JP2006026669A - Method for controlling welding current in non-consumable electrode type gas shielded arc welding, and power unit - Google Patents

Method for controlling welding current in non-consumable electrode type gas shielded arc welding, and power unit Download PDF

Info

Publication number
JP2006026669A
JP2006026669A JP2004206512A JP2004206512A JP2006026669A JP 2006026669 A JP2006026669 A JP 2006026669A JP 2004206512 A JP2004206512 A JP 2004206512A JP 2004206512 A JP2004206512 A JP 2004206512A JP 2006026669 A JP2006026669 A JP 2006026669A
Authority
JP
Japan
Prior art keywords
current
amplitude
value
welding
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004206512A
Other languages
Japanese (ja)
Other versions
JP4853855B2 (en
Inventor
Kazue Ichikawa
和重 市川
Kazuharu Nagamori
主治 長森
Tsuneo Mita
常夫 三田
Koki Taguchi
広喜 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2004206512A priority Critical patent/JP4853855B2/en
Publication of JP2006026669A publication Critical patent/JP2006026669A/en
Application granted granted Critical
Publication of JP4853855B2 publication Critical patent/JP4853855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a welding current in non-consumable electrode type gas shielded arc welding, a method easy to operate and capable of keeping all current values within the range of rated current, and also to provide a power unit. <P>SOLUTION: With a first period Tu and a second period Td fixed that are alternately repeated as well as an average current value Iw and a current amplitude Iy, a current on the plus or increasing end of the amplitude Iy is supplied in the first period Tu, while a current on the minus or decreasing end of the amplitude Iy is supplied in the second period Td. In addition, the average current value in the first and the second period Tu, Td is controlled to be the average current value Iw. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、非消耗電極式ガスシールドアーク溶接を行う場合の溶接電流の制御方法および電源装置に関するものである。   The present invention relates to a welding current control method and a power supply device when performing non-consumable electrode type gas shielded arc welding.

図5は、従来の直流の非消耗電極式のガスシールドアーク溶接における電源装置の接続図である。
同図おいて、一点鎖線で囲んで示す主回路部1は、入力整流器部2、スイッチング部3、高周波トランス部4、二次整流器部5、電流検出器6、直流リアクタ7、およびカップリングコイル8とから構成されている。主回路部1のプラス側端子は溶接母材10に、マイナス側の端子は溶接トーチ9に接続されている。
FIG. 5 is a connection diagram of a power supply device in conventional direct current non-consumable electrode type gas shielded arc welding.
In the figure, a main circuit section 1 surrounded by a one-dot chain line includes an input rectifier section 2, a switching section 3, a high-frequency transformer section 4, a secondary rectifier section 5, a current detector 6, a DC reactor 7, and a coupling coil. 8. The positive terminal of the main circuit portion 1 is connected to the welding base material 10, and the negative terminal is connected to the welding torch 9.

一点鎖線で囲んで示す制御部11はスイッチング制御部12と、全体制御部13とから構成されている。全体制御部13には、設定値入力部15、トーチスイッチ(起動スイッチ)16、シールドガスを制御する電磁弁14および電流検出器6が接続されている。なお、設定値入力部15には、図示を省略する自己保持有りまたは自己保持無しを選択する選択スイッチが設けられている。   A control unit 11 surrounded by a one-dot chain line includes a switching control unit 12 and an overall control unit 13. Connected to the overall control unit 13 are a set value input unit 15, a torch switch (start switch) 16, an electromagnetic valve 14 for controlling shield gas, and a current detector 6. Note that the set value input unit 15 is provided with a selection switch for selecting self-holding or not self-holding (not shown).

次に、従来の非消耗電極式のガスシールドアーク溶接における電源装置の動作について説明する。
トーチスイッチ16が閉じられると、一次側入力電源(商用交流電源)から供給される交流は入力整流器部2により直流に変換された後、スイチング部3により高周波交流に変換され、高周波トランス4により溶接に適した電圧に変換される。高周波トランス4から出力された高周波交流は二次整流器部5により再度直流に変換された後、直流リアクタ7、溶接母材10、溶接トーチ9、カップリングコイル8の順に流れ、溶接母材10と溶接トーチ9との間に図示を省略するアークが発生する。
Next, the operation of the power supply apparatus in conventional non-consumable electrode type gas shielded arc welding will be described.
When the torch switch 16 is closed, AC supplied from the primary side input power (commercial AC power) is converted to DC by the input rectifier unit 2, then converted to high frequency AC by the switching unit 3, and welded by the high frequency transformer 4. Is converted to a voltage suitable for The high-frequency alternating current output from the high-frequency transformer 4 is converted into direct current again by the secondary rectifier unit 5, and then flows in the order of the direct current reactor 7, the welding base material 10, the welding torch 9, and the coupling coil 8. An arc (not shown) is generated between the welding torch 9.

