JP2006028105A - Optically active aminopyridyl-group-containing pyrrolidine derivative and asymmetric synthesis using the same - Google Patents

Optically active aminopyridyl-group-containing pyrrolidine derivative and asymmetric synthesis using the same Download PDF

Info

Publication number
JP2006028105A
JP2006028105A JP2004210403A JP2004210403A JP2006028105A JP 2006028105 A JP2006028105 A JP 2006028105A JP 2004210403 A JP2004210403 A JP 2004210403A JP 2004210403 A JP2004210403 A JP 2004210403A JP 2006028105 A JP2006028105 A JP 2006028105A
Authority
JP
Japan
Prior art keywords
group
asymmetric synthesis
optically active
carbon
pyrrolidine derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004210403A
Other languages
Japanese (ja)
Other versions
JP4639327B2 (en
Inventor
Hiyoshizo Kotsuki
小槻  日吉三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Original Assignee
Kyushu University NUC
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC filed Critical Kyushu University NUC
Priority to JP2004210403A priority Critical patent/JP4639327B2/en
Publication of JP2006028105A publication Critical patent/JP2006028105A/en
Application granted granted Critical
Publication of JP4639327B2 publication Critical patent/JP4639327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable optically active aminopyridyl-group-containing pyrrolidine derivative which is metal-free, is usable as an asymmetric synthesis catalyst usable for a carbon-carbon bond formation reaction and excellent in both enantioselectivity and diastereoselectivity and capable of being obtained simply and inexpensively and to provide an asymmetric synthesis using the same. <P>SOLUTION: The pyrrolidine derivative is represented by formula (I) (wherein -R<SP>1</SP>and -R<SP>2</SP>are each an alkyl group, an aryl group, or an aralkyl group or may be combined with each other to form an alkylene group or an alkenylene group; n is 0 to 2; and the carbon atom marked with * is an optically active carbon atom). The asymmetric synthesis comprises subjecting a nucleophilic reagent and an electrophilic reagent to a carbon-carbon bond formation reaction in the presence of at least the asymmetric synthesis catalyst represented by formula (I). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学活性化合物を光学収率よく不斉合成する際に、触媒として使用される光学活性アミノピリジル基含有ピロリジン誘導体、及びそれを用いた不斉合成方法に関するものである。   The present invention relates to an optically active aminopyridyl group-containing pyrrolidine derivative used as a catalyst when an optically active compound is asymmetrically synthesized with good optical yield, and an asymmetric synthesis method using the same.

化成品・医薬品には、光学活性化合物を原料にして製造されるものが数多くある。   Many chemical products and pharmaceuticals are manufactured using optically active compounds as raw materials.

このような光学活性化合物をマイケル付加反応、アルドール縮合反応等の炭素−炭素結合形成反応により合成する際に、固体の金属含有不斉合成触媒が用いられていた。金属含有不斉合成触媒は、水や酸素に不安定である。またこの触媒を用いると、反応の生成物の精製過程で固体の触媒の除去処理や金属汚染防止処置等の煩雑で面倒な操作が必要となる。   When such an optically active compound is synthesized by a carbon-carbon bond forming reaction such as a Michael addition reaction or an aldol condensation reaction, a solid metal-containing asymmetric synthesis catalyst has been used. Metal-containing asymmetric synthesis catalysts are unstable to water and oxygen. Further, when this catalyst is used, complicated and troublesome operations such as removal of solid catalyst and prevention of metal contamination are required in the purification process of the reaction product.

そこで最近では、金属不含有の不斉合成触媒が用いられている。例えば、非特許文献1及び2には、下記化学反応式   Recently, therefore, metal-free asymmetric synthesis catalysts have been used. For example, Non-Patent Documents 1 and 2 include the following chemical reaction formulas:

Figure 2006028105
Figure 2006028105

で示されるように、L−プロリンを不斉合成触媒として用いたアルドール縮合反応やマイケル付加反応により、光学活性ケトン化合物を合成する方法が記載されている。 As described above, a method for synthesizing an optically active ketone compound by aldol condensation reaction or Michael addition reaction using L-proline as an asymmetric synthesis catalyst is described.

B. Listら, J. Am. Chem. Soc., 122, 2395 (2000)B. List et al., J. Am. Chem. Soc., 122, 2395 (2000) D. Ender, A. Seki, Synlett, 2002, No.1, 26.D. Ender, A. Seki, Synlett, 2002, No.1, 26.

また、非特許文献3には、光学活性ピロリジン環含有アミン化合物を不斉合成触媒として用いたマイケル付加反応により、光学活性ケトン化合物を合成する方法が記載されている。   Non-Patent Document 3 describes a method of synthesizing an optically active ketone compound by a Michael addition reaction using an optically active pyrrolidine ring-containing amine compound as an asymmetric synthesis catalyst.

O. Andrey, A. Alexakis, G. Bernardinelli, Org. Lett., 5, 2559 (2003)O. Andrey, A. Alexakis, G. Bernardinelli, Org. Lett., 5, 2559 (2003)

しかし従来の金属不含有の不斉合成触媒をマイケル付加反応等の炭素−炭素結合形成反応に用いても、反応生成物のエナンチオ選択性及び/又はジアステレオ選択性がさほど高くないという問題があった。   However, even when a conventional metal-free asymmetric synthesis catalyst is used in a carbon-carbon bond forming reaction such as a Michael addition reaction, there is a problem that the enantioselectivity and / or diastereoselectivity of the reaction product is not so high. It was.

本発明は、金属を含有せず、エナンチオ選択性のみならずジアステレオ選択性に優れた炭素−炭素結合形成反応の不斉合成触媒として使用でき、簡便かつ安価に得られる安定な光学活性アミノピリジル基含有ピロリジン誘導体、及びそれを用いた不斉合成方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention is a stable optically active aminopyridyl which can be used as an asymmetric synthesis catalyst for a carbon-carbon bond forming reaction which does not contain a metal and is excellent not only in enantioselectivity but also in diastereoselectivity, and can be obtained simply and inexpensively It is an object to provide a group-containing pyrrolidine derivative and an asymmetric synthesis method using the same.

