JP2006029301A - Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine - Google Patents

Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine Download PDF

Info

Publication number
JP2006029301A
JP2006029301A JP2004213514A JP2004213514A JP2006029301A JP 2006029301 A JP2006029301 A JP 2006029301A JP 2004213514 A JP2004213514 A JP 2004213514A JP 2004213514 A JP2004213514 A JP 2004213514A JP 2006029301 A JP2006029301 A JP 2006029301A
Authority
JP
Japan
Prior art keywords
temperature
filter
exhaust
opening
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004213514A
Other languages
Japanese (ja)
Inventor
Takahiro Oba
孝宏 大羽
Hidetaka Shibata
英孝 柴田
Takeshi Hashizume
剛 橋詰
Toru Hakamata
亨 袴田
Mamoru Ito
守 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004213514A priority Critical patent/JP2006029301A/en
Publication of JP2006029301A publication Critical patent/JP2006029301A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten time required for oxidizing and removing particulates collected by a filter and more successfully oxidize and remove the particulates, in exhaust emission control of a compression ignition internal combustion engine. <P>SOLUTION: The compression ignition internal combustion engine is provided with an intake throttle valve, an exhaust throttle valve and the filter in which a catalyst having an oxidation function is carried and which collects particulates in exhaust gas. In the compression ignition internal combustion engine, the temperature of the filter is increased by: controlling injection timing of main injection injm and post-injection inja to a timing delay state when openings of the intake throttle valve and the exhaust throttle valve are set to be a throttle side opening (opening 10%) and an opening at the time of first temperature rise (10%), respectively; and then shifting the opening of the intake throttle valve from the throttle side opening (opening 10%) to an open side opening (opening 100%) and shifting the opening of the exhaust throttle valve to an opening at the time of second temperature rise (50%) more widely opened compared to the opening at the time of first temperature rise (10%). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧縮着火内燃機関の排気浄化を行う排気浄化装置、および排気浄化を行うための排気浄化方法に関する。   The present invention relates to an exhaust purification device that performs exhaust purification of a compression ignition internal combustion engine, and an exhaust purification method for performing exhaust purification.

内燃機関からの排気に含まれる粒子状物質を捕集するために、排気通路にフィルタが配置される。この場合、フィルタに捕集された粒子状物質を定期的に酸化除去してフィルタの捕集能力を回復させる必要がある。   A filter is disposed in the exhaust passage to collect particulate matter contained in the exhaust from the internal combustion engine. In this case, it is necessary to periodically oxidize and remove the particulate matter collected by the filter to restore the collection ability of the filter.

ここで、排気通路に設けられた排気絞り弁の開度を調整して、内燃機関から排出される排気温度を上昇させる技術が公開されている。(例えば、特許文献1を参照。)。この技術においては、フィルタの排気入口付近の温度に基づいて排気絞り弁の開度を調整することで、排気温度が粒子状物質の酸化除去に適した温度に上昇される。   Here, a technique for increasing the temperature of exhaust gas discharged from an internal combustion engine by adjusting the opening of an exhaust throttle valve provided in an exhaust passage is disclosed. (For example, see Patent Document 1). In this technique, the exhaust temperature is raised to a temperature suitable for removing particulate matter by adjusting the opening of the exhaust throttle valve based on the temperature near the exhaust inlet of the filter.

また、同様にフィルタに捕集された粒子状物質を酸化除去する技術として、吸気通路に設けられた吸気絞り弁の開度と排気通路に設けられた排気絞り弁の開度を調整する技術が公開されている(例えば、特許文献2を参照。)。この技術においては、吸気絞り弁の開度を調整することで排気によるフィルタからの熱の持ち去り量を抑制するとともに、吸気絞り弁の開度に応じて排気絞り弁の開度を調整して背圧を上昇させることで、排気温度が粒子状物質の酸化除去に適した温度に上昇される。
特許第3024780号公報 特開2003−343287号公報 特開平3−233121号公報 特開2002−213229号公報
Similarly, as a technique for oxidizing and removing particulate matter collected by the filter, a technique for adjusting the opening of the intake throttle valve provided in the intake passage and the opening of the exhaust throttle valve provided in the exhaust passage is used. (See, for example, Patent Document 2). In this technology, by adjusting the opening of the intake throttle valve, the amount of heat removed from the filter by the exhaust is suppressed, and the opening of the exhaust throttle valve is adjusted according to the opening of the intake throttle valve. By increasing the back pressure, the exhaust temperature is raised to a temperature suitable for oxidizing and removing particulate matter.
Japanese Patent No. 3024780 JP 2003-343287 A JP-A-3-233121 JP 2002-213229 A

圧縮着火内燃機関の排気通路に設置されたフィルタにに捕集された粒子状物質を酸化除去するために、主噴射後の後噴射によって排気温度が上昇され、以てフィルタの昇温が図られる。更に、フィルタに流入する排気量を制限することで、排気による熱エネルギーの持ち去り量を低減させて、フィルタの昇温が図られる。このような場合、フィルタに流入する排気量が比較的少量であるため、フィルタでの熱の伝播速度が低く、フィルタの昇温に要する時間が長くなり、又は捕集された粒子状物質を良好に酸化除去することが困難となる虞がある。   In order to oxidize and remove the particulate matter collected by the filter installed in the exhaust passage of the compression ignition internal combustion engine, the exhaust temperature is raised by the post-injection after the main injection, and thus the temperature of the filter is raised. . Furthermore, by limiting the amount of exhaust flowing into the filter, the amount of heat energy taken away by the exhaust is reduced, and the temperature of the filter can be raised. In such a case, since the amount of exhaust gas flowing into the filter is relatively small, the heat propagation speed in the filter is low, the time required for temperature rise of the filter is increased, or the collected particulate matter is good. However, it may be difficult to oxidize and remove.

また、内燃機関の背圧を上昇させることで、排気温度を上昇させフィルタの昇温を図ることも可能である。しかし、背圧を上昇させるために単に排気通路を流れる排気流量を制限すると、内燃機関の破損を防止するために排気流量自体を比較的少量に制限する必要がある。従って、以てフィルタでの熱の伝播速度が低くなり、フィルタの昇温に要する時間が長くなり、又は捕集された粒子状物質を良好に酸化除去することが困難となる虞がある。   It is also possible to raise the exhaust gas temperature and raise the temperature of the filter by raising the back pressure of the internal combustion engine. However, if the exhaust flow rate flowing through the exhaust passage is simply limited to increase the back pressure, it is necessary to limit the exhaust flow rate itself to a relatively small amount in order to prevent damage to the internal combustion engine. Therefore, the propagation speed of heat in the filter is lowered, the time required for the temperature rise of the filter is increased, or it may be difficult to satisfactorily oxidize and remove the collected particulate matter.

本発明では、上記した問題に鑑み、圧縮着火内燃機関の排気浄化において、フィルタに捕集された粒子状物質の酸化除去に要する時間の短縮を図るとともに、より良好な粒子状物質の酸化除去を行うことを目的とする。   In the present invention, in view of the above problems, in exhaust purification of a compression ignition internal combustion engine, the time required for oxidizing and removing particulate matter collected by the filter is shortened, and better particulate matter is removed by oxidation. The purpose is to do.

本発明では、上記した問題を解決するために、第一に、圧縮着火内燃機関の排気浄化装置に関する発明において、フィルタを昇温させて捕集された粒子状物質を酸化除去するときに行われる、主噴射と後噴射の噴射時期、吸気絞り弁の開度および排気絞り弁の開度に着目した。これは、主噴射と後噴射の噴射時期を遅角状態とすることで排気温度を上昇させることが可能となり、かつその状態で吸入空気量と背圧を制御することで、フィルタの昇温を促進し、又はフィルタを高温状態に維持することが可能となるからである。   In the present invention, in order to solve the above-mentioned problem, first, in the invention relating to the exhaust gas purification apparatus for a compression ignition internal combustion engine, it is carried out when the collected particulate matter is oxidized and removed by raising the temperature of the filter. Focusing on the injection timing of main injection and post-injection, the opening of the intake throttle valve, and the opening of the exhaust throttle valve. This is because the exhaust temperature can be raised by setting the injection timing of the main injection and the post-injection to a retarded state, and the temperature of the filter can be raised by controlling the intake air amount and the back pressure in this state. This is because it is possible to promote or maintain the filter at a high temperature.

そこで、本発明は、圧縮着火内燃機関の排気浄化装置であって、圧縮着火内燃機関の吸気通路の吸気流量を調整する吸気絞り弁と、前記圧縮着火内燃機関の排気通路の排気流量を調整する排気絞り弁と、酸化機能を有する触媒が担持され、排気中の粒子状物質を捕集するフィルタと、前記吸気絞り弁の開度を制御する吸気絞り弁開度制御手段と、前記排気絞り弁の開度を制御する排気絞り弁開度制御手段と、圧縮上死点近傍の時期における主噴射の燃料噴射条件、および該主噴射後の燃料噴射であって該主噴射による噴射燃料の燃焼で燃料の少なくとも一部が燃焼される後噴射の燃料噴射条件を制御する燃料噴射制御手段と、前記吸気絞り弁開度制御手段によって前記吸気絞り弁の開度を絞り側開度とするとともに前記排気絞り弁開度制御手段によって前記排気絞り弁の開度を第一昇温時開度とすることで、前記フィルタを昇温させる第一フィルタ昇温手段と、前記第一フィルタ昇温手段による前記フィルタの昇温が行われているときに、前記燃料噴射制御手段によって前記主噴射と前記後噴射の燃料噴射時期を遅角状態に制御した後、前記吸気絞り弁開度制御手段によって前記吸気絞り弁の開度を前記絞り側開度から開き側開度にするとともに前記排気絞り弁開度制御手段によって前記排気絞り弁の開度を前記第一昇温時開度より開いた状態である第二昇温時開度とすることで、前記フィルタを昇温させる第二フィルタ昇温手段と、を備える。   Therefore, the present invention is an exhaust emission control device for a compression ignition internal combustion engine, and adjusts the intake flow rate of the intake passage of the compression ignition internal combustion engine and the exhaust flow rate of the exhaust passage of the compression ignition internal combustion engine. An exhaust throttle valve, a filter carrying a catalyst having an oxidation function and collecting particulate matter in the exhaust, an intake throttle valve opening control means for controlling the opening degree of the intake throttle valve, and the exhaust throttle valve Exhaust throttle valve opening control means for controlling the opening of the engine, fuel injection conditions for main injection at a timing near the compression top dead center, and fuel injection after the main injection, and combustion of injected fuel by the main injection A fuel injection control means for controlling a fuel injection condition for post-injection in which at least a part of the fuel is burned, and an opening degree of the intake throttle valve is set to a throttle side opening degree by the intake throttle valve opening degree control means, and the exhaust gas Throttle valve opening control hand By setting the opening of the exhaust throttle valve to the opening at the time of the first temperature rise, the first filter temperature raising means for raising the temperature of the filter, and the temperature rise of the filter by the first filter temperature raising means is performed. When the fuel injection control means controls the fuel injection timing of the main injection and the post-injection to a retarded state, the intake throttle valve opening control means controls the opening degree of the intake throttle valve. The opening at the second temperature rise from the throttle opening to the opening at the opening, and the exhaust throttle valve opening control means opens the opening of the exhaust throttle valve from the opening at the first temperature rise. And a second filter temperature raising means for raising the temperature of the filter.

上記の燃料噴射制御手段は、主噴射および後噴射の燃料噴射条件を制御する。これらの噴射によって噴射された燃料が燃焼することで排気温度が上昇され、その排気によってフィルタが昇温される。ここでいう燃料噴射条件とは、燃料噴射に関するパラメータであり、例えば燃料噴射時期や燃料噴射量等が挙げられる。   The fuel injection control means controls fuel injection conditions for main injection and post-injection. As the fuel injected by these injections burns, the exhaust gas temperature rises, and the exhaust gas raises the temperature of the filter. The fuel injection conditions here are parameters relating to fuel injection, and examples include fuel injection timing and fuel injection amount.

上記の後噴射は、圧縮着火内燃機関における主噴射の後に行われる噴射であって、且つ後噴射によって噴射された燃料が、主噴射による噴射燃料の燃焼で発生する燃焼熱に曝されることで、少なくともその一部が燃焼に供される。従って、後噴射による噴射燃料でも燃焼トルクが発生する。   The post-injection is an injection performed after the main injection in the compression ignition internal combustion engine, and the fuel injected by the post-injection is exposed to the combustion heat generated by the combustion of the injected fuel by the main injection. , At least a portion of which is subjected to combustion. Accordingly, combustion torque is generated even with the fuel injected by post-injection.

また、該フィルタは、酸化機能を有している触媒が担持されているため、排気に含まれる燃料がその酸化機能で酸化されて発生する酸化熱で、該フィルタは昇温される。この酸化機能を有する触媒として、いわゆる吸蔵還元型NOx触媒等が挙げられる。上述の後噴射によって噴射された燃料であって燃焼に供されなかった燃料は、排気を介してフィルタに供されて、フィルタに担持された触媒によって生じる酸化熱で、フィルタの昇温に寄与することになる。   In addition, since the filter carries a catalyst having an oxidation function, the temperature of the filter is raised by oxidation heat generated by oxidizing the fuel contained in the exhaust gas by the oxidation function. Examples of the catalyst having this oxidation function include a so-called storage reduction type NOx catalyst. The fuel injected by the above-described post-injection and not used for combustion is supplied to the filter through the exhaust gas, and contributes to the temperature rise of the filter by oxidation heat generated by the catalyst carried on the filter. It will be.

ここで、上記のフィルタは、圧縮着火内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集する能力を有している。この捕集能力は無限のものではないため、所定量の粒子状物質が捕集されると、フィルタを昇温させて捕集された粒子状物質を酸化除去してフィルタの捕集能力の再生を図る必要がある。   Here, the filter is provided in the exhaust passage of the compression ignition internal combustion engine, and has the ability to collect particulate matter in the exhaust. Since the collection capacity is not infinite, when a certain amount of particulate matter is collected, the filter is heated up to oxidize and remove the collected particulate matter to regenerate the collection ability of the filter. It is necessary to plan.