全体制御部13は、設定値入力部15に入力された電流値と、電流検出器6で検出された電流値とを比較し、その差を増幅してスイッチング制御部12に入力する。スイッチング制御部12はこの信号に基づいて溶接部を流れる電流が入力された電流値に略等しくなるようにスイチング部3を駆動する。   The overall control unit 13 compares the current value input to the set value input unit 15 with the current value detected by the current detector 6, amplifies the difference, and inputs the amplified difference to the switching control unit 12. Based on this signal, the switching control unit 12 drives the switching unit 3 so that the current flowing through the welded portion becomes substantially equal to the input current value.

図6は、非消耗電極式のガスシールドアーク溶接における電源装置の代表的な出力電流波形を示す図である。
電源装置が直流のパルス電流を出力するものである場合(以下、「パルス電源」という。)、同図(a)に示すように、設定値入力部15に入力されたIp、IbおよびTp、Tbの値により、電流値Ipのピーク電流(継続時間Tp)と電流値Ibのベース電流(継続時間Tb)が交互に出力される。
FIG. 6 is a diagram showing a typical output current waveform of a power supply device in non-consumable electrode type gas shielded arc welding.
When the power supply device outputs a DC pulse current (hereinafter referred to as “pulse power supply”), as shown in FIG. 5A, Ip, Ib and Tp input to the set value input unit 15, Depending on the value of Tb, the peak current (duration Tp) of the current value Ip and the base current (duration Tb) of the current value Ib are alternately output.

そして、パルス溶接の場合は、下記の式1、2で定まる電流値Iの電流(平均電流)を単に電流という。
I=(Ip・Tp+Ib・Tb)/T0・・・(式1)
T0=Tp+Tb ・・・(式2)
In the case of pulse welding, the current (average current) having a current value I determined by the following formulas 1 and 2 is simply referred to as current.
I = (Ip · Tp + Ib · Tb) / T0 (Formula 1)
T0 = Tp + Tb (Formula 2)

電源装置が直流電流を出力するものである場合、同図(b)に示すように、設定値入力部15に入力された電流値Iの電流が出力される。以下、電流値が周期的に変化しない電流を出力するガスシールドアーク溶接電源を「直流電源」といい、パルス電源と区別する。なお、パルス電源と直流電源の外部接続図は同じであり、パルス電源は、直流電源の機能を備えている。   When the power supply device outputs a direct current, a current having a current value I input to the set value input unit 15 is output as shown in FIG. Hereinafter, a gas shielded arc welding power source that outputs a current whose current value does not change periodically is referred to as a “DC power source” and is distinguished from a pulse power source. The external connection diagrams of the pulse power supply and the DC power supply are the same, and the pulse power supply has a function of a DC power supply.

図7は、直流電源の場合の溶接時におけるタイミングチャートであり、(a)は自己保持無しの場合、(b)は自己保持有りの場合である。
なお、後述するように、「自己保持有り」と「自己保持無し」とではトーチスイッチ16の開閉信号の利用形態が異なり、自己保持有りは、溶接の途中で電流値を変化させる等の複数の制御が必要な場合に採用される。
FIGS. 7A and 7B are timing charts during welding in the case of a DC power source. FIG. 7A shows a case without self-holding and FIG. 7B shows a case with self-holding.
As will be described later, the usage mode of the open / close signal of the torch switch 16 is different between “with self-holding” and “without self-holding”, and with self-holding, there are a plurality of such as changing the current value during welding. Used when control is required.

自己保持無しの場合、同図(a)に示すように、溶接を行うための電流である主電流Iwの値、溶接に先だってシールドガスを流すプリフロー時間Tg1の値と、溶接部の酸化を防止するため溶接終了後にシールドガスを流すポストフロー時間Tg2の値を、設定値入力部15に入力する。   In the case of no self-holding, as shown in FIG. 6A, the value of the main current Iw that is a current for performing welding, the value of the preflow time Tg1 in which the shield gas flows before welding, and the oxidation of the welded portion are prevented. Therefore, the value of the postflow time Tg <b> 2 for flowing the shield gas after the end of welding is input to the set value input unit 15.

