel.

(B)Uターン判定処理
図3は本発明のUターン判定処理説明図、図4はUターン検出部36の判定処理フローである。なお、ナビゲーション制御において、マップマッチングはパターンマッチングと投影法を併用して行なうものとする。
マップマッチング処理が正常に行なわれて車両マークは走行道路上に修正されている。また、自立航法により10m走行する毎に、前回の位置から今回の位置までのX,Y方向相対移動距離と車両の方位よりなる軌跡等長ベクトルが作成され、走行軌跡データとして保存されている。かかる走行状態においてUターン検出部36は以下の処理を行なってUターン検出を行なう。
すなわち、Uターン検出部36は、10m毎の最新の軌跡等長ベクトル端(現在地点という)P0からたとえば40m手前の地点P1のジャイロ方位(軌跡等長ベクトル方位)θ1を走行軌跡データより求める。
(B) U-turn determination process FIG. 3 is an explanatory diagram of the U-turn determination process of the present invention, and FIG. 4 is a determination process flow of the U-turn detection unit 36. In navigation control, map matching is performed using both pattern matching and a projection method.
The map matching process is normally performed and the vehicle mark is corrected on the traveling road. Further, every time the vehicle travels 10 m by self-contained navigation, a trajectory isometric vector composed of the relative movement distance in the X and Y directions from the previous position to the current position and the direction of the vehicle is created and stored as travel trajectory data. In such a traveling state, the U-turn detection unit 36 performs the following process to detect the U-turn.
That is, the U-turn detection unit 36 calculates the gyro direction (trajectory isometric vector azimuth) θ 1 of the point P 1 40 m before the latest trajectory equal length vector end (referred to as the current point) P 0 every 10 m and the travel trajectory data. Ask more.

ついで、Uターン検出部36は、現在地点P0のジャイロ方位θ0と地点P1のジャイロ方位θ1の角度差(=|θ0−θ1|)を計算し、該角度差がしきい値θTH1(180±300)以内かどうか、すなわち、1500〜2100の範囲内に存在するか判定する(ステップ102)。この処理は、Uターン判定の簡易フィルター処理であり、Uターン判定処理を軽くするためのステップで、必ずしも必要ではない。
前記角度差(=|θ0−θ1|)がしきい値θTH1の範囲外であればUターンでないものとみなして処理を終了して始めに戻る。一方、角度差(=|θ0−θ1|)がしきい値θTH1の範囲内であれば、現在地点P0から設定距離(100m)範囲内に設定長(50m)以上の直線部分が存在するか走行軌跡データを参照して判定する(ステップ103)。存在しなければ、Uターンでないものとみなして処理を終了して始めに戻る。この処理はUターン開始地点PUSを推定するための処理である。なお、図5に示すように道路RDが緩やかにうねっている場合において、道路上の2点Q1,Q2間の直線距離をL1、実際の道路長をL0とするとき、L1・cos100<L0≦L1のときQ1,Q2間は直線部分とみなす。
Then, U-turn detecting unit 36, a gyro azimuth theta 0 and gyro azimuth theta 1 of the angular difference of the point P 1 of the current point P 0 (= | θ 0 -θ 1 |) is calculated, and the angle difference threshold whether the value theta TH1 (180 ± 30 0) within, i.e., determines whether present within the range of 150 0 to 210 0 (step 102). This process is a simple filter process for U-turn determination, and is a step for reducing the U-turn determination process and is not necessarily required.
If the angle difference (= | θ 0 −θ 1 |) is outside the range of the threshold value θ TH1 , it is regarded as not a U-turn and the process is terminated and the process returns to the beginning. On the other hand, if the angle difference (= | θ 0 −θ 1 |) is within the range of the threshold value θ TH1 , a straight line portion having a set length (50 m) or more is within the set distance (100 m) from the current point P 0. It is determined whether it exists by referring to the travel locus data (step 103). If it does not exist, it is assumed that it is not a U-turn and the process ends and the process returns to the beginning. This process is a process for estimating the U-turn start point P US . As shown in FIG. 5, when the road RD is gently undulating, when the straight line distance between two points Q1 and Q2 on the road is L 1 and the actual road length is L 0 , L 1 · cos 10 When 0 <L 0 ≦ L 1 , the area between Q1 and Q2 is regarded as a straight line portion.

