JP2006029210A - Reciprocating internal combustion engine - Google Patents

Reciprocating internal combustion engine Download PDF

Info

Publication number
JP2006029210A
JP2006029210A JP2004209094A JP2004209094A JP2006029210A JP 2006029210 A JP2006029210 A JP 2006029210A JP 2004209094 A JP2004209094 A JP 2004209094A JP 2004209094 A JP2004209094 A JP 2004209094A JP 2006029210 A JP2006029210 A JP 2006029210A
Authority
JP
Japan
Prior art keywords
exhaust gas
air
internal combustion
combustion engine
reciprocating internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004209094A
Other languages
Japanese (ja)
Other versions
JP4458966B2 (en
Inventor
Berg-Sonne Peter
ペーター・バーグ−ソンネ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel AS
Original Assignee
MAN B&W Diesel AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel AS filed Critical MAN B&W Diesel AS
Priority to JP2004209094A priority Critical patent/JP4458966B2/en
Publication of JP2006029210A publication Critical patent/JP2006029210A/en
Application granted granted Critical
Publication of JP4458966B2 publication Critical patent/JP4458966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/40Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with timing means in the recirculation passage, e.g. cyclically operating valves or regenerators; with arrangements involving pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a structure of a reciprocating internal combustion engine by a means simple and advantageous in cost so as to achieve good total efficiency and a stable operation condition. <P>SOLUTION: In an engine provided with at least one exhaust gas recirculation device 16 provided with at least one cylinder 2 capable of being connected to a charged air distribution pipe 4 and an exhaust gas collecting pipe 6, at least one exhaust gas turbocharger 7 driven by exhaust gas from the exhaust gas collecting pipe 6 and compressing charged air supplied to the charged air distribution pipe 4, and a compressor 20 mixing exhaust gas partial quantity branched out of exhaust gas separating from the exhaust gas collecting pipe 6 to charged air in a downstream of the exhaust gas turbocharger 7 and pumping exhaust gas partial quantity mixed to charged air, since the compressor 20 of the exhaust gas recirculation device 16 can be driven by a turbine 19 energized by drive air branched out of charged air compressed by the exhaust gas turbocharger 7 as partial air quantity and heated by exhaust gas partial quantity while exhaust gas partial quantity to be recirculated is simultaneously cooled, good total efficiency and stable operation condition are achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、給気分配管および排気ガス収集管に接続可能な少なくとも一つのシリンダと、排気ガス収集管からの排気ガスにより駆動可能な、給気分配管に供給可能な給気を圧縮する少なくとも一つの排気タービン過給機と、排気ガス収集管を離れる排気ガスから分岐可能な排気ガス部分量が排気タービン過給機の下流で給気に混合可能であり、給気に混合可能な排気ガス部分量を圧送する圧縮機を設けている、少なくとも一つの排気ガス再循環装置とを備えた、往復動内燃機関、特に2サイクル大型ディーゼルエンジンに関する。   The present invention includes at least one cylinder connectable to an air supply pipe and an exhaust gas collection pipe, and at least one cylinder that is driven by exhaust gas from the exhaust gas collection pipe and compresses the supply air that can be supplied to the air supply pipe. The amount of exhaust gas that can be branched from the exhaust turbine supercharger and the exhaust gas leaving the exhaust gas collecting pipe can be mixed with the supply air downstream of the exhaust turbine supercharger, and the amount of exhaust gas that can be mixed with the supply air The present invention relates to a reciprocating internal combustion engine, particularly a two-cycle large-sized diesel engine, which includes at least one exhaust gas recirculation device provided with a compressor for pressure-feeding.

給気への排気ガス部分量の混合によって、排出ガス中のNOx含量を低減することができ、これが度々望まれている。冒頭に述べた形式の公知の構造において、給気に混合可能な排気ガス部分量を圧送する圧縮機が追加のエネルギーを消費する駆動装置を用いて駆動可能である。2サイクル大型ディーゼルエンジンにおいて、この追加のエネルギー消費量は発生可能なエネルギーの1.5%以上になりうる。給気に混合される排気ガス部分量が冷却される場合、それとエネルギー消滅が結びついている。したがって前記欠点により、全効率は劣悪なものとなる。公知の構造のもう一つの欠点は、排気ガス再循環装置の離断時にエンジンを貫流する流量の変化ならびに補償されない諸条件が排気タービン過給機で生じうることに見られる。   By mixing a partial amount of exhaust gas into the supply air, the NOx content in the exhaust gas can be reduced, which is often desired. In the known construction of the type mentioned at the outset, the compressor for pumping a part of the exhaust gas that can be mixed with the supply air can be driven with a drive device that consumes additional energy. In a two-cycle heavy duty diesel engine, this additional energy consumption can be more than 1.5% of the energy that can be generated. When the amount of the exhaust gas mixed into the supply air is cooled, it is linked to the disappearance of energy. Therefore, due to the drawbacks, the overall efficiency is poor. Another disadvantage of the known construction is seen in the exhaust turbine supercharger that changes in the flow through the engine when the exhaust gas recirculation device is disconnected as well as uncompensated conditions can occur.

したがって、そこから出発して、本発明の課題は、良好な全効率ならびに安定した運転条件が達成されるように、冒頭に述べた形式の構造を簡単かつコスト的に有利な手段で改善することである。   Thus, starting from there, the task of the present invention is to improve the structure of the type mentioned at the beginning in a simple and cost-effective way so that good overall efficiency as well as stable operating conditions are achieved. It is.