次に、自己保持無しの場合の制御装置11の動作を説明する。
制御装置11はトーチスイッチ16の開閉を監視し、トーチスイッチ16が閉(オン)になると直ちに電磁弁14を開き、プリフロー時間Tg1経過後トーチスイッチ16が開(オフ)になるまで、主電流Iwを溶接部に出力する。そして、トーチスイッチ16が開になると直ちに主電流Iwの供給を停止し、ポストフロー時間Tg2経過後電磁弁14を閉じる。
Next, the operation of the control device 11 when there is no self-holding will be described.
The controller 11 monitors the opening and closing of the torch switch 16, and immediately opens the solenoid valve 14 as soon as the torch switch 16 is closed (on), and the main current Iw until the torch switch 16 is opened (off) after the preflow time Tg1 has elapsed. Is output to the weld. Then, as soon as the torch switch 16 is opened, the supply of the main current Iw is stopped, and the solenoid valve 14 is closed after the postflow time Tg2.

自己保持有りの場合、同図(b)に示すように、プリフロー時間Tg1、ポストフロー時間Tg2、主電流値Iw、スタート電流Isの電流値Is、クレータ電流Icの電流値Ic、アップスロープ時間Tuおよびダウンスロープ時間Tdの各値を、設定値入力部15に入力する。   In the case of self-holding, as shown in FIG. 4B, as shown in FIG. 4B, the preflow time Tg1, the postflow time Tg2, the main current value Iw, the start current Is current value Is, the crater current Ic current value Ic, and the upslope time Tu. Each value of the down slope time Td is input to the set value input unit 15.

次に、自己保持有りの場合の制御装置11の動作を説明する。
制御装置11はトーチスイッチ16の開閉を監視し、トーチスイッチ16が閉になると直ちに電磁弁14を開き、プリフロー時間Tg1経過後トーチスイッチ16が開になるまで、電流値Isのスタート電流を出力する。そして、トーチスイッチ16が開になると、アップスロープ時間Tuの間に電流を主電流Iwまで増加させ、次にトーチスイッチ16が開になるまで、主電流Iwを出力する。次にトーチスイッチ16が閉になると、ダウンスロープ時間Tdの間に電流を電流値Icまで低減させる。そして、次にトーチスイッチ16が開になると、クレータ電流の供給を停止し、ポストフロー時間Tg2経過後電磁弁14を閉じる。
Next, the operation of the control device 11 when there is self-holding will be described.
The control device 11 monitors the opening and closing of the torch switch 16, and immediately opens the solenoid valve 14 when the torch switch 16 is closed, and outputs a start current of the current value Is until the torch switch 16 is opened after the preflow time Tg1 has elapsed. . When the torch switch 16 is opened, the current is increased to the main current Iw during the up slope time Tu, and then the main current Iw is output until the torch switch 16 is opened. Next, when the torch switch 16 is closed, the current is reduced to the current value Ic during the down slope time Td. Next, when the torch switch 16 is opened, the supply of crater current is stopped, and the electromagnetic valve 14 is closed after the postflow time Tg2 has elapsed.

また、パルス電源の場合は、主電流値Iw、スタート電流値Isおよびクレータ電流値Icに対して、それぞれ電流値Ip、Ibおよび継続時間Tp、Tbの値を入力する必要があるが、動作は直流電源の場合と同じである。   In the case of a pulse power supply, it is necessary to input current values Ip and Ib and durations Tp and Tb with respect to the main current value Iw, start current value Is and crater current value Ic, respectively. The same as in the case of a DC power supply.

ところで、パルス電源の場合、1種類の電流値(例えば主電流値Iw)を決めるために4個の値を設定しなければならないため、熟練した作業者にとっても、設定に時間を要していた。
そこで、1つの電流設定器(この場合、主電流値Iwを設定する電流設定器である。)で、ピーク電流の電流値Ip、ベース電流の電流値Ib、スタート電流の電流値Is、クレータ電流の電流値Icを設定できるようにした非消耗電極式のガスシールドアーク溶接電源がある(特許文献1)。
そして、特許文献1では、電流補償器を設けることにより、ベース電流の電流値Ibが定格電流の最小値Iminよりも小さくならないように、また、ピーク電流の電流値Ipが定格電流の最大値Imaxよりも大きくならないようにしている。
By the way, in the case of a pulse power supply, four values must be set in order to determine one type of current value (for example, the main current value Iw), so that even a skilled worker takes time for setting. .
Therefore, with one current setting device (in this case, a current setting device for setting the main current value Iw), the current value Ip of the peak current, the current value Ib of the base current, the current value Is of the start current, and the crater current There is a non-consumable electrode-type gas shielded arc welding power source that can set the current value Ic (Patent Document 1).
In Patent Document 1, by providing a current compensator, the current value Ib of the base current does not become smaller than the minimum value Imin of the rated current, and the current value Ip of the peak current is the maximum value Imax of the rated current. I try not to be bigger than that.