直線部分が存在すれば、現在地点P0から最も近い直線終了部を車両のUターン開始地点PUSと推定し、直線部分の方位θbaseを算出する。すなわち、Uターン開始地点PUSにおける方位θbaseを求める(ステップ104)。ついで、Uターン検出部36は直線終了部PUSから現在地点P0までの距離Lと変化角度θを計算し、次式
r=L/θ
により旋回部分の平均曲率rを計算する(ステップ105)。
平均曲率を算出すれば、Uターン検出部36は、現在地点の方位θ0と方位θbaseの角度差(=|θ0−θbase|)がしきい値θTH2(180±200)の範囲内で、平均曲率rがしきい値(10R)以内であるか判断し(ステップ106〜107)、角度差がしきい値θTH2の範囲外、あるいは、平均曲率rがしきい値(10R)以上の場合にはUターンでないものとみなして処理を終了して始めに戻る。ステップ107の処理は、曲率が小さいほどUターンの可能性が高いためであり、かつ、道路でないエリア、例えば駐車場での旋回や図6に示すように高速道路HWYに合流するランプRMPにおける旋回をUターンと誤判定しないようにするためである。なお、曲率のしきい値を10Rにしたが、道路の幅員Wが判っていればしきい値を幅員Wとすることができる。
If there is a straight line portion, the straight line end portion closest to the current point P 0 is estimated as the U-turn start point P US of the vehicle, and the direction θbase of the straight line portion is calculated. That is, the direction θbase at the U-turn start point P US is obtained (step 104). Next, the U-turn detection unit 36 calculates a distance L and a change angle θ from the straight line end portion P US to the current point P 0 , and the following equation r = L / θ
To calculate the average curvature r of the turning portion (step 105).
If the average curvature is calculated, the U-turn detector 36 determines that the angle difference (= | θ 0 −θbase |) between the azimuth θ 0 and the azimuth θbase at the current point is within the range of the threshold θ TH2 (180 ± 20 0 ). It is determined whether the average curvature r is within the threshold value (10R) (steps 106 to 107), and the angle difference is outside the range of the threshold value θTH2 , or the average curvature r is equal to or greater than the threshold value (10R). In the case of, it is considered that it is not a U-turn, and the process ends and returns to the beginning. The process of step 107 is because the smaller the curvature, the higher the possibility of a U-turn, and the turn in a non-road area such as a turn in a parking lot or a ramp RMP that joins the highway HWY as shown in FIG. This is to prevent erroneous determination of the U-turn. Although the curvature threshold is 10R, the threshold can be set to width W if the width W of the road is known.

現在地点の方位θ0と方位θbaseの角度差(=|θ0−θbase|)がしきい値θTH2(180±200)の範囲内で、平均曲率rがしきい値(10R)以内の場合、Uターン検出部36は車両が峠道に存在するかチェックし(ステップ108)、峠道に存在すればUターン判定処理を停止する。これは峠道での旋回をUターンと誤判定しないようにするためであるが、必ずしも必要なステップではない。
峠道でなければ、車両がUターンしたと判定する(ステップ109)。なお、峠道判定処理108を省略する場合には、前記角度差がしきい値θTH2(180±200)の範囲内で、平均曲率rがしきい値(10R)以内の場合、車両がUターンしたと判定する。
Uターン検出後、同じUターンを繰返し検出しないようにするためにUターン検出後60m走行するまでUターン判定処理を中止し(ステップ110)、しかる後始めに戻りUターン判定処理を再開する。
Uターンが検出されると、マップマッチング制御部30(図30)はマップマッチングを初期化してマップマッチングを最初からやり直す。
The angle difference (= | θ 0 −θbase |) between the azimuth θ 0 and the azimuth θbase at the current point is within the range of the threshold θ TH2 (180 ± 20 0 ), and the average curvature r is within the threshold (10R). In this case, the U-turn detection unit 36 checks whether the vehicle exists on the road (step 108), and stops the U-turn determination process if it exists on the road. This is to prevent misturning a turn on a saddle road as a U-turn, but is not necessarily a necessary step.
If it is not a saddle road, it is determined that the vehicle has made a U-turn (step 109). In the case where the saddle road judgment process 108 is omitted, when the angle difference is within the range of the threshold value θ TH2 (180 ± 20 0 ) and the average curvature r is within the threshold value (10R), the vehicle It is determined that a U-turn has been made.
After detecting the U-turn, in order not to repeatedly detect the same U-turn, the U-turn determination process is stopped until the vehicle travels 60 m after the U-turn is detected (step 110), and then the process returns to the beginning to restart the U-turn determination process.
When the U-turn is detected, the map matching control unit 30 (FIG. 30) initializes the map matching and starts the map matching from the beginning.

