JP2006024541A - Liquid fuel charge method - Google Patents

Liquid fuel charge method Download PDF

Info

Publication number
JP2006024541A
JP2006024541A JP2004251517A JP2004251517A JP2006024541A JP 2006024541 A JP2006024541 A JP 2006024541A JP 2004251517 A JP2004251517 A JP 2004251517A JP 2004251517 A JP2004251517 A JP 2004251517A JP 2006024541 A JP2006024541 A JP 2006024541A
Authority
JP
Japan
Prior art keywords
fuel
aqueous solution
liquid
filled
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251517A
Other languages
Japanese (ja)
Inventor
Yasuaki Nakamura
保昭 中村
Junko Tokunaga
純子 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Corp
Original Assignee
Tokai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Corp filed Critical Tokai Corp
Priority to JP2004251517A priority Critical patent/JP2006024541A/en
Publication of JP2006024541A publication Critical patent/JP2006024541A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To enable to fill a liquid fuel into a fuel container for a fuel cell without mixing air. <P>SOLUTION: Before filling a methanol water solution to be originally filled into a fuel reserve chamber 3 of a fuel cell fuel container 1, pipes 33, 34 are closed and the pipe 32 and the liquid-fuel fuel container 1 are opened, and a methanol water solution F' with higher concentration than the filling methanol water solution is filled temporarily into the fuel reserve chamber 3 by operating a pump P1 and by lowering a barrier rib member 5. Then, the pipes 32, 34 are closed and the pipe 33 and the liquid-fuel fuel container 1 are opened, and the high concentration liquid F' temporarily filled into the fuel reserve chamber 3 is discharged to a tank 30 together with air by the pressure of a compression gas G in the liquid-fuel fuel container 1. Next, the pipes 32, 33 are closed and the pipe 34 and the liquid-fuel fuel container 1 are made open, then the liquid fuel F is injected into the fuel reserve chamber 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、直接メタノール型燃料電池(DMFC)などの燃料電池にメタノール水溶液などの液体燃料を充填する方法に関するものである。   The present invention relates to a method of filling a fuel cell such as a direct methanol fuel cell (DMFC) with a liquid fuel such as an aqueous methanol solution.

燃料電池は水素と酸素を反応させることで、電気を発生させるエネルギー変換装置であり、作動温度が低く、装置の小型化が期待できることから、現在さまざまな用途に使用され、例えばノートパソコンや携帯電話の連続動作時間を長時間化させることができるモバイル機器用電源などの分野で開発が進められている。   A fuel cell is an energy conversion device that generates electricity by reacting hydrogen and oxygen. Its operating temperature is low and it can be expected to reduce the size of the device, so it is currently used in various applications, such as notebook computers and mobile phones. Development is underway in fields such as power supplies for mobile devices that can extend the continuous operation time.

燃料電池の燃料には、天然ガス、都市ガス、石炭ガスなどのガスやメタノール、エタノールといった液体があり、前者は専ら家庭に固定されている状態で常に燃料が供給される家庭用発電機などに、そして後者は大掛かりなボンベを使わず、個人でも燃料の補充が容易にできることから、上記したモバイル機器用電源などに使用されている。   Fuel cell fuels include natural gas, city gas, coal gas, and other liquids such as methanol and ethanol. The former is exclusively used for household generators that are always supplied with fuel while fixed in the home. Since the latter does not use a large cylinder and can be easily refilled with fuel by an individual, it is used for the above-mentioned power source for mobile devices.

後者のモバイル機器用電源などに使用される燃料電池に燃料を補充するには、液体燃料を供給する燃料容器(例えば燃料カートリッジ)が必要とされる。この燃料電池用燃料容器は小型軽量であって、燃料電池を利用する機器本体の補機類、特に吸引ポンプを省略させることが望ましいことから、燃料を収容する燃料容器自体が自力で燃料を吐出供給する機構の検討がされている(例えば、特許文献1など参照)。
特開2003−176899号公報
In order to replenish fuel in a fuel cell used for the latter power source for mobile devices, a fuel container (for example, a fuel cartridge) for supplying liquid fuel is required. This fuel cell fuel container is small and light, and it is desirable to omit the auxiliary equipment of the equipment body that uses the fuel cell, particularly the suction pump. Therefore, the fuel container itself that contains the fuel discharges the fuel by itself. A mechanism for supplying is being studied (see, for example, Patent Document 1).
JP 2003-176899 A

ところで、液体燃料を燃料電池用燃料容器に充填する場合には、燃料電池用燃料容器に燃料注入手段を接続し、燃料電池用燃料容器のバルブを開けて液体燃料を注入するが、その際にバルブ近傍の僅かな空気が燃料電池用燃料容器内に混入するという問題がある。   By the way, when filling liquid fuel into a fuel cell fuel container, fuel injection means is connected to the fuel cell fuel container and the fuel cell fuel container valve is opened to inject liquid fuel. There is a problem that a slight amount of air near the valve is mixed into the fuel container for the fuel cell.