また、図6(a)で示したパルス周波数を低周波パルス(0.1〜数Hz)にすると、パルス期間で母材を溶融させ、ベース期間で凝固を促進して溶融金属の溶け落ちなどを防止できるため、配管の全姿勢溶接や板厚の異なる継手の溶接が容易になる。また、中周波パルス(数十〜数百Hz)にすると、アークの硬直性、集中性の向上を図ることができるので、アークがふらつきやすい小電流溶接や高速溶接が容易になる。
そこで、低周波パルスと中周波パルスを組合せ、低周波パルスの入熱制御作用と中周波パルスのアーク集中性改善作用を同時に活用するようにした技術がある(特許文献2)。
In addition, when the pulse frequency shown in FIG. 6A is set to a low frequency pulse (0.1 to several Hz), the base material is melted during the pulse period, and solidification is promoted during the base period to prevent the molten metal from being melted off. This makes it easy to weld all positions of pipes and joints with different thicknesses. Further, when the medium frequency pulse (several tens to several hundreds of Hz) is used, the arc rigidity and concentration can be improved, so that it is easy to perform small-current welding and high-speed welding in which the arc is likely to fluctuate.
Therefore, there is a technique in which a low-frequency pulse and an intermediate-frequency pulse are combined, and the heat input control action of the low-frequency pulse and the arc concentration improvement action of the intermediate-frequency pulse are used at the same time (Patent Document 2).

特公平5−56236号公報Japanese Patent Publication No. 5-56236 特許第2935434号公報Japanese Patent No. 2935434

特許文献1において、ベース電流の電流値Ibが最小値Imin未満になる主電流値Iwを選択した場合、ベース電流の電流値Ibが最小値Imin以下になることはないが、ベース電流の電流値Ibが本来の値よりも大きくなるため、溶接部に供給される電流値は電流設定器で設定した値よりも大きくなってしまう。そこで、このような場合には、試し溶接を行い、溶接部に供給される電流値が所望の電流値になるように、電流設定器の設定値を小さくしていた。また、ピーク電流の電流値Ipが最大値Imaxを超える主電流値Iwを選択した場合、ピーク電流の電流値Ipが最大値Imaxを超えることはないが、ピーク電流の電流値Ipが本来の値よりも小さくなるため、溶接部に供給される電流値は電流設定器で設定した値よりも小さくなってしまう。そこで、このような場合には、試し溶接を行い、溶接部に供給される電流値が所望の電流値になるように、電流設定器の設定値を大きくしていた。
すなわち、ベース電流の電流値Ibが最小値Imin未満になる主電流値Iwを選択した場合、あるいはピーク電流の電流値Ipが最大値Imaxを超える主電流値Iwを選択した場合には、電流の設定が面倒であった。
In Patent Document 1, when the main current value Iw in which the current value Ib of the base current is less than the minimum value Imin is selected, the current value Ib of the base current never falls below the minimum value Imin, but the current value of the base current Since Ib becomes larger than the original value, the current value supplied to the welded portion becomes larger than the value set by the current setting device. Therefore, in such a case, trial welding is performed, and the set value of the current setting device is reduced so that the current value supplied to the welded portion becomes a desired current value. When the main current value Iw in which the peak current value Ip exceeds the maximum value Imax is selected, the peak current value Ip does not exceed the maximum value Imax, but the peak current value Ip is the original value. Therefore, the current value supplied to the welded portion is smaller than the value set by the current setting device. Therefore, in such a case, trial welding is performed, and the set value of the current setting device is increased so that the current value supplied to the welded portion becomes a desired current value.
That is, when the main current value Iw where the current value Ib of the base current is less than the minimum value Imin is selected or when the main current value Iw where the current value Ip of the peak current exceeds the maximum value Imax is selected, Setting was troublesome.

また、特許文献2では、種々の電流波形を形成することは可能であるが、ピーク電流の電流値Ipが最大値Imaxを超える主電流値Iwを選択した場合、あるいはベース電流の電流値Ibが最小値Imin未満になる主電流値Iwを選択した場合についての詳細な説明はない。   In Patent Document 2, it is possible to form various current waveforms. However, when the main current value Iw in which the current value Ip of the peak current exceeds the maximum value Imax is selected, or the current value Ib of the base current is There is no detailed description of the case where the main current value Iw that is less than the minimum value Imin is selected.