以上のように、本発明によれば、Uターン後に短い走行距離で、かつ正確に、Uターン判定を行なうことができ、この結果、早期にマップマッチングを初期化してミスマッチングをなくせ、かつ、実際の走行道路上にマッチングするまでの時間を短縮できる。図7は、道路RDa走行中に交差点Aの手前でUターンしたときの車両マーク軌跡であり、従来のように(図16参照)30〜40m離れた平行道路RDbにミスマッチングすることはなく、短時間で走行道路上にマッチング修正されている。尚、黒丸は車両マークの軌跡である。図8は直線道路RD走行中にB地点でUターンした場合であり、点線が実際の自立航法位置の軌跡、黒丸が車両マークの軌跡であり、Uターン後、短時間で車両マークが走行道路上に修正されている。
また、本発明によれば、曲率をUターン判定の条件としたから、道路でないエリア、たとえば駐車場における旋回や、高速道路への合流における旋回をUターンと誤判定するミスをなくすことができる。また、峠道における急カーブをUターンと誤判定するミスをなくすことができる。
As described above, according to the present invention, the U-turn determination can be performed accurately with a short mileage after the U-turn. As a result, map matching is initialized early to eliminate mismatching, and The time required for matching on the actual road can be shortened. FIG. 7 is a vehicle mark trajectory when making a U-turn before the intersection A while traveling on the road RDa, and there is no mismatching with the parallel road RDb 30 to 40 m away as in the past (see FIG. 16) Matching is corrected on the road in a short time. A black circle is a locus of a vehicle mark. FIG. 8 shows a case where a U-turn is made at a point B while traveling on a straight road RD. A dotted line is a locus of an actual autonomous navigation position, a black circle is a locus of a vehicle mark, and a vehicle mark is a traveling road in a short time after the U-turn. It has been corrected above.
In addition, according to the present invention, since the curvature is set as a condition for determining the U-turn, it is possible to eliminate an error that erroneously determines a turn at a non-road area, for example, a turn in a parking lot or a turn to a highway as a U-turn. . In addition, it is possible to eliminate the mistake of misidentifying a sharp curve in a saddle road as a U-turn.

本発明の実施形態説明図である。It is embodiment explanatory drawing of this invention. 本発明のUターン検出部を備えたナビゲーションシステムの構成図である。It is a block diagram of the navigation system provided with the U-turn detection part of this invention. Uターン判定処理説明図である。It is U-turn determination process explanatory drawing. Uターン検出部の判定処理フローである。It is the determination processing flow of a U-turn detection part. 直線部分の判定説明図である。It is determination explanatory drawing of a linear part. 高速道路に合流するランプにおける旋回説明図である。It is turning explanatory drawing in the ramp which joins a highway. 本発明のUターン検出装置を備えたナビゲーション装置の車両マーク軌跡の説明図である。It is explanatory drawing of the vehicle mark locus | trajectory of the navigation apparatus provided with the U-turn detection apparatus of this invention. 本発明のUターン検出装置を備えた別のナビゲーション装置の車両マーク軌跡の説明図である。It is explanatory drawing of the vehicle mark locus | trajectory of another navigation apparatus provided with the U-turn detection apparatus of this invention. 自立航法による車両位置検出方法の説明図である。It is explanatory drawing of the vehicle position detection method by a self-supporting navigation. 投影法によるマップマッチングの説明図である。It is explanatory drawing of the map matching by a projection method. 投影法によるマップマッチングの別の説明図である。It is another explanatory drawing of the map matching by a projection method. パターンマッチングによるマップマッチングの第1の説明図である。It is the 1st explanatory view of map matching by pattern matching. パターンマッチングによるマップマッチングの第2の説明図である。It is the 2nd explanatory view of map matching by pattern matching. パターンマッチングによるマップマッチングの第3の説明図である。It is the 3rd explanatory view of map matching by pattern matching. マップマッチングの初期動作説明図である。It is an initial operation explanatory view of map matching. 従来のマップマッチングによるミスマッチング説明図である。It is mismatch explanatory drawing by the conventional map matching. 従来のマップマッチングによる車両マーク位置説明図である。It is vehicle mark position explanatory drawing by the conventional map matching.

