JP2006026487A - Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell - Google Patents

Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell Download PDF

Info

Publication number
JP2006026487A
JP2006026487A JP2004206701A JP2004206701A JP2006026487A JP 2006026487 A JP2006026487 A JP 2006026487A JP 2004206701 A JP2004206701 A JP 2004206701A JP 2004206701 A JP2004206701 A JP 2004206701A JP 2006026487 A JP2006026487 A JP 2006026487A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor
cooling
catalyst
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206701A
Other languages
Japanese (ja)
Inventor
Shinichi Sugihara
愼一 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO DEVICE KENKYUSHO KK
Original Assignee
KANKYO DEVICE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO DEVICE KENKYUSHO KK filed Critical KANKYO DEVICE KENKYUSHO KK
Priority to JP2004206701A priority Critical patent/JP2006026487A/en
Publication of JP2006026487A publication Critical patent/JP2006026487A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Catalysts (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of improving the activity of catalysts, including photocatalysts, a method of improving the performance of semiconductors, e.g. silicon solar cells, and to provide a method of manufacturing a catalyst having an improved activity or a semiconductor having improved performance and also a method of manufacturing a wet solar cell. <P>SOLUTION: The methods are based on cooling a photocatalyst containing titanium oxide, a semiconductor, e.g. a solar cell, at extremely low temperatures, e.g. the temperature of liquid nitrogen. The rate of improvement of the activity of a photocatalyst or the performance of a solar cell or a wet solar cell depends upon the cooling conditions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光触媒を含む触媒の活性向上方法及びシリコン太陽電池のような半導体の性能向上方法、及び、活性が向上した触媒又は性能が向上した半導体の製造方法並びに湿式太陽電池の製造方法に関する。より具体的には、本発明は、触媒、光触媒又は半導体を極低温で冷却することによる活性または性能の向上方法、及び、活性または性能が向上した触媒、光触媒又は半導体の製造方法並びに湿式太陽電池の製造方法に関する。   The present invention relates to a method for improving the activity of a catalyst including a photocatalyst, a method for improving the performance of a semiconductor such as a silicon solar cell, a method for producing a catalyst having improved activity or a semiconductor having improved performance, and a method for producing a wet solar cell. More specifically, the present invention relates to a method for improving activity or performance by cooling a catalyst, photocatalyst or semiconductor at an extremely low temperature, a method for producing a catalyst, photocatalyst or semiconductor having improved activity or performance, and a wet solar cell. It relates to the manufacturing method.

酸化チタンや酸化亜鉛などの酸化物に紫外線を照射して、これらの素材の光触媒作用を発揮させ、その光触媒作用を脱臭や殺菌等に利用することが広く実施されている。これらの素材の光触媒作用を高めるために、これらの酸化物に貴金属を担持させることも知られている。例えば、特許文献1(特開平2−90924号公報)には酸化チタンに金を添着させてアルデヒド類の悪臭を効果的に脱臭することが開示されている。
また、特許文献2(特開平4−22438号公報)には金属のコロイド溶液に半導体酸化物微粒子を混合して半導体酸化物微粒子上に金属を担持させることが開示されている。更に、用いる半導体酸化物の種類、貴金属の種類、貴金属の濃度、担持方法、被分解ガス等によって光触媒特性が大きく変わることも知られており、光触媒活性を向上させるために種々の試みがなされている。また、近時では可視光活性を保有する光触媒も公知であり、たとえば特許文献3(特開2002−255554号公報)などがある。可視光応答型光触媒には酸化チタン系のみならず、他の酸化物を主成分としたものがあり、結晶形としてペロブスカイト型やオキシナイトライド型、その他がある。これら可視光応答型光触媒に関しても貴金属を担置し、性能向上を図ることも公知である。
It has been widely practiced to irradiate oxides such as titanium oxide and zinc oxide with ultraviolet rays to exert the photocatalytic action of these materials and to use the photocatalytic action for deodorization or sterilization. In order to enhance the photocatalytic action of these materials, it is also known to support a noble metal on these oxides. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2-90924) discloses that odors of aldehydes are effectively deodorized by attaching gold to titanium oxide.
Patent Document 2 (Japanese Patent Laid-Open No. Hei 4-224438) discloses that semiconductor oxide fine particles are mixed in a metal colloid solution to support the metal on the semiconductor oxide fine particles. Furthermore, it is known that the photocatalytic properties vary greatly depending on the type of semiconductor oxide used, the type of noble metal, the concentration of the noble metal, the loading method, the gas to be decomposed, etc., and various attempts have been made to improve the photocatalytic activity. Yes. Recently, a photocatalyst having visible light activity is also known, for example, Patent Document 3 (Japanese Patent Laid-Open No. 2002-255554). Visible light responsive photocatalysts include not only titanium oxide-based but also other oxides as main components, and crystal forms include perovskite type, oxynitride type, and others. It is also well known that these visible light responsive photocatalysts carry noble metals to improve performance.

このように、光触媒活性を向上させるために種々の試みがなされているが、貴金属は高価な素材であり、貴金属を使用しないで光触媒活性を向上する方法が求められている。   As described above, various attempts have been made to improve photocatalytic activity. However, noble metals are expensive materials, and a method for improving photocatalytic activity without using noble metals is required.

また、光触媒以外の通常の触媒(熱触媒)についても、従来から種々の活性向上方法が考案されているが、新たな活性向上方法に対するニーズも依然として高い。   Moreover, various conventional methods for improving the activity of conventional catalysts (thermal catalysts) other than the photocatalyst have been devised, but the need for a new activity improving method is still high.

さらに、シリコン太陽電池のような半導体は、光の電気へのエネルギー変換効率のような性能の向上が常に求められ、近年、シリコン太陽電池は一般家庭でも実用化が進められていることから、より一層の性能の向上が求められている。
また、いわゆる色素増感型の太陽電池としてグレッチェルセルの名で知られる酸化物半導体である酸化チタンに色素を複合した湿式の太陽電池についても、次世代の太陽電池として発電効率の向上が期待されている。
特開平2−90924号公報 特開平4−22438号公報 特開2002−255554号公報
Furthermore, semiconductors such as silicon solar cells are constantly required to improve performance such as energy conversion efficiency of light to electricity, and in recent years, silicon solar cells are being put to practical use in general households. There is a need for further improvement in performance.
In addition, wet solar cells that combine dyes with titanium oxide, which is an oxide semiconductor known as the Gretchel cell as a so-called dye-sensitized solar cell, are expected to improve power generation efficiency as next-generation solar cells. Has been.
JP-A-2-90924 JP-A-4-22438 JP 2002-255554 A

そこで、本発明の目的は、従来に無い新規な光触媒を含む触媒の活性向上方法及び活性の向上した光触媒を含む触媒の製造方法を提供することにある。
さらに本発明の別の目的は、従来に無い新規な半導体の性能向上方法及び性能の向上した化合物半導体を含む各種半導体及び酸化物半導体と色素を利用した湿式太陽電池の高性能の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for improving the activity of a catalyst containing a novel photocatalyst that has not been heretofore and a method for producing a catalyst containing a photocatalyst with improved activity.
Furthermore, another object of the present invention is to provide a novel method for improving the performance of a new semiconductor and a method for producing a high-performance wet solar cell using various semiconductors, including oxide semiconductors and dyes, including compound semiconductors with improved performance. There is to do.