本発明の目的は、操作が容易で、総ての電流値を定格電流の範囲内に納めることができる非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法および電源装置を提供するにある。   An object of the present invention is to provide a welding current control method and a power supply apparatus in non-consumable electrode type gas shielded arc welding which can be easily operated and can keep all current values within the range of rated current.

上記の目的を達成するため、本発明の第1手段は、入力された電流値の電流を溶接部に供給するようにした非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法おいて、交互に繰り返される第1および第2の期間と、平均電流値と、電流の振幅とを定めておき、前記第1の期間は前記振幅のプラス側または増加する側の電流を、前記第2の期間は前記振幅のマイナス側または減少する側の電流を、それぞれ供給すると共に、前記第1の期間と前記第2の期間における電流値の平均値が前記平均電流値となるように制御することを特徴とする。   In order to achieve the above object, the first means of the present invention provides a method for controlling welding current in non-consumable electrode type gas shielded arc welding in which a current having an input current value is supplied to a weld. The first and second periods, the average current value, and the amplitude of the current are determined in advance, and the first period indicates the current on the plus side or the increase side of the amplitude in the second period. Supplies the current on the minus side or the decrease side of the amplitude, and controls the average value of the current values in the first period and the second period to be the average current value. And

また、本発明の第2の手段は、入力された電流値の電流を溶接部に供給するようにした非消耗電極式ガスシールドアーク溶接における電源装置において、第1および第2の期間設定手段と、主電流値および電流の振幅設定手段と、演算手段と、判定手段と、を設け、第1の手段に記載の溶接電流の制御方法により溶接電流を制御することを特徴とする。   According to a second means of the present invention, there is provided a power supply apparatus for non-consumable electrode type gas shielded arc welding in which a current having an input current value is supplied to the welded portion. A main current value and current amplitude setting means, a calculation means, and a determination means are provided, and the welding current is controlled by the welding current control method described in the first means.

溶接部に供給される電流が設定値と一致し、かつ総ての電流値を定格電流の範囲内に納めることができるので、操作が容易である。   Since the current supplied to the welded portion matches the set value and all the current values can be within the rated current range, the operation is easy.

以下、本発明を図示の実施の形態に基づいて説明する。
図1は本発明に係る非消耗電極式ガスシールドアーク溶接における電源装置の接続図であり、図5と同じものまたは同一機能のものは同一の符号を付して重複する説明を省略する。
スイッチ20は、パルス電流によるパルス溶接を行うか直流溶接を行うかを選択するスイッチであり、全体制御部13に接続されている。全体制御部13はスイッチング制御部12を介して、パルス溶接が選択された場合はパルス電流を、その他(パルス無し)が選択された場合は直流電流を、それぞれ溶接部に出力する。
Hereinafter, the present invention will be described based on the illustrated embodiments.
FIG. 1 is a connection diagram of a power supply device in non-consumable electrode type gas shielded arc welding according to the present invention, and the same or the same function as in FIG.
The switch 20 is a switch for selecting whether to perform pulse welding using a pulse current or DC welding, and is connected to the overall control unit 13. The overall control unit 13 outputs, via the switching control unit 12, a pulse current when pulse welding is selected, and a direct current when the other (no pulse) is selected.

設定値入力部15には、第1の期間設定手段と第2の期間設定手段と、主電流値および電流の振幅設定手段とが設けられている。   The set value input unit 15 is provided with first period setting means, second period setting means, and main current value and current amplitude setting means.

演算・判定手段21は、全体制御部13に接続されている。   The calculation / determination means 21 is connected to the overall control unit 13.

次に、本発明の動作を直流電流の場合について説明する。
加工に先立ち、設定値入力部15により、第1期間Tuと、第2の期間Td、平均電流値Iwおよび電流振幅Iyを設定する。なお、平均電流値は、上記の主電流に対応する電流値であるため電流値Iwという。また、ここでは、Tu=Tdである。
Next, the operation of the present invention will be described in the case of a direct current.
Prior to processing, the set value input unit 15 sets the first period Tu, the second period Td, the average current value Iw, and the current amplitude Iy. The average current value is a current value corresponding to the above main current, and hence is referred to as a current value Iw. Here, Tu = Td.

図2は、本発明に係る主溶接時における電流波形図である。
始めに、電流の構成について説明する。なお、この電源装置の定格電流の最大値はImax、最小値はIminである。
FIG. 2 is a current waveform diagram during main welding according to the present invention.
First, the current configuration will be described. The maximum value of the rated current of this power supply device is Imax, and the minimum value is Imin.