前記の課題を解決するためになされた本発明の光学活性アミノピリジル基含有ピロリジン誘導体は、下記化学式(I)の構造を有する。   The optically active aminopyridyl group-containing pyrrolidine derivative of the present invention made to solve the above problems has a structure of the following chemical formula (I).

Figure 2006028105
(I)
Figure 2006028105
(I)

(式(I)中、−R、−Rは、アルキル基、アリール基、アラルキル基、又は互いに連結されたアルキレン基若しくはアルケニレン基; nは、0〜2; *は、光学活性炭素の表示)
で示されるものである。
(In the formula (I), -R 1 and -R 2 are an alkyl group, an aryl group, an aralkyl group, or an alkylene group or an alkenylene group linked to each other; n is 0 to 2; * is an optically active carbon atom; display)
It is shown by.

式(I)中、−R、−Rは、各々同一若しくは異なり、例えば、炭素数1〜6であって直鎖状、分岐鎖状、又は環状のアルキル基;フェニル基のようなアリール基;ベンジル基のようなアラルキル基が挙げられる。また、−R、−Rは、互いに連結されており、アルキル基やアリーレン基が置換していてもよいアルキレン基例えばブチレン基;アルキル基やアリーレン基が置換していてもよく、主鎖の一部にアリーレン基を含んでいてもよいアルケニレン基が挙げられる。 In the formula (I), -R 1 and -R 2 are the same or different, for example, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms; an aryl such as a phenyl group Group; an aralkyl group such as a benzyl group may be mentioned. -R 1 and -R 2 are connected to each other, and an alkylene group that may be substituted with an alkyl group or an arylene group, such as a butylene group; an alkyl group or an arylene group that may be substituted, and a main chain An alkenylene group which may contain an arylene group in a part of the above is mentioned.

光学活性炭素は、S型であってもR型であってもよい。   The optically active carbon may be S-type or R-type.

光学活性アミノピリジル基含有ピロリジン誘導体は、ピリジン環の2位に−(CH−基を介してピロリジン環が結合していることが好ましい。下記化学式(II) The optically active aminopyridyl group-containing pyrrolidine derivative preferably has a pyrrolidine ring bonded to the 2-position of the pyridine ring via a — (CH 2 ) n — group. The following chemical formula (II)

Figure 2006028105
(II)
Figure 2006028105
(II)

(式(II)中、−R、−R、及び*は、前記と同じ)で示されるものであることが好ましい。その中でも、下記化学式(III)又は(IV) (In formula (II), -R 1 , -R 2 , and * are the same as those described above) are preferable. Among them, the following chemical formula (III) or (IV)

Figure 2006028105
(III) (IV)
Figure 2006028105
(III) (IV)

で示されるものであるとなお一層好ましい。 It is still more preferable that it is shown by.

本発明の不斉合成触媒は、前記式(I)で示される光学活性アミノピリジル基含有ピロリジン誘導体を含有するというものである。   The asymmetric synthesis catalyst of the present invention contains an optically active aminopyridyl group-containing pyrrolidine derivative represented by the above formula (I).

不斉合成触媒は、さらに有機酸を含有していることが好ましい。有機酸は、例えば2,4−ジニトロベンゼンスルホン酸のような有機スルホン酸が挙げられる。   The asymmetric synthesis catalyst preferably further contains an organic acid. Examples of the organic acid include organic sulfonic acids such as 2,4-dinitrobenzenesulfonic acid.

本発明の不斉合成方法は、前記の不斉合成触媒存在下、求核試薬と求電子試薬とによる炭素−炭素結合形成反応を行わせるというものである。   The asymmetric synthesis method of the present invention is to carry out a carbon-carbon bond forming reaction between a nucleophile and an electrophile in the presence of the asymmetric synthesis catalyst.

不斉合成触媒は、求核試薬又は求電子試薬1モル当量に対して、例えば0.05〜0.2モル当量用いられる。   The asymmetric synthesis catalyst is used, for example, in an amount of 0.05 to 0.2 molar equivalents relative to 1 molar equivalent of the nucleophilic reagent or electrophilic reagent.

炭素−炭素結合形成反応は、マイケル付加反応であることが好ましい。   The carbon-carbon bond forming reaction is preferably a Michael addition reaction.

求核試薬として、例えばシクロヘキサノンやテトラヒドロチオピラノンのようなケトン誘導体、アルデヒド誘導体が挙げられる。求電子試薬として、β−ニトロスチレンのようなα,β−不飽和ニトロ誘導体、α,β−不飽和ニトリル誘導体;ケイ皮酸のようなα,β−不飽和カルボン酸誘導体、それの酸アミド誘導体やエステル誘導体で例示される求核試薬受容体が挙げられる。   Examples of the nucleophile include ketone derivatives and aldehyde derivatives such as cyclohexanone and tetrahydrothiopyranone. As electrophiles, α, β-unsaturated nitro derivatives such as β-nitrostyrene, α, β-unsaturated nitrile derivatives; α, β-unsaturated carboxylic acid derivatives such as cinnamic acid, acid amides thereof Examples include nucleophile receptors exemplified by derivatives and ester derivatives.

本発明の光学活性アミノピリジル基含有ピロリジン誘導体は、マイケル付加反応等の炭素−炭素結合形成反応を行う際に、不斉合成触媒として用いられる。このピロリジン誘導体は、有害な金属を含有しておらず、環境汚染を引起こさない。このピロリジン誘導体を用いて炭素−炭素結合形成反応を行うと、ジアステレオ選択的かつエナンチオ選択的に、高い光学純度の生成物を得ることができる。   The optically active aminopyridyl group-containing pyrrolidine derivative of the present invention is used as an asymmetric synthesis catalyst when performing a carbon-carbon bond forming reaction such as a Michael addition reaction. This pyrrolidine derivative does not contain harmful metals and does not cause environmental pollution. When a carbon-carbon bond forming reaction is performed using this pyrrolidine derivative, a product with high optical purity can be obtained diastereoselectively and enantioselectively.