本発明者は、鋭意検討の結果、酸化チタンを含む光触媒や太陽電池のような半導体を液体窒素温度等の極低温で冷却することにより、冷却処理前の光触媒の活性を上回る性能を発揮する光触媒体や変換効率の高い太陽電池が得られ、冷却条件により、光触媒活性や太陽電池、湿式太陽電池の性能の向上率が異なることを見出して本発明を完成した。
また、本発明は冷却処理後、常温ないし室温に戻し、触媒及び半導体を高性能化することを特徴とした方法でもあり、冷却しながら、または冷却中に半導体を使用する公知の方法とはまったく異なる性能向上方法、ないしは製造方法である。
As a result of intensive studies, the inventor has cooled the semiconductor such as a photocatalyst containing titanium oxide or a solar cell at an extremely low temperature such as a liquid nitrogen temperature, and thereby exhibits a performance exceeding the activity of the photocatalyst before the cooling treatment. The present invention was completed by finding that the solar cell with high body and conversion efficiency was obtained, and that the improvement rate of the photocatalytic activity and the performance of the solar cell and the wet solar cell differed depending on the cooling conditions.
Further, the present invention is also a method characterized in that after cooling treatment, the temperature is returned to room temperature to room temperature to improve the performance of the catalyst and the semiconductor, which is completely different from a known method using a semiconductor while cooling or during cooling. Different performance improvement methods or manufacturing methods.

本発明は以下の通りである。
請求項1の発明は、触媒の活性を向上させる方法であって、触媒を−30℃以下に冷却し、冷却後昇温することを特徴とする方法である。
請求項2の発明は、活性の向上した触媒の製造方法であって、触媒を−30℃以下に冷却し、冷却後昇温することを特徴とする方法である。
請求項3の発明は、触媒が酸化物を含む請求項1または2に記載の方法である。
請求項4の発明は、触媒が光触媒である請求項1〜3のいずれか1項に記載の方法である。
請求項5の発明は、光触媒が酸化物半導体である請求項4に記載の方法である。
請求項6の発明は、酸化物半導体が酸化チタンである請求項5に記載の方法である。
請求項7の発明は、半導体の性能を向上させる方法であって、半導体を−30℃以下に冷却し、冷却後昇温することを特徴とする方法である。
請求項8の発明は、性能の向上した半導体の製造方法であって、半導体を−30℃以下に冷却し、冷却後昇温することを特徴とする方法である。
請求項9の発明は、半導体がシリコン太陽電池または化合物半導体である請求項8に記載の方法である。
請求項10の発明は、シリコン太陽電池が単結晶、微結晶、多結晶またはアモルファス型である請求項9に記載の方法である。
請求項11の発明は、化合物半導体がLEDである請求項9の方法である。
請求項12の発明は、冷却温度が−50℃以下である請求項1〜11のいずれか1項に記載の方法である。
請求項13の発明は、冷却温度が−80℃以下である請求項1〜11のいずれか1項に記載の方法である。
請求項14の発明は、冷却温度が液体窒素の温度(−196℃)である請求項1〜11のいずれか1項に記載の方法である。
請求項15の発明は、冷却時間が5分以上である請求項1〜14のいずれか1項に記載の方法である。
請求項16の発明は、冷却時間が30分〜24時間の範囲である請求項15に記載の方法である。
請求項17の発明は、最も低い冷却温度に達するまでの時間が5分以下である請求項 1〜16のいずれか1項に記載の方法である。
請求項18の発明は、最も低い冷却温度に達するまでの時間が5分以上である請求項 1〜16のいずれか1項に記載の方法である。
請求項19の発明は、最も低い冷却温度に達するまでの時間が1時間以上である請求項 1〜16のいずれか1項に記載の方法である。
請求項20の発明は、昇温に要する時間が5分以下である請求項 1〜16のいずれか1項に記載の方法である。
請求項21の発明は、昇温に要する時間が5分以上である請求項 1〜16のいずれか1項に記載の方法である。
請求項22の発明は、昇温に要する時間が1時間以上である請求項 1〜16のいずれか1項に記載の方法である。
請求項23の発明は、触媒、半導体を液体窒素に直接接触させ、冷却する請求項 1〜22のいずれか1項に記載の方法である。
請求項24の発明は、冷却後、常温に放置して触媒又は半導体の温度を常温に戻す請求項1〜23のいずれか1項に記載の方法である。
請求項25の発明は、請求項1〜8、12〜24のいずれかの方法を用いた湿式電池の性能向上方法および製造方法である。
The present invention is as follows.
The invention of claim 1 is a method for improving the activity of the catalyst, wherein the catalyst is cooled to -30 ° C. or lower, and the temperature is raised after cooling.
The invention of claim 2 is a method for producing a catalyst with improved activity, wherein the catalyst is cooled to -30 ° C. or lower, and the temperature is raised after cooling.
The invention according to claim 3 is the method according to claim 1 or 2, wherein the catalyst contains an oxide.
The invention according to claim 4 is the method according to any one of claims 1 to 3, wherein the catalyst is a photocatalyst.
The invention according to claim 5 is the method according to claim 4, wherein the photocatalyst is an oxide semiconductor.
The invention according to claim 6 is the method according to claim 5, wherein the oxide semiconductor is titanium oxide.
The invention of claim 7 is a method for improving the performance of a semiconductor, wherein the semiconductor is cooled to −30 ° C. or lower and the temperature is raised after cooling.
The invention of claim 8 is a method for producing a semiconductor with improved performance, wherein the semiconductor is cooled to -30 ° C. or lower, and the temperature is raised after cooling.
The invention according to claim 9 is the method according to claim 8, wherein the semiconductor is a silicon solar cell or a compound semiconductor.
The invention according to claim 10 is the method according to claim 9, wherein the silicon solar cell is a single crystal, a microcrystal, a polycrystal or an amorphous type.
The invention of claim 11 is the method of claim 9, wherein the compound semiconductor is an LED.
Invention of Claim 12 is a method of any one of Claims 1-11 whose cooling temperature is -50 degrees C or less.
Invention of Claim 13 is a method of any one of Claims 1-11 whose cooling temperature is -80 degrees C or less.
The invention according to claim 14 is the method according to any one of claims 1 to 11, wherein the cooling temperature is the temperature of liquid nitrogen (−196 ° C.).
Invention of Claim 15 is a method of any one of Claims 1-14 whose cooling time is 5 minutes or more.
The invention according to claim 16 is the method according to claim 15, wherein the cooling time is in the range of 30 minutes to 24 hours.
The invention according to claim 17 is the method according to any one of claims 1 to 16, wherein the time to reach the lowest cooling temperature is 5 minutes or less.
The invention according to claim 18 is the method according to any one of claims 1 to 16, wherein the time to reach the lowest cooling temperature is 5 minutes or more.
The invention according to claim 19 is the method according to any one of claims 1 to 16, wherein the time to reach the lowest cooling temperature is one hour or more.
The invention according to claim 20 is the method according to any one of claims 1 to 16, wherein the time required for temperature rise is 5 minutes or less.
The invention according to claim 21 is the method according to any one of claims 1 to 16, wherein the time required for temperature rise is 5 minutes or more.
The invention according to claim 22 is the method according to any one of claims 1 to 16, wherein the time required for the temperature rise is 1 hour or more.
The invention according to claim 23 is the method according to any one of claims 1 to 22, wherein the catalyst and the semiconductor are directly contacted with liquid nitrogen and cooled.
The invention of claim 24 is the method according to any one of claims 1 to 23, wherein after cooling, the catalyst or semiconductor is returned to room temperature by being left at room temperature.
The invention of claim 25 is a wet battery performance improving method and manufacturing method using the method of any one of claims 1-8, 12-24.

本発明は、触媒の活性を向上させる方法及び活性の向上した触媒の製造方法であって、いずれも、触媒を−30℃以下に冷却し、冷却後昇温することを特徴とする方法であることを特徴とする。
触媒の冷却温度は、低ければそれだけ触媒活性の向上効果は高く、例えば、−30℃以下であれば、目に見える向上効果が得られ始める。そして、冷却温度は例えば、−50℃以下であることが望ましく、−80℃以下であることが好ましく、冷却温度が−80℃以下であれば、確実に向上効果が得られるので、実際には−80℃以下での処理方法が望ましい。−80℃以下の条件は地表上の自然条件としては存在しないので、なんらかの処理装置を使用することが必要である。さらに、冷却温度が液体窒素の温度(−196℃)以下であれば、より著しい向上効果が得られる。経済性と向上効果とのバランスを考慮すると液体窒素温度での冷却処理が好適である。
The present invention is a method for improving the activity of a catalyst and a method for producing a catalyst with improved activity, both of which are characterized in that the catalyst is cooled to -30 ° C or lower and the temperature is raised after cooling. It is characterized by that.
The lower the cooling temperature of the catalyst, the higher the catalyst activity improving effect. For example, when the catalyst cooling temperature is −30 ° C. or lower, a visible improving effect starts to be obtained. And, for example, the cooling temperature is desirably −50 ° C. or less, preferably −80 ° C. or less, and if the cooling temperature is −80 ° C. or less, an improvement effect is surely obtained. A treatment method at −80 ° C. or lower is desirable. Since a condition of −80 ° C. or lower does not exist as a natural condition on the surface of the earth, it is necessary to use some kind of processing apparatus. Furthermore, if the cooling temperature is equal to or lower than the temperature of liquid nitrogen (−196 ° C.), a more remarkable improvement effect can be obtained. Considering the balance between economic efficiency and improvement effect, the cooling treatment at the liquid nitrogen temperature is suitable.

冷却時間には、特に制限はなく、冷却温度や所望の向上効果を考慮して、適宜決定できるが、5分以上が通常であり、実用上は、30分〜48時間の範囲であることができる。ここで冷却時間とは最も低い冷却温度近傍に達してから昇温処理に入るまでの間の時間を指す。   The cooling time is not particularly limited and can be appropriately determined in consideration of the cooling temperature and the desired improvement effect, but it is usually 5 minutes or longer, and practically, it is in the range of 30 minutes to 48 hours. it can. Here, the cooling time refers to the time from the vicinity of the lowest cooling temperature to the start of the temperature raising process.

本発明において、最も低い冷却温度に達するまでの時間は重要であり、特に触媒の活性を高めるという観点からは最も低い冷却温度に達するまでの過程を緩和した方が良い場合がある。
たとえば、室温から冷却器に酸化物、たとえば酸化チタンを入れ、徐々に冷却する方が、液体窒素に直接酸化チタン粉を接触させるより、活性の向上の面で効果的である場合が多い。最も低い冷却温度に達するまでの時間は5分以上、場合により1時間を超えた方が良い場合がある。1時間を超えた場合、大きく特性が向上することが多い。
In the present invention, the time to reach the lowest cooling temperature is important. In particular, from the viewpoint of increasing the activity of the catalyst, it may be better to relax the process to reach the lowest cooling temperature.
For example, it is often more effective in terms of improving the activity to put an oxide, for example, titanium oxide, into a cooler from room temperature and gradually cool it, rather than bringing titanium oxide powder into direct contact with liquid nitrogen. The time to reach the lowest cooling temperature is preferably 5 minutes or more, and in some cases it may be better to exceed 1 hour. When it exceeds 1 hour, the characteristics are often greatly improved.

昇温に要する時間についても同様に実際に触媒の活性、を高めるという点からは5分以上、場合により1時間を超えた方が良い場合もある。この場合も1時間を超えた場合、大きく特性が向上することが多い。5時間以上、特に24時間前後の時間をかけてゆっくり昇温することにより、特性が向上する場合もある。   Similarly, the time required for raising the temperature is preferably 5 minutes or more, and in some cases it may be better to exceed 1 hour in order to actually increase the activity of the catalyst. Also in this case, when the time exceeds one hour, the characteristics are often greatly improved. Characteristics may be improved by slowly raising the temperature over a period of 5 hours or more, particularly around 24 hours.

ただし、直接、液体窒素に接触させて冷却する方が触媒活性が向上する場合もある。たとえば同じ酸化チタンであっても、品種によってはゆっくり冷却した方が触媒活性、特に光触媒活性が向上するものもあれば、直接液体窒素に接触させた方が触媒活性、特に光触媒活性が向上するものもある。この理由については必ずしも明確ではないが、急激な冷却処理と、後の昇温処理により凝集した微結晶がほぐれる等の作用が複雑に関係しているものと予想できる。   However, there are cases where the catalytic activity is improved by cooling by direct contact with liquid nitrogen. For example, even if the same titanium oxide is used, depending on the varieties, there are those that are slowly cooled to improve catalytic activity, especially photocatalytic activity, and those that are directly contacted with liquid nitrogen improve catalytic activity, especially photocatalytic activity. There is also. Although the reason for this is not necessarily clear, it can be expected that an action such as a rapid cooling process and a breakup of microcrystals aggregated by a subsequent temperature increase process are complicatedly related.

冷却後の触媒を、常温に放置して触媒の温度を常温に戻す場合、冷却処理及び常温への戻しの処理は、容器内に密閉して行うことが、触媒への氷等の付着を防止すると言う観点から好ましい場合がある。   When the cooled catalyst is allowed to stand at room temperature and the temperature of the catalyst is returned to room temperature, the cooling process and the process of returning to room temperature should be performed in a sealed container to prevent adhesion of ice or the like to the catalyst. In some cases, this is preferable.

本発明の方法において、処理される触媒は、例えば、酸化物を含む物質であることができる。また、本発明の方法において、処理される触媒は、例えば、光触媒または通常の熱触媒であることもできる。   In the method of the present invention, the catalyst to be treated can be, for example, a substance containing an oxide. In the method of the present invention, the catalyst to be treated can be, for example, a photocatalyst or a normal thermal catalyst.

さらに、光触媒は、酸化物半導体(例えば、酸化チタン)である事ができる。光触媒は、公知の光触媒であればよく、光触媒としての機能を持つものであれば特に制限は無く、酸化亜鉛や他の酸化物半導体、あるいは酸窒化物半導体でもよいが、たとえば酸化チタンであれば、アナターゼ型、ルチル型、ブルッカイト型のものを適宜使用することができる。紫外活性をもつものだけでなく、青色に応答する可視応答型酸化チタンも使用することができる。本発明の処理を施して、活性向上に供することができる光触媒の例としては、例えば、再表01/010552、再表01/010553、特開2002-097019、特開2002-66333、特開2000-140636、特開2002-255554、特開2004-160327、特許3215698、特許3252136、WO 03/011763、WO 03/061828, WO03/080244、特開2004-160327等に記載のものを挙げることができるが、これらに限定される物ではない。   Furthermore, the photocatalyst can be an oxide semiconductor (eg, titanium oxide). The photocatalyst may be a known photocatalyst, and is not particularly limited as long as it has a function as a photocatalyst, and may be zinc oxide, other oxide semiconductors, or oxynitride semiconductors. Anatase, rutile, and brookite types can be used as appropriate. Not only those having ultraviolet activity, but also visible response type titanium oxide which responds to blue can be used. Examples of photocatalysts that can be subjected to the treatment of the present invention and can be used for activity improvement include, for example, Table 01/010552, Table 01/010553, JP 2002-097019, JP 2002-66333, JP 2000 -140636, JP2002-255554, JP2004-160327, JP3215698, JP3252136, WO03 / 011763, WO03 / 061828, WO03 / 080244, JP2004-160327, and the like. However, it is not limited to these.

特に、本発明の方法は、酸化物半導体とりわけ酸化チタンを冷却処理することを特徴とする。冷却する方法は特に制限は無いが、冷却処理後光触媒体表面に処理工程における残存物が存在しない方法がよい。この点配慮すれば冷却方法は公知のいかなる方法でもよく、液体ヘリウム、液体窒素による冷却方法が好適であるし、また、冷却温度に性能上の限界があるものの、食品冷凍に使用する機器等も使用できる。また、いわゆるクライオ装置の使用は有効である。   In particular, the method of the present invention is characterized in that an oxide semiconductor, particularly titanium oxide, is subjected to a cooling treatment. Although there is no restriction | limiting in particular in the method to cool, The method in which the residue in a process does not exist in the photocatalyst body surface after a cooling process is good. In consideration of this point, the cooling method may be any known method, and a cooling method using liquid helium or liquid nitrogen is suitable, and although there is a limit on the performance of the cooling temperature, equipment used for food freezing, etc. Can be used. Use of a so-called cryo device is effective.

本発明の性能向上方法において、なぜ光触媒活性が向上するかについてはかならずしも明瞭ではないが、酸化物半導体の結晶のなんらかの歪(ストレス)ないしは欠陥が冷却処理時および常温への昇温時にある程度解消、あるいは変化することにより、光吸収により励起されたホール(正孔)とキャリア(電子)の再結合を阻害する要因が減少したのではないかとも考えられる。本発明の性能向上方法により改質された光触媒体は冷却処理前と比して良好な光触媒活性を示し、有機ガスの分解作用他の機能を発揮する。本発明は、酸化チタンを用いた湿式太陽電池の性能向上手法、および製造法でもあるが、本発明の冷却処理、昇温処理を行った酸化チタンを使用した湿式太陽電池の効率が、本発明の冷却処理、昇温処理を行わない酸化チタンを使用した場合に比し高効率であることも、同様の理由に基づくことが考えられる。   In the performance improvement method of the present invention, it is not always clear why the photocatalytic activity is improved, but some distortion (stress) or defect of the crystal of the oxide semiconductor is eliminated to some extent at the time of cooling treatment and raising the temperature to room temperature, Alternatively, it is considered that the factor that inhibits the recombination of holes (holes) and carriers (electrons) excited by light absorption may have decreased due to the change. The photocatalyst modified by the method for improving performance of the present invention exhibits better photocatalytic activity than before the cooling treatment, and exhibits other functions such as the decomposition of organic gas. Although the present invention is a method for improving the performance of a wet solar cell using titanium oxide and a manufacturing method, the efficiency of the wet solar cell using titanium oxide subjected to the cooling treatment and the temperature raising treatment of the present invention is the present invention. It is conceivable that it is based on the same reason that it is more efficient than the case of using titanium oxide that is not subjected to the cooling treatment and the temperature raising treatment.

さらに酸化物を製造する方法として、水酸化物を加熱する方法が公知の方法としてあるが、水酸化物を冷却処理し、後に加熱することにより、結晶成長が抑えられる場合があることを本発明者は見出している。たとえばWO 03/011763の実施例2の洗浄5の条件で作成された水酸化チタン(アモルファスチタン)を原料として液体窒素で4時間冷却したものを試料として、400℃で加熱した場合、液体窒素での冷却処理を行う前の原料を同様に400℃で加熱したものに比し、XRDで解析した場合、アナターゼの結晶ピークが約50%から60%の強度(高さ)に減少する。このことは、結晶成長が水酸化物の冷却処理により結果として抑えられたことを意味する。結晶成長の制御により粒径の小さな酸化物を得ることも可能であり、結果として、活性の高い触媒、光触媒を得ることも期待できる。   Further, as a method for producing an oxide, a method of heating a hydroxide is a known method, but it is the present invention that crystal growth may be suppressed by cooling the hydroxide and heating it later. Have found headlines. For example, when titanium hydroxide (amorphous titanium) prepared under the conditions of cleaning 5 of Example 2 of WO 03/011763 is used as a raw material and cooled for 4 hours with liquid nitrogen, when heated at 400 ° C., the liquid nitrogen When the raw material before the cooling treatment is similarly heated at 400 ° C. and analyzed by XRD, the crystal peak of anatase is reduced from about 50% to 60% strength (height). This means that crystal growth was consequently suppressed by the cooling treatment of hydroxide. It is possible to obtain an oxide having a small particle diameter by controlling crystal growth, and as a result, it can be expected to obtain a highly active catalyst or photocatalyst.

本発明の性能向上方法は光触媒のみならず、金属酸化物を使用した触媒(熱触媒)、すなわち自動車の排ガス浄化用の三元触媒や、脱硫、脱硝触媒、各種合成用の触媒にも一定程度の有効性を示すものと期待される。当然、貴金属を担置した触媒にも一定の効果は期待できる。   The performance improvement method of the present invention is not limited to photocatalysts but also to catalysts using metal oxides (thermal catalysts), that is, three-way catalysts for exhaust gas purification of automobiles, desulfurization, denitration catalysts, and various synthesis catalysts. It is expected to show the effectiveness of. Of course, a certain effect can also be expected for a catalyst carrying a precious metal.

さらに本発明は、半導体の性能を向上させる方法及びであって、性能の向上した半導体の製造方法であって、いずれの方法も半導体を−30℃以下に冷却することを特徴とする。   Furthermore, the present invention is a method for improving the performance of a semiconductor, and a method for manufacturing a semiconductor with improved performance, both of which are characterized in that the semiconductor is cooled to −30 ° C. or lower.

半導体の冷却温度は、低ければそれだけ半導体性能の向上効果は高く、例えば、−30℃以下であれば、目に見える向上効果が得られ始める。そして、冷却温度は例えば、−50℃以下であることが望ましく、−80℃以下であることが好ましく、冷却温度が−80℃以下であれば、確実に向上効果が得られる。さらに、冷却温度が液体窒素の温度(−196℃)以下であれば、著しい向上効果が得られる。経済性と向上効果とのバランスを考慮すると液体窒素での冷却処理が好適である。   The lower the semiconductor cooling temperature, the higher the semiconductor performance improvement effect. For example, when the semiconductor cooling temperature is −30 ° C. or lower, a visible improvement effect starts to be obtained. For example, the cooling temperature is desirably −50 ° C. or less, preferably −80 ° C. or less, and if the cooling temperature is −80 ° C. or less, the improvement effect is surely obtained. Furthermore, if the cooling temperature is equal to or lower than the temperature of liquid nitrogen (−196 ° C.), a significant improvement effect can be obtained. Considering the balance between economic efficiency and improvement effect, cooling treatment with liquid nitrogen is preferable.

冷却時間には、特に制限はなく、冷却温度や所望の向上効果を考慮して、適宜決定できるが、冷却時間は、5分以上が通常であり、実用上は、30分〜48時間の範囲であることができる。ここで冷却時間とは最冷却温度近傍に達してから昇温処理に入るまでの間の時間を指す。   The cooling time is not particularly limited and can be appropriately determined in consideration of the cooling temperature and a desired improvement effect. However, the cooling time is usually 5 minutes or more, and is practically in the range of 30 minutes to 48 hours. Can be. Here, the cooling time refers to the time from reaching the vicinity of the lowest cooling temperature until the temperature raising process is started.

本発明においては、最冷却温度に達するまでの時間は重要であり、特に半導体、(化合物半導体を含む)の性能を高めるという観点からは最も低い冷却温度に達するまでの過程を緩和した方が良い場合がある。
たとえば、室温から冷却器にシリコンウエハー、あるいはLEDを入れ、徐々に冷却する方が、活性の向上の面で効果的である場合が多い。最も低い冷却温度に達するまでの時間は5分以上が望ましく、基本的には1時間を超えた方が良い。1時間を超えた場合、大きく特性が向上することが多い。
In the present invention, the time to reach the lowest cooling temperature is important. In particular, from the viewpoint of enhancing the performance of semiconductors (including compound semiconductors), it is better to relax the process until the lowest cooling temperature is reached. There is a case.
For example, in many cases, it is more effective in terms of improving the activity to gradually cool a room by placing a silicon wafer or LED in a cooler. The time to reach the lowest cooling temperature is preferably 5 minutes or more, and basically it is better to exceed 1 hour. When it exceeds 1 hour, the characteristics are often greatly improved.

昇温に要する時間についても同様に半導体、(化合物半導体を含む)の性能を高めるという観点からは5分以上が望ましく、基本的には1時間を超えた方が良い。この場合も1時間を超えた場合、大きく特性が向上することが多い。5時間以上、特に24時間前後の時間をかけてゆっくり昇温することにより、特性が向上する場合もある。   Similarly, the time required for raising the temperature is preferably 5 minutes or more from the viewpoint of enhancing the performance of the semiconductor (including the compound semiconductor), and basically it is better to exceed 1 hour. Also in this case, when the time exceeds one hour, the characteristics are often greatly improved. Characteristics may be improved by slowly raising the temperature over a period of 5 hours or more, particularly around 24 hours.

冷却後の半導体は、クライオ装置等を利用して徐々に昇温することが普通であるが、場合によっては常温に放置して半導体の温度を常温に戻す場合もある。冷却処理及び常温への戻しの処理は、容器内に密閉して行うことが、半導体への氷等の付着を防止すると言う観点から好ましい場合がある。   Normally, the semiconductor after cooling is gradually heated using a cryo device or the like, but in some cases, the temperature of the semiconductor may be returned to room temperature by leaving it at room temperature. The cooling process and the process of returning to room temperature may be preferably performed in a sealed manner in a container from the viewpoint of preventing adhesion of ice or the like to the semiconductor.

本発明において半導体は、特に制限はないが、例えば、シリコン太陽電池であることができ、シリコン太陽電池は、例えば、単結晶、微結晶、多結晶またはアモルファス型であることができる。シリコン太陽電池を本発明の方法で処理すると、電流特性(光−電気変換特性)が向上する。
また、本発明において半導体は、GaAs等の化合物半導体であることもできる。
化合物半導体は発光LEDであることもできる。
In the present invention, the semiconductor is not particularly limited, but can be, for example, a silicon solar cell, and the silicon solar cell can be, for example, a single crystal, a microcrystal, a polycrystalline, or an amorphous type. When a silicon solar cell is processed by the method of the present invention, current characteristics (photo-electric conversion characteristics) are improved.
In the present invention, the semiconductor can also be a compound semiconductor such as GaAs.
The compound semiconductor can also be a light emitting LED.

本発明において湿式太陽電池はいわゆる色素と酸化チタン、ITO等の透明性導電極、電解質液等で構成されるグレッチエルセル型であることができるが、本発明の冷却処理他を施す酸化チタンは熱加水分解でできたアナターゼ型やルチル型であることができるし、硫酸チタン、硫酸チタニルや四塩化チタン、三塩化チタンをアンモニアや水酸化ナトリウム、水酸化リチウム、水酸化カリウム等で共沈させた水酸化物を空気中あるいは水溶液中で加熱してルチル型、あるいはアナターゼ型、場合によりブルッカイト型に結晶化したものが適宜使用可能である。その他酸化チタンの製法は公知のいかなる製法でも良いが、本発明の冷却処理他を行ったことによる性能向上の程度は結晶性が比較的低いもの、すなわち、(XRDでブロードなピークを示すタイプの比較的BET被表面積の大きな酸化チタン)、たとえば、溶液中で熱加水分解法されることにより製造された、石原産業製のST-01の様なタイプの酸化チタンに顕著である傾向がある。
このタイプの酸化チタンはアモルファス相と微結晶相との混晶である場合が多い。なお、酸化チタン粉が溶液に分散している状態であっても基本的な問題は無く、本発明の技術を使用することも適宜可能である。
In the present invention, the wet solar cell can be a Gretsch-Elsell type composed of a so-called pigment, titanium oxide, a transparent conductive electrode such as ITO, an electrolyte solution, etc. It can be anatase type or rutile type made by thermal hydrolysis, and titanium sulfate, titanyl sulfate, titanium tetrachloride, titanium trichloride are coprecipitated with ammonia, sodium hydroxide, lithium hydroxide, potassium hydroxide, etc. Further, it is possible to appropriately use a hydroxide obtained by heating the hydroxide in the air or in an aqueous solution and crystallizing it into a rutile type, anatase type or, in some cases, a brookite type. In addition, any known production method of titanium oxide may be used, but the degree of performance improvement by performing the cooling treatment of the present invention is relatively low in crystallinity, i.e. (of the type showing a broad peak in XRD). Titanium oxide having a relatively large BET surface area), for example, a type of titanium oxide such as ST-01 manufactured by Ishihara Sangyo, manufactured by thermal hydrolysis in a solution tends to be prominent.
This type of titanium oxide is often a mixed crystal of an amorphous phase and a microcrystalline phase. Even if the titanium oxide powder is dispersed in the solution, there is no basic problem, and the technique of the present invention can be used as appropriate.

なお、本発明の応用として、磁性体を冷却することにより、インダクタンスが大となる傾向も本発明者は見出している。たとえば電力用のトランスに使用されるアモルファスの鉄コアを-85℃で4時間以上冷却処理した場合、インダクタンスが処理前に比し1割程度向上することが確認されている。   As an application of the present invention, the present inventors have also found that the inductance tends to increase by cooling the magnetic material. For example, it has been confirmed that when an amorphous iron core used in a power transformer is subjected to a cooling treatment at -85 ° C. for 4 hours or more, the inductance is improved by about 10% as compared with that before the treatment.

以下に本発明を実施例及び比較例によって具体的に説明するが、本発明はかかる事例に限定されるものではない。
実施例1
試料の調製方法
WO 03/011763の実施例2の洗浄5の条件(400℃で1時間焼成)に従って作成した可視光に応答する光触媒2.0gを冷凍機を使用して20℃−から−80℃の雰囲気にするのに5時間かかる条件で温度を下げて、−80℃の雰囲気は4時間維持後5時間かけて20℃に戻して試料1を得た。また、同様の光触媒2.0gを20℃から液体窒素温度近傍の温度雰囲気にするのに12時間かかる条件で温度を下げて、液体窒素温度近傍の雰囲気は4時間維持後、12時間かけて20℃に戻して試料2を得た。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to such examples.
Example 1
Sample preparation method
Using a refrigerator, 2.0 g of a photocatalyst responding to visible light prepared according to the conditions of cleaning 5 in Example 2 of WO 03/011763 (calcined at 400 ° C. for 1 hour) is brought to an atmosphere of 20 ° C. to −80 ° C. Then, the temperature was lowered under conditions that took 5 hours, and the atmosphere at −80 ° C. was maintained for 4 hours and then returned to 20 ° C. over 5 hours to obtain Sample 1. In addition, the temperature of the same photocatalyst 2.0 g was lowered from 20 ° C. under the condition that it took 12 hours to change to a temperature atmosphere near liquid nitrogen temperature, and the atmosphere near liquid nitrogen temperature was maintained for 4 hours and then 20 ° C. over 12 hours. Sample 2 was obtained by returning to step (b).

光触媒評価方法:
試料を0.2gを採取後、6cm×6cmのガラス板に蒸留水を加えながら均一に塗布した。その後、試料を乾燥させ550mLのガラス製反応容器内に設置した。反応容器を5Torrまで脱気させ,高純度空気(日本酸素製,CO2、0.5ppm以下)で760Torrまで戻した。反応容器内にアセトン約550ppmになるように液体の状態で注入し、気化させた。吸着平衡後に青色LED( 日亜化学製、NSPB500S、中心波長470nmを23個配列)を24時間照射させた。アセトン濃度はガスクロマトグラフ(FID)で、CO2濃度はガスクロマトグラフ(TCD)で測定を行なった。未処理の光触媒(未処理品)、試料1及び2の結果を以下の表1及び図1に示す。
Photocatalyst evaluation method:
After collecting 0.2 g of the sample, it was uniformly applied to a 6 cm × 6 cm glass plate while adding distilled water. The sample was then dried and placed in a 550 mL glass reaction vessel. The reaction vessel was degassed to 5 Torr and returned to 760 Torr with high purity air (Nippon Oxygen, CO 2 , 0.5 ppm or less). Into the reaction vessel, acetone was injected in a liquid state to be about 550 ppm and vaporized. After the adsorption equilibrium, a blue LED (manufactured by Nichia Chemical Co., Ltd., NSPB500S, 23 arrays with a central wavelength of 470 nm) was irradiated for 24 hours. The acetone concentration was measured with a gas chromatograph (FID), and the CO 2 concentration was measured with a gas chromatograph (TCD). The results of untreated photocatalyst (untreated product) and Samples 1 and 2 are shown in Table 1 and FIG.

Figure 2006026487
Figure 2006026487

実施例2
試料の調製方法:
市販の光触媒であるST-01(石原産業製)2.0gを液体窒素中にいきなり投入し、4時間放置し、放置後室温に戻して自然に昇温させて試料3を得た。
Example 2
Sample preparation method:
ST-01 (manufactured by Ishihara Sangyo Co., Ltd.), a commercially available photocatalyst, was suddenly charged into liquid nitrogen, allowed to stand for 4 hours, allowed to return to room temperature, and naturally warmed to obtain sample 3.

光触媒評価方法:
試料0.2gを採取後、6cm×6cmのガラス板に蒸留水を加えながら均一に塗布した。その後、試料を乾燥させ550mLのガラス製反応容器内に設置した。反応容器を5Torrまで脱気させ、高純度空気(日本酸素製、CO2、0.5ppm以下)で760Torrまで戻した。反応容器内にアセトン約550ppmになるように液体の状態で注入し、気化させた。吸着平衡後にブラックライト( SANKYOU DENKI製、FL10BLB、10W、1本、照射距離10 cm)を照射させた。CO2濃度はガスクロマトグラフ(TCD)で測定を行なった。未処理のST-01(未処理品)及び試料3の結果を表2に示す。
Photocatalyst evaluation method:
After collecting 0.2 g of a sample, it was uniformly applied to a 6 cm × 6 cm glass plate while adding distilled water. The sample was then dried and placed in a 550 mL glass reaction vessel. The reaction vessel was degassed to 5 Torr, and returned to 760 Torr with high purity air (manufactured by Nippon Oxygen, CO 2 , 0.5 ppm or less). Into the reaction vessel, acetone was injected in a liquid state to be about 550 ppm and vaporized. After the adsorption equilibrium, a black light (manufactured by SANKYOU DENKI, FL10BLB, 10W, 1 piece, irradiation distance 10 cm) was irradiated. The CO 2 concentration was measured with a gas chromatograph (TCD). Table 2 shows the results of untreated ST-01 (untreated product) and Sample 3.

Figure 2006026487
Figure 2006026487

実施例1.2ともに本発明の冷却処理他を行うことにより、この処理を行わない比較例の試料より光触媒活性が向上していることがわかる。

実施例3
シリコン太陽電池(形状10cm φ 円形)型番T500-2V(RQ)(定格電流500mA 定格電圧2V)を試験用の太陽電池セルとした。
(測定1)
この試験用セルに蛍光灯を照射し、発生した電流及び電圧の測定を行った。測定は1秒に1回行い480秒(480回)測定し、その平均値を演算し求めた。
It can be seen that by performing the cooling treatment of the present invention in Example 1.2, the photocatalytic activity is improved over the sample of the comparative example in which this treatment is not performed.

Example 3
A silicon solar cell (10 cm diameter circular), model number T500-2V (RQ) (rated current 500 mA, rated voltage 2 V) was used as a test solar cell.
(Measurement 1)
The test cell was irradiated with a fluorescent lamp, and the generated current and voltage were measured. The measurement was performed once per second, measured for 480 seconds (480 times), and the average value was calculated.

(測定2)
上記試験用セルを冷却器に入れた。冷却器では20℃から5時間かけて−85℃まで雰囲気温度を下げた。この−85℃の雰囲気で4時間冷却し、その後5時間かけて20℃に戻した。
その後、測定1と同一条件での試験を行った。
(Measurement 2)
The test cell was placed in a cooler. In the cooler, the ambient temperature was lowered from 20 ° C. to −85 ° C. over 5 hours. It cooled in this atmosphere of -85 degreeC for 4 hours, and returned to 20 degreeC over 5 hours after that.
Thereafter, a test was performed under the same conditions as in Measurement 1.

尚、上記測定で用いた蛍光灯は,無電極「パルックボール」電球型蛍光灯60ワット形(消費電力12W) 型番PFAED/12 松下電器産業株式会社 照明社製である。また、照度の測定には、照度計(3423ルクスハイテスタ 日置電機株式会社製)を使用した。また、電圧及び電流の測定には、テスター(デジタルマルチメーター Metex Model:ME22T(METEX CORPORATION製))を使用した。   The fluorescent lamp used in the above measurement is an electrodeless “Palook ball” bulb type fluorescent lamp 60 watts (power consumption 12 W), model number PFAED / 12, manufactured by Matsushita Electric Industrial Co., Ltd. An illuminance meter (3423 Lux Hitester, Hioki Electric Co., Ltd.) was used for illuminance measurement. In addition, a tester (digital multimeter Metex Model: ME22T (manufactured by METEX CORPORATION)) was used to measure voltage and current.

実験用太陽電池セルの電極+-に上記のテスターを接続し、蛍光灯を照射した。測定1および測定2双方で実験用セルの表面での照度計が1.2万ルクスを示すように蛍光灯の位置を設定した。測定1では電流値(短絡電流)は18.77mAのであったのに対し、測定2では20.01mAであり、発生電流量は約6%、増加した。   The above tester was connected to the electrode +-of the solar cell for experiment and irradiated with a fluorescent lamp. In both Measurement 1 and Measurement 2, the position of the fluorescent lamp was set so that the illuminometer on the surface of the experimental cell showed 12,000 lux. In measurement 1, the current value (short-circuit current) was 18.77 mA, whereas in measurement 2, it was 20.01 mA, and the amount of generated current increased by about 6%.

次に実験用電池セルの電極+−に負荷抵抗を接続し、電圧を測定した。結果を以下の表3に示す。   Next, a load resistance was connected to the electrode + − of the experimental battery cell, and the voltage was measured. The results are shown in Table 3 below.

Figure 2006026487
Figure 2006026487

上記表3に示す結果から、測定2では測定1に比し発生電圧がいずれも大きくなっていることがわかる。即ち、本発明の方法により−85℃に本発明の処理を行うことによりシリコン太陽電池の発電特性が向上したことがわかる。
実施例4
次に湿式電池に使用した場合の例を記述する。以下の実施例において作製した電池は、その電極面積が1×1cmである。また、電池を作動させる光源として、500wのキセノンランプを用い、そのランプからの420nm以下の波長の光はフィルターでカットした。また、作製した電池について、その短絡電流及び開放電圧の測定に無抵抗電流計を備えたポテンシオスタットを用いた。また、使用した酸化物半導体粉末において、TiO2としてはWO 03/011763の実施例2の洗浄5の条件(400℃で1時間焼成)に従って作成した可視光に応答する光触媒を原料とし、20℃から液体窒素温度雰囲気に達するのに8時間かけ、また、液体窒素温度雰囲気で8時間冷却した後に8時間かけて20℃まで昇温したものを用い、また、有機色素としては、Ro(ローズベンガル)を用いた。比較例としてはWO 03/011763の実施例2の洗浄5の条件(400℃で1時間焼成)に従って作成した可視光に応答する光触媒それ自体を本発明の冷却処理他をせずに用いた。
From the results shown in Table 3 above, it can be seen that in measurement 2, the generated voltage is higher than that in measurement 1. That is, it can be seen that the power generation characteristics of the silicon solar cell were improved by performing the treatment of the present invention at −85 ° C. by the method of the present invention.
Example 4
Next, an example of use in a wet battery will be described. The batteries produced in the following examples have an electrode area of 1 × 1 cm. A 500 w xenon lamp was used as a light source for operating the battery, and light having a wavelength of 420 nm or less from the lamp was cut by a filter. Moreover, about the produced battery, the potentiostat provided with the non-resistance ammeter was used for the measurement of the short circuit current and open circuit voltage. In addition, in the oxide semiconductor powder used, as a raw material, a photocatalyst responding to visible light prepared according to the conditions of cleaning 5 in Example 2 of WO 03/011763 (calcined at 400 ° C. for 1 hour) as TiO 2 , 20 ° C. It takes 8 hours to reach the liquid nitrogen temperature atmosphere, and after cooling for 8 hours in the liquid nitrogen temperature atmosphere, the temperature is raised to 20 ° C. over 8 hours. The organic dye is Ro (Rose Bengal). ) Was used. As a comparative example, the photocatalyst itself responding to visible light prepared according to the conditions of cleaning 5 of Example 2 of WO 03/011763 (calcined at 400 ° C. for 1 hour) was used without the cooling treatment of the present invention.

湿式電池は以下のようにして作製した。前記TiO2(WO 03/011763の実施例2の洗浄5の条件(400℃で1時間焼成)に従って作成した可視光に応答する光触媒を上記の方法、すなわち液体窒素温度で本発明の冷却処理他をしたもの)を非イオン性界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に濃度約1wt%で分散させてスラリー液を調製した。次に、このスラリー液を厚さ1mmの導電性ガラス基板(F−SnO2、10Ω/sq)上に塗布し、乾燥し、得られた乾燥物を500℃で1時間、空気中で焼成し、基板上に厚さ7μmの焼成物膜を形成した。次に、この焼成物膜を基板とともに、有機色素溶液中に浸漬し、80℃で、還液を行いながら、色素吸着処理を行った後、室温で乾燥した。この場合、有機色素溶液は、F1を除き、有機色素を100mg/100mlの濃度でエタノール中に溶解して調製した。また、F1溶液はF1を100mg/100ml濃度でジメチルホルムアミド中に、溶解して調製した。 The wet battery was produced as follows. The photocatalyst responding to visible light prepared according to the above-described TiO 2 (cleaning condition 5 in Example 2 of WO 03/011763 (calcined at 400 ° C. for 1 hour)) is the above-described method, that is, the cooling treatment of the present invention at liquid nitrogen temperature Was dispersed in a mixed liquid of water containing nonionic surfactant and acetylacetone (volume mixing ratio = 20/1) at a concentration of about 1 wt% to prepare a slurry liquid. Next, this slurry solution is applied onto a 1 mm thick conductive glass substrate (F-SnO 2 , 10Ω / sq) and dried, and the obtained dried product is baked in air at 500 ° C. for 1 hour. A fired product film having a thickness of 7 μm was formed on the substrate. Next, this fired product film was immersed in an organic dye solution together with the substrate, subjected to dye adsorption treatment while returning the solution at 80 ° C., and then dried at room temperature. In this case, the organic dye solution was prepared by dissolving F1 in ethanol at a concentration of 100 mg / 100 ml, except for F1. The F1 solution was prepared by dissolving F1 at a concentration of 100 mg / 100 ml in dimethylformamide.

前記のようにして得た酸化物半導体電極とその対極とを電解質液に接触させて太陽電池を構成した。この場合、対極としては、白金を20nm厚さで蒸着した導電性ガラスを用いた。両電極間の距離は1mmとした。電解質液としては、テトラプロピルアンモニウムヨーダイド(0.46M)とヨウ素(0.6M)を含むエチレンカーボネートとアセトニトリルとの混合液(容量混合比=80/20)を用いた。   The oxide semiconductor electrode obtained as described above and its counter electrode were brought into contact with the electrolyte solution to form a solar cell. In this case, as the counter electrode, conductive glass in which platinum was deposited with a thickness of 20 nm was used. The distance between both electrodes was 1 mm. As the electrolyte solution, a mixed solution (volume mixing ratio = 80/20) of ethylene carbonate and acetonitrile containing tetrapropylammonium iodide (0.46M) and iodine (0.6M) was used.

比較例はTiO2としてWO 03/011763の実施例2の洗浄5の条件(400℃で1時間焼成)に従って作成した可視光に応答する光触媒それ自体を本発明の冷却処理他をせずに用いた以外はすべて実施例と同様の条件、手法で作成した。
実施例及び比較例の湿式電池ついて測定した、短絡電流及び開放電圧を表4に示す。
The comparative example uses TiO 2 as a photocatalyst itself that responds to visible light, prepared according to the conditions of cleaning 5 of Example 2 of WO 03/011763 (calcined at 400 ° C. for 1 hour) without using the cooling treatment of the present invention. Except for the above, all were prepared under the same conditions and methods as in the examples.
Table 4 shows the short-circuit current and the open-circuit voltage measured for the wet batteries of Examples and Comparative Examples.

Figure 2006026487
Figure 2006026487

上記表4に示す結果から、実施例では比較例に比し短絡電流及び解放電圧双方とも大きくなっていることがわかる。即ち、液体窒素で本発明の冷却処理等をしたTiO2を使用することにより湿式電池の発電特性が向上したことがわかる。
実施例5
日亜化学工業製 白色チップLED 型番 NSCW100を前後左右1cm間隔で縦16個、横16個、計256個を基板上にマトリクス状に配置し、実験用のLED基板とした。LEDの電気的な接続方法としては、図1に示すように、LED64個毎に並列に電気的に接続したものを4ユニット作成し、それら4ユニットを直列に接続した。
From the results shown in Table 4, it can be seen that both the short-circuit current and the release voltage are higher in the example than in the comparative example. That is, it can be seen that the power generation characteristics of the wet cell are improved by using TiO 2 that has been subjected to the cooling treatment of the present invention with liquid nitrogen.
Example 5
White chip LED manufactured by Nichia Industry Co., Ltd. Model No. NSCW100 was arranged in matrix form on the substrate, with 16 vertical and 16 horizontal at 1 cm intervals in the front and rear, left and right, and used as an experimental LED substrate. As for the electrical connection method of the LEDs, as shown in FIG. 1, four units were prepared in which 64 LEDs were electrically connected in parallel, and these four units were connected in series.

このLED基板を、発光部を上にむけ、試験台の上に設置、固定した。そしてLED基板全体を 21cm×21cm, 高さ20cmの光を通さない素材の箱でおおった。
この箱の上部中央に照度計(日置製3423ルクスハイテスター)の受光部を設置した。
LED基板に電源(定電流制御、24V,1.5A)を接続し、発光ダイオードを発光させて照度を測定した。
電流値は50mAから550mAまで変化させ、その照度を測定した。(0アジャストは測定毎に行った)−これを測定1とする。その時の電圧値は11.18Vから12.6Vであった。
This LED substrate was placed and fixed on a test bench with the light emitting part facing up. The entire LED board was covered with a 21cm x 21cm, 20cm high light-proof material box.
The light receiving part of the illuminometer (Hioki 3423 Lux High Tester) was installed in the upper center of this box.
A power supply (constant current control, 24V, 1.5A) was connected to the LED substrate, and the illuminance was measured by causing the light emitting diode to emit light.
The illuminance was measured by changing the current value from 50 mA to 550 mA. (0 adjustment was made for each measurement) —This is measurement 1. The voltage value at that time was 11.18V to 12.6V.

LED基板を冷却器に入れた後、20℃から5時間かけて−85℃まで雰囲気温度を下げた。この−85℃の雰囲気で4時間冷却し、その後5時間かけて20℃に戻した。
これを測定1と同様の手法を用い照度を測定した。これを測定2とする。結果を表1及び図2に示す。
After putting the LED substrate in the cooler, the ambient temperature was lowered from 20 ° C. to −85 ° C. over 5 hours. It cooled in this atmosphere of -85 degreeC for 4 hours, and returned to 20 degreeC over 5 hours after that.
The illuminance was measured using the same method as in Measurement 1. This is measured 2. The results are shown in Table 1 and FIG.

Figure 2006026487
Figure 2006026487

上記表5に示す結果から、実施例では比較例に比し同一電流での照度が増加していることがわかる。
From the results shown in Table 5, it can be seen that in the example, the illuminance at the same current is increased as compared with the comparative example.