本発明によれば、この課題は、排気ガス再循環装置の圧縮機が、空気部分量として排気タービン過給機によって圧縮された給気から分岐され、再循環可能な排気ガス部分量の同時冷却下に該排気ガス部分量によって加熱される駆動空気によって付勢可能であるタービンによって駆動可能であることによって解決される。   According to the invention, the problem is that the compressor of the exhaust gas recirculation device branches off from the supply air compressed by the exhaust turbine supercharger as an air partial quantity and simultaneously cools the recirculated exhaust gas partial quantity. It is solved by being able to be driven by a turbine which can be energized by drive air heated by the exhaust gas partial amount below.

好ましい方法で、この場合、再循環可能な排気ガス部分量の冷却によってエンジンの作動に好適な温度で得たエネルギーが排気ガス再循環装置の圧縮機の駆動と共に排気ガス再循環装置の駆動のために使用される。そのため外部エネルギーの使用は大幅に低減され、これが好ましくは良好な全効率の達成に影響を及ぼす。同時に、再循環可能な排気ガス部分量の比較的低い温度と共に好適な充填比が達成される。本発明に基づく措置のもう一つの長所は、再循環装置の接続もしくは離断が排気タービン過給機でエンジンによる流量およびバランスの変化を生じないことに見られる。したがって、本発明に基づく措置によって、上記課題が非常に簡単かつコスト的に有利な方法で解決される。   In a preferred manner, in this case, the energy obtained at a temperature suitable for the operation of the engine by cooling the recirculated part of the exhaust gas for driving the exhaust gas recirculation device together with the driving of the compressor of the exhaust gas recirculation device Used for. Therefore, the use of external energy is greatly reduced, which preferably affects the achievement of good overall efficiency. At the same time, a suitable filling ratio is achieved with a relatively low temperature of the recirculated exhaust gas fraction. Another advantage of the measures according to the invention is seen in that the connection or disconnection of the recirculation device does not cause changes in flow and balance by the engine in the exhaust turbine supercharger. Thus, the measures according to the invention solve the above problem in a very simple and cost-effective manner.

上記の措置の好ましい実施形態および合目的な発展形態は、従属請求項に記載されている。つまり、排気ガス再循環装置は、合目的的に、空気部分量から貫流可能な少なくとも一つのタービンと、排気ガス部分量から貫流可能な少なくとも一つの圧縮機とを備えた低圧タービン圧縮機を含むことができる。低圧排気ガスタービン圧縮機を使用することで、提供される流動エネルギーおよび熱エネルギーを効率的に利用したコンパクトな構造が得られる。   Preferred embodiments and suitable developments of the above measures are described in the dependent claims. In other words, the exhaust gas recirculation device suitably includes a low-pressure turbine compressor comprising at least one turbine capable of flowing from an air partial amount and at least one compressor capable of flowing from an exhaust gas partial amount. be able to. By using a low-pressure exhaust gas turbine compressor, a compact structure that efficiently utilizes the provided flow energy and heat energy is obtained.

好ましくは、排気ガス再循環装置は、一方で再循環可能な排気ガス部分量と、他方で圧縮機の駆動空気を形成する空気部分量とによって貫流可能である合目的的に回転式熱交換器として形成された熱交換器を含むことができる。回転式熱交換器はコスト的に有利な構成品であり、好ましい方法でわずかな圧力差で良好な効率を生じる。   Preferably, the exhaust gas recirculation device is a purposely rotary heat exchanger that can be flowed through on the one hand a recirculated exhaust gas partial quantity and on the other hand an air partial quantity forming the compressor drive air A heat exchanger formed as can be included. A rotary heat exchanger is a cost-effective component and produces good efficiency with a small pressure difference in a preferred manner.

回転式熱交換器は、合目的的に低圧タービン圧縮機と動作的に連結することができ、合目的的に低圧タービン圧縮機と回転式熱交換器との間に減速歯車装置が配置されている。この措置は、排気ガス再循環装置の動作上の自給自足の形成を提供する。   The rotary heat exchanger can be operatively connected to a low-pressure turbine compressor purposefully, and a reduction gear device is disposed between the low-pressure turbine compressor and the rotary heat exchanger for purpose. Yes. This measure provides the formation of self-sufficiency in the operation of the exhaust gas recirculation device.

上記の措置の別の発展形態において、低圧タービン圧縮機と回転式熱交換器との間の駆動系内に電気式補助モータを設けることができる。この措置は、好ましい方法で簡単な回転数制御を可能にし、同時に充分な駆動空気が提供されない場合のために補助駆動装置が提供される。さらに、この措置は低圧タービン圧縮機のシャフトの支承の簡素化も可能にする。   In another development of the above measures, an electric auxiliary motor can be provided in the drive train between the low pressure turbine compressor and the rotary heat exchanger. This measure allows a simple speed control in the preferred way, and at the same time provides an auxiliary drive for cases where not enough drive air is provided. Furthermore, this measure also allows simplification of the bearing of the low-pressure turbine compressor shaft.