以下に、本発明を適用する光学活性アミノピリジル基含有ピロリジン誘導体、及びそれを用いた不斉合成方法の詳細について説明する。   The details of the optically active aminopyridyl group-containing pyrrolidine derivative to which the present invention is applied and an asymmetric synthesis method using the same will be described below.

光学活性アミノピリジル基含有ピロリジン誘導体は、次のようにして合成される。   The optically active aminopyridyl group-containing pyrrolidine derivative is synthesized as follows.

D. Alker, K. J. Doyle, L. M. Harwood 及び A. McCregor, Tetrahedron: Asymmetry, 1, 877 (1990)に記載された方法により、下記化学反応式で示すとおり、第3級アミン存在下、光学活性なL−プロリノール(V)に塩化スルフリルを反応させると、S型の環状スルファマート(VI)が誘導される。   According to the method described in D. Alker, KJ Doyle, LM Harwood and A. McCregor, Tetrahedron: Asymmetry, 1, 877 (1990), as shown in the following chemical reaction formula, optically active L in the presence of a tertiary amine -Reacting sulfuryl chloride with prolinol (V) leads to S-type cyclic sulfamate (VI).

Figure 2006028105
(V) (VI)
Figure 2006028105
(V) (VI)

次いで、下記化学反応式に示すように、この環状スルファマート(VI)と、4位に−NR基を有した2−ブロモピリジン誘導体がリチオ化した2−リチオピリジン誘導体とを、反応させた後、酸性条件下で加水分解させる。すると、(S)−2−(2−ピリジルメチル)ピロリジン骨格を有する所望の光学活性アミノピリジル基含有ピロリジン誘導体(IIs)が得られる。 Next, as shown in the following chemical reaction formula, this cyclic sulfamate (VI) was reacted with a 2-lithiopyridine derivative obtained by lithiation of a 2-bromopyridine derivative having a —NR 1 R 2 group at the 4-position. Thereafter, it is hydrolyzed under acidic conditions. Then, a desired optically active aminopyridyl group-containing pyrrolidine derivative (IIs) having a (S) -2- (2-pyridylmethyl) pyrrolidine skeleton is obtained.

Figure 2006028105
Figure 2006028105

また、L−プロリノールに代えてD−プロリノールから誘導した環状スルファマートを用いると、R型の光学活性アミノピリジル基含有ピロリジン誘導体を合成できる。   Further, when cyclic sulfamate derived from D-prolinol is used instead of L-prolinol, an R-type optically active aminopyridyl group-containing pyrrolidine derivative can be synthesized.

得られた光学活性アミノピリジル基含有ピロリジン誘導体を不斉合成触媒として共存させて、マイケル付加反応のような炭素−炭素結合形成反応が行われる。   The obtained optically active aminopyridyl group-containing pyrrolidine derivative is allowed to coexist as an asymmetric synthesis catalyst, and a carbon-carbon bond forming reaction such as a Michael addition reaction is performed.

不斉合成触媒(cat.)として、(S)−2−(2−ピリジルメチル)ピロリジン骨格を有するS型の光学活性アミノピリジル基含有ピロリジン誘導体(IIs)を用い、下記化学反応式で示されるように、求核試薬であるシクロヘキサノンと、求電子試薬であるβ−ニトロスチレンとのマイケル付加反応を行った例について、説明する。   As an asymmetric synthesis catalyst (cat.), An S-type optically active aminopyridyl group-containing pyrrolidine derivative (IIs) having a (S) -2- (2-pyridylmethyl) pyrrolidine skeleton is used, which is represented by the following chemical reaction formula An example in which a Michael addition reaction between cyclohexanone, which is a nucleophilic reagent, and β-nitrostyrene, which is an electrophilic reagent, is described.

Figure 2006028105
Figure 2006028105

過剰量のシクロヘキサノンと、β−ニトロスチレン1モル当量と、光学活性アミノピリジル基含有ピロリジン誘導体(IIs)の0.05〜0.2モル当量とを混合して撹拌すると、主生成物としてsyn型の(2S,1’R)−(2−ニトロ−1−フェニル)エチルシクロヘキサノン(VII)が、ジアステレオ選択的かつエナンチオ選択的に、高い光学純度で得られた。   When an excess amount of cyclohexanone, 1 molar equivalent of β-nitrostyrene, and 0.05 to 0.2 molar equivalent of optically active aminopyridyl group-containing pyrrolidine derivative (IIs) are mixed and stirred, the main product is syn type. Of (2S, 1′R)-(2-nitro-1-phenyl) ethylcyclohexanone (VII) was obtained with high optical purity, diastereoselectively and enantioselectively.

光学活性アミノピリジル基含有ピロリジン誘導体が、マイケル付加反応を行う際に、このような優れたジアステレオ選択性とエナンチオ選択性とを発現させる反応機構は、次の化学反応式に示すとおりであると考えられる。   When the optically active aminopyridyl group-containing pyrrolidine derivative performs the Michael addition reaction, the reaction mechanism for expressing such excellent diastereoselectivity and enantioselectivity is as shown in the following chemical reaction formula. Conceivable.