符号の説明Explanation of symbols

8 自立航法センサー
29 自立航法位置算出/保存部
29a 位置/方位計算部
29b 走行軌跡保存部
36 Uターン検出部
36a 旋回開始位置算出部
36b 旋回角度/平均曲率算出部
36c 判定部
8 self-contained navigation sensor 29 self-contained navigation position calculation / storage unit 29a position / orientation calculation unit 29b travel locus storage unit 36 U-turn detection unit 36a turn start position calculation unit 36b turn angle / average curvature calculation unit 36c determination unit

Claims (6)

車両のUターンを検出するナビゲーションシステムのUターン検出方法において、
車両の旋回開始位置から現車両位置までの旋回角度を算出し、かつ旋回部分における平均曲率を算出し、
旋回角度が設定角度範囲内にあり、かつ、平均曲率が設定曲率より小さい時、Uターンしたと判定する、
ことを特徴とするUターン検出方法。
In a U-turn detection method of a navigation system for detecting a U-turn of a vehicle,
Calculate the turning angle from the turning start position of the vehicle to the current vehicle position, and calculate the average curvature at the turning portion,
When the turning angle is within the set angle range and the average curvature is smaller than the set curvature, it is determined that the U-turn has been made.
The U-turn detection method characterized by the above-mentioned.
所定走行距離毎に車両の方位を保存し、
該保存データを参照して、車両現在位置から最も近い所定長の直線部分の終点を前記車両の旋回開始位置とする、
ことを特徴とする請求項1記載のUターン検出方法。
Save the azimuth of the vehicle for each predetermined mileage,
With reference to the stored data, the end point of the straight portion of the predetermined length closest to the current vehicle position is set as the turning start position of the vehicle.
The U-turn detection method according to claim 1.
車両が峠道に存在することを判断し、
峠道に存在する場合にはUターン判定を停止する、
ことを特徴とする請求項1記載のUターン検出方法。
Determine that the vehicle is on the road,
Stop U-turn judgment if it exists in the tunnel,
The U-turn detection method according to claim 1.
車両のUターンを検出するナビゲーションシステムのUターン検出装置において、
車両の位置と方位を検出し、走行軌跡として保存する手段、
前記走行軌跡より車両の旋回開始位置を求め、車両の旋回開始位置から現車両位置までの旋回角度を算出し、かつ旋回部分における平均曲率を算出し、旋回角度が設定角度範囲内にあり、かつ、平均曲率が設定曲率より小さい時、Uターンしたと判定するUターン判定手段、
を備えたことを特徴とするUターン検出装置。
In a U-turn detection device of a navigation system for detecting a U-turn of a vehicle,
Means for detecting the position and direction of the vehicle and storing it as a travel locus;
A turning start position of the vehicle is obtained from the travel locus, a turning angle from the turning start position of the vehicle to the current vehicle position is calculated, an average curvature in the turning portion is calculated, the turning angle is within a set angle range, and U-turn determination means for determining that a U-turn has been made when the average curvature is smaller than the set curvature;
A U-turn detection device comprising:
前記Uターン判定手段は、走行軌跡を参照して、車両現在位置から最も近い所定長の直線部分の終点を前記車両の旋回開始位置とする、
ことを特徴とする請求項4記載のUターン検出装置。
The U-turn determination means refers to the travel locus, and sets the end point of the straight portion of the predetermined length closest to the vehicle current position as the turning start position of the vehicle.
The U-turn detection device according to claim 4.
Uターン検出装置は、更に、車両が峠道に存在することを判断する峠道判定手段、
を備え、前記Uターン判定手段は、車両が峠道に存在する場合にはUターン判定処理を停止する、
ことを特徴とする請求項4記載のUターン検出装置。
The U-turn detection device further includes a saddle road judging means for judging that the vehicle exists on the saddle road,
The U-turn determination means stops the U-turn determination process when the vehicle is on a saddle road.
The U-turn detection device according to claim 4.
JP2004212658A 2004-07-21 2004-07-21 U-turn detection device and U-turn detection method Active JP4440027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212658A JP4440027B2 (en) 2004-07-21 2004-07-21 U-turn detection device and U-turn detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212658A JP4440027B2 (en) 2004-07-21 2004-07-21 U-turn detection device and U-turn detection method

Publications (2)

Publication Number Publication Date
JP2006030116A true JP2006030116A (en) 2006-02-02
JP4440027B2 JP4440027B2 (en) 2010-03-24

Family

ID=35896643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212658A Active JP4440027B2 (en) 2004-07-21 2004-07-21 U-turn detection device and U-turn detection method