混入した空気は、燃料電池用燃料容器の内壁面や、液体燃料と圧縮ガスとを区画するピストン状の隔壁部材に固着して、やがてこの空気は液体燃料に溶け込み、空気に含まれる酸素がメタノール等の液体燃料を酸化し、ホルムアルデヒドやギ酸に変えて液体燃料を変質させたり、あるいは液体燃料に雑菌を繁殖させて液体燃料の長期保存を困難なものとする。   The mixed air adheres to the inner wall surface of the fuel container for the fuel cell and the piston-like partition wall member that partitions the liquid fuel and the compressed gas, and eventually the air dissolves in the liquid fuel, and the oxygen contained in the air becomes methanol. Oxidize liquid fuel such as formaldehyde and formic acid to alter the liquid fuel, or propagate germs on the liquid fuel to make long-term storage of the liquid fuel difficult.

従来は、真空充填方式を採用して空気の混入を抑制していたが、この際の真空度は厳密には0.5気圧程度の減圧であって完全に空気の混入を防ぐことができないため、液体燃料の変質や雑菌の繁殖を抑制するには不充分である。   In the past, the vacuum filling method was used to suppress the mixing of air, but the degree of vacuum at this time is strictly about 0.5 atm, and the mixing of air cannot be completely prevented. It is not sufficient to suppress the deterioration of liquid fuel and the propagation of germs.

燃料電池用燃料容器の内壁面やピストン状の隔壁部材に気泡が固着するのは、これらの材質がポリプロピレン(PP)やポリテトラフルオロエチレン(PTFE)、あるいはPTFEコーティングされたものであって、水に対する表面エネルギーが大きいこと、すなわち濡れ性が悪いことに起因している。このような濡れ性の改善には一般的に化学薬品の塗布による表面処理が考えられるが、この方法では液体燃料に不純物が混入することになり、燃料電池のセルの劣化をもたらすため好ましくない。また、酸素プラズマ照射によってピストン状の隔壁部材や燃料容器の内壁面にラジカル形成を行って濡れ性を改善する方法も考えられるが、燃料容器の内壁面に酸素プラズマ照射を行うことは物理的に不可能である。   Air bubbles adhere to the inner wall surface of the fuel cell fuel container and the piston-shaped partition member because these materials are coated with polypropylene (PP), polytetrafluoroethylene (PTFE), or PTFE, This is due to the fact that the surface energy with respect to is large, that is, the wettability is poor. In order to improve such wettability, surface treatment by applying chemicals is generally considered. However, this method is not preferable because impurities are mixed into the liquid fuel and the cells of the fuel cell are deteriorated. In addition, it is possible to improve the wettability by forming radicals on the piston-shaped partition wall member or the inner wall surface of the fuel container by oxygen plasma irradiation. However, it is physically possible to perform oxygen plasma irradiation on the inner wall surface of the fuel container. Impossible.

本発明はこのような点に鑑みなされたもので、燃料電池用燃料容器に液体燃料を充填する場合に空気を混入させることがない、液体燃料を充填する方法を提供することを目的とするものである。   The present invention has been made in view of these points, and an object of the present invention is to provide a method of filling liquid fuel that does not mix air when filling a fuel cell fuel container with liquid fuel. It is.

本発明の液体燃料充填方法は、燃料電池用の液体燃料を収容する燃料電池用燃料容器に液体燃料を充填する方法において、前記燃料電池用燃料容器に前記液体燃料を充填する前に、充填する前記液体燃料と同種の該液体燃料の濃度よりも高濃度の液体を前記燃料電池用燃料容器に供給し、次いで供給した前記高濃度の液体を廃棄し、その後、前記燃料電池用燃料容器に前記液体燃料を充填することを特徴とするものである。   The liquid fuel filling method of the present invention is a method of filling a fuel cell fuel container containing liquid fuel for a fuel cell with the liquid fuel before filling the fuel cell fuel container with the liquid fuel. Supplying a liquid having a higher concentration than the liquid fuel of the same type as the liquid fuel to the fuel container for the fuel cell; then, discarding the supplied high-concentration liquid; It is characterized by filling with liquid fuel.

充填する前記液体燃料と同種の該液体燃料の濃度よりも高濃度の液体とは、例えば、充填する液体燃料がメタノールまたはメタノール水溶液であれば、その充填するメタノール水溶液よりも高濃度のメタノール水溶液を、充填する液体燃料がエタノールまたはエタノール水溶液であれば、その充填するエタノール水溶液よりも高濃度のエタノール水溶液を意味し、濃度が高いだけで、種類は同じ液体を意味する。   For example, if the liquid fuel to be filled is methanol or a methanol aqueous solution, the liquid having a higher concentration than the liquid fuel of the same type as the liquid fuel to be filled is a methanol aqueous solution having a higher concentration than the methanol aqueous solution to be filled. If the liquid fuel to be filled is ethanol or an ethanol aqueous solution, it means an ethanol aqueous solution having a higher concentration than that of the ethanol aqueous solution to be filled, and the type is the same liquid only with a high concentration.

充填する前記液体燃料と同種の該液体燃料の濃度よりも高濃度の液体を前記燃料電池用燃料容器に供給した後、該高濃度の液体を前記燃料電池用燃料容器内で流動させ、その後に供給した前記高濃度の液体を廃棄することがより好ましい。   After supplying a liquid having a higher concentration than the liquid fuel of the same type as the liquid fuel to be filled to the fuel cell fuel container, the high concentration liquid is caused to flow in the fuel cell fuel container, and thereafter It is more preferable to discard the supplied high-concentration liquid.

前記液体燃料がメタノールまたはメタノール水溶液である場合には、充填する液体燃料の濃度によっても異なるが、前記高濃度の液体は50重量%以上のメタノール水溶液、さらには70重量%以上のメタノール水溶液であることが好ましい。また、前記液体燃料がエタノールまたはエタノール水溶液である場合には、充填する液体燃料の濃度によっても異なるが、前記高濃度の液体燃料が50重量%以上のエタノール水溶液、さらには70重量%以上のエタノール水溶液であることが好ましい。なお、液体燃料が100%のメタノールまたはエタノールである場合には、高濃度の液体は100%のメタノールまたはエタノールである。   When the liquid fuel is methanol or a methanol aqueous solution, the high-concentration liquid is a methanol aqueous solution of 50% by weight or more, and further a methanol aqueous solution of 70% by weight or more, depending on the concentration of the liquid fuel to be filled. It is preferable. Further, when the liquid fuel is ethanol or an ethanol aqueous solution, the high concentration liquid fuel is 50% by weight or more ethanol solution, and further 70% by weight or more ethanol, depending on the concentration of the liquid fuel to be filled. An aqueous solution is preferred. When the liquid fuel is 100% methanol or ethanol, the high concentration liquid is 100% methanol or ethanol.

本発明の液体燃料充填方法は、燃料電池用燃料容器に液体燃料を充填する前に、充填する液体燃料と同種のこの液体燃料の濃度よりも高濃度の液体を燃料電池用燃料容器に供給し、次いで供給した高濃度の液体を廃棄し、その後、燃料電池用燃料容器に前記液体燃料を充填するので、燃料電池用燃料容器に液体燃料を充填する場合に燃料電池用燃料容器のバルブ近傍の空気を混入させることなく、液体燃料を充填することができる。   In the liquid fuel filling method of the present invention, before the liquid fuel is filled into the fuel cell fuel container, a liquid having a higher concentration than the liquid fuel of the same type as the liquid fuel to be filled is supplied to the fuel cell fuel container. Then, the supplied high-concentration liquid is discarded, and then the liquid fuel is filled in the fuel cell fuel container. Therefore, when the liquid fuel is filled in the fuel cell fuel container, the fuel cell fuel container near the valve Liquid fuel can be filled without mixing air.

すなわち、充填する液体燃料と同種のこの液体燃料の濃度よりも高濃度の液体を燃料電池用燃料容器に供給することによって、燃料電池用燃料容器の内壁面やピストン状の隔壁部材における濡れ性が良くなるために、燃料電池用燃料容器の内壁面やピストン状の隔壁部材に気泡が固着することが抑制されるとともに、バルブ近傍の空気は高濃度の液体によって置換されて高濃度の液体とともに廃棄されるので、燃料電池用燃料容器に空気を混入させることなく、液体燃料を充填することができる。   That is, by supplying a liquid having a higher concentration than the liquid fuel of the same type as that of the liquid fuel to be filled to the fuel cell fuel container, the wettability of the inner wall surface of the fuel cell fuel container and the piston-shaped partition wall member is improved. In order to improve, air bubbles are prevented from sticking to the inner wall surface of the fuel cell fuel container or the piston-like partition wall, and the air in the vicinity of the valve is replaced with high-concentration liquid and discarded together with high-concentration liquid. Therefore, liquid fuel can be filled without mixing air into the fuel cell fuel container.

これによって、液体燃料の変質を抑制することができるとともに、雑菌を繁殖させることなく液体燃料の長期保存を可能なものとすることができる。   As a result, the deterioration of the liquid fuel can be suppressed, and the liquid fuel can be stored for a long time without breeding germs.