Figure 2006028105
Figure 2006028105

まず、シクロヘキサノンのカルボニル基のα位のプロトンが、光学活性アミノピリジル基含有ピロリジン誘導体(IIs)のピリジン環に引き抜かれる結果、速やかにエナミン中間体(VIII)が形成される。これによって形成されたピリジニウム環は、エナミン中間体(VIII)の二重結合の一方の面を立体的に遮蔽している。次いでβ−ニトロスチレンがそれの非遮蔽面側から接近し、遷移状態(IX)を経て、マイケル付加反応が進行する結果、(2S,1’R)型の生成物(VII)がジアステレオ選択的かつエナンチオ選択的に、高い光学純度で得られる。一方、光学活性アミノピリジル基含有ピロリジン誘導体(IIs)は、遊離し再びマイケル付加反応の触媒として働く。   First, as a result of the proton at the α-position of the carbonyl group of cyclohexanone being extracted to the pyridine ring of the optically active aminopyridyl group-containing pyrrolidine derivative (IIs), the enamine intermediate (VIII) is rapidly formed. The pyridinium ring formed thereby sterically shields one side of the double bond of the enamine intermediate (VIII). Next, β-nitrostyrene approaches from its non-shielding surface side, and after transition state (IX), Michael addition reaction proceeds. As a result, (2S, 1′R) type product (VII) is diastereoselective. And enantioselectively with high optical purity. On the other hand, the optically active aminopyridyl group-containing pyrrolidine derivative (IIs) is liberated and acts again as a catalyst for the Michael addition reaction.

次に、光学活性アミノピリジル基含有ピロリジン誘導体の合成例、及びそれを用いてマイケル付加反応を行った実施例について、説明する。   Next, a synthesis example of an optically active aminopyridyl group-containing pyrrolidine derivative and an example in which a Michael addition reaction is performed using the pyrrolidine derivative will be described.

(合成例1)
n−ブチルリチウムの1.59Mヘキサン溶液7ml(n−ブチルリチウム:11mmol)を、−78℃にて、乾燥したテトラヒドロフラン(THF)の12mlに溶解させた2−ブロモ−4−ジメチルアミノ−ピリジン1.05ml(11mmol)に加え、一時間撹拌した。次いで、−78℃にてTHF10mlに溶解させたS型の環状スルファマート(VI)の1.37g(8.4mmol)を滴下し、室温に戻して一夜撹拌した。溶媒を減圧留去し、ベージュ色の泡状物を得た。これに、2N塩酸16mlとエタノール16mlを加え、一晩撹拌した。反応混合物を50%水酸化ナトリウム溶液で塩基性にした後、ジクロロメタンで抽出した。抽出液を硫酸マグネシウムで乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/イソプロピルアミン=19/1)にかけると、下記化学式で示される淡黄色油状物の(S)−2−[4−(ジメチルアミノ)ピリジン−2−イルメチル]ピロリジン(IIIs)を収率80%で得た。それについて、薄層クロマトグラフ分析、施光度測定、赤外分光分析(FT−IR)、核磁気共鳴分析(NMR)を行った。その分析結果を以下に示す。分光学的データはこの構造を支持している。
(Synthesis Example 1)
2-Bromo-4-dimethylamino-pyridine 1 in which 7 ml of a 1.59M hexane solution of n-butyllithium (n-butyllithium: 11 mmol) was dissolved in 12 ml of dry tetrahydrofuran (THF) at −78 ° C. To .05 ml (11 mmol) and stirred for 1 hour. Subsequently, 1.37 g (8.4 mmol) of S-type cyclic sulfamate (VI) dissolved in 10 ml of THF was added dropwise at −78 ° C., and the mixture was returned to room temperature and stirred overnight. The solvent was distilled off under reduced pressure to obtain a beige foam. To this, 16 ml of 2N hydrochloric acid and 16 ml of ethanol were added and stirred overnight. The reaction mixture was basified with 50% sodium hydroxide solution and extracted with dichloromethane. The extract was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was subjected to silica gel column chromatography (chloroform / isopropylamine = 19/1) to give a pale yellow oil represented by the following chemical formula ( S) -2- [4- (dimethylamino) pyridin-2-ylmethyl] pyrrolidine (IIIs) was obtained with a yield of 80%. It was subjected to thin layer chromatographic analysis, light intensity measurement, infrared spectroscopic analysis (FT-IR), and nuclear magnetic resonance analysis (NMR). The analysis results are shown below. Spectroscopic data support this structure.

Figure 2006028105
(IIIs)
Figure 2006028105
(IIIs)

Rf 0.19 (CHCl3/i-PrNH2 = 9 : 1).
[α]D 22 −7.9 (c 0.76, CHCl3).
FTIR (neat)ν 3327, 1602, 1542, 1507, 1374, 995, 805, 750 cm-1.
H NMR (400 MHz, CDCl3) δ 1.43 (1H, ddt, J = 12.0, 9.3, 7.6 Hz), 1.67-1.93 (3H, m), 2.47 (1H, br), 2.74 (1H, dd, J = 13.2, 8.0 Hz), 2.81-2.86 (1H, m), 2.85 (1H, dd, J = 13.2, 5.6 Hz), 2.98 (6H, s), 2.95-3.06 (1H, m), 3.46 (1H, quintet, J = 6.6 Hz), 6.35 (1H, dd, J = 6.1, 2.7 Hz), 6.40 (1H, d, J = 2.7 Hz), 8.15 (1H, d, J = 6.1 Hz).
13C NMR(100 MHz, CDCl) δ24.82, 31.18, 39.02 (×2), 44.80, 46.11, 58.92, 104.53, 105.93, 149.19, 154.71, 159.98.
R f 0.19 (CHCl 3 / i-PrNH 2 = 9: 1).
[α] D 22 −7.9 (c 0.76, CHCl 3 ).
FTIR (neat) ν 3327, 1602, 1542, 1507, 1374, 995, 805, 750 cm -1 .
1 H NMR (400 MHz, CDCl 3 ) δ 1.43 (1H, ddt, J = 12.0, 9.3, 7.6 Hz), 1.67-1.93 (3H, m), 2.47 (1H, br), 2.74 (1H, dd, J = 13.2, 8.0 Hz), 2.81-2.86 (1H, m), 2.85 (1H, dd, J = 13.2, 5.6 Hz), 2.98 (6H, s), 2.95-3.06 (1H, m), 3.46 (1H, quintet, J = 6.6 Hz), 6.35 (1H, dd, J = 6.1, 2.7 Hz), 6.40 (1H, d, J = 2.7 Hz), 8.15 (1H, d, J = 6.1 Hz).
13 C NMR (100 MHz, CDCl 3 ) δ 24.82, 31.18, 39.02 (× 2), 44.80, 46.11, 58.92, 104.53, 105.93, 149.19, 154.71, 159.98.

(合成例2)
2−ブロモ−4−ジメチルアミノピリジンに代えて2−ブロモ−4−ピロリジノピリジンを用いたこと以外は、合成例1と同様にして、下記化学式で示される淡黄色油状物の(S)−2−[4−(ピロリジノ)ピリジン−2−イルメチル]ピロリジン(IVs)を収率50%で得た。
(Synthesis Example 2)
A light yellow oily (S)-represented by the following chemical formula was prepared in the same manner as in Synthesis Example 1 except that 2-bromo-4-pyrrolidinopyridine was used instead of 2-bromo-4-dimethylaminopyridine. 2- [4- (Pyrrolidino) pyridin-2-ylmethyl] pyrrolidine (IVs) was obtained with a yield of 50%.

Figure 2006028105
(IVs)
Figure 2006028105
(IVs)

この化合物のその分析結果を以下に示す。分光学的データはこの構造を支持している。
Rf 0.50 (CHCl3/i-PrNH2 = 9 : 1).
[α]D 24 −12.5 (c 0.56, CHCl3).
FTIR (neat) ν 3330, 1602, 1541, 1502, 1485, 1457, 1389 cm-1.
1H NMR (400 MHz, CDCl3) δ 1.43 (1H, ddt, J = 12.0, 9.5, 7.6 Hz), 1.67-1.92 (3H, m), 2.00 (4H, m), 2.37 (1H, br), 2.72 (1H, dd, J = 13.2, 8.0 Hz), 2.80-2.84 (1H, m), 2.83 (1H, dd, J = 13.2, 5.6 Hz), 3.03 (1H, ddd, J = 10.0, 7.6, 5.1 Hz), 3.29 (4H, m), 3.45 (1H, quintet, J = 6.4 Hz), 6.23 (1H, dd, J = 5.9, 2.4 Hz), 6.28 (1H, d, J = 2.4 Hz), 8.12 (1H, d, J = 5.9 Hz).
13C NMR (100 MHz, CDCl3) δ 24.87, 25.26 (×2), 31.22, 44.80, 46.15, 46.87 (×2), 58.97, 104.89, 106.21, 149.11, 152.16, 159.86.
The analytical results of this compound are shown below. Spectroscopic data support this structure.
R f 0.50 (CHCl 3 / i-PrNH 2 = 9: 1).
[α] D 24 −12.5 (c 0.56, CHCl 3 ).
FTIR (neat) ν 3330, 1602, 1541, 1502, 1485, 1457, 1389 cm -1 .
1 H NMR (400 MHz, CDCl 3 ) δ 1.43 (1H, ddt, J = 12.0, 9.5, 7.6 Hz), 1.67-1.92 (3H, m), 2.00 (4H, m), 2.37 (1H, br), 2.72 (1H, dd, J = 13.2, 8.0 Hz), 2.80-2.84 (1H, m), 2.83 (1H, dd, J = 13.2, 5.6 Hz), 3.03 (1H, ddd, J = 10.0, 7.6, 5.1 Hz), 3.29 (4H, m), 3.45 (1H, quintet, J = 6.4 Hz), 6.23 (1H, dd, J = 5.9, 2.4 Hz), 6.28 (1H, d, J = 2.4 Hz), 8.12 ( (1H, d, J = 5.9 Hz).
13 C NMR (100 MHz, CDCl 3 ) δ 24.87, 25.26 (× 2), 31.22, 44.80, 46.15, 46.87 (× 2), 58.97, 104.89, 106.21, 149.11, 152.16, 159.86.

次に、シクロヘキサンとβ−ニトロスチレンとのマイケル付加反応について、本発明を適用する光学活性アミノピリジル基含有ピロリジン誘導体を不斉合成触媒として用いた実施例と、本発明を適用外の光学活性アミノピリジル基含有ピロリジン誘導体を触媒として用いた比較例とについて説明する。   Next, with respect to the Michael addition reaction between cyclohexane and β-nitrostyrene, examples using an optically active aminopyridyl group-containing pyrrolidine derivative to which the present invention is applied as an asymmetric synthesis catalyst, and optically active aminos to which the present invention is not applied. A comparative example using a pyridyl group-containing pyrrolidine derivative as a catalyst will be described.

(実施例1)
シクロヘキサノン0.5mlと、β−ニトロスチレン38mg(0.25mmol;1モル当量)と、不斉合成触媒として合成例1で得た光学活性アミノピリジル基含有ピロリジン誘導体(IIIs)4mg(0.025mml;0.1モル当量)とを、クロロホルム2mlに加えた。これを、薄層クロマトグラフィーにより反応が完結したかを確認しながら、24時間室温で撹拌した。次いで、反応液を0℃にて1N塩酸2mlでクエンチし、ジクロロメタン3mlで2回抽出を行った。有機層を合わせ、硫酸ナトリウムで乾燥後、濾過した。炉液から溶媒を減圧留去し、薄層クロマトグラフィー(ヘキサン/酢酸エチル=4/1)にかけ、前記式(VII)で示す主生成物とその異性体混合物である白色固形物を、単離収率78%で得た。
Example 1
Cyclohexanone 0.5 ml, β-nitrostyrene 38 mg (0.25 mmol; 1 molar equivalent), and optically active aminopyridyl group-containing pyrrolidine derivative (IIIs) 4 mg (0.025 ml; obtained in Synthesis Example 1 as an asymmetric synthesis catalyst) 0.1 molar equivalent) was added to 2 ml of chloroform. This was stirred at room temperature for 24 hours while confirming whether the reaction was completed by thin layer chromatography. Then, the reaction solution was quenched with 2 ml of 1N hydrochloric acid at 0 ° C., and extracted twice with 3 ml of dichloromethane. The organic layers were combined, dried over sodium sulfate and filtered. The solvent was distilled off from the furnace liquid under reduced pressure and subjected to thin layer chromatography (hexane / ethyl acetate = 4/1) to isolate a white solid which was a mixture of the main product represented by the formula (VII) and its isomers. Obtained in 78% yield.

異性体混合物のsyn体とanti体とのジアステレオ比(dr)を、H−NMRにより測定したところ、95:5であった。syn体の光学純度(ee)を、分析用キラルHPLC(Chiralpak ADカラム0.46×25cm;ヘキサン/2−プロパノール=90/10;0.5cm/分)により測定し、Rt[(2R,1'S)]13.5分;Rt[(2S,1'R)]15.4分のピークの面積比から算出したところ、88ee(%)であった。それらの結果をまとめて表1に示す。 When the diastereo ratio (dr) of the syn isomer and the anti isomer of the isomer mixture was measured by 1 H-NMR, it was 95: 5. The optical purity (ee) of the syn isomer was measured by analytical chiral HPLC (Chiralpak AD column 0.46 × 25 cm; hexane / 2-propanol = 90/10; 0.5 cm 3 / min) and Rt [(2R, 1 ′S)] 13.5 minutes; Rt [(2S, 1′R)] calculated from the peak area ratio of 15.4 minutes was 88ee (%). The results are summarized in Table 1.

(実施例2〜5)
不斉合成触媒、反応時間、反応温度を表1に記載の条件としたこと以外は、実施例1と同様にして、マイケル付加反応を行った。得られた生成物について、単離収率、syn体とanti体とのジアステレオ比(dr)、syn体の光学純度(ee)を実施例1と同様にして求めた。それらの結果をまとめて表1に示す。
(Examples 2 to 5)
A Michael addition reaction was carried out in the same manner as in Example 1 except that the asymmetric synthesis catalyst, reaction time, and reaction temperature were changed to the conditions shown in Table 1. For the obtained product, the isolation yield, the diastere ratio (dr) between the syn and anti isomers, and the optical purity (ee) of the syn isomer were determined in the same manner as in Example 1. The results are summarized in Table 1.

〔比較例1〜3〕
比較例1〜3は、各々下記化学式(X)〜(XII)
[Comparative Examples 1-3]
Comparative Examples 1 to 3 are represented by the following chemical formulas (X) to (XII), respectively.

Figure 2006028105
(X) (XI) (XII)
Figure 2006028105
(X) (XI) (XII)

を用い、反応時間、反応温度を表1に記載の条件としたこと以外は、実施例1と同様にして、マイケル付加反応を行った。得られた生成物について、単離収率、syn体とanti体とのジアステレオ比(dr)、syn体の光学純度(ee)を実施例1と同様にして求めた。それらの結果をまとめて表1に示す。 Was used, and the Michael addition reaction was carried out in the same manner as in Example 1 except that the reaction time and the reaction temperature were set as shown in Table 1. About the obtained product, the isolation yield, the diastereo ratio (dr) between the syn isomer and the anti isomer, and the optical purity (ee) of the syn isomer were determined in the same manner as in Example 1. The results are summarized in Table 1.

Figure 2006028105
Figure 2006028105

表1から明らかなとおり、実施例1〜5のマイケル付加反応のように、ピリジン環の4位にジメチルアミノ基、又はピロリジノ基を有する光学活性アミノピリジル基含有ピロリジン誘導体を不斉合成触媒として用いた場合、その生成物は、単離収率が78〜99%で、syn体とanti体とのジアスレテオ選択性が95:5〜98:2と優れているうえ、syn体の光学純度が88〜99ee(%)と高いものであった。中でも実施例5は、0℃で有機酸を共存させた場合に、95%の単離収率で、syn体とanti体とのジアスレテオ選択性が98:2であり、syn体の光学純度が99ee(%)と、特に優れている。   As is clear from Table 1, as in the Michael addition reactions of Examples 1 to 5, an optically active aminopyridyl group-containing pyrrolidine derivative having a dimethylamino group or a pyrrolidino group at the 4-position of the pyridine ring is used as an asymmetric synthesis catalyst. The product had an isolation yield of 78 to 99%, a diastereoselectivity between the syn and anti isomers of 95: 5 to 98: 2, and an optical purity of the syn isomer of 88. It was as high as -99ee (%). In particular, in Example 5, when an organic acid was allowed to coexist at 0 ° C., the diastereoselectivity between the syn and anti isomers was 98: 2 with an isolation yield of 95%, and the optical purity of the syn isomer was 99ee (%) is particularly excellent.

それに対し、比較例1〜3のようにピリジン環にジメチルアミノ基もピロリジノ基も有しない光学活性アミノピリジル基含有ピロリジン誘導体を触媒として用いた場合、生成物は、単離収率、ジアスレテオ比、光学純度の全てがさほど高くないものであった。   On the other hand, when an optically active aminopyridyl group-containing pyrrolidine derivative having no dimethylamino group or pyrrolidino group in the pyridine ring as in Comparative Examples 1 to 3 was used as a catalyst, the product was isolated in yield, diastereo ratio, All of the optical purity was not so high.

次に、種々のケトン誘導体又はアルデヒド誘導体と、種々のα、β−不飽和ニトロ化合物とのマイケル付加反応について、本発明を適用する光学活性アミノピリジル基含有ピロリジン誘導体を不斉合成触媒として用いた実施例について説明する。   Next, for the Michael addition reaction between various ketone derivatives or aldehyde derivatives and various α, β-unsaturated nitro compounds, an optically active aminopyridyl group-containing pyrrolidine derivative to which the present invention is applied was used as an asymmetric synthesis catalyst. Examples will be described.

(実施例6〜19)
クロロホルム2mlに、種々のα、β−不飽和ニトロ化合物の0.25mmolと、それの表2に記載の光学活性アミノピリジル基含有ピロリジン誘導体10mol%、及び2,4−ジニトロベンゼンスルホン酸5mol%と、種々のケトン誘導体又はアルデヒド誘導体20容量%とを加え0℃で、表2に記載の時間、反応させたこと以外は、実施例1と同様にして、マイケル付加反応を行った。得られた生成物について、単離収率、syn体とanti体とのジアステレオ比(dr)、syn体の光学純度(ee)を実施例1と同様にして求めた。それらの結果をまとめて表2に示す。
(Examples 6 to 19)
In 2 ml of chloroform, 0.25 mmol of various α, β-unsaturated nitro compounds, 10 mol% of an optically active aminopyridyl group-containing pyrrolidine derivative described in Table 2, and 5 mol% of 2,4-dinitrobenzenesulfonic acid A Michael addition reaction was carried out in the same manner as in Example 1 except that 20 vol% of various ketone derivatives or aldehyde derivatives were added and reacted at 0 ° C. for the time shown in Table 2. For the obtained product, the isolation yield, the diastere ratio (dr) between the syn and anti isomers, and the optical purity (ee) of the syn isomer were determined in the same manner as in Example 1. The results are summarized in Table 2.

なお、主生成物の絶対構造は、前記非特許文献2に記載の方法と同様にして推定した。   The absolute structure of the main product was estimated in the same manner as the method described in Non-Patent Document 2.

Figure 2006028105
Figure 2006028105

表2から明らかなとおり、実施例6〜15のようにシクロヘキサノンを求核試薬とし種々のβ−ニトロスチレンタイプ誘導体を求電子試薬とするマイケル付加反応では、単離収率がほぼ定量的であり、syn体とanti体とのジアステレオ比が最高で99:1、光学純度が最高で98ee(%)であって優れたエナンチオ選択性のみならずジアステレオ選択性を示していた。また、実施例16〜17のようにテトラヒドロチオピラン−4−オンを求核試薬としβ−ニトロスチレンを求電子試薬とするマイケル付加反応でも、同様に優れたエナンチオ選択性のみならずジアステレオ選択性を示した。さらに、実施例18〜19のようにイソバレルアルデヒドを求核試薬としβ−ニトロスチレンを求電子試薬とするマイケル付加反応では優れたジアステレオ選択性を示した。   As is apparent from Table 2, in the Michael addition reaction using cyclohexanone as a nucleophile and various β-nitrostyrene type derivatives as electrophiles as in Examples 6 to 15, the isolation yield is almost quantitative. The diastereomer ratio between the syn and anti isomers was 99: 1 at the maximum and the optical purity was 98ee (%) at the maximum, indicating not only excellent enantioselectivity but also diastereoselectivity. In addition, in the Michael addition reaction using tetrahydrothiopyran-4-one as a nucleophile and β-nitrostyrene as an electrophile as in Examples 16 to 17, not only excellent enantioselectivity but also diastereoselection Showed sex. Further, as in Examples 18 to 19, the Michael addition reaction using isovaleraldehyde as a nucleophile and β-nitrostyrene as an electrophile showed excellent diastereoselectivity.

本発明の光学活性アミノピリジル基含有ピロリジン誘導体は、マイケル付加反応等の炭素−炭素結合形成反応を行う際に、不斉合成触媒として用いられる。これを用いて炭素−炭素結合形成反応を行わせる不斉合成方法によれば、化成品・医薬品の原料として有用な光学活性化合物を高い単離収率で、ジアステレオ選択的かつエナンチオ選択的に、高い光学純度で合成することができる。さらに、光学活性アミノピリジル基含有ピロリジン誘導体自体は、化成品・医薬品の原料として使用することも可能である。
The optically active aminopyridyl group-containing pyrrolidine derivative of the present invention is used as an asymmetric synthesis catalyst when performing a carbon-carbon bond forming reaction such as a Michael addition reaction. According to the asymmetric synthesis method in which a carbon-carbon bond forming reaction is performed using this, an optically active compound useful as a raw material for chemical products and pharmaceuticals can be diastereoselectively and enantioselectively obtained in a high isolation yield. Can be synthesized with high optical purity. Furthermore, the optically active aminopyridyl group-containing pyrrolidine derivative itself can be used as a raw material for chemical products and pharmaceuticals.

Claims (5)

下記化学式(I)
Figure 2006028105
(I)

(式(I)中、−R、−Rは、アルキル基、アリール基、アラルキル基、又は互いに連結されたアルキレン基若しくはアルケニレン基; nは、0〜2; *は、光学活性炭素の表示)
で示されることを特徴とする光学活性アミノピリジル基含有ピロリジン誘導体。
The following chemical formula (I)
Figure 2006028105
(I)

(In the formula (I), -R 1 and -R 2 are an alkyl group, an aryl group, an aralkyl group, or an alkylene group or an alkenylene group linked to each other; n is 0 to 2; * is an optically active carbon atom; display)
An optically active aminopyridyl group-containing pyrrolidine derivative characterized by the following:
少なくとも、請求項1に記載の光学活性アミノピリジル基含有ピロリジン誘導体が含まれていることを特徴とする不斉合成触媒。 An asymmetric synthesis catalyst comprising at least the optically active aminopyridyl group-containing pyrrolidine derivative according to claim 1. 有機酸が含まれていることを特徴とする請求項2に記載の不斉合成触媒。 The asymmetric synthesis catalyst according to claim 2, comprising an organic acid. 請求項2又は3に記載の不斉合成触媒存在下、求核試薬と求電子試薬とによる炭素−炭素結合形成反応を行わせることを特徴とする不斉合成方法。 A method for asymmetric synthesis, comprising causing a carbon-carbon bond forming reaction between a nucleophilic reagent and an electrophilic reagent in the presence of the asymmetric synthesis catalyst according to claim 2. 前記炭素−炭素結合形成反応が、マイケル付加反応であることを特徴とする請求項4に記載の不斉合成方法。
The asymmetric synthesis method according to claim 4, wherein the carbon-carbon bond forming reaction is a Michael addition reaction.
JP2004210403A 2004-07-16 2004-07-16 Optically active aminopyridyl group-containing pyrrolidine derivative and asymmetric synthesis method using the same Expired - Lifetime JP4639327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210403A JP4639327B2 (en) 2004-07-16 2004-07-16 Optically active aminopyridyl group-containing pyrrolidine derivative and asymmetric synthesis method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210403A JP4639327B2 (en) 2004-07-16 2004-07-16 Optically active aminopyridyl group-containing pyrrolidine derivative and asymmetric synthesis method using the same

Publications (2)

Publication Number Publication Date
JP2006028105A true JP2006028105A (en) 2006-02-02
JP4639327B2 JP4639327B2 (en) 2011-02-23

Family

ID=35894878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210403A Expired - Lifetime JP4639327B2 (en) 2004-07-16 2004-07-16 Optically active aminopyridyl group-containing pyrrolidine derivative and asymmetric synthesis method using the same

Country Status (1)

Country Link
JP (1) JP4639327B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263233A (en) * 2008-04-21 2009-11-12 Tokyo Univ Of Science Method for producing asymmetrically catalyzed michael reaction product, and method for producing pharmaceutical compound
JP2010523523A (en) * 2007-04-03 2010-07-15 ノバルティス アーゲー New method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508648A (en) * 1994-11-10 1997-09-02 シビア ニューロサイエンシズ,インコーポレイテッド Pyridine-modulating component of acetylcholine receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508648A (en) * 1994-11-10 1997-09-02 シビア ニューロサイエンシズ,インコーポレイテッド Pyridine-modulating component of acetylcholine receptor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6010031675, J. Am. Chem. Soc., 2002, vol. 124, no.13, p.3220−3221 *
JPN6010031677, Monatshefte fur Chemie Chemical Monthly, 1994, vol.125, no.12, p.1293−1300 *
JPN6010031678, Organic Letters, 2003, vol.5, no.14, p.2559−2561 *
JPN6010031680, J. Am. Chem. Soc., 2000, vol.122, no.10, p.2395−2396 *
JPN6010031683, J. Am. Chem. Soc., 2001, vol.123, no.22, p.5260−5267 *
JPN6010031685, Synlett, 2002, no.1, p.26−28 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523523A (en) * 2007-04-03 2010-07-15 ノバルティス アーゲー New method
JP2009263233A (en) * 2008-04-21 2009-11-12 Tokyo Univ Of Science Method for producing asymmetrically catalyzed michael reaction product, and method for producing pharmaceutical compound

Also Published As

Publication number Publication date
JP4639327B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP3528186B2 (en) Diastereomeric salts of optically active quinoline mevalonic acid
Molander et al. Total synthesis of (+)-isoschizandrin utilizing a samarium (II) iodide-promoted 8-endo ketyl− olefin cyclization
Ozawa et al. Total Synthesis of the Marine Alkaloids (−)-Lepadins A, B, and C Based on Stereocontrolled Intramolecular Acylnitroso-Diels− Alder Reaction
Hartrampf et al. Total synthesis of the norhasubanan alkaloid stephadiamine
Pandey et al. Visible light initiated photosensitized electron transfer cyclizations of aldehydes and ketones to tethered α, β-unsaturated esters: stereoselective synthesis of optically pure C-furanosides
Osorio-Nieto et al. Transition Metal-Free Selective Double sp3 C–H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams
Reiter et al. Palladium-catalyzed oxidative cyclizations: Synthesis of dihydropyranones and furanones
Wang et al. Asymmetric synthesis of trifluoromethyl substituted dihydropyrans via organocatalytic cascade Michael–hemiketalization reaction
Zhang et al. Highly chemo-and enantioselective vinylogous aldol/cyclization cascade reaction to construct chiral 5, 6-dihydropyran-2-ones
Xiao et al. O-Methylephedrine: A Versatile and Highly Efficient o rtho-Directing Group. Synthesis of Enantiopure 1, 2-Disubstituted Ferrocene Derivatives
Saidi et al. A simple one-pot three-component reaction for preparation of secondary amines and amino esters mediated by lithium perchlorate
Calí et al. Synthesis of arylglycines by reaction of diethyl N-boc-iminomalonate with organomagnesium reagents
Verkade et al. An enantioselective organocatalytic approach to both enantiomers of lasubine II
JP4639327B2 (en) Optically active aminopyridyl group-containing pyrrolidine derivative and asymmetric synthesis method using the same
Deredas et al. Highly syn-diastereoselective Michael addition of enolizable ketones to 3-(diethoxyphosphoryl) coumarin
Le Gall et al. One-step three-component coupling of aromatic organozinc reagents, secondary amines, and aromatic aldehydes into functionalized diarylmethylamines
Yajima et al. Practical synthesis of aromatic bisabolanes: Synthesis of 1, 3, 5-bisabolatrien-7-ol, peniciaculin A and B, and hydroxysydonic acid
Suman et al. Microwave‐Assisted Convenient Synthesis of α, β‐Unsaturated Esters and Ketones via Aldol‐Adduct Elimination
Moussaoui et al. Catalyzed Knoevenagel reactions on inorganic solid supports: Application to the synthesis of coumarine compounds
JP2007523098A (en) Catalytic asymmetric synthesis of optically active α-halo-carbonyl compounds
Le Gall et al. Use of functionalized aromatic organozinc reagents in the three-component Mannich-type synthesis of diarylmethylamines
JP2022512919A (en) Enantioselective process
JP4613276B2 (en) Optically active pyrrolidine derivative
Sulzer-Mosse et al. Synthesis and Use of 3, 3′-Bimorpholine Derivatives in Asymmetric Michael Addition and Intramolecular Aldol Reaction
JP3843400B2 (en) Process for producing alkyl monosubstituted hydroquinones

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150