同図に示すように、溶接電流は第1の期間である期間Tuにおいて電流値Inから電流値Iq(ただし、Iq=In+Iy)に増加し、期間Tuに続く第2の期間である期間Tdにおいて電流値Iqから電流値Inに減少する。期間Tuと期間Tdは交互に繰り返される。
このようにすると、直流(電流がIwで一定。)の場合に比べてビード幅が広く、溶け込みが浅い溶接部を得ることができる。また、アークがいわゆるソフトなアークになる。
As shown in the figure, the welding current increases from the current value In to the current value Iq (where Iq = In + Iy) in the period Tu that is the first period, and in the period Td that is the second period following the period Tu. The current value Iq decreases to the current value In. The period Tu and the period Td are alternately repeated.
In this way, it is possible to obtain a welded portion having a wider bead width and shallow penetration than in the case of direct current (current is constant at Iw). Also, the arc becomes a so-called soft arc.

ところで、平均電流値Iwと電流振幅Iyとを設定する場合、電流値Iqが定格電流の最大値を超える場合、あるいは電流値Inが定格電流の最小値Imin未満になる場合がある。
そこで、演算・判定手段21は、平均電流値Iwと電流振幅Iyが設定されると直ちに設定された平均電流値Iwに1/2Iyを加算し、Iw+1/2Iy>Imaxの場合は、設定された電流幅Iyをキャンセルして電流値Iq=Imaxとすると共に、電流値InをIn=Iw−(Imax−Iw)に変更する。
また、設定されたIwから1/2Iyを減算し、Iw−1/2Iy<Iminの場合は設定された電流幅Iyをキャンセルして電流値In=Iminとすると共に、電流値IqをIq=Iw+(Iw−Imin)に変更する。
この結果、平均電流Iwが変化することはなく、また、電流値が電源装置の定格電流範囲から外れることもない。
By the way, when setting the average current value Iw and the current amplitude Iy, the current value Iq may exceed the maximum value of the rated current, or the current value In may be less than the minimum value Imin of the rated current.
Therefore, when the average current value Iw and the current amplitude Iy are set, the calculation / determination means 21 immediately adds 1 / 2Iy to the set average current value Iw. If Iw + 1 / 2Iy> Imax, the calculation / determination means 21 is set. The current width Iy is canceled to set the current value Iq = Imax, and the current value In is changed to In = Iw− (Imax−Iw).
Further, 1/2 Iy is subtracted from the set Iw, and when Iw−1 / 2Iy <Imin, the set current width Iy is canceled to obtain the current value In = Imin, and the current value Iq is set to Iq = Iw + Change to (Iw-Imin).
As a result, the average current Iw does not change, and the current value does not deviate from the rated current range of the power supply device.

なお、この実施形態では、直流電流の場合について説明したが、図3に示すように、パルス溶接におけるピーク電流Ipあるいはベース電流に適用することができる。ここで、図3(a)は本発明をピーク電流Ipに適用した場合、(b)はベース電流Ibに適用した場合、(c)はピーク電流Ipとベース電流Ibに適用した場合である。なお、制御については、上記の説明から容易に実施できるので、詳細な説明を省略する。   In this embodiment, the case of a direct current has been described. However, as shown in FIG. 3, the present invention can be applied to a peak current Ip or a base current in pulse welding. 3A shows a case where the present invention is applied to the peak current Ip, FIG. 3B shows a case where the present invention is applied to the base current Ib, and FIG. 3C shows a case where the present invention is applied to the peak current Ip and the base current Ib. Since the control can be easily performed from the above description, the detailed description is omitted.

また、以上では電流波形が振幅Iyの範囲内で三角波になる場合について説明したが、図4に示すように、本発明を矩形波にすることもできる。ここで、図4(a)は本発明をパルス溶接におけるピーク電流Ipに適用した場合、(b)はベース電流Ibに適用した場合、(c)はピーク電流Ipとベース電流Ibに適用した場合である。なお、制御については、上記の説明から容易に実施できるので、詳細な説明を省略する。   Although the case where the current waveform is a triangular wave within the range of the amplitude Iy has been described above, the present invention may be a rectangular wave as shown in FIG. 4A shows a case where the present invention is applied to the peak current Ip in pulse welding, FIG. 4B shows a case where the present invention is applied to the base current Ib, and FIG. 4C shows a case where the present invention is applied to the peak current Ip and the base current Ib. It is. Since the control can be easily performed from the above description, the detailed description is omitted.

なお、以上の説明では、期間Tu=Tdとしたが、期間Tu≠Tdにしてもよい。
期間Tu≠Tdにする場合であっても、平均電流Iwは演算により容易に求めることができる。
In the above description, the period Tu = Td, but the period Tu ≠ Td may be used.
Even when the period Tu ≠ Td, the average current Iw can be easily obtained by calculation.