Country Status (1)

Country Link
JP (1) JP4440027B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096141A (en) * 2006-10-06 2008-04-24 Alpine Electronics Inc Navigation apparatus
WO2009125815A1 (en) 2008-04-11 2009-10-15 トヨタ自動車株式会社 Wrong-way travel warning device and wrong-way travel warning method
JP2011017664A (en) * 2009-07-10 2011-01-27 Alpine Electronics Inc Device for detecting entry to and escape from parking lot and method of detecting entry to and escape from parking lot
WO2012036050A1 (en) * 2010-09-17 2012-03-22 Aisin Aw Co., Ltd. Driving support device, driving support method, and computer program
JP2015005192A (en) * 2013-06-21 2015-01-08 富士重工業株式会社 Lane deviation alarm control system
CN113895463A (en) * 2021-11-25 2022-01-07 北京航空航天大学 Path planning method suitable for automatic driving vehicle turning

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636179A (en) * 2012-05-11 2012-08-15 北京赛德斯汽车信息技术有限公司 Vehicle navigation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096141A (en) * 2006-10-06 2008-04-24 Alpine Electronics Inc Navigation apparatus
WO2009125815A1 (en) 2008-04-11 2009-10-15 トヨタ自動車株式会社 Wrong-way travel warning device and wrong-way travel warning method
JP2009250964A (en) * 2008-04-11 2009-10-29 Toyota Motor Corp Device and method for warning of reverse running
EP2261603A1 (en) * 2008-04-11 2010-12-15 Toyota Jidosha Kabushiki Kaisha Wrong-way travel warning device and wrong-way travel warning method
US8421648B2 (en) 2008-04-11 2013-04-16 Toyota Jidosha Kabushiki Kaisha Wrong-way-travel warning device and wrong-way-travel warning method
EP2261603A4 (en) * 2008-04-11 2013-05-01 Toyota Motor Co Ltd Wrong-way travel warning device and wrong-way travel warning method
JP2011017664A (en) * 2009-07-10 2011-01-27 Alpine Electronics Inc Device for detecting entry to and escape from parking lot and method of detecting entry to and escape from parking lot
WO2012036050A1 (en) * 2010-09-17 2012-03-22 Aisin Aw Co., Ltd. Driving support device, driving support method, and computer program
JP2015005192A (en) * 2013-06-21 2015-01-08 富士重工業株式会社 Lane deviation alarm control system
CN113895463A (en) * 2021-11-25 2022-01-07 北京航空航天大学 Path planning method suitable for automatic driving vehicle turning

Also Published As

Publication number Publication date
JP4440027B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4889272B2 (en) Navigation device and vehicle position estimation method
JP4366664B2 (en) Own vehicle position recognition device and own vehicle position recognition program
JP3984112B2 (en) Vehicle position correcting device and distance threshold setting method
US7548813B2 (en) Method and apparatus for map matching
US8315798B2 (en) Navigation device, and method for updating map data and navigation
KR20090001721A (en) Method for correcting map matching and navigation system implementing the method
JP2009058242A (en) Method and device for correcting vehicle position-azimuth
JP4700080B2 (en) Car navigation system and method
JP2009139227A (en) Angular velocity correcting device and method, and navigation device
JP2007271602A (en) Navigation system
JP4794384B2 (en) Vehicle position correcting apparatus and vehicle position correcting method
JP5742558B2 (en) POSITION DETERMINING DEVICE, NAVIGATION DEVICE, POSITION DETERMINING METHOD, AND PROGRAM
JP4651511B2 (en) Navigation device and vehicle position determination method
US7483785B2 (en) Navigation apparatus
JP4732937B2 (en) POSITION DETECTION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM
JP4835413B2 (en) Vehicle navigation device
JP4953829B2 (en) Navigation device and own vehicle position determination method
JP2008008628A (en) Apparatus for determining position of self-vehicle
JP4440027B2 (en) U-turn detection device and U-turn detection method
JP6117671B2 (en) Vehicle support device
JP4953015B2 (en) Own vehicle position recognition device, own vehicle position recognition program, and navigation device using the same
JP2005114632A (en) Navigation system, method of displaying vehicle position and program therefor
JP7163013B2 (en) Reverse run warning system, reverse run warning method and program
JP5881308B2 (en) Navigation device and intersection guide method
JP2011058960A (en) Method for poi positioning, method for poi information processing, and navigation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4