そこで、第一フィルタ昇温手段によって、フィルタの昇温が行われる。第一フィルタ昇温手段によるフィルタの昇温の特徴点は、フィルタに流入する排気流量を抑制することで、フィルタの有する熱が排気によって持ち去られるのを回避するとともに、排気通路にお
ける背圧を上昇させることで排気温度を上昇させて、フィルタの昇温を行う点である。従って、上記の絞り側開度とは、フィルタに流れ込む排気量を抑制し、フィルタの有する熱エネルギーが排気によって持ち去られるのを回避し得る程度の、吸気絞り弁の開度である。即ち、絞り側開度とは、フィルタの有する熱エネルギーの低下を抑制することを目的として、圧縮着火内燃機関の機関負荷や機関回転速度等の運転状態に対応して通常設定される吸気絞り弁の開度より更に絞られた開度である。また、上記の第一昇温時開度とは、排気通路における背圧を上昇するための排気絞り弁の開度であり、好ましくは内燃機関の燃焼に悪影響を与えない範囲で排気温度を上昇させるための排気絞り弁の開度である。
Therefore, the temperature of the filter is raised by the first filter temperature raising means. The feature of the temperature rise of the filter by the first filter temperature raising means is that the exhaust flow flowing into the filter is suppressed to prevent the heat of the filter from being carried away by the exhaust, and the back pressure in the exhaust passage is raised. This raises the exhaust temperature and raises the temperature of the filter. Therefore, the throttle side opening is the opening of the intake throttle valve that can suppress the amount of exhaust flowing into the filter and avoid the heat energy of the filter being taken away by the exhaust. That is, the throttle-side opening is an intake throttle valve that is normally set in accordance with the operating conditions such as the engine load and engine speed of a compression ignition internal combustion engine for the purpose of suppressing a decrease in thermal energy of the filter. The opening is further narrowed down from the opening. Further, the first temperature elevation opening is the opening of the exhaust throttle valve for increasing the back pressure in the exhaust passage, and preferably increases the exhaust temperature within a range that does not adversely affect the combustion of the internal combustion engine. It is the opening degree of the exhaust throttle valve for making it.

尚、第一フィルタ昇温手段によるフィルタの昇温が行われているときは、主噴射に加えて後噴射を行うことで排気温度を上昇させてフィルタの昇温を促進させることが可能である。しかし、この段階においては、後噴射は必ずしも行われる必要はない。   When the temperature of the filter is raised by the first filter temperature raising means, it is possible to increase the temperature of the filter by raising the exhaust temperature by performing post-injection in addition to the main injection. . However, post-injection does not necessarily have to be performed at this stage.

そして、フィルタの昇温を更に促進するために、第二フィルタ昇温手段によるフィルタの昇温が行われる。第二フィルタ昇温手段によるフィルタの昇温の特徴点は、先ず燃料噴射制御手段によって、主噴射および後噴射の噴射時期を遅角状態とする点である。遅角状態とは、フィルタの昇温が行われていない場合若しくは第一フィルタ昇温手段によるフィルタの昇温が行われている場合と比べて、主噴射および後噴射の燃料噴射時期が遅角側に移行された状態であることを意味する。主噴射および後噴射の燃料噴射時期が遅角状態とされると、燃焼ガスが圧縮着火内燃機関から排出されるまでに要する時間が短くなるため、燃料噴射時期が遅角状態でない場合と比べて排気温度が上昇する。従って、遅角状態とは、排気温度を上昇させることを目的として、圧縮着火内燃機関の機関負荷や機関回転速度等の運転状態に対応して通常設定される燃料噴射時期より更に燃料噴射時期が遅角側に移行された状態と言い得る。   In order to further promote the temperature rise of the filter, the temperature of the filter is raised by the second filter temperature raising means. The characteristic feature of the temperature rise of the filter by the second filter temperature raising means is that the injection timing of the main injection and the post-injection is first retarded by the fuel injection control means. The retarded state means that the fuel injection timings of the main injection and the post-injection are retarded compared to the case where the temperature of the filter is not raised or the temperature of the filter is raised by the first filter temperature raising means. It means that it has been moved to the side. When the fuel injection timings of the main injection and the post-injection are retarded, the time required for the combustion gas to be discharged from the compression ignition internal combustion engine is shortened. Therefore, compared with the case where the fuel injection timing is not retarded The exhaust temperature rises. Therefore, the retarded state means that the fuel injection timing is further set from the fuel injection timing that is normally set corresponding to the operation state such as the engine load and engine speed of the compression ignition internal combustion engine for the purpose of raising the exhaust gas temperature. It can be said that the state is shifted to the retard side.

尚、第一フィルタ昇温手段によるフィルタの昇温が行われているときに後噴射が行われていない場合には、第二フィルタ昇温手段によるフィルタの昇温時には遅角状態とされた主噴射の噴射燃料の燃焼で、燃料の少なくとも一部が燃焼される時期に、後噴射の噴射時期が制御される。   If the post-injection is not performed when the temperature of the filter is raised by the first filter temperature raising means, the main angle that is retarded when the temperature of the filter is raised by the second filter temperature raising means is set. The injection timing of the post-injection is controlled at the time when at least part of the fuel is combusted by the combustion of the injected fuel.

更に、第二フィルタ昇温手段によるフィルタの昇温の特徴点は、主噴射および後噴射の噴射時期が遅角状態にされた状態で、吸気絞り弁の開度が開き側開度にされるとともに、排気絞り弁の開度が第二昇温時開度にされる点である。   Further, the characteristic feature of the temperature rise of the filter by the second filter temperature raising means is that the opening of the intake throttle valve is opened to the open side while the injection timings of the main injection and the post-injection are retarded. At the same time, the opening of the exhaust throttle valve is set to the opening at the time of the second temperature increase.

ここで、開き側開度とは、フィルタにおける熱伝播速度を上昇させるために、前記絞り側開度より吸気流量が増加する方向の開度である。そして、吸気絞り弁の開度が開き側開度とされて吸気流量が増加することで、主噴射および後噴射での燃料の燃焼状態が変化する。即ち、主噴射による噴射燃料は多量の吸気によって燃焼が促進される一方で、該燃料の燃焼促進によって後噴射による噴射燃料が燃焼に供されにくくなる。   Here, the opening side opening degree is an opening degree in a direction in which the intake flow rate increases from the throttle side opening degree in order to increase the heat propagation speed in the filter. And the combustion state of the fuel in main injection and post-injection changes because the opening degree of the intake throttle valve is made the opening side opening degree and the intake flow rate increases. That is, while the fuel injected by the main injection is promoted by a large amount of intake air, the fuel injected by the post-injection is less likely to be combusted by the combustion promotion of the fuel.

この結果、吸気絞り弁の開度を開き側開度とすることで、フィルタにおける熱伝播速度が上昇される。更に、後噴射による噴射燃料が燃焼に供されにくくなったため、排気を介してフィルタに供給される燃料量は増加する。その結果、フィルタに担持された触媒によって発生する酸化熱を増加させることができ、これはフィルタの昇温に寄与し得る。   As a result, the heat propagation speed in the filter is increased by setting the opening degree of the intake throttle valve to the opening side opening degree. Furthermore, since the fuel injected by post-injection is less likely to be used for combustion, the amount of fuel supplied to the filter via the exhaust increases. As a result, the heat of oxidation generated by the catalyst supported on the filter can be increased, which can contribute to the temperature rise of the filter.

また、上記の第二昇温時開度とは、排気通路における背圧をフィルタの昇温に適した圧力に維持するための排気絞り弁の開度であって、吸気絞り弁を開き側開度とすることで増加した排気流量によって圧縮着火内燃機関の燃焼に悪影響を及ぼさない排気絞り弁の開度である。従って、第二昇温時開度は、第一昇温時開度より排気絞り弁が開いた状態となる開度である。   Further, the opening degree at the second temperature rise is an opening degree of the exhaust throttle valve for maintaining the back pressure in the exhaust passage at a pressure suitable for the temperature rise of the filter, and the intake throttle valve is opened on the open side. This is the degree of opening of the exhaust throttle valve that does not adversely affect the combustion of the compression ignition internal combustion engine due to the increased exhaust flow rate. Accordingly, the second temperature elevation opening is an opening at which the exhaust throttle valve is opened more than the first temperature elevation opening.

これによって、第二フィルタ昇温手段によるフィルタの昇温が行われているときも、排気通路における背圧が比較的高い状態に制御されて、フィルタの昇温がより促進されることになる。   Thereby, even when the temperature of the filter is raised by the second filter temperature raising means, the back pressure in the exhaust passage is controlled to be relatively high, and the temperature rise of the filter is further promoted.

以上より、上記の圧縮着火内燃機関の排気浄化装置においては、第一フィルタ昇温手段および第二フィルタ昇温手段によって、フィルタに捕集された粒子状物質の酸化除去に要する時間の短縮が図られるとともに、より良好に粒子状物質の酸化除去が行われ、フィルタにおける粒子状物質の燃え残りが抑制される。   As described above, in the above-described exhaust gas purification apparatus for a compression ignition internal combustion engine, the first filter temperature raising means and the second filter temperature raising means can reduce the time required for oxidizing and removing the particulate matter collected on the filter. At the same time, the particulate matter is better removed by oxidation, and the unburned particulate matter in the filter is suppressed.

また、上記の圧縮着火内燃機関の排気浄化装置が、前記フィルタの温度を推定し、又は検出するフィルタ温度推定手段を、更に備える場合、前記第二フィルタ昇温手段は、前記主噴射と前記後噴射の燃料噴射時期が遅角状態に制御された後であって、且つ前記フィルタ温度推定手段によって推定され又は検出されたフィルタ温度が所定温度より高いときに、前記吸気絞り弁の開度を前記開き側開度にするとともに前記排気絞り弁の開度を前記第二昇温時開度とするようにしてもよい。   Further, in the case where the exhaust gas purification apparatus of the compression ignition internal combustion engine further includes a filter temperature estimating means for estimating or detecting the temperature of the filter, the second filter temperature raising means includes the main injection and the rear After the fuel injection timing of the injection is controlled to be retarded and the filter temperature estimated or detected by the filter temperature estimating means is higher than a predetermined temperature, the opening degree of the intake throttle valve is set to The opening of the exhaust throttle valve may be set to the opening at the time of the second temperature increase while the opening is set to the opening side.

上記の所定温度とは、フィルタに担持されている酸化機能を有する触媒の活性状態に関連する温度である。即ち、フィルタ温度が所定温度以下であるときは該触媒が活性状態に至っていないため、排気中の燃料成分によって酸化熱を十分に発生させることが困難である。そのため、フィルタに流入する排気流量が増えても、フィルタが昇温されにくくなる。そこで、フィルタ温度が所定温度より高くなることで該触媒が活性状態に至るため、そのような場合に、第二フィルタ昇温手段によって排気中の燃料成分による酸化熱を十分に発生させ、且つ排気流量の増加によるフィルタでの熱伝播速度の上昇させることで、フィルタの早急な昇温が可能となる。   Said predetermined temperature is temperature relevant to the active state of the catalyst which has the oxidation function currently carry | supported by the filter. That is, when the filter temperature is equal to or lower than the predetermined temperature, the catalyst has not reached the active state, so that it is difficult to generate sufficient oxidation heat by the fuel component in the exhaust gas. Therefore, even if the exhaust gas flow rate flowing into the filter increases, the temperature of the filter is hardly increased. Therefore, since the catalyst reaches an active state when the filter temperature becomes higher than a predetermined temperature, in such a case, the second filter temperature raising means sufficiently generates heat of oxidation due to the fuel component in the exhaust, and the exhaust By increasing the heat propagation speed in the filter by increasing the flow rate, it is possible to quickly raise the temperature of the filter.

また、上述までの圧縮着火内燃機関の排気浄化装置において、前記第二フィルタ昇温手段は、前記排気絞り弁開度制御手段によって前記排気絞り弁の開度が前記第二昇温時開度とされた後に、前記吸気絞り弁開度制御手段によって前記吸気絞り弁の開度を前記開き側開度にするようにしてもよい。   In the exhaust gas purification apparatus for a compression ignition internal combustion engine as described above, the second filter temperature raising means may be configured such that the exhaust throttle valve opening degree is set to the second temperature raising opening degree by the exhaust throttle valve opening degree control means. After that, the intake throttle valve opening degree control means may set the opening degree of the intake throttle valve to the opening side opening degree.

即ち、第二フィルタ昇温手段によるフィルタの昇温を行う際、排気絞り弁の開度の変更を吸気絞り弁の開度の変更より先に行うことで、排気通路における背圧が急激に上昇し、内燃機関に悪影響を及ぼすことを、より確実に抑制することが可能となる。   That is, when the temperature of the filter is raised by the second filter temperature raising means, the change of the opening of the exhaust throttle valve is performed before the change of the opening of the intake throttle valve, so that the back pressure in the exhaust passage rises rapidly. Thus, adverse effects on the internal combustion engine can be more reliably suppressed.

第二に、本発明では、上記した問題を解決するために、フィルタを昇温させて捕集された粒子状物質を酸化除去するときに行われる、主噴射と後噴射の噴射時期、吸気絞り弁の開度および排気絞り弁の開度に着目した。これは、主噴射と後噴射の噴射時期を遅角状態とすることで排気温度を上昇させることが可能となり、かつその状態で吸入空気量と背圧を制御することで、フィルタの昇温を促進し、又はフィルタを高温状態に維持することが可能となるからである。   Secondly, in the present invention, in order to solve the above-described problem, the injection timing of the main injection and the post-injection, the intake throttle, which is performed when the collected particulate matter is oxidized and removed by raising the temperature of the filter. We focused on the opening of the valve and the opening of the exhaust throttle valve. This is because the exhaust temperature can be raised by setting the injection timing of the main injection and the post-injection to a retarded state, and the temperature of the filter can be raised by controlling the intake air amount and the back pressure in this state. This is because it is possible to promote or maintain the filter at a high temperature.