本発明に係る非消耗電極式ガスシールドアーク溶接電源の接続図である。It is a connection diagram of a non-consumable electrode type gas shielded arc welding power source according to the present invention. 本発明に係る主溶接時における電流波形図である。It is an electric current waveform figure at the time of the main welding which concerns on this invention. 本発明に係る主溶接時における電流波形図である。It is an electric current waveform figure at the time of the main welding which concerns on this invention. 本発明に係る主溶接時における電流波形図である。It is an electric current waveform figure at the time of the main welding which concerns on this invention. 従来の直流の非消耗電極式のガスシールドアーク溶接電源の接続図である。It is a connection diagram of a conventional direct current non-consumable electrode type gas shielded arc welding power source. ガスシールドアーク溶接電源の代表的な出力電流波形を示す図である。It is a figure which shows the typical output current waveform of a gas shielded arc welding power supply. 直流電源の場合の溶接時におけるタイミングチャートである。It is a timing chart at the time of welding in the case of DC power supply.

符号の説明Explanation of symbols

Tu 第1の期間
Td 第2の期間
Iw 平均電流値
Iy 振幅
Tu First period Td Second period Iw Average current value Iy Amplitude

Claims (7)

入力された電流値の電流を溶接部に供給するようにした非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法おいて、
交互に繰り返される第1および第2の期間と、平均電流値と、電流の振幅とを定めておき、前記第1の期間は前記振幅のプラス側または増加する側の電流を、前記第2の期間は前記振幅のマイナス側または減少する側の電流を、それぞれ供給すると共に、前記第1の期間と前記第2の期間における電流値の平均値が前記平均電流値となるように制御することを特徴とする非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法。
In the control method of the welding current in the non-consumable electrode type gas shielded arc welding in which the current of the input current value is supplied to the welded portion,
First and second periods that are alternately repeated, an average current value, and an amplitude of a current are determined. In the first period, a current on the plus side or an increase side of the amplitude is set as the second period. In the period, the current on the negative side or the decrease side of the amplitude is supplied, and the average value of the current values in the first period and the second period is controlled to be the average current value. A method for controlling a welding current in non-consumable electrode type gas shielded arc welding.
前記振幅内の電流の立ち上がりおよび立ち下がりを緩やかにすることにより前記振幅内の電流波形を三角波にすることを特徴とする請求項1に記載の非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法。   The control of the welding current in the non-consumable electrode type gas shielded arc welding according to claim 1, wherein the current waveform within the amplitude is changed to a triangular wave by gradual rising and falling of the current within the amplitude. Method. 前記振幅内の電流の立ち上がりおよび立ち下がりを急峻かつ前記振幅の端部で一定値とすることにより前記振幅内の電流波形を矩形波にすることを特徴とする請求項1に記載の非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法。   2. The non-consumable electrode according to claim 1, wherein the current waveform in the amplitude is a rectangular wave by making the rise and fall of the current in the amplitude steep and constant at the end of the amplitude. Method for controlling welding current in gas-type gas shielded arc welding. 前記振幅の最大値が定格電流の最大値を超える場合は、前記振幅の最大値を前記最大値にすると共に、前記主電流値が維持されるように前記振幅を小さくすることを特徴とする請求項1に記載の非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法。   When the maximum value of the amplitude exceeds the maximum value of a rated current, the maximum value of the amplitude is set to the maximum value, and the amplitude is reduced so that the main current value is maintained. Item 2. A method for controlling a welding current in the non-consumable electrode type gas shielded arc welding according to Item 1. 前記振幅の最小値が定格電流の最小値未満になる場合は、前記振幅の最小値を前記最小値にすると共に、前記主電流値が維持されるように前記振幅を小さくすることを特徴とする請求項1に記載の非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法。   When the minimum value of the amplitude is less than the minimum value of the rated current, the minimum value of the amplitude is set to the minimum value, and the amplitude is reduced so that the main current value is maintained. The control method of the welding current in the non-consumable electrode type gas shielded arc welding according to claim 1. 前記第1および第2の期間がパルス溶接におけるパルス期間および/またはベース期間の一部であることを特徴とする請求項1に記載の非消耗電極式ガスシールドアーク溶接における溶接電流の制御方法。   2. The method for controlling a welding current in non-consumable electrode type gas shielded arc welding according to claim 1, wherein the first and second periods are a part of a pulse period and / or a base period in pulse welding. 入力された電流値の電流を溶接部に供給するようにした非消耗電極式ガスシールドアーク溶接における電源装置において、
第1および第2の期間設定手段と、主電流値および電流の振幅設定手段と、演算・判定手段と、を設け、請求項1ないし請求項6に記載の溶接電流の制御方法により溶接電流を制御することを特徴とする非消耗電極式ガスシールドアーク溶接における電源装置。
In the power supply device in the non-consumable electrode type gas shielded arc welding that supplies the current of the input current value to the weld,
The first and second period setting means, main current value and current amplitude setting means, and calculation / determination means are provided, and the welding current is controlled by the welding current control method according to claim 1. A power supply apparatus for non-consumable electrode type gas shielded arc welding characterized by controlling.
JP2004206512A 2004-07-13 2004-07-13 Non-consumable electrode type gas shielded arc welding welding current control method and power supply device Expired - Fee Related JP4853855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206512A JP4853855B2 (en) 2004-07-13 2004-07-13 Non-consumable electrode type gas shielded arc welding welding current control method and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206512A JP4853855B2 (en) 2004-07-13 2004-07-13 Non-consumable electrode type gas shielded arc welding welding current control method and power supply device