Claims (25)

触媒の活性を向上させる方法であって、触媒を−30℃以下に冷却し、冷却後昇温することを特徴とする方法。   A method for improving the activity of a catalyst, characterized in that the catalyst is cooled to -30 ° C or lower and the temperature is raised after cooling. 活性の向上した触媒の製造方法であって、触媒を−30℃以下に冷却し、冷却後昇温することを特徴とする方法。   A method for producing a catalyst with improved activity, wherein the catalyst is cooled to -30 ° C or lower and the temperature is raised after cooling. 触媒が酸化物を含む請求項1または2に記載の方法。   The process according to claim 1 or 2, wherein the catalyst comprises an oxide. 触媒が光触媒である請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the catalyst is a photocatalyst. 光触媒が酸化物半導体である請求項4に記載の方法。   The method according to claim 4, wherein the photocatalyst is an oxide semiconductor. 酸化物半導体が酸化チタンである請求項5に記載の方法。   The method according to claim 5, wherein the oxide semiconductor is titanium oxide. 半導体の性能を向上させる方法であって、半導体を−30℃以下に冷却し、冷却後昇温することを特徴とする方法。   A method for improving the performance of a semiconductor, wherein the semiconductor is cooled to -30 ° C. or lower and the temperature is raised after cooling. 性能の向上した半導体の製造方法であって、半導体を−30℃以下に冷却し、冷却後昇温することを特徴とする方法。   A method for producing a semiconductor with improved performance, wherein the semiconductor is cooled to -30 ° C. or lower, and the temperature is raised after cooling. 半導体がシリコン太陽電池または化合物半導体である請求項8に記載の方法。   The method according to claim 8, wherein the semiconductor is a silicon solar cell or a compound semiconductor. シリコン太陽電池が単結晶、微結晶、多結晶またはアモルファス型である請求項9に記載の方法。   The method according to claim 9, wherein the silicon solar cell is of a single crystal, microcrystal, polycrystalline or amorphous type. 化合物半導体がLEDである請求項9の方法。   The method of claim 9, wherein the compound semiconductor is an LED. 冷却温度が−50℃以下である請求項1〜11のいずれか1項に記載の方法。   The method according to any one of claims 1 to 11, wherein the cooling temperature is -50 ° C or lower. 冷却温度が−80℃以下である請求項1〜11のいずれか1項に記載の方法。   The method according to any one of claims 1 to 11, wherein the cooling temperature is -80 ° C or lower. 冷却温度が液体窒素の温度(−196℃)である請求項1〜11のいずれか1項に記載の方法。   The method according to any one of claims 1 to 11, wherein the cooling temperature is the temperature of liquid nitrogen (-196 ° C). 冷却時間が5分以上である請求項1〜14のいずれか1項に記載の方法。   The method according to any one of claims 1 to 14, wherein the cooling time is 5 minutes or more. 冷却時間が30分〜24時間の範囲である請求項15に記載の方法。   The process according to claim 15, wherein the cooling time is in the range of 30 minutes to 24 hours. 最も低い冷却温度に達するまでの時間が5分以下である請求項1〜16のいずれか1項に記載の方法。   The method according to any one of claims 1 to 16, wherein the time to reach the lowest cooling temperature is 5 minutes or less. 最も低い冷却温度に達するまでの時間が5分以上である請求項1〜16のいずれか1項に記載の方法。   The method according to any one of claims 1 to 16, wherein the time to reach the lowest cooling temperature is 5 minutes or more. 最も低い冷却温度に達するまでの時間が1時間以上である請求項1〜16のいずれか1項に記載の方法。   The method according to any one of claims 1 to 16, wherein the time to reach the lowest cooling temperature is 1 hour or more. 昇温に要する時間が5分以下である請求項1〜16のいずれか1項に記載の方法。   The method according to any one of claims 1 to 16, wherein the time required for the temperature rise is 5 minutes or less. 昇温に要する時間が5分以上である請求項1〜16のいずれか1項に記載の方法。   The method according to any one of claims 1 to 16, wherein the time required for the temperature rise is 5 minutes or more. 昇温に要する時間が1時間以上である請求項1〜16のいずれか1項に記載の方法。   The method according to any one of claims 1 to 16, wherein the time required for the temperature rise is 1 hour or more. 触媒、半導体を液体窒素に直接接触させ、冷却する請求項1〜22のいずれか1項に記載の方法。   The method according to any one of claims 1 to 22, wherein the catalyst and the semiconductor are directly contacted with liquid nitrogen and cooled. 冷却後、常温に放置して触媒又は半導体の温度を常温に戻す請求項1〜23のいずれか1項に記載の方法。   The method according to any one of claims 1 to 23, wherein after cooling, the temperature of the catalyst or the semiconductor is returned to normal temperature by being left at normal temperature. 請求項1〜8、12〜24のいずれかの方法を用いた湿式電池の性能向上方法および製造方法。

The performance improvement method and manufacturing method of a wet battery using the method in any one of Claims 1-8 and 12-24.

JP2004206701A 2004-07-14 2004-07-14 Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell Pending JP2006026487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206701A JP2006026487A (en) 2004-07-14 2004-07-14 Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206701A JP2006026487A (en) 2004-07-14 2004-07-14 Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell

Publications (1)

Publication Number Publication Date
JP2006026487A true JP2006026487A (en) 2006-02-02

Family

ID=35893453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206701A Pending JP2006026487A (en) 2004-07-14 2004-07-14 Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell

Country Status (1)

Country Link
JP (1) JP2006026487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262325B1 (en) * 2011-05-30 2013-05-09 연세대학교 산학협력단 A method of making oxide thin film and a method of making thin film transistor
KR101528774B1 (en) * 2013-12-02 2015-06-29 서울시립대학교 산학협력단 Producing method of electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262325B1 (en) * 2011-05-30 2013-05-09 연세대학교 산학협력단 A method of making oxide thin film and a method of making thin film transistor
KR101528774B1 (en) * 2013-12-02 2015-06-29 서울시립대학교 산학협력단 Producing method of electrodes

Similar Documents

Publication Publication Date Title
Ai et al. Construction of CdS@ Ti3C2@ CoO hierarchical tandem pn heterojunction for boosting photocatalytic hydrogen production in pure water
Dubale et al. Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
Han et al. Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode
Seo et al. Efficient Solar‐Driven Water Oxidation over Perovskite‐Type BaNbO2N Photoanodes Absorbing Visible Light up to 740 nm
Yu et al. Cu2O homojunction solar cells: F-doped N-type thin film and highly improved efficiency
Shi et al. Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity
JP5885662B2 (en) Photocatalytic material and photocatalytic device
Fiorenza et al. Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts
Jia et al. Enhanced photoelectrocatalytic performance of temperature-dependent 2D/1D BiOBr/TiO2-x nanotubes
Wang et al. Electrochemical deposition of p-type β-Ni (OH) 2 nanosheets onto CdS nanorod array photoanode for enhanced photoelectrochemical water splitting
Ge et al. Photocathodic protection of 304 stainless steel by MnS/TiO2 nanotube films under simulated solar light
Ozturk et al. An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectrochemical solar cells
JP2018058733A (en) Method for producing metal compound, method for producing photocatalyst, and method for producing photocatalyst complex
CN109267097B (en) P-type silicon photolysis water hydrogen production electrode protected by tantalum oxide and preparation method thereof
CN106702462A (en) Preparation method for titanium dioxide nanotube array modified by lanthanum ferrite nanoparticles
Cai et al. Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting
Wang et al. Influence of grain size on photoelectrocatalytic performance of CuBi2O4 photocathodes
Wang et al. Optimization of photoelectrochemical performance in Pt-modified p-Cu2O/n-Cu2O nanocomposite
CN108193230A (en) A kind of optoelectronic pole of tantalum Grown InxGa1-xN nano wires and preparation method thereof
JP2006026487A (en) Method of improving activity of catalyst and performance of semiconductor and method of manufacturing catalyst having improved activity, semiconductor having improved performance and wet solar cell
CN103981535A (en) Catalytic electrode for photolysis of water to prepare hydrogen and preparation method thereof
CN107583642A (en) Graphene quantum dot loaded Ag TiO2The preparation method of nano-array
CN110508310B (en) Preparation method of Z-type photoelectrode
Hu et al. One-step cladding metal oxide nanowires with a carbon-dots-embedded ZnO amorphous layer toward boosted photoelectrochemical water oxidation
Ryabko et al. Formation of surface conductivity of zinc oxide nanorods