もう一つの好ましい措置は、熱交換器の空気側に空気湿潤装置が前置されており、合目的的に排気側にも排気ガス湿潤装置が後置されていることにある、とすることができる。熱交換器を通過する前に空気を湿潤化すると、エンタルピー損失なしに空気が冷却され、それによって排気ガスとの温度差が増大し、熱伝達が改善される。排気ガスの湿潤化は、好ましくは、圧縮機を通過する際の特に低い排気ガス温度を生じ、したがって出力需要は特に少なくなる。圧縮機を通過する際に強制的に行われる排気ガスの加熱によって、場合により生じる水滴は確実に蒸発する。   Another preferable measure is that an air wetting device is placed on the air side of the heat exchanger, and an exhaust gas wetting device is placed on the exhaust side for the purpose. it can. Moistening the air before passing through the heat exchanger cools the air without enthalpy loss, thereby increasing the temperature difference with the exhaust gas and improving heat transfer. Exhaust gas wetting preferably results in particularly low exhaust gas temperatures as it passes through the compressor, and thus the output demand is particularly low. Due to the heating of the exhaust gas that is forced when passing through the compressor, the water droplets generated in some cases are surely evaporated.

好ましくは、再循環可能な排気ガス部分量が、駆動空気として作用する空気部分量に実質的に相当するように、排気ガス再循環装置が設計されている。それによってエンジン内の充填比が再循環装置の接続もしくは離断によって変化しないことが保証されている。   Preferably, the exhaust gas recirculation device is designed such that the recirculated exhaust gas partial quantity substantially corresponds to the air partial quantity acting as drive air. This ensures that the filling ratio in the engine does not change due to the connection or disconnection of the recirculation device.

上記の措置の別の好ましい実施形態および合目的的な発展形態は、残りの従属請求項に記載されており、以下の例の説明から図面を利用して、より詳しく読み取ることができる。   Further preferred embodiments and suitable developments of the above measures are described in the remaining dependent claims and can be read in more detail from the description of the examples below with the aid of the drawings.

本発明の主要な適用分野は、船舶駆動装置等として使用することができるような大型エンジン、特に2サイクル大型ディーゼルエンジンである。この種のエンジンの構造および作用それ自体は公知である。   The main field of application of the present invention is a large engine, particularly a two-cycle large diesel engine, which can be used as a ship drive device or the like. The structure and operation of this type of engine are known per se.

図1に、2サイクル大型ディーゼルエンジン1を示しており、これは直列に前後に配置した複数のシリンダ2を含み、これらはそれぞれ充填接続管3を介して給気分配管4に、吐出接続管5を介して排気ガス収集管6に接続されている。給気分配管4および排気ガス収集管6はエンジン全長にわたって貫通する大径の管によって形成される。   FIG. 1 shows a two-cycle large diesel engine 1 which includes a plurality of cylinders 2 arranged in front and rear in series, each of which is connected to a supply air distribution pipe 4 via a filling connection pipe 3 and to a discharge connection pipe 5. It is connected to the exhaust gas collecting pipe 6 via. The supply air pipe 4 and the exhaust gas collection pipe 6 are formed by large-diameter pipes that penetrate the entire length of the engine.

給気は、排気タービン過給機7によって供給され、そのタービン8は排気ガス収集管6から出る排気ガス管9を介して排気ガスによって付勢可能であり、そのコンプレッサ10は供給管11を介して給気分配管4により圧縮給気で付勢する。タービン8の吐出開口部は周囲に流入する排出管12に接続されている。コンプレッサ10の流入開口部に、周囲で終了する吸気管13が接続されている。供給管11は、水分離機15を介して給気分配管4と接続される給気冷却器14につながる。   The supply air is supplied by an exhaust turbine supercharger 7, the turbine 8 can be energized by exhaust gas via an exhaust gas pipe 9 exiting from an exhaust gas collection pipe 6, and its compressor 10 is supplied via a supply pipe 11. Then, the compressed air is energized by the air supply pipe 4. The discharge opening of the turbine 8 is connected to a discharge pipe 12 that flows into the periphery. An intake pipe 13 ending around is connected to the inflow opening of the compressor 10. The supply pipe 11 is connected to the supply air cooler 14 connected to the supply air distribution pipe 4 through the water separator 15.

良好なNOx値を達成するために、給気分配管4に供給される給気に、それに応じて再度燃焼過程に加わる一定量の排気ガスが混合される。そのために排気ガス再循環装置16を設けており、それによって、排気ガス収集管6を離れ排気タービン過給機7のタービン8に供給される排気ガスから排気ガス部分量が分岐可能であり、排気タービン過給機7の下流で給気に混合可能である。   In order to achieve a good NOx value, a certain amount of exhaust gas that is added to the combustion process again is mixed with the supply air supplied to the supply air distribution pipe 4. For this purpose, an exhaust gas recirculation device 16 is provided, whereby the exhaust gas partial amount can be branched from the exhaust gas that leaves the exhaust gas collecting pipe 6 and is supplied to the turbine 8 of the exhaust turbine supercharger 7. Mixing with the supply air is possible downstream of the turbine supercharger 7.

排気ガス再循環装置16は、排気ガス収集管6から排気タービン過給機7のタービン8へ通じる排気ガス管9から分岐し、その反対端で排気タービン過給機7のコンプレッサ10から給気分配管4へ通じる流路につながる再循環管17を含む。排気ガス再循環装置16は、さらにタービン19と、再循環管17が通じる駆動側で該タービンと連結される圧縮機20とを備えた低圧タービン圧縮機18を含む。したがって、圧縮機20によって、排気ガス管9から分岐した排気ガス部分量が給気への供給に適した圧力で圧縮され、すなわちエンジンの排気ガス側からエンジンの給気側へポンプ輸送される。   The exhaust gas recirculation device 16 branches from the exhaust gas pipe 9 that leads from the exhaust gas collection pipe 6 to the turbine 8 of the exhaust turbine supercharger 7, and at the opposite end from the compressor 10 of the exhaust turbine supercharger 7, the supply air distribution pipe A recirculation pipe 17 connected to the flow path leading to 4 is included. The exhaust gas recirculation device 16 further includes a low pressure turbine compressor 18 comprising a turbine 19 and a compressor 20 connected to the turbine on the drive side through which the recirculation pipe 17 communicates. Therefore, the compressor 20 compresses the exhaust gas partial amount branched from the exhaust gas pipe 9 at a pressure suitable for supply to the supply air, that is, pumped from the exhaust gas side of the engine to the supply side of the engine.

低圧タービン圧縮機18のタービン19は、駆動空気としての圧縮空気で付勢される。この空気は空気部分量として排気タービン過給機7のコンプレッサ10から出る供給管11から分岐される。そのために、供給管11から分岐する駆動空気管21が設けられ、これは低圧タービン圧縮機18のタービン19を通過し、その反対端で排気ガス収集管6に流入することができる。   The turbine 19 of the low-pressure turbine compressor 18 is energized with compressed air as drive air. This air is branched out from the supply pipe 11 exiting from the compressor 10 of the exhaust turbine supercharger 7 as an air partial amount. For this purpose, a drive air pipe 21 branched from the supply pipe 11 is provided, which passes through the turbine 19 of the low-pressure turbine compressor 18 and can flow into the exhaust gas collection pipe 6 at the opposite end.

再循環する排気ガス部分量は、排気ガス管9から分岐後にエンジン1の作動に適した温度に冷却される。しかしながら、その際に排気ガス部分量から奪われたエネルギーは消滅せず、タービン19の駆動空気として作用する給気部分量に供給され、それによって給気部分量が加熱される。そのために、排気ガス再循環装置16は、その一方の側で再循環装置17中に、その他方の側で駆動空気管21中に組み込まれた熱交換器22を含む。熱交換器22は、定置型プレート式熱交換器として形成することができる。熱交換器22は、低速で駆動可能な回転式熱交換器として形成することが合目的的であり、これに関して以下でさらに詳述する。   The recirculated exhaust gas partial amount is cooled to a temperature suitable for the operation of the engine 1 after branching from the exhaust gas pipe 9. However, the energy taken away from the exhaust gas partial amount at this time is not lost, but is supplied to the supply air partial amount that acts as drive air for the turbine 19, whereby the supply air partial amount is heated. To that end, the exhaust gas recirculation device 16 includes a heat exchanger 22 incorporated in the recirculation device 17 on one side and in the drive air tube 21 on the other side. The heat exchanger 22 can be formed as a stationary plate heat exchanger. The heat exchanger 22 is expediently formed as a rotary heat exchanger that can be driven at a low speed, as will be described in more detail below.

熱交換器22の領域で高い熱伝達を達成するため、放熱する排気ガスと吸熱する空気との間の大きい温度差が考慮される。そのために熱交換器22を貫流する駆動空気は、熱交換器22を通過する前に冷却される。そのために熱交換器22の上流に駆動空気管21の中に組み込まれた、水接続管23を備えた湿潤装置24を設けており、それによって該湿潤装置を通して導かれる空気部分量を水で湿潤することができ、これがエンタルピー損失なしの冷却をもたらす。   In order to achieve high heat transfer in the area of the heat exchanger 22, a large temperature difference between the exhaust gas that dissipates heat and the air that absorbs heat is taken into account. For this purpose, the driving air flowing through the heat exchanger 22 is cooled before passing through the heat exchanger 22. For this purpose, a wetting device 24 equipped with a water connection pipe 23 is provided upstream of the heat exchanger 22 in the drive air tube 21, thereby wetting the part of the air guided through the wetting device with water. This can provide cooling without enthalpy loss.

低圧タービン圧縮機18の圧縮機20の領域で可能な限り低い排気ガス温度を生じさせるために、圧縮機20に供給される排気ガス部分量は、最初の冷却を行う熱交換器22を通過した後、さらに冷却される。そのために再循環管17中で熱交換器22の下流で、および圧縮機20の上流で同様に水接続管23を備えた湿潤装置24aが配置され、それによって該湿潤装置を通して導かれる排気ガスが湿潤可能である。   In order to produce the lowest possible exhaust gas temperature in the region of the compressor 20 of the low-pressure turbine compressor 18, the portion of the exhaust gas supplied to the compressor 20 has passed through the heat exchanger 22 for initial cooling. After that, it is further cooled. For this purpose, a wetting device 24a with a water connection tube 23 is also arranged in the recirculation pipe 17 downstream of the heat exchanger 22 and upstream of the compressor 20, so that the exhaust gas guided through the wetting device is exhausted. It is wettable.

上述の駆動空気管21もしくは再循環管17中に内蔵された湿潤装置24,24aは合目的的であるが、必ずしも必要ではない。また、湿潤装置に遮断可能なバイパス管を組み込み、それによって湿潤装置を選択的に接続もしくは離断できるようにすることも考えられる。同様に、簡単に湿潤装置24,24aへの水供給を選択的に接続もしくは遮断することも考えられる。   The wetting devices 24, 24a incorporated in the drive air pipe 21 or the recirculation pipe 17 described above are suitable, but not always necessary. It is also conceivable to incorporate a shut-off bypass tube in the wetting device so that the wetting device can be selectively connected or disconnected. Similarly, it is conceivable to simply connect or shut off the water supply to the wetting devices 24, 24a.

圧縮機20を通して導かれる排気ガス部分量が圧縮され、その際に同時に加熱される。この加熱により、排気ガス中にまだ存在する水滴が蒸発する。凝縮物分離が回避されるべきである場合、再循環管17は、図面に実線で示した流入接続管17aによって明らかなように、給気冷却器14の下流で給気分配管4に通じる流路中で給気に流入することができる。図示した例において、再循環管17は給気冷却器14の下流で水分離器15につながる。   A portion of the exhaust gas introduced through the compressor 20 is compressed and simultaneously heated. By this heating, water droplets still present in the exhaust gas evaporate. If condensate separation is to be avoided, the recirculation pipe 17 is a flow path leading to the supply air distribution pipe 4 downstream of the supply air cooler 14, as is evident by the inflow connection pipe 17a indicated by the solid line in the drawing. It can flow into the supply air. In the illustrated example, the recirculation pipe 17 is connected to the water separator 15 downstream of the charge air cooler 14.

凝縮物分離が給気冷却器14の中で望まれている場合、再循環管17は、図面に破線で示した流入接続管17bによって明らかなように、給気冷却器14の上流で供給管11の中に流入する。その場合、冷却器14の中への供給管11の入口に、流入接続管17bが接続されたエジェクタ25を設けることができる。このエジェクタ25は排気ガスを吸気することを可能にする。   If condensate separation is desired in the charge air cooler 14, the recirculation pipe 17 is connected to the supply pipe upstream of the charge air cooler 14, as evidenced by the inflow connection pipe 17b shown in broken lines in the drawing. Flows into 11. In that case, an ejector 25 to which the inflow connecting pipe 17b is connected can be provided at the inlet of the supply pipe 11 into the cooler. This ejector 25 makes it possible to take in the exhaust gas.

低圧タービン圧縮機18のタービン19から出る駆動空気管21の分岐が、すでに上に述べたように、図面に実線で示したように、排気ガス収集管6の中に流入することができる。しかしまた、タービン19を離れる駆動空気を、図面に破線で示したように、さらに利用するために、もう一つのユニット、たとえばタービン26に供給し、それによってたとえば詳しく図示しない圧縮機を駆動することができ、その出口を排気タービン過給機7のコンプレッサ10の入口と連結することができ、それによって二段階の配列を生じさせることも考えられる。補助駆動装置の回転数制御および保証のために、タービン26に、電源に接続した電気モータ27を組み込むことができる。   The branch of the drive air pipe 21 exiting from the turbine 19 of the low-pressure turbine compressor 18 can flow into the exhaust gas collection pipe 6, as already indicated above, as indicated by the solid line in the drawing. But also, the driving air leaving the turbine 19 is supplied to another unit, for example the turbine 26, for further use, as shown by the broken lines in the drawing, thereby driving, for example, a compressor not shown in detail. It is also conceivable that its outlet can be connected to the inlet of the compressor 10 of the exhaust turbine supercharger 7, thereby producing a two-stage arrangement. An electric motor 27 connected to a power source can be incorporated in the turbine 26 for rotational speed control and assurance of the auxiliary drive.

熱交換器22は、合目的的に、すでに上で述べたように、低回転数で駆動可能な回転式熱交換器として形成されている。熱交換器22の駆動力は、合目的的に、図面に示したように、低圧タービン圧縮機18から導入することができる。回転数減速のために、減速歯車装置28を設けており、その入力部は低圧タービン圧縮機18に、その出力部は熱交換器22に動作可能に連結されている。   The heat exchanger 22 is purposely formed as a rotary heat exchanger that can be driven at a low rotational speed, as already mentioned above. The driving force of the heat exchanger 22 can be suitably introduced from the low-pressure turbine compressor 18 as shown in the drawing. In order to reduce the rotational speed, a reduction gear device 28 is provided, whose input is operably connected to the low-pressure turbine compressor 18 and whose output is operatively connected to the heat exchanger 22.

図示した例において、低圧タービン圧縮機18と熱交換器22との間の駆動系に電気式補助モータ29を設けてあり、これは回転数制御を可能にし、そのために第一に考慮した空気部分量がたとえば始動時に発生しうるように充分でない場合、低圧タービン圧縮機18の駆動を支援することができる。補助モータ29は、図示した例において低圧タービン圧縮機18と減速歯車装置28との間の領域に配置されている。補助モータ29のハウジングは、定置型の構成部品に固定することができる。補助モータ29の回転子は二つの側面の軸受30によって、側面の、減速歯車装置28の入力部に通じる低圧タービン圧縮機18のシャフト31の伸長部上に軸支されている。したがって、シャフト31は、低圧タービン圧縮機18の領域で、ここでは合目的的にタービン19と低圧タービン圧縮機18の圧縮機20との間の領域に配置されたもう一つの軸受32によってのみ軸支されていれば充分である。   In the example shown, an electric auxiliary motor 29 is provided in the drive system between the low-pressure turbine compressor 18 and the heat exchanger 22, which makes it possible to control the rotational speed and for that purpose the air part considered first. If the quantity is not sufficient to occur, for example, at start-up, driving the low pressure turbine compressor 18 can be assisted. The auxiliary motor 29 is arranged in a region between the low-pressure turbine compressor 18 and the reduction gear device 28 in the illustrated example. The housing of the auxiliary motor 29 can be fixed to a stationary component. The rotor of the auxiliary motor 29 is pivotally supported by two side bearings 30 on the side of the extension of the shaft 31 of the low-pressure turbine compressor 18 leading to the input of the reduction gear device 28. Thus, the shaft 31 is only shafted by another bearing 32 arranged in the region of the low-pressure turbine compressor 18, here purposely in the region between the turbine 19 and the compressor 20 of the low-pressure turbine compressor 18. It is enough if it is supported.

圧縮機20の上流にある再循環管17の分岐に、ここでは熱交換器22に後置した逆止弁33が配置されており、これは圧縮機20が充分な吸引通気を生じると直ちに自動的に開く。合目的的に逆止弁33は、開放圧力が調整可能であるように形成することができる。再循環装置16の接続および離断のために、駆動空気管21中に、ここでは供給管11からの分岐に隣接する駆動空気管21の領域に配置された遮断弁34を設けている。再循環管17を通る排気ガス流量および駆動空気管21を通る空気流量は、ほぼ等しくなければならない。空気流量は適当な遮断弁34の調整によって調整することができる。排気ガス流量は、必要に応じて、調整可能な逆止弁33によって制御することができる。また制御弁の追加も考えられる。   At the branch of the recirculation pipe 17 upstream of the compressor 20, here a check valve 33 placed behind the heat exchanger 22 is arranged, which is automatically activated as soon as the compressor 20 produces sufficient suction ventilation. Open. For purpose, the check valve 33 can be formed such that the opening pressure is adjustable. For connection and disconnection of the recirculation device 16, a shut-off valve 34 is provided in the drive air pipe 21, here in the region of the drive air pipe 21 adjacent to the branch from the supply pipe 11. The exhaust gas flow rate through the recirculation pipe 17 and the air flow rate through the drive air pipe 21 must be approximately equal. The air flow rate can be adjusted by adjusting the appropriate shut-off valve 34. The exhaust gas flow rate can be controlled by an adjustable check valve 33 as required. It is also possible to add a control valve.

大型エンジンに組み込まれた再循環装置の模式図である。It is a schematic diagram of the recirculation apparatus incorporated in the large engine.

符号の説明Explanation of symbols

2 シリンダ
4 給気分配管
6 排気ガス収集管
7 排気タービン過給機
11 供給管
14 給気冷却器
15 水分離器
16 排気ガス再循環装置
17 再循環管
17a,17b 流入接続管
18 低圧タービン圧縮機
19 タービン
20 圧縮機
21 駆動空気管
22 熱交換器
24 空気湿潤装置
24a 排気ガス湿潤装置
25 エジェクタ
26 流量ユニット
28 減速歯車装置
29 電気式補助モータ
33 逆止弁
34 制御弁

2 cylinder
4 Supply air piping
6 Exhaust gas collection pipe
7 Exhaust turbine supercharger
11 Supply pipe
14 Air supply cooler
15 Water separator
16 Exhaust gas recirculation system
17 Recirculation pipe
17a, 17b Inlet connection pipe
18 Low pressure turbine compressor
19 Turbine
20 Compressor
21 Drive air pipe
22 Heat exchanger
24 Air humidifier
24a Exhaust gas wetting device
25 Ejector
26 Flow unit
28 Reduction gear unit
29 Electric auxiliary motor
33 Check valve
34 Control valve

Claims (20)

給気分配管(4)および排気ガス収集管(6)に接続可能な少なくとも一つのシリンダ(2)と、排気ガス収集管(6)からの排気ガスにより駆動可能な、給気分配管(4)に供給可能な給気を圧縮する少なくとも一つの排気タービン過給機(7)と、排気ガス収集管(6)を離れる排気ガスから分岐可能な排気ガス部分量を排気タービン過給機(7)の下流で前記給気に混合可能であり、前記給気に混合可能な排気ガス部分量を圧送する圧縮機(20)を設けている、少なくとも一つの排気ガス再循環装置(16)とを備えた、往復動内燃機関、特に2サイクル大型ディーゼルエンジンであって、
排気ガス再循環装置(16)の圧縮機(20)が、空気部分量として排気タービン過給機(7)によって圧縮された給気から分岐され、再循環可能な排気ガス部分量の同時冷却下に該排気ガス部分量によって加熱される駆動空気によって付勢可能であるタービン(19)によって駆動可能であることを特徴とする往復動内燃機関。
At least one cylinder (2) that can be connected to the supply air pipe (4) and the exhaust gas collection pipe (6), and the supply air pipe (4) that can be driven by the exhaust gas from the exhaust gas collection pipe (6) At least one exhaust turbine supercharger (7) that compresses the supply air that can be supplied, and an exhaust gas turbocharger (7) that divides the amount of exhaust gas that can branch from the exhaust gas leaving the exhaust gas collection pipe (6). At least one exhaust gas recirculation device (16) provided with a compressor (20) capable of being mixed with the supply air downstream and pumping a partial amount of exhaust gas capable of being mixed with the supply air. A reciprocating internal combustion engine, especially a two-cycle large diesel engine,
The compressor (20) of the exhaust gas recirculation device (16) branches off from the supply air compressed by the exhaust turbine supercharger (7) as a partial air quantity, and is subjected to simultaneous cooling of the recirculated exhaust gas partial quantity. The reciprocating internal combustion engine is characterized in that it can be driven by a turbine (19) that can be energized by driving air heated by the exhaust gas partial amount.
排気ガス再循環装置(16)が、駆動空気によって付勢可能であるタービン(19)と、給気に混合可能な排気ガス部分量を圧送する圧縮機(20)とを含む低圧タービン圧縮機(18)を有することを特徴とする請求項1記載の往復動内燃機関。   The exhaust gas recirculation device (16) includes a turbine (19) that can be energized by driving air and a compressor (20) that pumps a portion of the exhaust gas that can be mixed with the supply air (20). 18. A reciprocating internal combustion engine according to claim 1, further comprising: 排気ガス再循環装置(16)が、一方で再循環可能な排気ガス部分量と、他方でタービン(19)の駆動空気を形成する空気部分量とによって貫流可能である熱交換器(22)を含むことを特徴とする請求項1または請求項2に記載の往復動内燃機関。   An exhaust gas recirculation device (16) has a heat exchanger (22) that can flow through by means of an exhaust gas part quantity that can be recirculated on the one hand and an air part quantity that forms the driving air for the turbine (19) on the other hand. The reciprocating internal combustion engine according to claim 1 or 2, characterized by comprising. 熱交換器(22)が回転式熱交換器として形成されていることを特徴とする請求項3に記載の往復動内燃機関。   Reciprocating internal combustion engine according to claim 3, characterized in that the heat exchanger (22) is formed as a rotary heat exchanger. 回転式熱交換器が駆動によって低圧タービン圧縮機(18)と連結することを特徴とする請求項4に記載の往復動内燃機関。   Reciprocating internal combustion engine according to claim 4, characterized in that the rotary heat exchanger is connected to the low-pressure turbine compressor (18) by driving. 減速歯車装置(28)を設けており、その入力部は低圧タービン圧縮機(18)に、その出力部は回転式熱交換器に連結されていることを特徴とする請求項4または請求項5に記載の往復動内燃機関。   6. A reduction gear device (28) is provided, the input portion of which is connected to the low-pressure turbine compressor (18), and the output portion thereof is connected to the rotary heat exchanger. The reciprocating internal combustion engine described in 1. 低圧タービン圧縮機(18)に電気式補助モータ(29)が割り当てられていることを特徴とする請求項1ないし請求項6のいずれか1項に記載の往復動内燃機関。   The reciprocating internal combustion engine according to any one of claims 1 to 6, wherein an electric auxiliary motor (29) is assigned to the low-pressure turbine compressor (18). 電気式補助モータ(29)が低圧タービン圧縮機(18)と減速歯車装置(28)との間に配置されていることを特徴とする請求項7に記載の往復動内燃機関。   The reciprocating internal combustion engine according to claim 7, wherein the electric auxiliary motor (29) is arranged between the low-pressure turbine compressor (18) and the reduction gear device (28). 熱交換器(22)の空気側に空気湿潤装置(24)が前置されていることを特徴とする請求項3ないし請求項8のいずれか1項に記載の往復動内燃機関。   The reciprocating internal combustion engine according to any one of claims 3 to 8, wherein an air wetting device (24) is disposed on the air side of the heat exchanger (22). 熱交換器(22)の排気側に排気ガス湿潤装置(24a)が後置されていることを特徴とする請求項3ないし請求項9のいずれか1項に記載の往復動内燃機関。   The reciprocating internal combustion engine according to any one of claims 3 to 9, wherein an exhaust gas wetting device (24a) is disposed on the exhaust side of the heat exchanger (22). 再循環可能な排気ガス部分量に割り当てられた再循環管(17)中に好ましくは調整可能な逆止弁(33)が設けられていることを特徴とする請求項1ないし請求項10のいずれか1項に記載の往復動内燃機関。   11. A check valve (33), preferably adjustable, is provided in the recirculation pipe (17) allocated to the recirculated exhaust gas partial quantity. A reciprocating internal combustion engine as set forth in claim 1. 駆動空気として作用する空気部分量に割り当てられた駆動空気管(21)中に遮断弁および/または制御弁(34)を配置したことを特徴とする請求項1ないし請求項11のいずれか1項に記載の往復動内燃機関。   12. A shut-off valve and / or a control valve (34) is arranged in a drive air pipe (21) assigned to an air part amount acting as drive air. The reciprocating internal combustion engine described in 1. 排気ガス再循環装置(16)が、給気に混合可能な排気ガス部分量が、駆動空気として作用する、給気から分岐可能な空気部分量に実質的に相当するように形成されていることを特徴とする請求項1ないし請求項12のいずれか1項に記載の往復動内燃機関。   The exhaust gas recirculation device (16) is formed such that the amount of exhaust gas that can be mixed with the supply air substantially corresponds to the amount of air that can be branched from the supply air, acting as drive air. The reciprocating internal combustion engine according to any one of claims 1 to 12, wherein the internal combustion engine is a reciprocating internal combustion engine. 再循環可能な排気ガス部分量が給気冷却器(14)の下流側で給気に供給可能であることを特徴とする請求項1ないし請求項13のいずれか1項に記載の往復動内燃機関。   The reciprocating internal combustion engine according to any one of claims 1 to 13, wherein the recirculated exhaust gas partial quantity can be supplied to the supply air downstream of the supply air cooler (14). organ. 再循環管(17)が、給気冷却器(14)に後置された水分離器(15)に流入する流入接続管(17a)を有することを特徴とする請求項14に記載の往復動内燃機関。   15. The reciprocating motion according to claim 14, wherein the recirculation pipe (17) has an inflow connection pipe (17a) that flows into a water separator (15) that is placed downstream of the charge air cooler (14). Internal combustion engine. 再循環管(17)が、給気冷却器(14)の上流側で給気に割り当てられた流路に流入する流入接続管(17b)を有することを特徴とする請求項1ないし請求項13のいずれか1項に記載の往復動内燃機関。   14. The recirculation pipe (17) has an inflow connection pipe (17b) that flows into a flow path assigned to the supply air upstream of the supply air cooler (14). The reciprocating internal combustion engine according to any one of the above. 給気に組み込まれた供給管(11)の入口で給気に割り当てられた流路中にエジェクタ(25)を設けていることを特徴とする請求項1ないし請求項16のいずれか1項に記載の往復動内燃機関。   The ejector (25) is provided in a flow path assigned to the supply air at the inlet of the supply pipe (11) incorporated in the supply air. The reciprocating internal combustion engine described. 給気冷却器(14)の上流側で流入する流入接続管(17b)が給気冷却器(14)の入口に配置されたエジェクタ(25)に接続されていることを特徴とする請求項16または請求項17に記載の往復動内燃機関。   The inflow connecting pipe (17b) flowing in the upstream side of the air supply cooler (14) is connected to an ejector (25) arranged at the inlet of the air supply cooler (14). Or a reciprocating internal combustion engine according to claim 17; 低圧タービン圧縮機(18)のタービン(19)を離れる空気部分量が排気ガス収集管(6)に供給可能であることを特徴とする請求項1ないし請求項18のいずれか1項に記載の往復動内燃機関。   19. The amount of the air leaving the turbine (19) of the low-pressure turbine compressor (18) can be supplied to the exhaust gas collection pipe (6). A reciprocating internal combustion engine. 低圧タービン圧縮機(18)のタービン(19)を離れる空気部分量が別の使用のために別の流量ユニット(26)に供給可能であることを特徴とする請求項1ないし請求項18のいずれか1項に記載の往復動内燃機関。

19. The method according to claim 1, wherein a part of the air leaving the turbine (19) of the low-pressure turbine compressor (18) can be supplied to another flow unit (26) for another use. A reciprocating internal combustion engine as set forth in claim 1.

JP2004209094A 2004-07-15 2004-07-15 Reciprocating internal combustion engine Active JP4458966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209094A JP4458966B2 (en) 2004-07-15 2004-07-15 Reciprocating internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209094A JP4458966B2 (en) 2004-07-15 2004-07-15 Reciprocating internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006029210A true JP2006029210A (en) 2006-02-02
JP4458966B2 JP4458966B2 (en) 2010-04-28

Family

ID=35895868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209094A Active JP4458966B2 (en) 2004-07-15 2004-07-15 Reciprocating internal combustion engine

Country Status (1)

Country Link
JP (1) JP4458966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234662A (en) * 2012-05-10 2013-11-21 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Internal combustion engine
US20210388757A1 (en) * 2020-06-15 2021-12-16 Bechtel Infrastructure and Power Corporation Air energy storage with internal combustion engines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234662A (en) * 2012-05-10 2013-11-21 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Internal combustion engine
KR101793460B1 (en) * 2012-05-10 2017-11-03 맨 디젤 앤드 터보 필리얼 아프 맨 디젤 앤드 터보 에스이 티스크랜드 Internal combustion engine
US20210388757A1 (en) * 2020-06-15 2021-12-16 Bechtel Infrastructure and Power Corporation Air energy storage with internal combustion engines

Also Published As

Publication number Publication date
JP4458966B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
CA2486013C (en) Device for utilizing the waste heat of compressors
CN104220715B (en) Utilize the method for the CO2 compressor of the waste heat driven CO2 trapping systems from internal combustion engine
US20130074497A1 (en) Waste heat recovery system
CN102472150B (en) The method of operated piston engine
JP5497900B2 (en) Internal combustion engine
US20090235661A1 (en) EGR Apparatuses systems and methods
CN107303952B (en) Environmental control system assisted by bleed air pressure
JP2006506576A (en) Sequential turbocharger and sequential turbocharger method for internal combustion engine
RU2009145742A (en) MOTOR UNIT WITH COOLING CIRCUIT AND SEPARATE HEAT RECOVERY CIRCUIT
KR101127082B1 (en) Reciprocating internal combustion engine
KR102005093B1 (en) A gas heat-pump system
CN103958850B (en) Cooling system for two-step supercharging engine
JP2010138875A (en) Exhaust energy collection device
JP5044601B2 (en) Large two-cycle diesel engine with exhaust gas scrubber
CN104344589A (en) Air source heat pump system and control method thereof
US6817348B2 (en) Device for humidifying the intake air of an internal combustion engine, which is equipped with a turbocharger, involving pre-heating effected by a water circuit
JP5377532B2 (en) Large turbocharged diesel engine with energy recovery configuration
JPH0771242A (en) Method and equipment for compressing gaseous medium
CN105569872A (en) Vehicle organic rankine cycle waste heat recovery system adopting liquid combustible organic working media
JP4458966B2 (en) Reciprocating internal combustion engine
CN208831045U (en) Screw expander, helical-lobe compressor, motor integrated system
CZ2001995A3 (en) System for compression and ejection of piston engines
KR101919696B1 (en) Combined cycle power generation plant
GB2463641A (en) Making use of the waste heat from an internal combustion engine
KR20200067125A (en) A gas heat-pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4458966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250