Publications (2)

Publication Number Publication Date
JP2006026669A true JP2006026669A (en) 2006-02-02
JP4853855B2 JP4853855B2 (en) 2012-01-11

Family

ID=35893623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206512A Expired - Fee Related JP4853855B2 (en) 2004-07-13 2004-07-13 Non-consumable electrode type gas shielded arc welding welding current control method and power supply device

Country Status (1)

Country Link
JP (1) JP4853855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229775A (en) * 2006-03-02 2007-09-13 Daihen Corp Consumable electrode arc welding method
JP2009262181A (en) * 2008-04-24 2009-11-12 Daihen Corp Output controlling method in pulse arc welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279087A (en) * 1986-05-28 1987-12-03 Yamaha Motor Co Ltd Welding method
JPS6320168A (en) * 1986-07-15 1988-01-27 Nippon Steel Corp Power source feeder for both ac and dc for arc welding
JPH01157774A (en) * 1987-12-16 1989-06-21 Matsushita Electric Ind Co Ltd Consumable electrode type pulse arc welding machine
JPH03285768A (en) * 1990-03-30 1991-12-16 Hitachi Seiko Ltd Tig welding power source controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279087A (en) * 1986-05-28 1987-12-03 Yamaha Motor Co Ltd Welding method
JPS6320168A (en) * 1986-07-15 1988-01-27 Nippon Steel Corp Power source feeder for both ac and dc for arc welding
JPH01157774A (en) * 1987-12-16 1989-06-21 Matsushita Electric Ind Co Ltd Consumable electrode type pulse arc welding machine
JPH03285768A (en) * 1990-03-30 1991-12-16 Hitachi Seiko Ltd Tig welding power source controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229775A (en) * 2006-03-02 2007-09-13 Daihen Corp Consumable electrode arc welding method
JP2009262181A (en) * 2008-04-24 2009-11-12 Daihen Corp Output controlling method in pulse arc welding

Also Published As

Publication number Publication date
JP4853855B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
US8993927B2 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
US8338750B2 (en) AC pulse arc welding control method
US9108263B2 (en) Welding power source with automatic variable high frequency
US8937267B2 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
JP2006192463A (en) Arc start-control method of ac arc welding
JPH09141430A (en) Method and equipment for pulse arc welding
US10179369B2 (en) Welding system for AC welding with reduced spatter
US11958141B2 (en) Systems and methods to provide welding-type arc starting and stabilization with reduced open circuit voltage
JP5120073B2 (en) AC pulse arc welding apparatus and control method
JP4853855B2 (en) Non-consumable electrode type gas shielded arc welding welding current control method and power supply device
JP4759233B2 (en) Non-consumable electrode type gas shielded arc welding power supply
JPS6316868A (en) Low electric current welding method
JP2010052004A (en) Gas control method of arc welding
JP6921773B2 (en) Non-consumable electrode pulse arc welding control method
JP7576764B2 (en) DC arc welding control method
EP4155019A1 (en) Direct current arc welding control method
US11305367B2 (en) Non-consumable electrode arc-welding method
JP4570444B2 (en) Arc welding equipment
JP2010017738A (en) Setting method of welding condition of mag pulse welding
JP2024060640A (en) Covered-arc welding control method
JPS5890376A (en) Arc welding device
JPS61286068A (en) Power source for arc welding
JP2017205770A (en) Plasma welding equipment
JP2006130535A (en) Welding method and electric power source for welding
JPH04356365A (en) Consumable electrode ac/dc gas shielded arc welding machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees