JP2006030008A - Method of detecting defect in power cable and connecting part - Google Patents

Method of detecting defect in power cable and connecting part Download PDF

Info

Publication number
JP2006030008A
JP2006030008A JP2004209801A JP2004209801A JP2006030008A JP 2006030008 A JP2006030008 A JP 2006030008A JP 2004209801 A JP2004209801 A JP 2004209801A JP 2004209801 A JP2004209801 A JP 2004209801A JP 2006030008 A JP2006030008 A JP 2006030008A
Authority
JP
Japan
Prior art keywords
sec
power cable
radiation
partial discharge
connection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004209801A
Other languages
Japanese (ja)
Inventor
Masashi Yagi
正史 八木
Noboru Ishii
登 石井
Hideo Tanaka
秀郎 田中
Atsushi Totani
敦 戸谷
Nobuhiro Mashita
展宏 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Viscas Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc, Viscas Corp filed Critical Furukawa Electric Co Ltd
Priority to JP2004209801A priority Critical patent/JP2006030008A/en
Publication of JP2006030008A publication Critical patent/JP2006030008A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Locating Faults (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To safely and surely specify a defective position in the inside, without having to stop power transmission, or without generating electrical breakdowns in a power cable or a connecting part. <P>SOLUTION: Radiation is emitted to the power cable and the connecting part, while conformed with a phase of a voltage waveform not generated with partial discharge, in a discharge waveform, in a diagram obtained by measuring the partial discharge of the power cable and the connecting part. A radiographic photograph of the inside is photographed, and defects of the power cable and the connecting part inside are detected based on an photographed image. More specifically, the radiation is emitted during a time of any selected from 0 (sec)-0.178 T(sec), 0.322T (sec)-0.678 T(sec) and 0.822 T(sec)-1 T(sec), where T is one period of a voltage phase (T=0.02 sec in 50 Hz). The radiation is emitted, in particular, to the markedly deteriorated cable, while being limited to the first quadrant and the fourth quadrant out of the voltage phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電力の輸送に用いる電力ケーブルおよび接続部の欠陥検出方法に関し、特に、放射線により内部の欠陥を検出する電力ケーブルおよび接続部の欠陥検出方法に関するものである。   The present invention relates to a power cable used for power transportation and a defect detection method for a connection part, and more particularly to a power cable and a defect detection method for a connection part that detect internal defects by radiation.

従来から、電力ケーブルおよび接続部の欠陥を検出する方法として、部分放電測定による絶縁体内部の欠陥を検出する方法が用いられてきた。また、X綿、γ線等の放射線を診断対象線路に照射してその放射線による内部観察写真を撮影し、その写真の解読により内部の欠陥を検出する技術も提案されている(例えば特許文献1参照)。
また、OFケーブルやPOFケーブルなどの油浸絶縁ケーブルの保守は、絶縁油分析、放射線内部診断、油量・油圧の監視が実施されている。
このうち、絶縁油分析はケーブル内部の異常診断法として広く行われている。内部に異常があれば、熱や放電により、油が分解され発生ガスや特性の劣化が見られる。
放射線内部診断は、ケーブルを傾斜地に布設した場合や交通量が多く振動の多い場所で行われる。これは、ケーブルコアと外装のアルミ被との相対移動により、絶縁紙のずれや損傷、遮蔽層の乱れにより、放電が発生し、やがて絶縁破壊を引き起こすためである。しかし、放射線内部診断の代わりに絶縁油分析で済ます場合が多い。
Conventionally, a method for detecting defects in an insulator by partial discharge measurement has been used as a method for detecting defects in power cables and connecting portions. In addition, a technique has also been proposed in which X-rays, γ-rays, and the like are irradiated onto a diagnostic target line, an internal observation photograph is taken with the radiation, and an internal defect is detected by decoding the photograph (for example, Patent Document 1). reference).
In addition, maintenance of oil-immersed insulated cables such as OF cables and POF cables is conducted by insulating oil analysis, radiation internal diagnosis, and monitoring of oil amount and hydraulic pressure.
Of these, the analysis of insulating oil is widely performed as a method for diagnosing abnormalities inside cables. If there is an abnormality inside, the oil is decomposed by heat and discharge, and the generated gas and characteristics are deteriorated.
Radiation internal diagnosis is performed when cables are installed on sloping ground or in places where there is a lot of traffic and a lot of vibration. This is because, due to the relative movement between the cable core and the outer aluminum cover, a discharge occurs due to the displacement and damage of the insulating paper and the disturbance of the shielding layer, which eventually causes dielectric breakdown. However, analysis of insulating oil is often used instead of internal radiation diagnosis.

油量・油圧の監視は、OFケーブルの外傷や金属疲労による金属シースの微小な亀裂などによる漏油異常の早期発生手段として行われている。しかし、内部異常についての情報は得ることが出来ない。
これらの保守のうち、絶縁油分析のための採油は、活線採油コネクタを採用する線路が増えてきている。そのため、活線中でも絶縁油分析が行えるようになってきた。また、油量・油圧の監視は、目視で行うので、活線中でも行われる。
しかしながら、放射線内部診断は、通常、線路を停止させた状態で行うので、実施頻度は少ない。
特開2003−65975号公報
Monitoring of the oil amount / hydraulic pressure is performed as a means for early occurrence of oil leakage abnormality due to damage to the OF cable or a minute crack in the metal sheath due to metal fatigue. However, information about internal abnormalities cannot be obtained.
Of these maintenances, the number of lines that employ a live-line oil-collecting connector is increasing for oil collection for insulating oil analysis. Therefore, it has become possible to perform insulating oil analysis even in a live line. Moreover, since monitoring of oil quantity and oil_pressure | hydraulic is performed visually, it is performed also in a live line.
However, the radiation internal diagnosis is usually performed in a state where the track is stopped, and therefore, the frequency of implementation is low.
JP 2003-65975 A

前記電力ケーブル及び接続部の欠陥検出方法の内、部分放電測定はその得られた結果により電力ケーブルまたは接続部の内部に何らかの異常有無を検知することは可能であるが、その異常箇所が内部のいずれの部位にあるのかを判別することは不可能である。
また、内部の異常箇所を判別・特定する方法として放射線撮影写真は有効であるものの、その撮影を行う場合は、通常、送電を停止させてから実施することが必要であった。
この理由は、放射線は仮に異常箇所に部分放電が生じているような場合、その放電を助長させるエネルギー源となるため、撮影中に万が一の絶縁破壊を生じさせる可能性を回避させるためである。
しかしながら、送電を停止させることは電力ケーブルの需要家においては時に多大なる負担を与える場合があるため、送電を停止した上での放射線撮影は実施が困難な場合が多い。よって、送電を停止させずに放射線撮影を実施することができれば、これらの諸問題を解決させることができると期待されるが、電力ケーブルあるいは接続部内部に生じている欠陥の有害度は様々であり、その程度を知らずに放射線照射条件を定めて安全に、絶縁破壊なしに送電中の放射線撮影を実施させることは事実上不可能であった。
Among the methods for detecting defects in the power cable and the connection part, the partial discharge measurement can detect the presence or absence of any abnormality in the power cable or the connection part based on the obtained result. It is impossible to determine which part is located.
In addition, although radiographic photographs are effective as a method for identifying and identifying internal abnormal locations, it is usually necessary to stop power transmission before photographing.
This is because radiation is an energy source that promotes the discharge in the case where a partial discharge occurs at an abnormal location, so that it is possible to avoid the possibility of causing a dielectric breakdown during imaging.
However, since stopping power transmission sometimes gives a great burden to power cable customers, radiation imaging after stopping power transmission is often difficult to implement. Therefore, if radiography can be performed without stopping power transmission, it is expected that these problems can be solved. However, the harmfulness of defects occurring inside the power cable or connection section varies. Therefore, it is virtually impossible to set radiation irradiation conditions without knowing the degree and to perform radiography during power transmission safely and without dielectric breakdown.

一方、油浸絶縁ケーブルにおいて絶縁油分析はOFやPOFの油浸絶縁ケーブルの内部診断の手法として大変有効であるが、絶縁油の量が非常に多いため、絶縁油分析での異常検出は遅れる場合が考えられる。
また、傾斜地などの特殊な布設場所やPOFケーブルのようにコアのずれが大きいケーブルには、絶縁油分析よりも、放射線で直接内部を確認したほうが異常の検出も早く、得られる情報も大きい。しかしながら、放射線を使用する場合、前記したように検査ケーブルの線路を停止させるため、その使用頻度は非常に少ない。
このように検査を行う際に線路を停止させるのは、前記したように、放射線の照射によって、活線中の電力ケーブルの絶縁特性が低下するためである。
すなわち、絶縁紙のずれや、損傷によって生じた気泡や空隙の欠陥部に放射線を照射すると、欠陥部の空気が電離され、電子を生じる。もし、ケーブルに部分放電が生じている場合、電子が供給されることで、部分放電の発生数が増加し、劣化を促進させて、絶縁破壊の危険を伴ってしまう。
本発明は、上述した不具合を回避させるためになされたものであって、送電を停止させることなく、かつ当該電力ケーブルあるいは接続部の絶縁破壊を生じさせることなく、安全かつ確実に内部の欠陥位置の特定を可能にすることを目的とする。
On the other hand, insulation oil analysis is very effective as an internal diagnosis method for oil-immersion insulated cables of OF and POF in oil-immersed insulated cables, but because the amount of insulation oil is very large, detection of abnormalities in insulation oil analysis is delayed. There are cases.
In addition, in a special installation place such as an inclined land or a cable with a large core displacement such as a POF cable, it is faster to detect an abnormality and to obtain more information by directly checking the inside with radiation rather than an insulating oil analysis. However, when using radiation, since the inspection cable line is stopped as described above, the frequency of use is very low.
The reason why the line is stopped when the inspection is performed in this way is that, as described above, the insulation characteristic of the power cable in the live line is deteriorated by the irradiation of radiation.
That is, when radiation is irradiated to a defective portion of a bubble or a gap generated by displacement or damage of insulating paper, the air in the defective portion is ionized to generate electrons. If a partial discharge is generated in the cable, the number of partial discharges is increased by supplying electrons, which promotes deterioration and involves a risk of dielectric breakdown.
The present invention was made in order to avoid the above-described problems, and without failing to stop power transmission and without causing dielectric breakdown of the power cable or connection portion, it is possible to safely and reliably internal defect positions. It aims to make it possible to specify.

本発明においては、次のようにして前記課題を解決する。
(1)電力ケーブルおよび接続部の部分放電測定により得られた放電波形において、部分放電が発生しない電圧波形の位相に合わせて、電力ケーブルおよび/または接続部に放射線を照射して、内部の放射線写真を撮影し、この撮影された画像より電力ケーブルおよび/または接続部内部の欠陥を検出する。
(2)電圧位相の一周期をT(50HzならT=0.02sec)としたとき、0(sec)〜0.178T(sec)、0.322T〜0.678T(sec)、または、0.822T〜1T(sec)のいずれかの間に放射線を照射して、内部の放射線写真を撮影し、この撮影された画像より電力ケーブルおよび接続部内部の欠陥を検出する。
(3)上記(2)において、特に劣化の著しい電力ケーブルに対して、上記の電圧位相のうち、第2象限と第4象限に限定して、0.322T〜0.5T(sec)、または、0.822T〜1T(sec)のいずれかの間に放射線を照射する。
In the present invention, the above problem is solved as follows.
(1) In the discharge waveform obtained by the partial discharge measurement of the power cable and the connection portion, radiation is applied to the power cable and / or the connection portion in accordance with the phase of the voltage waveform where the partial discharge does not occur. A photograph is taken, and a defect in the power cable and / or connection portion is detected from the taken image.
(2) When one period of the voltage phase is T (T = 0.02 sec for 50 Hz), 0 (sec) to 0.178 T (sec), 0.322 T to 0.678 T (sec), or 0. Radiation is irradiated between any one of 822T to 1T (sec), an internal radiograph is taken, and a defect inside the power cable and the connecting portion is detected from the taken image.
(3) In the above (2), for a power cable that is particularly deteriorated, the voltage phase is limited to the second quadrant and the fourth quadrant, and is 0.322T to 0.5T (sec), or , 0.822 T to 1 T (sec) is irradiated with radiation.

本発明によれば、電圧印加状態、すなわち実際のケーブル線路においては送電を停止させることなしに、放射線照射を行って欠陥の存在する電力ケーブルあるいは接続部中の欠陥の場所を検出することが可能となり、絶縁破壊の危険性なしに、安定した設備の診断/保守を行うことができる。   According to the present invention, it is possible to detect a location of a defect in a power cable or a connection portion where a defect exists by applying radiation without stopping power transmission in a voltage application state, that is, in an actual cable line. Thus, stable diagnosis / maintenance of equipment can be performed without risk of dielectric breakdown.

本発明者らは、放射線の照射によって油浸絶縁ケーブルの部分放電の発生状況がどのように変わるのかを実験した。その結果、以下のことを確認した。
・部分放電の発生は課電位相(商用周波)の第1象限と第3象限に限定され、放射線のエネルギーの強さや照射時間を変えても、発生箇所は第1象限と第3象限に限定される。
・部分放電が出ている場合、放射線の照射によって部分放電の頻度は多くなる。
・部分放電の開始電圧は、放射線未照射時に比べて照射時に10%下がる。
The present inventors experimented how the occurrence of partial discharge of an oil-immersed insulated cable changes due to radiation irradiation. As a result, the following was confirmed.
-The occurrence of partial discharge is limited to the first and third quadrants of the applied voltage phase (commercial frequency), and the occurrence location is limited to the first and third quadrants even if the intensity of radiation energy and the irradiation time are changed. Is done.
・ When partial discharge is occurring, the frequency of partial discharge increases due to irradiation of radiation.
-The starting voltage of partial discharge is reduced by 10% at the time of irradiation as compared to the case without irradiation.

以上のことから活線中に放射線を照射する場合には、次のようにすればよいことがわかった。
(a)図1に示すように部分放電が発生しない位相時に放射線を照射すれば、新たな放電は生み出さないと考えられる。ほとんど全ての油浸絶縁ケーブルは、雷、開閉サージなどの異常電圧が入ったときだけ、一時的に部分放電が発生し、常時部分放電は発生していない。
そこで、欠陥有無の調査対象である電力ケーブルまたは接続部において、部分放電測定を実施し、欠陥の存在を検知する。
そして、放射線撮影における放射線の照射を、この測定した部分放電波形において、部分放電が発生しない位相角においてのみ行う。
上記放射線撮影を一定時間繰り返して実施することで、照射不足を回避させ、解像度の良好な写真撮影を行うことができる。
From the above, it was found that the following may be performed when irradiating radiation in a live wire.
(A) As shown in FIG. 1, it is considered that a new discharge will not be produced if radiation is applied during a phase where a partial discharge does not occur. Almost all oil-immersed cables have a partial discharge temporarily only when an abnormal voltage such as lightning or switching surge is applied, and no partial discharge is always generated.
Therefore, partial discharge measurement is performed on the power cable or connection part that is the object of investigation for the presence or absence of defects to detect the presence of defects.
Then, radiation irradiation in radiography is performed only at a phase angle at which partial discharge does not occur in the measured partial discharge waveform.
By repeating the radiation imaging for a certain period of time, it is possible to avoid insufficient exposure and to perform photography with good resolution.

(b)放射線の照射によって部分放電開始電圧が10%下がるのだから、電圧波形の90%を超える領域に放射線を照射しなければ、部分放電の開始を抑えることができる。
図2で、正弦波の1周期をT(50Hzならば0.02sec)とすると、(I) の領域(0.178T〜0.322T)と(II)の領域(0.678で〜0.822T)が正弦波の0.9以上に相当し、この箇所に放射線を照射しなければ、放射線照射によって新たな部分放電は生じない。
即ち、課電位相の一周期に対して、0〜0.178Tと0.322T〜0.678Tと0.922〜1Tの領域に放射線を照射すれば新たな部分放電は生じない。
(B) Since the partial discharge start voltage decreases by 10% due to radiation irradiation, the start of partial discharge can be suppressed unless radiation is applied to a region exceeding 90% of the voltage waveform.
In FIG. 2, if one period of the sine wave is T (0.02 sec for 50 Hz), the region (I) (0.178T to 0.322T) and the region (II) (0.678 to. 822T) corresponds to 0.9 or more of a sine wave, and if this portion is not irradiated with radiation, no new partial discharge is generated by irradiation.
In other words, if a region of 0 to 0.178T, 0.322T to 0.678T, and 0.922 to 1T is irradiated with radiation for one period of the applied potential phase, no new partial discharge occurs.

(c)一方、劣化が著しい油浸絶縁ケーブルの場合、常時部分放電が発生していると考えられる。この場合、部分放電は第1象限と、第3象限に広く分布しており、図3において、(III) の領域(0〜0.322T)と(IV)の領域(0.5T〜0.822T)に照射しなければ、新たな部分放電は生じない。
即ち、課電位相の一周期に対して、0.322T〜0.5Tと0.822T〜1Tの領域に照射すればよい。ここで劣化が著しいOFケーブルとは、例えば、絶縁油分析でアセチレンが10ppm以上検出して、改修を計画しているケーブルである。
上記では油浸絶縁ケーブルについて述べたが、上述した部分放電の発生を抑制する放射線の照射方法は、絶縁体にポリエチレンやゴムを用いたケーブルにも同様に適用することができる。
(C) On the other hand, in the case of an oil-immersed insulated cable that is significantly deteriorated, it is considered that partial discharge always occurs. In this case, the partial discharge is widely distributed in the first quadrant and the third quadrant. In FIG. 3, the region (III) (0 to 0.322T) and the region (IV) (0.5T to 0. 0). If it is not irradiated to (822T), a new partial discharge does not occur.
That is, the region of 0.322T to 0.5T and 0.822T to 1T may be irradiated for one period of the applied potential phase. Here, the OF cable that is significantly deteriorated is, for example, a cable that is planned to be repaired by detecting 10 ppm or more of acetylene in an insulating oil analysis.
Although the oil-insulated insulated cable has been described above, the radiation irradiation method for suppressing the occurrence of partial discharge described above can be similarly applied to a cable using polyethylene or rubber as an insulator.

以下、本発明を実施例に基づいて説明する。
(1)実施例1
本発明では、まず、油浸紙のシート、油浸紙の短尺モデルケーブル、欠陥入りのOF接続部、欠陥入りのPOF接続部を使用して実験を行った。油浸紙はクラフト紙を使用し、油は鉱油、合成油(ハード)、ボリブデン油を使用した。それぞれのサンプルの欠陥にφ5mmのパンチ穴を開けておき、絶縁厚に対して1/2〜1/3の欠陥厚さを設けた。
シート試験、モデルケーブル試験、OF接続部、POF接続部のいずれも同じ傾向を見せて、放射線未照射時の部分放電開始電圧をVとした場合、表1の結果を得た。
Hereinafter, the present invention will be described based on examples.
(1) Example 1
In the present invention, an experiment was first conducted using an oil-immersed paper sheet, a short model cable of oil-impregnated paper, a defective OF connection part, and a defective POF connection part. Kraft paper was used as oil-impregnated paper, and mineral oil, synthetic oil (hard), and bolybden oil were used as oil. A punch hole of φ5 mm was made in each sample defect, and a defect thickness of ½ to 1 / of the insulation thickness was provided.
The sheet test, the model cable test, the OF connection part, and the POF connection part all showed the same tendency, and the results shown in Table 1 were obtained when the partial discharge start voltage when radiation was not irradiated was V.

Figure 2006030008
Figure 2006030008

この表1によると、前記図2の(I)(II) 以外の領域あるいは図3の(III) (IV)以外の領域で放射線を照射する方法は部分放電の発生を抑制し、未照射の場合とほぼ同等の状態にすることができることが分かる。
よって、この方法により、活線時の放射線撮影によって、ケーブルの劣化を進めることはなく、活線撮影が可能となる。
According to Table 1, the method of irradiating radiation in the region other than (I) and (II) in FIG. 2 or the region other than (III) and (IV) in FIG. It can be seen that the state can be almost equivalent to the case.
Therefore, by this method, the radiographing at the time of the hot line does not promote the deterioration of the cable, and the hot-line picture can be taken.

(2)実施例2
次に、積層油浸絶縁紙の層間に直径1mm、長さ8mmの銅線の破断片を人為的に巻き込ませた66kV 1×325mm2のOFケーブル(長さ15m)を複数作成し、試料に用いた。
このケーブルに運転電圧である商用周波電圧38kVを印加させたところ、部分放電が発生することが明らかとなった。
図4に本実施例で用いた部分放電測定回路を示す。
同図に示すように、トランス1から上記OFケーブル2に商用周波電圧を印加し、OFケーブル2のシース−接地間に検出インピーダンス3を接続するとともに、トランス1の端子−接地間に結合コンデンサ4と検出インピーダンス5の直列回路を接続し、検出インピーダンス3,5に部分放電測定器6を接続して部分放電を測定した。この部分放電発生状況を、図5に示す。
(2) Example 2
Next, a plurality of 66 kV 1 × 325 mm2 OF cables (15 m in length) in which a piece of broken copper wire with a diameter of 1 mm and a length of 8 mm is artificially wound between layers of laminated oil-immersed insulating paper are prepared and used as samples. It was.
When a commercial frequency voltage of 38 kV, which is an operating voltage, was applied to this cable, it became clear that partial discharge occurred.
FIG. 4 shows a partial discharge measuring circuit used in this example.
As shown in the figure, a commercial frequency voltage is applied from the transformer 1 to the OF cable 2 to connect the detection impedance 3 between the sheath and the ground of the OF cable 2, and the coupling capacitor 4 is connected between the terminal and the ground of the transformer 1. A partial circuit was measured by connecting a partial discharge measuring device 6 to the detection impedances 3 and 5. This partial discharge occurrence state is shown in FIG.

まず、最初に、このケーブルに商用周波電圧38kVを印加した状態でX線の照射を通常の作業手順に則って実施した。その結果、当該試料はX線照射中に部分放電が急速に進展して絶縁破壊を起こしてしまった。このことは、送電を停止しない状態においてX線の照射を実施することの危険性を示す証拠として考えることができる。
次に、2本目の同じ欠陥をもうけたケーブルを使用して、X線の照射を位相角を限定して行う実験を実施した。
図5は前述の部分放電発生状況の波形を示したものであるが、図5は約10分間の部分放電波形を重ね書きさせたものであるため、放電が発生している位相と発生していない位相の区別が十分にできている。
First, X-ray irradiation was performed according to a normal work procedure in a state where a commercial frequency voltage of 38 kV was applied to the cable. As a result, in the sample, partial discharge rapidly progressed during X-ray irradiation, causing dielectric breakdown. This can be considered as evidence showing the danger of performing X-ray irradiation without stopping power transmission.
Next, using a second cable having the same defect, an experiment was performed in which X-ray irradiation was performed with a limited phase angle.
FIG. 5 shows the waveform of the partial discharge occurrence state described above, but since FIG. 5 is an overwriting of the partial discharge waveform for about 10 minutes, the phase in which the discharge is occurring and the occurrence are shown. There is enough phase distinction.

そこで、図5に示す部分放電を発生していないAおよびBの位相角の範囲のみ当該欠陥箇所にX線照射を行った。図6は、X線照射の様子を示す図であり、X線源10とX線フィルム11を同図に示すように配置し、X線源10からOFケーブル2にX線を照射し、X線写真の取得を行った。
X線の照射制御は、部分放電測定器6により部分放電を測定した結果に基づいて、シャッタ制御用コンピュータ12によりX線源10のシャッター13を開閉させることにより実施し、放電が発生している、あるいは発生する可能性のある位相角ではシャッターを閉じるように制御した。印加電圧は前述したように38kVである
X線の照射はシャッター閉の時間も含めて40分間実施した。この間、X線フィルム11を図6に示すように固定してX線写真の取得を行った。
In view of this, X-ray irradiation was performed on the defective portion only in the range of the phase angles of A and B where no partial discharge was generated as shown in FIG. FIG. 6 is a diagram showing the state of X-ray irradiation. The X-ray source 10 and the X-ray film 11 are arranged as shown in the figure, the X-ray source 10 irradiates the OF cable 2 with X-rays, Line photographs were acquired.
The X-ray irradiation control is performed by opening and closing the shutter 13 of the X-ray source 10 by the shutter control computer 12 based on the result of measuring the partial discharge by the partial discharge measuring device 6, and discharge is generated. Or, the shutter is controlled to close at a phase angle that may occur. The applied voltage is 38 kV as described above. X-ray irradiation was performed for 40 minutes including the time for closing the shutter. During this time, the X-ray film 11 was fixed as shown in FIG.

結果として、この40分間の間に絶縁破壊の生じることはなく、また、測定された部分放電も電荷量の増加やパルス数の増大といった欠陥の劣化につながる兆候を見せることもなかった。
終了後にフィルムを現像して、絶縁紙層間に前記金属異物が挟まっていることが現像された写真により確認され、欠陥部の特定が可能であることが示された。
なお、上記では、放射線源としてX線を用いる場合について説明したが、その他γ線などの放射線源も目的に応じて使用することは可能である。
As a result, dielectric breakdown did not occur during this 40 minutes, and the measured partial discharge did not show any signs of defect deterioration such as an increase in charge amount or an increase in the number of pulses.
The film was developed after the completion, and it was confirmed by the developed photograph that the metal foreign matter was sandwiched between the insulating paper layers, and it was shown that the defect portion can be specified.
In the above description, the case where X-rays are used as the radiation source has been described. However, other radiation sources such as γ-rays can be used depending on the purpose.

部分放電の発生状況を示す図である。It is a figure which shows the generation | occurrence | production situation of partial discharge. (I) ,(II)以外の領域で放射線を照射する場合を説明する図である。It is a figure explaining the case where radiation is irradiated in area | regions other than (I) and (II). (III) ,(IV)以外の領域で放射線を照射する場合を説明する図である。It is a figure explaining the case where a radiation is irradiated in area | regions other than (III) and (IV). 部分放電測定回路の例を示す図である。It is a figure which shows the example of a partial discharge measurement circuit. 欠陥入りOFケーブルにおける部分放電発生状況を示した波形図である。It is the wave form diagram which showed the partial discharge generation | occurrence | production situation in the OF cable with a defect. 部分放電測定を実施しながら照射位相角を限定して放射線撮影を行った時の実験設備状況を示した図である。It is the figure which showed the experimental equipment condition when radiation imaging was performed by limiting an irradiation phase angle while performing partial discharge measurement.

符号の説明Explanation of symbols

1 トランス
2 OFケーブル
3,5 検出インピーダンス
4 結合コンデンサ
6 部分放電測定器
10 X線源
11 X線フィルム
12 シャッタ制御用コンピュータ
13 シャッター
DESCRIPTION OF SYMBOLS 1 Transformer 2 OF cable 3,5 Detection impedance 4 Coupling capacitor 6 Partial discharge measuring device 10 X-ray source 11 X-ray film 12 Shutter control computer 13 Shutter

Claims (3)

放射線撮影により電力ケーブルおよび接続部内部の欠陥を活線状態で検出する方法であって、
該電力ケーブルおよび接続部の部分放電測定により得られた放電波形において、部分放電が発生しない電圧波形の位相に合わせて、電力ケーブルおよび接続部に放射線を照射して、内部の放射線写真を撮影し、
上記撮影された画像より電力ケーブルおよび接続部内部の欠陥を検出する
ことを特徴とする電力ケーブルおよび接続部の欠陥検出方法。
A method for detecting defects in a power cable and a connection part in a live line state by radiography,
In the discharge waveform obtained by the partial discharge measurement of the power cable and connection part, radiation is applied to the power cable and connection part in accordance with the phase of the voltage waveform where partial discharge does not occur, and an internal radiograph is taken. ,
A method for detecting a defect in a power cable and a connection part, wherein a defect in the power cable and the connection part is detected from the photographed image.
放射線撮影により電力ケーブルおよび接続部内部の欠陥を活線状態で検出する方法であって、
電圧位相の一周期をT(50HzならT=0.02sec)としたとき、
0(sec)〜0.178T(sec)
0.322T〜0.678T(sec)
0.822T〜1T(sec)
のいずれかの間に放射線を照射して、内部の放射線写真を撮影し、
上記撮影された画像より電力ケーブルおよび接続部内部の欠陥を検出する
する
ことを特徴とする電力ケーブルおよび接続部の欠陥検出方法。
A method for detecting defects in a power cable and a connection part in a live line state by radiography,
When one period of the voltage phase is T (T = 0.02 sec for 50 Hz),
0 (sec) to 0.178 T (sec)
0.322T to 0.678T (sec)
0.822T to 1T (sec)
Irradiate between any of these to take an internal radiograph,
A power cable and a defect detection method for a connection part, wherein a defect inside the power cable and the connection part is detected from the photographed image.
特に劣化の著しい電力ケーブルに対して、上記の電圧位相のうち、第2象限と第4象限に限定して、
0.322T〜0.5T(sec)
0.822T〜1T(sec)
のいずれかの間に放射線を照射する
ことを特徴とする請求項2記載の電力ケーブルおよび接続部の欠陥検出方法。
Especially for power cables that are significantly degraded, of the above voltage phases, limited to the second and fourth quadrants,
0.322T to 0.5T (sec)
0.822T to 1T (sec)
The method for detecting a defect in a power cable and a connection part according to claim 2, wherein radiation is irradiated during any of the above.
JP2004209801A 2004-07-16 2004-07-16 Method of detecting defect in power cable and connecting part Pending JP2006030008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209801A JP2006030008A (en) 2004-07-16 2004-07-16 Method of detecting defect in power cable and connecting part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209801A JP2006030008A (en) 2004-07-16 2004-07-16 Method of detecting defect in power cable and connecting part

Publications (1)

Publication Number Publication Date
JP2006030008A true JP2006030008A (en) 2006-02-02

Family

ID=35896548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209801A Pending JP2006030008A (en) 2004-07-16 2004-07-16 Method of detecting defect in power cable and connecting part

Country Status (1)

Country Link
JP (1) JP2006030008A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205984A (en) * 2006-02-03 2007-08-16 Furukawa Electric Co Ltd:The Diagnostic method of oil impregnated insulation cable by radioactive ray irradiation
CN104280412A (en) * 2014-09-12 2015-01-14 国家电网公司 Local discharging detection method of insulating draw bar based on electric field calculation and X-ray excitation
CN105890552A (en) * 2016-04-06 2016-08-24 浙江师范大学 Three-degree of freedom linear displacement detection method
CN107957534A (en) * 2017-10-13 2018-04-24 国网山东省电力公司济南供电公司 A kind of cable connector detection device and method based on x-ray scanning
CN112136055A (en) * 2018-03-19 2020-12-25 莱尼电缆有限公司 Measuring device and method for monitoring a cable
KR20210085091A (en) * 2019-12-30 2021-07-08 원광대학교산학협력단 PD Measurement and Location Estimation of High Voltage Cables
CN113804762A (en) * 2021-09-01 2021-12-17 国网内蒙古东部电力有限公司兴安供电公司 Equipment fault detection method and system based on multispectral three-in-one image
CN114778574A (en) * 2022-03-28 2022-07-22 国网吉林省电力有限公司电力科学研究院 Method for detecting and identifying internal defects of in-transit high-voltage cable through X-ray digital imaging

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205984A (en) * 2006-02-03 2007-08-16 Furukawa Electric Co Ltd:The Diagnostic method of oil impregnated insulation cable by radioactive ray irradiation
CN104280412A (en) * 2014-09-12 2015-01-14 国家电网公司 Local discharging detection method of insulating draw bar based on electric field calculation and X-ray excitation
CN105890552A (en) * 2016-04-06 2016-08-24 浙江师范大学 Three-degree of freedom linear displacement detection method
CN105890552B (en) * 2016-04-06 2018-11-20 浙江师范大学 A kind of Three Degree Of Freedom linear displacement detecting method
CN107957534A (en) * 2017-10-13 2018-04-24 国网山东省电力公司济南供电公司 A kind of cable connector detection device and method based on x-ray scanning
CN112136055A (en) * 2018-03-19 2020-12-25 莱尼电缆有限公司 Measuring device and method for monitoring a cable
KR20210085091A (en) * 2019-12-30 2021-07-08 원광대학교산학협력단 PD Measurement and Location Estimation of High Voltage Cables
KR102313542B1 (en) 2019-12-30 2021-10-18 원광대학교 산학협력단 PD Measurement and Location Estimation of High Voltage Cables
CN113804762A (en) * 2021-09-01 2021-12-17 国网内蒙古东部电力有限公司兴安供电公司 Equipment fault detection method and system based on multispectral three-in-one image
CN113804762B (en) * 2021-09-01 2023-11-21 国网内蒙古东部电力有限公司兴安供电公司 Equipment fault detection method and system based on multispectral three-in-one image
CN114778574A (en) * 2022-03-28 2022-07-22 国网吉林省电力有限公司电力科学研究院 Method for detecting and identifying internal defects of in-transit high-voltage cable through X-ray digital imaging

Similar Documents

Publication Publication Date Title
JP2006030008A (en) Method of detecting defect in power cable and connecting part
CN107064182A (en) A kind of live defect inspection method of the high voltage power cable based on X-ray
Reid et al. Fault location and diagnosis in a medium voltage EPR power cable
Wang et al. Application of X-ray inspection for ultra high voltage gas-insulated switchgear
KR20140038261A (en) Apparatus for diagnosing a transformer and method for the same
EP3015852A1 (en) Method for on-site x-ray inspection of a cable sealing end termination
Ushakov et al. Non-electrical Diagnostic Methods
EP3747113B1 (en) Method of assessing the risk of a stator failure
SE529746C2 (en) A method and apparatus for examining a high voltage component during operation
Toman et al. Cable system aging management for Nuclear Power Plants
JP5204558B2 (en) Discharge measuring device for impulse test and discharge discrimination method
JP2007187553A (en) Method of detecting defect in power cable and accessories
Hampton HV and EHV cable system aging and testing issues
JP4712572B2 (en) Diagnosis method by oil irradiation of oil-immersed insulated cable
JP5479774B2 (en) Quality test method for solid insulated cable
KR102099070B1 (en) Apparatus for analyzing moisture absorption of power generator stator winding and method thereof
JP7015869B2 (en) Method for determining insulation deterioration due to progress of electric tree
Carreira et al. Guidelines for establishing diagnostic procedures for live-line working of nonceramic insulators
Dolin Diagnostic examination of isolated bus ducts
JPH0642945A (en) Method of inspecting inside of power cable by means of x-rays
Mikulecky et al. Bushing End Screen Failure–Case Study
Stranges et al. Black-out test vs. UV camera for corona inspection of HV motor stator endwindings
JP4118657B2 (en) Inspection method of electric power equipment by X-ray tomography inspection apparatus
RU2773628C1 (en) Method for monitoring condition of pipelines for petroleum products and welded joints of pipelines for petroleum products by non-destructive testing radiographic method without termination of product transport
Reid et al. Defect investigation in medium-voltage EPR cable