そこで、本発明は、圧縮着火内燃機関の吸気通路の吸気流量を調整する吸気絞り弁と、前記圧縮着火内燃機関の排気通路の排気流量を調整する排気絞り弁と、酸化機能を有する触媒が担持され、排気中の粒子状物質を捕集するフィルタと、を備える圧縮着火内燃機関の排気浄化方法であって、前記吸気絞り弁の開度を絞り側開度とするとともに前記排気絞り弁の開度を第一昇温時開度とすることで、前記フィルタを昇温させる第一フィルタ昇温工程と、圧縮上死点近傍の時期における主噴射と該主噴射後の燃料噴射であって該主噴射による噴射燃料の燃焼で燃料の少なくとも一部が燃焼される後噴射の各々の燃料噴射時期を遅角状態に制御した後であって、且つ前記フィルタの温度が所定温度より高いときに、
前記吸気絞り弁の開度を前記絞り側開度から開き側開度にするとともに前記排気絞り弁の開度を前記第一昇温時開度より開いた状態である第二昇温時開度とすることで、前記フィルタを昇温させる第二フィルタ昇温工程と、を含んでなる。
Therefore, the present invention carries an intake throttle valve for adjusting the intake flow rate of the intake passage of the compression ignition internal combustion engine, an exhaust throttle valve for adjusting the exhaust flow rate of the exhaust passage of the compression ignition internal combustion engine, and a catalyst having an oxidation function. An exhaust gas purification method for a compression ignition internal combustion engine comprising a filter for collecting particulate matter in exhaust gas, wherein the opening of the intake throttle valve is set to a throttle side opening and the exhaust throttle valve is opened. A first temperature raising step for raising the temperature of the filter by setting the degree of opening at the first temperature raising time, a main injection at a timing near the compression top dead center, and a fuel injection after the main injection, After controlling the fuel injection timing of each post-injection in which at least a part of the fuel is combusted by combustion of the injected fuel by the main injection to a retarded state, and when the temperature of the filter is higher than a predetermined temperature,
The opening degree of the intake throttle valve is changed from the throttle side opening degree to the opening side opening degree, and the opening degree of the exhaust throttle valve is opened from the first temperature raising opening degree. And a second filter temperature raising step for raising the temperature of the filter.

上記の圧縮着火内燃機関の排気浄化方法における絞り側開度、開き側開度、第一昇温時開度、第二昇温時開度、所定温度、燃料噴射時期の遅角状態については、先述の圧縮着火内燃機関の排気浄化装置における絞り側開度、開き側開度、第一昇温時開度、第二昇温時開度、所定温度、燃料噴射時期の遅角状態と同義である。   Regarding the throttle side opening, the opening side opening, the first temperature elevation opening, the second temperature elevation opening, the predetermined temperature, and the retarded state of the fuel injection timing in the exhaust purification method of the compression ignition internal combustion engine, Same as the throttle side opening, the opening side opening, the first temperature rise opening, the second temperature rise opening, the predetermined temperature, and the retarded state of the fuel injection timing in the above-described exhaust gas purification apparatus for a compression ignition internal combustion engine. is there.

そこで、上記の圧縮着火内燃機関の排気浄化方法によって、フィルタに捕集された粒子状物質の酸化除去に要する時間の短縮が図られるとともに、より良好に粒子状物質の酸化除去が行われ、フィルタにおける粒子状物質の燃え残りが抑制される。   Therefore, the exhaust purification method of the compression ignition internal combustion engine can reduce the time required for oxidizing and removing the particulate matter collected by the filter, and can better oxidize and remove the particulate matter. The remaining unburned particulate matter is suppressed.

圧縮着火内燃機関の排気浄化において、フィルタに捕集された粒子状物質の酸化除去に要する時間の短縮を図るとともに、より良好な粒子状物質の酸化除去を行うことが可能となる。   In the exhaust purification of a compression ignition internal combustion engine, it is possible to reduce the time required for oxidizing and removing particulate matter collected by the filter and to perform better oxidizing and removing particulate matter.

ここで、本発明に係る圧縮着火内燃機関の排気浄化装置および圧縮着火内燃機関の排気浄化方法の実施例について図面に基づいて説明する。   Here, an embodiment of an exhaust gas purification apparatus for a compression ignition internal combustion engine and an exhaust gas purification method for a compression ignition internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本発明が適用される圧縮着火内燃機関(以下、「内燃機関」という。)1およびその制御系統の概略構成を表す図である。内燃機関1は、4つの気筒2を有する圧縮着火式の内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、吸気ポートを介して燃焼室に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して燃焼室に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。   FIG. 1 is a diagram showing a schematic configuration of a compression ignition internal combustion engine (hereinafter referred to as “internal combustion engine”) 1 to which the present invention is applied and a control system thereof. The internal combustion engine 1 is a compression ignition type internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulation chamber 4 that accumulates fuel at a predetermined pressure. An intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 is connected to a combustion chamber via an intake port. Similarly, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 is connected to a combustion chamber via an exhaust port. Here, the intake port and the exhaust port are provided with an intake valve and an exhaust valve, respectively.

また、吸気枝管7は吸気管8に接続されている。更に、吸気管8における吸気枝管7の直上流に位置する部位には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が、更に吸気絞り弁10の上流側には、吸気管8を流れる吸入空気量を検出するエアフローメータ9が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。一方、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22上に上流側から順に設けられたEGRガス冷却用のEGRクーラ23と、EGRガスの流量調整用のEGR弁24と、から構成される。   The intake branch pipe 7 is connected to the intake pipe 8. Further, an intake throttle valve 10 that adjusts the flow rate of the intake air flowing through the intake pipe 8 is located at a portion of the intake pipe 8 that is located immediately upstream of the intake branch pipe 7. An air flow meter 9 for detecting the amount of intake air flowing through the pipe 8 is provided. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10. On the other hand, the internal combustion engine 1 is provided with an EGR device 21. The EGR device 21 recirculates a part of the exhaust gas flowing through the exhaust branch pipe 12 to the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), and an EGR for cooling EGR gas provided in order from the upstream side on the EGR passage 22. A cooler 23 and an EGR valve 24 for adjusting the flow rate of EGR gas are included.

エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。更に、過給機16より下流の吸気管8には、過給機16によって加圧されて高温となった吸入空気を冷却するためのインタークーラ15が設けられている。また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、内燃機関1からの排気を浄化するフィルタ14が設けられている。   An intake pipe 8 positioned between the air flow meter 9 and the intake throttle valve 10 is provided with a compressor side of a supercharger 16 that operates using exhaust energy as a drive source. A turbine side is provided. Further, an intercooler 15 is provided in the intake pipe 8 downstream of the supercharger 16 for cooling the intake air that has been pressurized by the supercharger 16 and has reached a high temperature. Further, the turbine side of the supercharger 16 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. A filter 14 that purifies the exhaust from the internal combustion engine 1 is provided in the middle of the exhaust pipe 13.

フィルタ14は、排気中の粒子状物質を捕集する能力を有する。更に、その表面には酸化機能を有する触媒の一種であって、排気中のNOxを吸蔵、還元することで浄化するいわゆる吸蔵還元型NOx触媒(以下、「NOx触媒」という。)が担持されている。尚、NOx触媒以外の触媒であって酸化機能を有する酸化触媒をフィルタ14に担持してもよい。   The filter 14 has the ability to collect particulate matter in the exhaust gas. Further, a so-called storage reduction type NOx catalyst (hereinafter referred to as “NOx catalyst”), which is a kind of catalyst having an oxidation function and purifies by storing and reducing NOx in the exhaust, is supported on the surface. Yes. An oxidation catalyst other than the NOx catalyst and having an oxidation function may be supported on the filter 14.

フィルタ14の下流に位置する部位には、排気管13内を流れる排気の流量を調節する排気絞り弁17が設けられている。この排気絞り弁17には、ステップモータ等で構成されて該排気絞り弁17を開閉駆動する排気絞り用アクチュエータ18が取り付けられている。   An exhaust throttle valve 17 that adjusts the flow rate of the exhaust gas flowing in the exhaust pipe 13 is provided in a portion located downstream of the filter 14. The exhaust throttle valve 17 is provided with an exhaust throttle actuator 18 that is configured by a step motor or the like and that drives the exhaust throttle valve 17 to open and close.

また、内燃機関1の機関出力で駆動されるオルタネータ(図示せず)からの電気エネルギーを蓄えるバッテリ30、およびバッテリ30からの供給電力によって駆動される補機(グロー等)が、内燃機関1に備えられている。オルタネータからバッテリ30への電気エネルギーの流れ、およびバッテリ30から補機31への電気エネルギーの流れを図中実線の矢印で示す。   Further, a battery 30 that stores electrical energy from an alternator (not shown) that is driven by the engine output of the internal combustion engine 1 and an auxiliary device (such as glow) that is driven by the power supplied from the battery 30 are provided in the internal combustion engine 1. Is provided. The flow of electrical energy from the alternator to the battery 30 and the flow of electrical energy from the battery 30 to the auxiliary machine 31 are indicated by solid arrows in the figure.

ここで、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。尚、ECU20と各要素との信号の流れを図中点線の矢印で示す。   Here, the internal combustion engine 1 is provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit. The flow of signals between the ECU 20 and each element is indicated by dotted arrows in the figure.

ここで、燃料噴射弁3は、ECU20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3における燃料の噴射時期および噴射量が、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、噴射弁毎に制御される。また、EGR弁24、吸気絞り用アクチュエータ11、排気絞り用アクチュエータ18等も、ECU20からの指令に従って制御され、以てEGRガス量、吸気流量、排気流量が調整される。更に、補機31も、内燃機関1の運転状態に応じて、ECU20からの指令に従って駆動される。   Here, the fuel injection valve 3 performs an opening / closing operation by a control signal from the ECU 20. That is, according to a command from the ECU 20, the fuel injection timing and the injection amount in the fuel injection valve 3 are controlled for each injection valve in accordance with the operation state such as the engine load of the internal combustion engine 1 and the engine rotation speed. Further, the EGR valve 24, the intake throttle actuator 11, the exhaust throttle actuator 18 and the like are also controlled in accordance with commands from the ECU 20, thereby adjusting the EGR gas amount, the intake flow rate, and the exhaust flow rate. Further, the auxiliary machine 31 is also driven in accordance with a command from the ECU 20 according to the operating state of the internal combustion engine 1.

更に、アクセル開度センサ26がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関負荷等を算出する。また、クランクポジションセンサ25がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、該機関回転速度とギア比等から内燃機関1が搭載されている車両の車両速度等を算出する。更に、フィルタ14の上流側の排気通路に設けられた排気温度センサ27がECU20と電気的に接続され、ECU20はフィルタ14に流入する排気の温度(以下、「入りガス温度」ともいう。)を取得する。   Further, an accelerator opening sensor 26 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the accelerator opening and calculates an engine load required for the internal combustion engine 1 based on the signal. The crank position sensor 25 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1, the engine rotational speed and the gear. The vehicle speed or the like of the vehicle on which the internal combustion engine 1 is mounted is calculated from the ratio or the like. Further, an exhaust temperature sensor 27 provided in the exhaust passage on the upstream side of the filter 14 is electrically connected to the ECU 20, and the ECU 20 detects the temperature of the exhaust gas flowing into the filter 14 (hereinafter also referred to as “entry gas temperature”). get.

このように構成される内燃機関1において、フィルタ14によって排気中の粒子状物質が捕集されることで、粒子状物質の大気への放出が抑制される。しかし、フィルタ14に捕集された粒子状物質量が増加すると、排気管13における背圧が増加し内燃機関1の燃焼に影響を及ぼす。特に、内燃機関1の機関負荷が低い場合には排気温度が低いため、フィルタ14における粒子状物質の酸化除去が促進されず、粒子状物質の捕集量が増加する。   In the internal combustion engine 1 configured as described above, the particulate matter in the exhaust gas is collected by the filter 14, so that the release of the particulate matter to the atmosphere is suppressed. However, when the amount of particulate matter collected by the filter 14 increases, the back pressure in the exhaust pipe 13 increases and affects the combustion of the internal combustion engine 1. In particular, when the engine load of the internal combustion engine 1 is low, the exhaust temperature is low, so that the oxidation removal of particulate matter in the filter 14 is not promoted, and the amount of particulate matter collected increases.

そこで、フィルタ14に捕集された粒子状物質を酸化除去するために、フィルタ14の温度を上昇させて粒子状物質が酸化除去される温度に維持する必要がある。そこで、フィ
ルタ14に流入する排気量を制限することで、排気による熱エネルギーの持ち去り量を低減させるとともに、排気管13における背圧を上昇させて排気温度を上昇させることで、フィルタ14の昇温が図られる。更に、燃料噴射弁3からの主噴射後に行われる後噴射によって排気温度の上昇を図る。
Therefore, in order to oxidize and remove the particulate matter collected by the filter 14, it is necessary to raise the temperature of the filter 14 and maintain the temperature at which the particulate matter is oxidized and removed. Therefore, by restricting the amount of exhaust flowing into the filter 14, the amount of heat energy taken away by the exhaust is reduced, and the back pressure in the exhaust pipe 13 is increased to raise the exhaust temperature, thereby increasing the filter 14. Temperature is achieved. Further, the exhaust temperature is increased by post-injection performed after the main injection from the fuel injection valve 3.

しかし、このような場合、フィルタ14に流入する排気量が比較的少量であるため、フィルタ14での熱の伝播速度が低く、フィルタ14の昇温に要する時間が長くなる。また、熱の伝播速度が低いことで、粒子状物質が局所的に燃え残った状態となり得る。   However, in such a case, since the amount of exhaust gas flowing into the filter 14 is relatively small, the propagation speed of heat in the filter 14 is low, and the time required to raise the temperature of the filter 14 becomes long. Moreover, it can be in the state where the particulate matter remains unburned locally due to the low heat propagation speed.

そこで、フィルタ14の昇温に要する時間を可及的に短くし、燃え残りのない、より良好な粒子状物質の酸化除去のための内燃機関1の排気浄化装置、および内燃機関1の排気浄化方法について、以下に説明する。尚、内燃機関1の排気浄化装置は、主に、内燃機関1の燃料噴射弁3、フィルタ14、吸気絞り弁10、排気絞り弁17およびECU20に格納され後述するこれらの制御を実行する制御プログラム等によって構成される。   Therefore, the exhaust gas purification device for the internal combustion engine 1 and the exhaust gas purification of the internal combustion engine 1 for reducing the time required for raising the temperature of the filter 14 as much as possible and eliminating the unburned particulate matter better and oxidizing the internal combustion engine 1. The method will be described below. The exhaust emission control device for the internal combustion engine 1 is mainly stored in the fuel injection valve 3, the filter 14, the intake throttle valve 10, the exhaust throttle valve 17 and the ECU 20 of the internal combustion engine 1 and executes a control program described later. Composed of etc.

図2は、フィルタ14の昇温時における、吸気絞り弁10および排気絞り弁17の開度に応じた燃料噴射弁3からの燃料噴射の様子を示す図である。図2(a)、(b)、(c)の各図において、上段が燃料噴射のタイミングを表し、中段は吸気絞り弁10の開度を表し、下段は排気絞り弁17の開度を表している。ここで、燃料噴射において、injmで表される燃料噴射は、いわゆる主噴射であって、内燃機関1において通常の燃焼が行われるとき、圧縮上死点近傍の時期において行われる燃料噴射である。また、主噴射injmより早い時期に行われる燃料噴射injpは、前噴射であって、主噴射injmより遅い時期に行われる燃料噴射injaは、後噴射である。   FIG. 2 is a view showing a state of fuel injection from the fuel injection valve 3 according to the opening degrees of the intake throttle valve 10 and the exhaust throttle valve 17 when the temperature of the filter 14 is increased. 2A, 2 </ b> B, and 2 </ b> C, the upper stage represents the fuel injection timing, the middle stage represents the opening degree of the intake throttle valve 10, and the lower stage represents the opening degree of the exhaust throttle valve 17. ing. Here, in the fuel injection, the fuel injection represented by injm is a so-called main injection, and is a fuel injection performed at a time near the compression top dead center when normal combustion is performed in the internal combustion engine 1. The fuel injection injp performed at a timing earlier than the main injection injm is a pre-injection, and the fuel injection inja performed at a timing later than the main injection injm is a post-injection.

また、図3は、図2に示す燃料噴射制御、吸気絞り弁10および排気絞り弁17の開度制御が行われたときの、フィルタ14の温度推移(図3中、L1で示される。)線および入りガス温度の推移(図3中、線L2で示される。)を示す図である。   3 shows the temperature transition of the filter 14 (indicated by L1 in FIG. 3) when the fuel injection control and the opening control of the intake throttle valve 10 and the exhaust throttle valve 17 shown in FIG. 2 are performed. It is a figure which shows transition (it shows with the line L2 in FIG. 3) of a line and entering gas temperature.

図2(a)は、ECU20が諸条件からフィルタ14の温度を上昇させる判断したとき(図3に示すT1の時期)に、第一に行われる燃料噴射等の制御(以下、「第一昇温制御」という。)を表す図である。このとき、吸気絞り弁10の開度は、全開の開度を100%としたとき、10%程度の開度(以下、「絞り側開度」という。)に固定され、吸気管8を流れる吸気の流量は比較的少量に制限される。これにより、フィルタ14に流入する排気流量が減少するため、排気による熱の持ち去り量が減少する。この絞り側開度は、内燃機関1の機関負荷や機関回転速度等の運転状態に対応して通常設定される吸気絞り弁10の開度より、更に絞られた開度である。   FIG. 2A shows a control (hereinafter referred to as “first increase”) of fuel injection performed first when the ECU 20 determines to increase the temperature of the filter 14 from various conditions (time T1 shown in FIG. 3). It is referred to as “temperature control”). At this time, the opening degree of the intake throttle valve 10 is fixed to about 10% opening degree (hereinafter referred to as “throttle side opening degree”) when the fully opened opening degree is 100%, and flows through the intake pipe 8. The flow rate of intake air is limited to a relatively small amount. As a result, the flow rate of the exhaust gas flowing into the filter 14 is reduced, so that the amount of heat taken away by the exhaust gas is reduced. This throttle-side opening is an opening that is further throttled than the opening of the intake throttle valve 10 that is normally set corresponding to the operating state of the internal combustion engine 1 such as the engine load and the engine speed.

更に、排気絞り弁17の開度は、全開の開度を100%としたとき、10%程度の開度(以下、「第一昇温時開度」という。)に固定され、排気管13を流れる吸気の流量は比較的少量に制限される。これにより、排気絞り弁17が設けられた部位より上流側の排気管13において背圧が上昇するため、実質的に内燃機関1の機関負荷が高くなり、排気温度が上昇する。尚、この第一昇温時開度は、背圧の上昇により内燃機関1の燃焼が過度に不安定となり、内燃機関1の機関要素が破損しない程度の開度にしなければならない。   Further, the opening degree of the exhaust throttle valve 17 is fixed to an opening degree of about 10% (hereinafter referred to as “first temperature raising opening degree”) when the fully opened opening degree is 100%. The flow rate of the intake air flowing through is limited to a relatively small amount. As a result, the back pressure rises in the exhaust pipe 13 upstream from the portion where the exhaust throttle valve 17 is provided, so that the engine load of the internal combustion engine 1 substantially increases and the exhaust temperature rises. Note that the opening at the time of the first temperature increase must be such that the combustion of the internal combustion engine 1 becomes excessively unstable due to the increase in the back pressure and the engine elements of the internal combustion engine 1 are not damaged.

そして、燃料噴射弁3からの燃料噴射においては、時期T1を迎えることで、後噴射injaが行われる。この後噴射injaでは、主噴射による噴射燃料が燃焼されることで発生する燃焼熱によって、後噴射injaによる噴射燃料の少なくとも一部が燃焼されるタイミングにおいて燃料噴射弁3から噴射される。尚、第一昇温制御が行われているときの燃料噴射時期は、内燃機関1の機関負荷や機関回転速度等の運転状態に対応して通常設定される燃料噴射時期である。   In the fuel injection from the fuel injection valve 3, the post-injection inja is performed at the timing T1. In the post-injection inja, at least a part of the fuel injected by the post-injection inja is burned from the fuel injection valve 3 by the combustion heat generated by burning the fuel injected by the main injection. Note that the fuel injection timing when the first temperature raising control is being performed is a fuel injection timing that is normally set in accordance with the operating state of the internal combustion engine 1 such as the engine load and the engine speed.

以上より、図3に示すように、時期T1を迎え第一昇温制御が行われると、入りガス温度は上昇するとともに、フィルタ14の温度も上昇する。尚、以上の第一昇温制御を経て行われるフィルタ14の昇温が、本発明における前記第一フィルタ昇温手段によって実行されるフィルタ14の昇温に相当する。   As described above, as shown in FIG. 3, when the first temperature rise control is performed at the time T <b> 1, the incoming gas temperature rises and the temperature of the filter 14 also rises. The temperature rise of the filter 14 performed through the above first temperature rise control corresponds to the temperature rise of the filter 14 executed by the first filter temperature raising means in the present invention.

次に、図2(b)は、時期T1から所定時間経過後の時期T2において、上述の第一昇温制御に代わって行われる第二昇温制御時の燃料噴射等の制御を表す図である。第二昇温制御においては、第一昇温制御で行われていた前噴射injp、主噴射injm、後噴射injaの噴射時期を遅角側に移行するとともに、後噴射injaを第一後噴射inja1と後噴射inja2とに分割して行っている。また、このときの吸気絞り弁10および排気絞り弁17の開度は、第一昇温制御時と同様に、それぞれ絞り側開度(10%)、第一昇温時開度(10%)に設定されている。   Next, FIG. 2B is a diagram showing control such as fuel injection at the time of the second temperature increase control performed in place of the above-described first temperature increase control at time T2 after a predetermined time has elapsed from time T1. is there. In the second temperature rise control, the injection timing of the pre-injection injp, the main injection injm, and the post-injection inja performed in the first temperature rise control is shifted to the retard side, and the post-injection inja is changed to the first post-injection inja1. And post-injection inja2. Further, the opening degree of the intake throttle valve 10 and the exhaust throttle valve 17 at this time is the throttle side opening degree (10%) and the first opening degree opening degree (10%), respectively, as in the first temperature raising control. Is set to

ここで、第一後噴射inja1の噴射時期は、第一後噴射inja1による噴射燃料の少なくとも一部が、遅角側に移行された主噴射injmによる噴射燃料の燃焼に供される時期である。更に、第二後噴射inja2の噴射時期は、第二後噴射inja2による噴射燃料の少なくとも一部が、第一後噴射inja1による噴射燃料の燃焼に供される時期である。   Here, the injection timing of the first post-injection inja1 is a time at which at least a part of the fuel injected by the first post-injection inja1 is used for the combustion of the injected fuel by the main injection injm shifted to the retarded angle side. Further, the injection timing of the second post-injection inja2 is a time when at least a part of the fuel injected by the second post-injection inja2 is used for combustion of the injected fuel by the first post-injection inja1.

これら第一後噴射inja1および第二後噴射inja2によって、気筒2内における燃料の燃焼が比較的遅い時期に行われることになる。そのため、図3に示すように、第二昇温制御が行われた時期T2以降においては、排気温度が急激に上昇する。尚、後噴射が第一後噴射inja1のみの場合でも、排気温度の上昇の程度は低下するが、ある程度の排気温度の上昇は得られる。   By these first post injection inja1 and second post injection inja2, the combustion of fuel in the cylinder 2 is performed at a relatively late timing. Therefore, as shown in FIG. 3, the exhaust gas temperature rapidly increases after the time T2 when the second temperature raising control is performed. Even when the post-injection is only the first post-injection inja1, the degree of increase in the exhaust temperature is reduced, but a certain degree of increase in the exhaust temperature can be obtained.

また、このとき吸気絞り弁10の開度は絞り側開度(10%)に設定されているため、排気によるフィルタ14の熱の持ち去り量は抑制され、且つ排気絞り弁17の開度は第一昇温時開度(10%)に設定されているため、背圧の上昇による排気温度上昇も生じている。   At this time, since the opening of the intake throttle valve 10 is set to the throttle side opening (10%), the amount of heat removed from the filter 14 by the exhaust is suppressed, and the opening of the exhaust throttle valve 17 is Since the opening is set at the first temperature elevation (10%), the exhaust temperature rises due to the back pressure rise.

この第二昇温制御によって、排気温度が急激に上昇し、且つ排気によるフィルタ14の熱の持ち去り量が抑制されることで、図3に示すように、フィルタ14の温度は500度近くまで上昇する。しかし、吸気絞り弁10の開度が絞り側開度(10%)とされ、且つ排気絞り弁17の開度が第一昇温時開度(10%)とされることで排気流量が抑制されているため、フィルタ14における熱伝播速度が低く、いずれフィルタ14の昇温の程度が緩慢となり、フィルタ14に捕集された粒子状物質を効率的に酸化除去し得る温度(例えば、600度)にまでフィルタ14の温度を上昇させるには、比較的長時間を要する。更には、熱伝播速度が低いために、局所的に粒子状物質が燃え残る虞がある。   By this second temperature rise control, the exhaust temperature rises rapidly, and the amount of heat removed from the filter 14 by the exhaust is suppressed, so that the temperature of the filter 14 reaches nearly 500 degrees as shown in FIG. To rise. However, the exhaust flow rate is suppressed by setting the opening of the intake throttle valve 10 to the throttle side opening (10%) and the opening of the exhaust throttle valve 17 to the first temperature increase opening (10%). Therefore, the heat propagation speed in the filter 14 is low, and the temperature rise of the filter 14 becomes slow, and the temperature at which the particulate matter collected by the filter 14 can be efficiently oxidized and removed (for example, 600 degrees). It takes a relatively long time to raise the temperature of the filter 14 to). Furthermore, since the heat propagation speed is low, there is a possibility that the particulate matter may remain locally burned.

そこで、フィルタ14の温度が比較的高温となり、その温度変化が緩やかとなったとき(図3中の時期T3)に、上述の第二昇温制御に代えて以下に説明する第三昇温制御が行われる。第三昇温制御は、図2(c)に示す制御であり、燃料噴射弁3からの燃料噴射時期に関する制御は、第二昇温制御時から変更されない。第三昇温制御と第二昇温制御との相違点は、吸気絞り弁10の開度が、絞り側開度(10%)から開き側開度(100%)に変更されるとともに、排気絞り弁17の開度が、第一昇温時開度(10%)から第二昇温時開度(50%)に変更される点である。   Therefore, when the temperature of the filter 14 becomes relatively high and the temperature change becomes gradual (time T3 in FIG. 3), the third temperature increase control described below is used instead of the second temperature increase control described above. Is done. The third temperature rise control is the control shown in FIG. 2C, and the control related to the fuel injection timing from the fuel injection valve 3 is not changed from the time of the second temperature rise control. The difference between the third temperature raising control and the second temperature raising control is that the opening degree of the intake throttle valve 10 is changed from the throttle side opening degree (10%) to the opening side opening degree (100%). The opening degree of the throttle valve 17 is changed from the first temperature increase opening (10%) to the second temperature increase opening (50%).

第三昇温制御によって、吸気絞り弁10の開度が絞り側開度(10%)から閉じ側開度(100%)に変更されると、気筒2内への吸気流量が変更される。これにより、前噴射
injpおよび主噴射injmによる噴射燃料の燃焼具合が改善され、これらの燃料の燃焼速度が上昇する。そのため、主噴射injmによる燃料の燃焼に供される第一後噴射inja1による噴射燃料量が減少し、同様に第一後噴射inja1による燃料の燃焼に供される第二後噴射inja2による噴射燃料量が減少する。
When the opening degree of the intake throttle valve 10 is changed from the throttle side opening degree (10%) to the closing side opening degree (100%) by the third temperature raising control, the intake air flow rate into the cylinder 2 is changed. Thereby, the combustion condition of the injected fuel by the front injection injp and the main injection injm is improved, and the combustion speed of these fuels is increased. Therefore, the amount of fuel injected by the first post-injection inja1 used for the combustion of fuel by the main injection injm decreases, and the amount of fuel injected by the second post-injection inja2 used for the combustion of fuel by the first post-injection inja1 in the same manner. Decrease.

この結果、第一後噴射inja1および第二後噴射inja2による噴射燃料のうち燃焼に供される燃料量が減少することで、排気中の燃料量が増加する。そして、排気中の燃料がフィルタ14に担持されたNOx触媒で酸化されることで、フィルタ14の昇温が図られる。尚、第三昇温制御が行われているとき、吸気絞り弁10の開度が開き側開度(100%)とされたことで、排気温度は図3に示すように低下するが、前記NOx触媒での酸化熱によって、フィルタ14の温度は高温に維持される。   As a result, the amount of fuel in the exhaust gas increases due to a decrease in the amount of fuel provided for combustion in the fuel injected by the first post injection inja1 and the second post injection inja2. The fuel in the exhaust gas is oxidized by the NOx catalyst supported on the filter 14 so that the temperature of the filter 14 is increased. When the third temperature raising control is performed, the exhaust temperature is lowered as shown in FIG. 3 because the opening of the intake throttle valve 10 is set to the open side opening (100%). The temperature of the filter 14 is maintained at a high temperature by the oxidation heat in the NOx catalyst.

ここで、吸気絞り弁10の開度が開き側開度(100%)に設定されているため排気流量が多くなり、フィルタ14での熱伝播速度が高くなる。従って、フィルタ14の温度を、捕集された粒子状物質を酸化除去できる温度にまで可及的に早く上昇させることが可能となる。   Here, since the opening degree of the intake throttle valve 10 is set to the opening side opening degree (100%), the exhaust gas flow rate increases, and the heat propagation speed in the filter 14 increases. Therefore, the temperature of the filter 14 can be increased as quickly as possible to a temperature at which the collected particulate matter can be oxidized and removed.

また、排気絞り弁17の開度が第一昇温時開度(10%)から第二昇温時開度(50%)に変更されたのは、排気管13における背圧を高めて排気温度を上昇させるとともに、前述のように吸気絞り弁10を開き側開度(100%)にすることで該背圧が過度に上昇し、内燃機関が破損するのを回避するためである。尚、本実施例においては、第二昇温時開度は50%の開度であるが、内燃機関1の運転状態に応じて吸気流量が変動することを鑑みて、フィルタ14の昇温に適切な背圧になるべく第二昇温時開度を吸気流量に応じて制御すればよい。また、上記の開き側開度、絞り側開度、第一昇温時開度、第二昇温時開度の数値は一例示に過ぎず、上記の数値に限定されるものではなく、内燃機関の特性に応じて個別具体的に設定すればよい。以下の実施例の記載についても、同様である。   Further, the reason why the opening of the exhaust throttle valve 17 is changed from the opening at the first temperature increase (10%) to the opening at the second temperature increase (50%) is that the exhaust pressure is increased by increasing the back pressure in the exhaust pipe 13. This is because the back pressure is excessively increased and the internal combustion engine is prevented from being damaged by raising the temperature and opening the intake throttle valve 10 to the opening side opening (100%) as described above. In the present embodiment, the opening at the time of the second temperature increase is 50%, but the temperature of the filter 14 is increased in view of the fact that the intake flow rate varies depending on the operating state of the internal combustion engine 1. What is necessary is just to control the opening degree at the time of a 2nd temperature increase according to intake flow volume so that it may become a suitable back pressure. In addition, the numerical values of the opening side opening degree, the throttle side opening degree, the first temperature raising opening degree, and the second temperature raising opening degree are merely examples, and are not limited to the above numerical values. Individual specific settings may be made according to the characteristics of the engine. The same applies to the description of the following examples.

尚、以上の第二昇温制御および第三昇温制御を経て行われるフィルタ14の昇温が、本発明における前記第二フィルタ昇温手段によって実行されるフィルタの昇温に相当する。   The temperature rise of the filter 14 performed through the second temperature rise control and the third temperature rise control corresponds to the temperature rise of the filter executed by the second filter temperature raising means in the present invention.

ここで、上記の第三昇温制御を行ってフィルタ14の温度を上昇させた場合(ケース1)と、第三昇温制御を使わずに第二昇温制御によってフィルタ14の温度を上昇させた場合(ケース2)とにおける、フィルタ14の温度上昇の違いを図5および図6に示す。尚、図4に、フィルタ14の概略的な構成と、フィルタ14の温度上昇の測定のための測定点を示す。   Here, when the temperature of the filter 14 is increased by performing the third temperature increase control (case 1), the temperature of the filter 14 is increased by the second temperature increase control without using the third temperature increase control. FIG. 5 and FIG. 6 show the difference in temperature rise of the filter 14 in the case (case 2). FIG. 4 shows a schematic configuration of the filter 14 and measurement points for measuring the temperature rise of the filter 14.

図4に示すように、フィルタ14における温度上昇の測定点は、フィルタ14の中心軸A1と周辺近傍A2上の3点で行った。この3点は、フィルタ14の排気流入側端面14aから、それぞれ20mm、75mm、130mm離れた箇所である。   As shown in FIG. 4, the temperature rise measurement points in the filter 14 were performed at three points on the central axis A1 and the peripheral vicinity A2 of the filter 14. These three points are locations separated from the exhaust inflow side end surface 14a of the filter 14 by 20 mm, 75 mm, and 130 mm, respectively.

そして、図5は、中心軸A1上の3点での温度推移を表し、線L3は排気流入端面14aから20mm離れた箇所の温度推移を、線L4は排気流入端面14aから75mm離れた箇所の温度推移を、線L5は排気流入端面14aから130mm離れた箇所の温度推移を表している。また、図5(a)はケース1に、図5(b)はケース2にそれぞれ対応している。図5に示すように、第三昇温制御を行うことで、フィルタ14の温度が250度近傍から630度近傍まで上昇するのに要する時間が短縮されている。   FIG. 5 shows the temperature transition at three points on the central axis A1, the line L3 shows the temperature transition at a location 20 mm away from the exhaust inflow end surface 14a, and the line L4 shows the temperature transition at a location 75 mm away from the exhaust inflow end surface 14a. A line L5 represents a temperature transition at a location 130 mm away from the exhaust inflow end face 14a. 5A corresponds to case 1 and FIG. 5B corresponds to case 2. As shown in FIG. 5, by performing the third temperature increase control, the time required for the temperature of the filter 14 to rise from around 250 degrees to around 630 degrees is shortened.

また、図6は、周辺近傍A2上の3点での温度推移を表し、線L6は排気流入端面14aから20mm離れた箇所の温度推移を、線L7は排気流入端面14aから75mm離れた箇所の温度推移を、線L8は排気流入端面14aから130mm離れた箇所の温度推移
を表している。また、図6(a)はケース1に、図6(b)はケース2にそれぞれ対応している。図6に示すように、第三昇温制御を行うことで、フィルタ15の周辺部の到達最高温度は上昇し、且つ3点での温度分布がより密な状態となっている。即ち、これは、第三昇温制御を行うことで、フィルタ14における熱伝播速度が高くなり、フィルタ14の早急な昇温に寄与していることを意味する。
FIG. 6 shows the temperature transition at three points on the vicinity A2, the line L6 shows the temperature transition at a location 20 mm away from the exhaust inflow end surface 14a, and the line L7 shows the temperature transition at a location 75 mm away from the exhaust inflow end surface 14a. The temperature transition, line L8 represents the temperature transition at a location 130 mm away from the exhaust inflow end face 14a. 6A corresponds to case 1 and FIG. 6B corresponds to case 2. As shown in FIG. 6, by performing the third temperature rise control, the maximum temperature reached at the periphery of the filter 15 rises, and the temperature distribution at the three points is more dense. That is, this means that by performing the third temperature rise control, the heat propagation speed in the filter 14 is increased, which contributes to the rapid temperature rise of the filter 14.

ここで、図7に、上述の第一昇温制御、第二昇温制御、第三昇温制御を利用したフィルタ14の昇温制御(以下、「フィルタ昇温制御」という)に関するフローチャートを示す。更に、図8に、図7のフィルタ昇温制御が行われるときの、フィルタ温度の推移(図8(a)に示す。)、排気絞り弁17の開度の推移(図8(b)に示す。)、吸気絞り弁10の開度の推移(図8(c)に示す。)、後噴射量の推移(図8(d)に示す。)、背圧の推移(図8(e)に示す。)をそれぞれ示す。このフィルタ昇温制御は、ECU20によって行われる制御である。以下に、フィルタ昇温制御の説明を行う。   Here, FIG. 7 shows a flowchart regarding the temperature increase control of the filter 14 (hereinafter referred to as “filter temperature increase control”) using the first temperature increase control, the second temperature increase control, and the third temperature increase control described above. . Further, FIG. 8 shows the transition of the filter temperature (shown in FIG. 8 (a)) and the transition of the opening degree of the exhaust throttle valve 17 (shown in FIG. 8 (b)) when the filter temperature raising control of FIG. 7 is performed. ), The change in the opening of the intake throttle valve 10 (shown in FIG. 8C), the change in the post-injection amount (shown in FIG. 8D), and the change in the back pressure (FIG. 8E). Respectively). This filter temperature increase control is performed by the ECU 20. The filter temperature increase control will be described below.

S101では、フィルタ14での粒子状物質(以下、「PM」という。)の堆積量が、所定の堆積量S1を超えているか否かが判定される。ここで、所定の堆積量S1とは、フィルタ14の捕集能力を再生させる必要があると判定されるときのPM堆積量の閾値である。また、フィルタ14のPM堆積量は、前回行われたフィルタ14の捕集能力の再生から経過した時間や、その間の内燃機関1の運転状態等から推定される。また、フィルタ14の上流側と下流側との排気圧力差からPM堆積量を推定してもよい。PM堆積量が所定の堆積量S1を超えると判定されるとS102へ進み、PM堆積量が所定の堆積量S1を超えないと判定されると、再びS101の判定が行われる。   In S101, it is determined whether or not the accumulation amount of particulate matter (hereinafter referred to as “PM”) on the filter 14 exceeds a predetermined accumulation amount S1. Here, the predetermined accumulation amount S1 is a threshold value of the PM accumulation amount when it is determined that the collection ability of the filter 14 needs to be regenerated. Further, the PM accumulation amount of the filter 14 is estimated from the time elapsed since the previous regeneration of the collection ability of the filter 14, the operating state of the internal combustion engine 1 during that time, and the like. Further, the PM accumulation amount may be estimated from the exhaust pressure difference between the upstream side and the downstream side of the filter 14. If it is determined that the PM deposition amount exceeds the predetermined deposition amount S1, the process proceeds to S102. If it is determined that the PM deposition amount does not exceed the predetermined deposition amount S1, the determination of S101 is performed again.

S102では、上述した第一昇温制御が行われる。即ち、吸気絞り弁10の開度が絞り側開度に設定され、且つ排気絞り弁17の開度が第一昇温時開度に設定される。本実施例においては、絞り側開度は開度10%となる開度であり、第一昇温時開度は開度10%となる開度である。このように、吸気絞り弁10および排気絞り弁17の開度が設定されるタイミングが、図8におけるt0である。   In S102, the first temperature increase control described above is performed. That is, the opening degree of the intake throttle valve 10 is set to the throttle side opening degree, and the opening degree of the exhaust throttle valve 17 is set to the first temperature increase opening degree. In the present embodiment, the throttle-side opening is an opening at which the opening is 10%, and the opening at the time of the first temperature increase is an opening at which the opening is 10%. Thus, the timing when the opening degree of the intake throttle valve 10 and the exhaust throttle valve 17 is set is t0 in FIG.

このように、吸気流量および排気流量が調整されることで、図8に示すようにフィルタ14の温度が上昇する。また、第一昇温制御が行われているときは、燃料噴射弁3からの燃料噴射として、図2(a)に示すように、前噴射、主噴射、後噴射の三種類が行われる。S102の処理が終了すると、S103へ進む。   In this way, the temperature of the filter 14 increases as shown in FIG. 8 by adjusting the intake flow rate and the exhaust flow rate. Further, when the first temperature raising control is being performed, as the fuel injection from the fuel injection valve 3, as shown in FIG. 2 (a), three types of pre-injection, main injection, and post-injection are performed. When the process of S102 ends, the process proceeds to S103.

S103では、フィルタ14に流入する排気温度である入りガス温度が基準温度αを超えているか否かが判定される。尚、入りガス温度は、排気温度センサ27によって検出される。基準温度αは、第一昇温制御から第二昇温制御への移行を判定するための基準値である。入りガス温度が基準温度αを超えていると判定されるとS104へ進み、入りガス温度が基準温度αを超えていないと判定されると再びS103の判定が行われる。   In S103, it is determined whether or not the incoming gas temperature, which is the exhaust temperature flowing into the filter 14, exceeds the reference temperature α. The inlet gas temperature is detected by the exhaust temperature sensor 27. The reference temperature α is a reference value for determining the transition from the first temperature increase control to the second temperature increase control. If it is determined that the incoming gas temperature exceeds the reference temperature α, the process proceeds to S104. If it is determined that the incoming gas temperature does not exceed the reference temperature α, the determination in S103 is performed again.

S104では、S102で行われていた第一昇温制御に代わって、上述した第二昇温制御が行われる。即ち、図2(b)に示すように、前噴射、主噴射、後噴射の噴射時期が遅角側に移行されるとともに、後噴射が第一後噴射と第二後噴射に分割される。   In S104, the above-described second temperature increase control is performed in place of the first temperature increase control performed in S102. That is, as shown in FIG. 2B, the injection timings of the pre-injection, main injection, and post-injection are shifted to the retard side, and the post-injection is divided into the first post-injection and the second post-injection.

この第二昇温制御が開始されるタイミングが、図8におけるt1である。時期t1を境に、フィルタ温度が再び上昇する。そして、本実施例においては、第二昇温制御が開始されてから時間の経過とともに、後噴射(inja1およびinja2)での噴射量が次第に増加される。これにより、排気温度の上昇を促進する。S104の処理が終了すると、S105へ進む。   The timing at which the second temperature raising control is started is t1 in FIG. The filter temperature rises again at time t1. In the present embodiment, the injection amount in the post injection (inja1 and inja2) is gradually increased as time elapses after the second temperature increase control is started. This promotes an increase in exhaust temperature. When the process of S104 ends, the process proceeds to S105.

S105では、フィルタ14の温度が基準温度βを超えるか否かが判定される。尚、フィルタ14の温度は、排気温度センサ27や図示されないフィルタ14の下流側に設けられた排気温度センサ等から推定される。ここで、基準温度βは、第二昇温制御から第三昇温制御への移行を判定するための基準値であり、フィルタ14に担持されている酸化機能を有するNOx触媒が活性状態にあることを示すフィルタの温度である。フィルタ温度が基準温度βを超えると判定されるとS106へ進み、フィルタ温度が基準温度βを超えていないと判定されるとS105の判定が再び行われる。   In S105, it is determined whether or not the temperature of the filter 14 exceeds the reference temperature β. The temperature of the filter 14 is estimated from an exhaust temperature sensor 27, an exhaust temperature sensor provided on the downstream side of the filter 14 (not shown), and the like. Here, the reference temperature β is a reference value for determining the transition from the second temperature increase control to the third temperature increase control, and the NOx catalyst having an oxidation function carried by the filter 14 is in an active state. It is the temperature of the filter which shows that. If it is determined that the filter temperature exceeds the reference temperature β, the process proceeds to S106, and if it is determined that the filter temperature does not exceed the reference temperature β, the determination in S105 is performed again.

S106では、上記の第三昇温制御のうち、排気絞り弁17の開度が第二昇温時開度に設定される。本実施例においては、第二昇温時開度は開度50%となる開度である。排気絞り弁17の開度が第二昇温時開度に設定されたタイミングが、図8におけるt2である。排気絞り弁17の開度が第一昇温時開度から第二昇温時開度に開くことで、背圧は若干量低下する。そこで、図8中の時期t2からt3の間、後噴射による噴射燃料は増量せずに、一定量に維持される。尚、時期t3は、後述するS107の処理が行われるタイミングである。S106の処理が終了すると、S107へ進む。   In S106, the opening degree of the exhaust throttle valve 17 is set to the second temperature raising opening degree in the third temperature raising control. In the present embodiment, the opening during the second temperature increase is an opening at which the opening is 50%. The timing at which the opening of the exhaust throttle valve 17 is set to the second temperature elevation opening is t2 in FIG. When the opening of the exhaust throttle valve 17 is opened from the first temperature increase opening to the second temperature increase opening, the back pressure is slightly reduced. Therefore, during the period from time t2 to time t3 in FIG. 8, the amount of fuel injected by the post-injection is not increased but maintained at a constant amount. The time t3 is a timing at which the process of S107 described later is performed. When the process of S106 ends, the process proceeds to S107.

S107では、上記の第三昇温制御のうち、吸気絞り弁10の開度が開き側開度に設定される。本実施例においては、開き側開度は開度100%(全開)となる開度である。吸気絞り弁10の開度が開き側開度に設定されるタイミングが、図8におけるt3である。吸気絞り弁10の開度が開き側開度とされることで、S106における排気絞り弁17の開度変更で低下した背圧が上昇し、第一昇温制御および第二昇温制御が行われている期間(時期t0から時期t2までの期間)における背圧と同程度となる。また、背圧が上昇した以降、後噴射の燃料噴射量を再び時間の経過とともに増加させる。尚、後噴射の燃料噴射量は、排気温度上昇のために必要十分な量まで増量されると、それ以降はその燃料噴射量が維持される。S107の処理が終了すると、S108へ進む。   In S107, the opening degree of the intake throttle valve 10 is set to the opening side opening degree in the third temperature raising control. In the present embodiment, the opening side opening is an opening at which the opening is 100% (fully open). The timing at which the opening of the intake throttle valve 10 is set to the opening side opening is t3 in FIG. When the opening degree of the intake throttle valve 10 is set to the opening side opening degree, the back pressure that has decreased due to the change in the opening degree of the exhaust throttle valve 17 in S106 increases, and the first temperature increase control and the second temperature increase control are performed. It becomes the same level as the back pressure in the closed period (period from time t0 to time t2). Further, after the back pressure rises, the fuel injection amount of the post-injection is increased again with the passage of time. When the fuel injection amount of the post-injection is increased to a necessary and sufficient amount for increasing the exhaust gas temperature, the fuel injection amount is maintained thereafter. When the process of S107 ends, the process proceeds to S108.

S108では、フィルタ14のPM堆積量が所定の堆積量S0より少ないか否かが判定される。この所定の堆積量S0は、第三昇温制御によるフィルタ14の昇温を中止するか否かを判定するための閾値である。従って、PM堆積量が所定の堆積量S0より少ないと判定されると、第三昇温制御を中止して、本制御を終了する。尚、第三昇温制御を中止すると、燃料噴射弁3による燃料噴射および吸気絞り弁10の開度は、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、適宜好適な状態に制御される。また、PM堆積量が所定の堆積量S0以上であると判定される、第三昇温制御を継続して、フィルタ14に捕集されたPMの酸化除去を行う。   In S108, it is determined whether or not the PM accumulation amount of the filter 14 is smaller than a predetermined accumulation amount S0. The predetermined accumulation amount S0 is a threshold value for determining whether or not to stop the temperature increase of the filter 14 by the third temperature increase control. Accordingly, when it is determined that the PM accumulation amount is smaller than the predetermined accumulation amount S0, the third temperature increase control is stopped and the present control is terminated. When the third temperature rise control is stopped, the fuel injection by the fuel injection valve 3 and the opening of the intake throttle valve 10 are appropriately set according to the operating state of the internal combustion engine 1, such as the engine load and the engine speed. Controlled. Further, the third temperature rise control in which the PM accumulation amount is determined to be equal to or greater than the predetermined accumulation amount S0 is continued, and the PM collected by the filter 14 is removed by oxidation.

本制御によると、第一昇温制御、第二昇温制御、第三昇温制御を介してフィルタ14の昇温を図り、捕集されたPMの酸化除去が行われる。特に、第三昇温制御によって、背圧を比較的高い状態に保ちながら、フィルタ14を流れる排気流量を増加させてフィルタ14での熱伝播速度を高めることで、捕集されたPMの酸化除去を、燃え残りがなく早急に行うことが可能となる。   According to this control, the temperature of the filter 14 is increased through the first temperature increase control, the second temperature increase control, and the third temperature increase control, and the collected PM is oxidized and removed. In particular, the third temperature increase control increases the exhaust flow rate through the filter 14 while keeping the back pressure relatively high, thereby increasing the heat propagation speed in the filter 14, thereby removing the collected PM by oxidation. It is possible to carry out immediately without any unburned residue.

フィルタ14に捕集されたPMの酸化除去のためのフィルタ昇温制御の第二の実施例について、図9および図10に基づいて説明する。図9には、上述の第一昇温制御、第二昇温制御、第三昇温制御を利用したフィルタ昇温制御に関するフローチャートを示す。図10には、図9のフィルタ昇温制御が行われるときの、フィルタ温度の推移(図10(a)に示す。)、排気絞り弁17の開度の推移(図10(b)に示す。)、吸気絞り弁10の開度の推移(図10(c)に示す。)、後噴射量の推移(図10(d)に示す。)、背圧の推移(図10(e)に示す。)をそれぞれ示す。このフィルタ昇温制御は、ECU20によって行われる制御である。以下に、フィルタ昇温制御の説明を行う。   A second embodiment of the filter temperature raising control for removing PM collected by the filter 14 will be described with reference to FIGS. FIG. 9 shows a flowchart regarding the filter temperature increase control using the first temperature increase control, the second temperature increase control, and the third temperature increase control described above. FIG. 10 shows the transition of the filter temperature (shown in FIG. 10A) and the transition of the opening degree of the exhaust throttle valve 17 (shown in FIG. 10B) when the filter temperature increase control of FIG. 9 is performed. ), Changes in the opening of the intake throttle valve 10 (shown in FIG. 10C), changes in the post-injection amount (shown in FIG. 10D), changes in the back pressure (shown in FIG. 10E). Respectively). This filter temperature increase control is performed by the ECU 20. The filter temperature raising control will be described below.

尚、図9に示すフィルタ昇温制御において、図7に示したフィルタ昇温制御と同一の処理を行う処理につては同一の参照番号を付して、その詳細な説明を省略する。本フィルタ昇温制御においては、S105においてフィルタ14の温度が基準温度βを超えていると判定されると、S201へ進む。また、図10に示す時期t4およびt5については、図8に示すt0およびt1と同義である。   In the filter temperature increase control shown in FIG. 9, the same reference numerals are assigned to the same processes as those in the filter temperature increase control shown in FIG. 7, and detailed description thereof is omitted. In this filter temperature increase control, if it is determined in S105 that the temperature of the filter 14 exceeds the reference temperature β, the process proceeds to S201. Moreover, about the time t4 and t5 shown in FIG. 10, it is synonymous with t0 and t1 shown in FIG.

S201では、上述の第三昇温制御が行われる。即ち、吸気絞り弁10の開度を絞り側開度(10%)から開き側開度(100%)に向けてリニアに変更すると同時に、排気絞り弁17の開度を第一昇温時開度(10%)から第二昇温時開度(50%)に向けてリニアに変更する。図10に示すように、時期t6において、吸気絞り弁10および排気絞り弁17の開度が、時期t7に至るまでにリニアに変更される。   In S201, the above-described third temperature increase control is performed. That is, the opening degree of the intake throttle valve 10 is linearly changed from the throttle side opening degree (10%) to the opening side opening degree (100%), and at the same time, the opening degree of the exhaust throttle valve 17 is opened at the first temperature rise. The angle is changed linearly from the degree (10%) toward the second temperature elevation opening (50%). As shown in FIG. 10, at the time t6, the opening degree of the intake throttle valve 10 and the exhaust throttle valve 17 is linearly changed by the time t7.

このように、第三昇温制御における吸気絞り弁10と排気絞り弁17の開度を制御することで、第三昇温制御中に背圧が変動するのを回避することが可能となる。S201の処理が終了すると、S108へ進む。   Thus, by controlling the opening degree of the intake throttle valve 10 and the exhaust throttle valve 17 in the third temperature rise control, it is possible to avoid the back pressure from fluctuating during the third temperature rise control. When the process of S201 ends, the process proceeds to S108.

本制御によると、第一昇温制御、第二昇温制御、第三昇温制御を介してフィルタ14の昇温を図り、捕集されたPMの酸化除去が行われる。特に、第三昇温制御によって、背圧を比較的高い状態に保ちながら、フィルタ14を流れる排気流量を増加させてフィルタ14での熱伝播速度を高めることで、捕集されたPMの酸化除去を、燃え残りがなく早急に行うことが可能となる。   According to this control, the temperature of the filter 14 is increased through the first temperature increase control, the second temperature increase control, and the third temperature increase control, and the collected PM is oxidized and removed. In particular, the third temperature increase control increases the exhaust flow rate through the filter 14 while keeping the back pressure relatively high, thereby increasing the heat propagation speed in the filter 14, thereby removing the collected PM by oxidation. It is possible to carry out immediately without any unburned residue.

フィルタ14に捕集されたPMの酸化除去のためのフィルタ昇温制御の第三の実施例について、図11および図12に基づいて説明する。図11には、上述の第一昇温制御、第二昇温制御、第三昇温制御を利用したフィルタ昇温制御に関するフローチャートを示す。図12には、図11のフィルタ昇温制御が行われるときの、フィルタ温度の推移(図12(a)に示す。)、排気絞り弁17の開度の推移(図12(b)に示す。)、吸気絞り弁10の開度の推移(図12(c)に示す。)、後噴射量の推移(図12(d)に示す。)、背圧の推移(図12(e)に示す。)、補機31の駆動信号の推移(図12(f)に示す。)をそれぞれ示す。このフィルタ昇温制御は、ECU20によって行われる制御である。以下に、フィルタ昇温制御の説明を行う。   A third embodiment of the filter temperature raising control for removing oxidation of PM collected by the filter 14 will be described with reference to FIGS. 11 and 12. In FIG. 11, the flowchart regarding the filter temperature rising control using the above-mentioned 1st temperature rising control, 2nd temperature rising control, and 3rd temperature rising control is shown. 12 shows the transition of the filter temperature (shown in FIG. 12A) and the transition of the opening degree of the exhaust throttle valve 17 (shown in FIG. 12B) when the filter temperature increase control of FIG. 11 is performed. ), The change in the opening of the intake throttle valve 10 (shown in FIG. 12C), the change in the post-injection amount (shown in FIG. 12D), and the change in the back pressure (shown in FIG. 12E). ) And transition of the drive signal of the auxiliary machine 31 (shown in FIG. 12 (f)). This filter temperature increase control is performed by the ECU 20. The filter temperature raising control will be described below.

尚、図11に示すフィルタ昇温制御において、図7に示したフィルタ昇温制御と同一の処理を行う処理につては同一の参照番号を付して、その詳細な説明を省略する。本フィルタ昇温制御においては、S105においてフィルタ14の温度が基準温度βを超えていると判定されると、S301へ進む。また、図12に示す時期t8およびt9については、図8に示すt0およびt1と同義である。   In the filter temperature increase control shown in FIG. 11, the same reference numerals are assigned to the same processes as those in the filter temperature increase control shown in FIG. 7, and the detailed description thereof is omitted. In this filter temperature increase control, if it is determined in S105 that the temperature of the filter 14 exceeds the reference temperature β, the process proceeds to S301. Moreover, about the time t8 and t9 shown in FIG. 12, it is synonymous with t0 and t1 shown in FIG.

主にS301および後述するS305で、上述の第三昇温制御が行われる。先ず、S301では、吸気絞り弁10の開度を全開(100%)にすると同時に、排気絞り弁17の開度を全開(100%)にする。この開度の制御が行われるタイミングは、図12中の時期t10である。このようにすることで、先ずフィルタ14に流れ込む排気流量を増量させて、フィルタ14における熱伝播速度を高める。しかし、排気絞り弁17の開度が全開(100%)となっているため、背圧が大きく低下し、排気温度が低下する。そこで、S301の処理が終了すると、S302へ進む。   The above-described third temperature increase control is performed mainly at S301 and S305 described later. First, in S301, the opening degree of the intake throttle valve 10 is fully opened (100%), and at the same time, the opening degree of the exhaust throttle valve 17 is fully opened (100%). The timing at which the opening degree is controlled is time t10 in FIG. In this way, the exhaust flow rate flowing into the filter 14 is first increased to increase the heat propagation speed in the filter 14. However, since the opening of the exhaust throttle valve 17 is fully open (100%), the back pressure is greatly reduced and the exhaust temperature is lowered. Therefore, when the processing of S301 ends, the process proceeds to S302.

S302では、補機31が駆動される。この補機31が駆動されるタイミングは、本実施例においては、上記の時期t10である。補機31が駆動されることでバッテリ30に
蓄えられている電力が消費されるため、内燃機関1の機関出力によって電力の発生が開始される。その結果、内燃機関1の機関負荷が増加し、以て排気温度が上昇される。S302の処理が終了すると、S303へ進む。
In S302, the auxiliary machine 31 is driven. In this embodiment, the timing at which the auxiliary machine 31 is driven is the above-described time t10. Since power stored in the battery 30 is consumed by driving the auxiliary machine 31, generation of power is started by the engine output of the internal combustion engine 1. As a result, the engine load of the internal combustion engine 1 increases, and the exhaust temperature is raised. When the process of S302 ends, the process proceeds to S303.

S303では、補機の駆動によって増加した機関負荷に対応すべく、主噴射による燃料噴射量が調整される。S303の処理が終了すると、S304へ進む。   In S303, the fuel injection amount by the main injection is adjusted to cope with the engine load increased by driving the auxiliary machinery. When the process of S303 ends, the process proceeds to S304.

S304では、フィルタ14の温度が基準温度γを超えるか否かが判定される。ここで、基準温度γは、全開となっている排気絞り弁17を第二昇温時開度(50%)に変更させる判定を行うための基準値であり、フィルタ14への排気流量が増加して熱伝播速度が増加することでフィルタ14の温度上昇は行われているが、その温度上昇が緩慢となっている状態を検知するための基準値でもある。即ち、基準温度γは、フィルタ14の温度が、PMを効率的に酸化除去し得る温度に至っていない状態にあることを示す基準値である。フィルタ温度が基準温度γを超えると判定されるとS305へ進み、フィルタ温度が基準温度γを超えていないと判定されるとS304の判定が再び行われる。   In S304, it is determined whether or not the temperature of the filter 14 exceeds the reference temperature γ. Here, the reference temperature γ is a reference value for determining that the exhaust throttle valve 17 that is fully open is changed to the second temperature increase opening (50%), and the exhaust flow rate to the filter 14 increases. As the heat propagation speed increases, the temperature of the filter 14 is increased, but this is also a reference value for detecting a state in which the temperature increase is slow. That is, the reference temperature γ is a reference value indicating that the temperature of the filter 14 has not reached a temperature at which PM can be efficiently oxidized and removed. If it is determined that the filter temperature exceeds the reference temperature γ, the process proceeds to S305. If it is determined that the filter temperature does not exceed the reference temperature γ, the determination in S304 is performed again.

S305では、排気絞り弁17の開度を第二昇温時開度(50%)に設定する。この排気絞り弁17の開度の変更のタイミングは、図12における時期t11である。これにより背圧が上昇し排気温度が上昇する。S305の処理が終了すると、S306へ進む。   In S305, the opening degree of the exhaust throttle valve 17 is set to the second heating time opening degree (50%). The timing for changing the opening of the exhaust throttle valve 17 is time t11 in FIG. As a result, the back pressure rises and the exhaust temperature rises. When the process of S305 ends, the process proceeds to S306.

S306では、S305で排気絞り弁17の開度を第二昇温時開度(50%)とすることで排気温度が上昇したことを踏まえて、後噴射による燃料噴射量が過度に多い場合は、燃料噴射量を減量することでフィルタ14の温度が過度に上昇するのを回避させる。S306の処理が終了すると、S108へ進む。   In S306, in the case where the fuel injection amount by the post-injection is excessively large considering that the exhaust temperature has increased by setting the opening of the exhaust throttle valve 17 to the second temperature increase opening (50%) in S305. By reducing the fuel injection amount, the temperature of the filter 14 is prevented from excessively rising. When the process of S306 ends, the process proceeds to S108.

本制御によると、第一昇温制御、第二昇温制御、第三昇温制御を介してフィルタ14の昇温を図り、捕集されたPMの酸化除去が行われる。特に、第三昇温制御によって、先ずフィルタ14を流れる排気流量を増加させてフィルタ14での熱伝播速度を高め、その後背圧を比較的高い状態とすることで、捕集されたPMの酸化除去を、燃え残りがなく早急に行うことが可能となる。   According to this control, the temperature of the filter 14 is increased through the first temperature increase control, the second temperature increase control, and the third temperature increase control, and the collected PM is oxidized and removed. In particular, by the third temperature rise control, first, the exhaust flow rate through the filter 14 is increased to increase the heat propagation speed in the filter 14, and then the back pressure is set to a relatively high state, thereby oxidizing the collected PM. Removal can be performed immediately without burning.

フィルタ14に捕集されたPMの酸化除去のためのフィルタ昇温制御の第四の実施例について、図13および図14に基づいて説明する。図13には、上述の第一昇温制御、第二昇温制御、第三昇温制御を利用したフィルタ昇温制御に関するフローチャートを示す。図14には、図13のフィルタ昇温制御が行われるときの、フィルタ温度の推移(図14(a)に示す。)、排気絞り弁17の開度の推移(図14(b)に示す。)、吸気絞り弁10の開度の推移(図14(c)に示す。)、後噴射量の推移(図14(d)に示す。)、背圧の推移(図14(e)に示す。)、補機31の駆動信号の推移(図14(f)に示す。)をそれぞれ示す。このフィルタ昇温制御は、ECU20によって行われる制御である。以下に、フィルタ昇温制御の説明を行う。   A fourth embodiment of the filter temperature rise control for removing the oxidized PM collected by the filter 14 will be described with reference to FIGS. 13 and 14. FIG. 13 shows a flowchart relating to the filter temperature increase control using the above-described first temperature increase control, second temperature increase control, and third temperature increase control. FIG. 14 shows the transition of the filter temperature (shown in FIG. 14A) and the transition of the opening of the exhaust throttle valve 17 (shown in FIG. 14B) when the filter temperature increase control of FIG. 13 is performed. ), The change in the opening of the intake throttle valve 10 (shown in FIG. 14C), the change in the post-injection amount (shown in FIG. 14D), and the change in the back pressure (shown in FIG. 14E). ), And the transition of the drive signal of the auxiliary machine 31 (shown in FIG. 14F). This filter temperature increase control is performed by the ECU 20. The filter temperature raising control will be described below.

尚、図13に示すフィルタ昇温制御において、図11に示したフィルタ昇温制御と同一の処理を行う処理につては同一の参照番号を付して、その詳細な説明を省略する。本フィルタ昇温制御においては、図11に示したフィルタ昇温制御における処理S305に代えて処理S401が行われる。   In the filter temperature increase control shown in FIG. 13, the same reference numerals are assigned to the same processes as those in the filter temperature increase control shown in FIG. 11, and detailed descriptions thereof are omitted. In this filter temperature increase control, process S401 is performed instead of process S305 in the filter temperature increase control shown in FIG.

S401では、時期t11からt12にわたって、排気絞り弁17の開度を全開(100%)から第二昇温時開度(50%)に向けてリニアに変更する。即ち、図11に示したフィルタ昇温制御でのS305の様に排気絞り弁17の開度を一気に第二昇温時開度(5
0%)にするのではなく、徐々に目的とする開度に変化させる。これにより、背圧も徐々に高くなっていくため、急激な背圧の上昇によるフィルタ14の局所的な温度上昇を回避することが可能となる。S401の処理が終了すると、S306へ進む。
In S401, from the time t11 to t12, the opening degree of the exhaust throttle valve 17 is linearly changed from the fully open (100%) to the second heating time opening degree (50%). That is, as in S305 in the filter temperature increase control shown in FIG.
0%), gradually change to the desired opening. Thereby, since the back pressure also gradually increases, it is possible to avoid a local temperature increase of the filter 14 due to a sudden increase in the back pressure. When the process of S401 ends, the process proceeds to S306.

尚、S306では、上述したように背圧の上昇に応じて、後噴射による燃料噴射量が調整される。ここで、排気絞り弁17の開度は時期t11から時期t12の間、徐々に絞られていくため、後噴射による燃料噴射量も排気絞り弁17の開度の変化に連動させて、時期t11から時期t12の間徐々に変動させる。   In S306, as described above, the fuel injection amount by the post-injection is adjusted according to the increase in the back pressure. Here, since the opening degree of the exhaust throttle valve 17 is gradually reduced from the timing t11 to the timing t12, the fuel injection amount by the post-injection is also linked to the change in the opening degree of the exhaust throttle valve 17, and the timing t11. From time to time t12.

本制御によると、第一昇温制御、第二昇温制御、第三昇温制御を介してフィルタ14の昇温を図り、捕集されたPMの酸化除去が行われる。特に、第三昇温制御によって、先ずフィルタ14を流れる排気流量を増加させてフィルタ14での熱伝播速度を高め、その後背圧を比較的高い状態とすることで、捕集されたPMの酸化除去を、燃え残りがなく早急に行うことが可能となる。   According to this control, the temperature of the filter 14 is increased through the first temperature increase control, the second temperature increase control, and the third temperature increase control, and the collected PM is oxidized and removed. In particular, by the third temperature rise control, first, the exhaust flow rate through the filter 14 is increased to increase the heat propagation speed in the filter 14, and then the back pressure is set to a relatively high state, thereby oxidizing the collected PM. The removal can be performed immediately without any burning residue.

本発明が適用される圧縮着火内燃機関およびその制御系統の概略構成を表す図である。It is a figure showing the schematic structure of the compression ignition internal combustion engine to which this invention is applied, and its control system. 本発明の実施例に係る圧縮着火内燃機関の排気浄化装置において行われる、第一昇温制御、第二昇温制御および第三昇温制御における燃料噴射および吸気絞り弁の開度の様子を表す図である。The state of the opening degree of the fuel injection and the intake throttle valve in the first temperature increase control, the second temperature increase control, and the third temperature increase control performed in the exhaust gas purification apparatus for the compression ignition internal combustion engine according to the embodiment of the present invention is shown. FIG. 本発明の実施例に係る圧縮着火内燃機関の排気浄化装置においてフィルタの昇温が行われている際の、排気温度およびフィルタ温度の推移を表す図である。It is a figure showing transition of exhaust gas temperature and filter temperature when temperature rise of a filter is performed in an exhaust emission control device of a compression ignition internal combustion engine concerning an example of the present invention. 本発明の実施例に係る圧縮着火内燃機関の排気浄化装置における、フィルタの概略的な構成を表す図である。It is a figure showing the schematic structure of the filter in the exhaust emission control device of the compression ignition internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る圧縮着火内燃機関の排気浄化装置において、第三昇温制御が行われたときと第三昇温制御が行われていないときのフィルタ温度の推移を表す第一の図である。In the exhaust gas purification apparatus for a compression ignition internal combustion engine according to the embodiment of the present invention, the first diagram showing the transition of the filter temperature when the third temperature increase control is performed and when the third temperature increase control is not performed It is. 本発明の実施例に係る圧縮着火内燃機関の排気浄化装置において、第三昇温制御が行われたときと第三昇温制御が行われていないときのフィルタ温度の推移を表す第二の図である。FIG. 2 is a second diagram showing the transition of the filter temperature when the third temperature increase control is performed and when the third temperature increase control is not performed in the exhaust gas purification apparatus for a compression ignition internal combustion engine according to the embodiment of the present invention. It is. 本発明の実施例1に係る圧縮着火内燃機関の排気浄化装置において行われるフィルタ昇温制御のフローチャートである。It is a flowchart of the filter temperature increase control performed in the exhaust emission control device of the compression ignition internal combustion engine according to the first embodiment of the present invention. 図7に示すフィルタ昇温制御が行われる際の、フィルタ温度、排気絞り弁の開度、吸気絞り弁の開度、後噴射による燃料噴射量、背圧の変動を示す図である。It is a figure which shows the fluctuation | variation of filter temperature, the opening degree of an exhaust throttle valve, the opening degree of an intake throttle valve, the fuel injection quantity by back injection, and a back pressure at the time of filter temperature rising control shown in FIG. 本発明の実施例2に係る圧縮着火内燃機関の排気浄化装置において行われるフィルタ昇温制御のフローチャートである。It is a flowchart of the filter temperature rising control performed in the exhaust gas purification apparatus of the compression ignition internal combustion engine which concerns on Example 2 of this invention. 図9に示すフィルタ昇温制御が行われる際の、フィルタ温度、排気絞り弁の開度、吸気絞り弁の開度、後噴射による燃料噴射量、背圧の変動を示す図である。FIG. 10 is a diagram showing fluctuations in filter temperature, exhaust throttle valve opening, intake throttle valve opening, fuel injection amount due to post-injection, and back pressure when the filter temperature raising control shown in FIG. 9 is performed. 本発明の実施例3に係る圧縮着火内燃機関の排気浄化装置において行われるフィルタ昇温制御のフローチャートである。It is a flowchart of the filter temperature rising control performed in the exhaust gas purification apparatus of the compression ignition internal combustion engine which concerns on Example 3 of this invention. 図11に示すフィルタ昇温制御が行われる際の、フィルタ温度、排気絞り弁の開度、吸気絞り弁の開度、後噴射による燃料噴射量、背圧の変動、補機の駆動状態を示す図である。FIG. 11 shows the filter temperature, the exhaust throttle valve opening, the intake throttle valve opening, the fuel injection amount due to post-injection, the fluctuation of the back pressure, and the driving state of the auxiliary machine when the filter temperature raising control shown in FIG. 11 is performed. FIG. 本発明の実施例4に係る圧縮着火内燃機関の排気浄化装置において行われるフィルタ昇温制御のフローチャートである。It is a flowchart of the filter temperature rising control performed in the exhaust gas purification apparatus of the compression ignition internal combustion engine which concerns on Example 4 of this invention. 図13に示すフィルタ昇温制御が行われる際の、フィルタ温度、排気絞り弁の開度、吸気絞り弁の開度、後噴射による燃料噴射量、背圧の変動、補機の駆動状態を示す図である。FIG. 13 shows the filter temperature, the exhaust throttle valve opening, the intake throttle valve opening, the fuel injection amount due to the post-injection, the fluctuation of the back pressure, and the driving state of the auxiliary machine when the filter temperature raising control shown in FIG. 13 is performed. FIG.

符号の説明Explanation of symbols

1・・・・圧縮着火内燃機関(内燃機関)
3・・・・燃料噴射弁
10・・・・吸気絞り弁
11・・・・吸気絞り用アクチュエータ
13・・・・排気管
14・・・・フィルタ
16・・・・過給機
17・・・・排気絞り弁
18・・・・排気絞り用アクチュエータ
20・・・・ECU
27・・・・排気温度センサ
31・・・・補機
1. Compression compression internal combustion engine (internal combustion engine)
3 ... Fuel injection valve 10 ... Air intake throttle valve 11 ... Air intake throttle actuator 13 ... Exhaust pipe 14 ... Filter 16 ... Supercharger 17 ...・ Exhaust throttle valve 18 ... Exhaust throttle actuator 20 ... ECU
27 ... Exhaust temperature sensor 31 ... Auxiliary equipment

Claims (4)

圧縮着火内燃機関の吸気通路の吸気流量を調整する吸気絞り弁と、
前記圧縮着火内燃機関の排気通路の排気流量を調整する排気絞り弁と、
酸化機能を有する触媒が担持され、排気中の粒子状物質を捕集するフィルタと、
前記吸気絞り弁の開度を制御する吸気絞り弁開度制御手段と、
前記排気絞り弁の開度を制御する排気絞り弁開度制御手段と、
圧縮上死点近傍の時期における主噴射の燃料噴射条件、および該主噴射後の燃料噴射であって該主噴射による噴射燃料の燃焼で燃料の少なくとも一部が燃焼される後噴射の燃料噴射条件を制御する燃料噴射制御手段と、
前記吸気絞り弁開度制御手段によって前記吸気絞り弁の開度を絞り側開度とするとともに前記排気絞り弁開度制御手段によって前記排気絞り弁の開度を第一昇温時開度とすることで、前記フィルタを昇温させる第一フィルタ昇温手段と、
前記第一フィルタ昇温手段による前記フィルタの昇温が行われているときに、前記燃料噴射制御手段によって前記主噴射と前記後噴射の燃料噴射時期を遅角状態に制御した後、前記吸気絞り弁開度制御手段によって前記吸気絞り弁の開度を前記絞り側開度から開き側開度にするとともに前記排気絞り弁開度制御手段によって前記排気絞り弁の開度を前記第一昇温時開度より開いた状態である第二昇温時開度とすることで、前記フィルタを昇温させる第二フィルタ昇温手段と、
を備えることを特徴とする圧縮着火内燃機関の排気浄化装置。
An intake throttle valve for adjusting the intake flow rate of the intake passage of the compression ignition internal combustion engine;
An exhaust throttle valve for adjusting the exhaust flow rate of the exhaust passage of the compression ignition internal combustion engine;
A filter carrying a catalyst having an oxidation function and collecting particulate matter in the exhaust;
Intake throttle valve opening control means for controlling the opening of the intake throttle valve;
Exhaust throttle valve opening control means for controlling the opening of the exhaust throttle valve;
Fuel injection conditions for main injection at a timing near compression top dead center, and fuel injection conditions for post-injection after the main injection in which at least part of the fuel is combusted by combustion of the injected fuel by the main injection Fuel injection control means for controlling
The intake throttle valve opening control means sets the intake throttle valve opening to the throttle side opening, and the exhaust throttle valve opening control means sets the exhaust throttle valve opening to the first temperature increase opening. A first filter temperature raising means for raising the temperature of the filter;
When the temperature of the filter is raised by the first filter temperature raising means, the fuel injection control means controls the fuel injection timings of the main injection and the post-injection to a retarded state, and then the intake throttle The opening degree of the intake throttle valve is changed from the throttle side opening degree to the opening side opening degree by the valve opening degree control means, and the opening degree of the exhaust throttle valve is changed by the exhaust throttle valve opening degree control means when the first temperature rises. A second filter temperature raising means for raising the temperature of the filter by setting a second temperature raising opening degree that is open from the opening degree;
An exhaust emission control device for a compression ignition internal combustion engine.
前記フィルタの温度を推定し、又は検出するフィルタ温度推定手段を、更に備え、
前記第二フィルタ昇温手段は、前記主噴射と前記後噴射の燃料噴射時期が遅角状態に制御された後であって、且つ前記フィルタ温度推定手段によって推定され又は検出されたフィルタ温度が所定温度より高いときに、前記吸気絞り弁の開度を前記開き側開度にするとともに前記排気絞り弁の開度を前記第二昇温時開度とすることを特徴とする請求項1に記載の圧縮着火内燃機関の排気浄化装置。
A filter temperature estimating means for estimating or detecting the temperature of the filter;
The second filter temperature raising means is configured to control the filter temperature estimated or detected by the filter temperature estimating means after the fuel injection timings of the main injection and the post-injection are controlled to be retarded. The opening degree of the intake throttle valve is set to the opening side opening degree when the temperature is higher than the temperature, and the opening degree of the exhaust throttle valve is set to the second temperature increase opening degree. Exhaust gas purification device for compression ignition internal combustion engine.
前記第二フィルタ昇温手段は、前記排気絞り弁開度制御手段によって前記排気絞り弁の開度が前記第二昇温時開度とされた後に、前記吸気絞り弁開度制御手段によって前記吸気絞り弁の開度を前記開き側開度にすることを特徴とする請求項1又は請求項2に記載の圧縮着火内燃機関の排気浄化装置。   The second filter temperature raising means is configured such that after the exhaust throttle valve opening degree is set to the second temperature raising opening degree by the exhaust throttle valve opening degree control means, the intake throttle valve opening degree control means causes the intake The exhaust purification device of a compression ignition internal combustion engine according to claim 1 or 2, wherein the opening of the throttle valve is set to the opening side opening. 圧縮着火内燃機関の吸気通路の吸気流量を調整する吸気絞り弁と、前記圧縮着火内燃機関の排気通路の排気流量を調整する排気絞り弁と、酸化機能を有する触媒が担持され、排気中の粒子状物質を捕集するフィルタと、を備える圧縮着火内燃機関の排気浄化方法であって、
前記吸気絞り弁の開度を絞り側開度とするとともに前記排気絞り弁の開度を第一昇温時開度とすることで、前記フィルタを昇温させる第一フィルタ昇温工程と、
圧縮上死点近傍の時期における主噴射と該主噴射後の燃料噴射であって該主噴射による噴射燃料の燃焼で燃料の少なくとも一部が燃焼される後噴射の各々の燃料噴射時期を遅角状態に制御した後であって、且つ前記フィルタの温度が所定温度より高いときに、前記吸気絞り弁の開度を前記絞り側開度から開き側開度にするとともに前記排気絞り弁の開度を前記第一昇温時開度より開いた状態である第二昇温時開度とすることで、前記フィルタを昇温させる第二フィルタ昇温工程と、
を含んでなることを特徴とする圧縮着火内燃機関の排気浄化方法。
An intake throttle valve that adjusts the intake flow rate of the intake passage of the compression ignition internal combustion engine, an exhaust throttle valve that adjusts the exhaust flow rate of the exhaust passage of the compression ignition internal combustion engine, and a catalyst having an oxidation function are supported and particles in the exhaust An exhaust gas purification method for a compression ignition internal combustion engine comprising: a filter that collects particulate matter;
A first filter temperature raising step for raising the temperature of the filter by setting the opening degree of the intake throttle valve as a throttle side opening degree and setting the opening degree of the exhaust throttle valve as a first temperature elevation opening degree;
Reject the fuel injection timing of each of the main injection and the fuel injection after the main injection in the vicinity of the compression top dead center, in which at least part of the fuel is combusted by the combustion of the injected fuel by the main injection And when the temperature of the filter is higher than a predetermined temperature, the opening of the intake throttle valve is changed from the throttle-side opening to the opening-side opening and the exhaust throttle valve is opened. A second temperature raising step of raising the temperature of the filter by setting the second temperature raising opening that is open from the first temperature raising opening,
An exhaust purification method for a compression ignition internal combustion engine comprising:
JP2004213514A 2004-07-21 2004-07-21 Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine Pending JP2006029301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213514A JP2006029301A (en) 2004-07-21 2004-07-21 Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213514A JP2006029301A (en) 2004-07-21 2004-07-21 Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006029301A true JP2006029301A (en) 2006-02-02

Family

ID=35895941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213514A Pending JP2006029301A (en) 2004-07-21 2004-07-21 Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006029301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144726A (en) * 2006-12-13 2008-06-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009068419A (en) * 2007-09-13 2009-04-02 Yanmar Co Ltd Black smoke purifying device for diesel engine
JP2009174513A (en) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Dpf deposition estimating device
CN109404153A (en) * 2019-01-02 2019-03-01 广西玉柴机器股份有限公司 The method for reducing NOx emission under the low row's temperature of diesel engine
JP2020023955A (en) * 2018-08-08 2020-02-13 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust emission control system, and control method
WO2020054428A1 (en) * 2018-09-10 2020-03-19 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust gas purification system, and control method for engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144726A (en) * 2006-12-13 2008-06-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009068419A (en) * 2007-09-13 2009-04-02 Yanmar Co Ltd Black smoke purifying device for diesel engine
JP2009174513A (en) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Dpf deposition estimating device
JP2020023955A (en) * 2018-08-08 2020-02-13 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust emission control system, and control method
WO2020031893A1 (en) * 2018-08-08 2020-02-13 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust gas purification system, and control method
JP7059147B2 (en) 2018-08-08 2022-04-25 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust gas purification system and control method
WO2020054428A1 (en) * 2018-09-10 2020-03-19 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust gas purification system, and control method for engine
JP2020041461A (en) * 2018-09-10 2020-03-19 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust gas purification system and control method for engine
US11293320B2 (en) 2018-09-10 2022-04-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Control device, exhaust gas purification system, and control method of engine
JP7178219B2 (en) 2018-09-10 2022-11-25 三菱重工エンジン&ターボチャージャ株式会社 Control device, exhaust gas purification system, and engine control method
CN109404153A (en) * 2019-01-02 2019-03-01 广西玉柴机器股份有限公司 The method for reducing NOx emission under the low row's temperature of diesel engine

Similar Documents

Publication Publication Date Title
JP4042399B2 (en) Exhaust purification device
US7340886B2 (en) Diesel engine comprising DPM filter and DPM filter regeneration method
JP4453602B2 (en) Exhaust gas purification system for internal combustion engine
JP4929781B2 (en) DPF regeneration control device and DPF regeneration control method
JP4670592B2 (en) Exhaust gas recirculation system for internal combustion engines
JP4574395B2 (en) Exhaust gas purification device having particulate filter regeneration function, internal combustion engine equipped with the exhaust gas purification device, and particulate filter regeneration method
WO2020045091A1 (en) Dpf regeneration control device and dpf regeneration control method
JP5316041B2 (en) Engine exhaust purification system
JP2006161718A (en) Exhaust emission control system for internal combustion engine
KR20030022043A (en) Exhaust emission control device for engine
JP2008082292A (en) Exhaust emission control device
JP4305402B2 (en) Exhaust gas purification device for internal combustion engine
JP2010127084A (en) Exhaust emission control device of engine
JP4254664B2 (en) Exhaust gas purification device for internal combustion engine
JP2006029301A (en) Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP2007064055A (en) Exhaust emission control device for internal combustion engine
JP2004285947A (en) Exhaust emission control device for internal combustion engine
JP2006274979A (en) Exhaust emission control device
JP4333230B2 (en) Exhaust gas purification system for internal combustion engine
JP4406255B2 (en) Method for maintaining catalyst temperature of internal combustion engine
JP5544758B2 (en) Diesel engine control system
JP2008215105A (en) Diesel engine
JP2004278405A (en) Exhaust emission control device for internal combustion engine
JP4325580B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125