本発明の燃料電池用の液体燃料を収容する燃料電池用燃料容器に液体燃料を充填する方法について、以下図面を参照しながら説明する。図1は燃料電池用燃料容器の中央断面正面図、図2は図1の閉状態のバルブ部位の拡大断面図である。   A method for filling a fuel container for a fuel cell containing the liquid fuel for the fuel cell of the present invention with the liquid fuel will be described below with reference to the drawings. FIG. 1 is a front sectional view of the center of the fuel cell fuel container, and FIG. 2 is an enlarged sectional view of the closed valve portion of FIG.

図1の実施形態の燃料電池用燃料容器1は、所定濃度のメタノール水溶液またはエタノール水溶液などの燃料電池用の液体燃料Fを収容し、燃料電池に液体燃料Fを供給するためのものであり、不図示の燃料電池本体に装着される。   The fuel cell fuel container 1 of the embodiment of FIG. 1 is for containing a liquid fuel F for a fuel cell such as a methanol aqueous solution or an ethanol aqueous solution having a predetermined concentration, and for supplying the liquid fuel F to the fuel cell. It is attached to a fuel cell body (not shown).

ここで、メタノール水溶液またはエタノール水溶液はメタノールと純水、エタノールと純水の混合物を意味し、純水とは不純物をできる限り除いた純粋の水と殆ど同一とみなすことのできる水であって、化学種として純粋な水はもちろん、精製水も含む意味である。なお、簡略化のため、以下、メタノール水溶液という文言は100%のメタノールを含む意味で、エタノール水溶液というときは100%のエタノールを含む意味で用いる。   Here, methanol aqueous solution or ethanol aqueous solution means a mixture of methanol and pure water, ethanol and pure water, and pure water is water that can be regarded as almost the same as pure water excluding impurities as much as possible, It is meant to include purified water as well as pure water as a chemical species. For the sake of simplification, hereinafter, the term “aqueous methanol solution” means that 100% methanol is included, and the term “ethanol aqueous solution” means that it contains 100% ethanol.

燃料容器1は、外面に開口し液体燃料Fを供給するための接続部24を有する容器本体2と、この容器本体2の内部に形成され、燃料電池(不図示)に供給する液体燃料Fを収容する燃料貯蔵室3と、容器本体2の内部に形成され、端部において燃料貯蔵室3と相互に連通し、液体燃料Fを押し出すための応力を生じさせる圧縮ガスGを封入する気室4と、燃料貯蔵室3に移動自在に配設され、液体燃料Fと圧縮ガスGとを区画するピストン状の隔壁部材5と、燃料貯蔵室3と接続部24の間を連通遮断するバルブ7と、容器本体2の底部に配置され、下降移動した隔壁部材5に組み込まれた支持部材52に固定される弾性体8とからなる。   The fuel container 1 includes a container body 2 having an opening on the outer surface and a connection portion 24 for supplying liquid fuel F, and liquid fuel F formed inside the container body 2 and supplied to a fuel cell (not shown). A fuel storage chamber 3 to be accommodated and an air chamber 4 which is formed inside the container body 2 and which communicates with the fuel storage chamber 3 at the end and encloses a compressed gas G that generates stress for pushing out the liquid fuel F. A piston-like partition member 5 that is movably disposed in the fuel storage chamber 3 and partitions the liquid fuel F and the compressed gas G, and a valve 7 that cuts off communication between the fuel storage chamber 3 and the connecting portion 24. The elastic body 8 is disposed at the bottom of the container body 2 and is fixed to the support member 52 incorporated in the partition member 5 that has moved downward.

上記容器本体2は樹脂成形されてなり、外形を構成する外容器21と、この外容器21の上開口部を密閉する蓋体22と、外容器21の内部に二重構造に配設された内容器23とで構成され、蓋体22の中央に接続部24が形成され、バルブ7が設置されてなる。   The container body 2 is formed by resin molding, and is disposed in a double structure inside the outer container 21, an outer container 21 that forms an outer shape, a lid 22 that seals the upper opening of the outer container 21, and the outer container 21. It is comprised with the inner container 23, the connection part 24 is formed in the center of the cover body 22, and the valve | bulb 7 is installed.

内容器23は円筒状で、下端部は外容器21の底面に接合することなく、この内容器23の内部と外容器21の内部とを連通する連通路25が形成され、上記燃料貯蔵室3の底部と気室4の底部とが端部で連通可能になっている。   The inner container 23 is cylindrical, and the lower end portion is not joined to the bottom surface of the outer container 21, and a communication passage 25 is formed to communicate the inside of the inner container 23 with the inside of the outer container 21. The bottom of the air chamber 4 and the bottom of the air chamber 4 can communicate with each other at the end.

また、内容器23の上端部には中心部に透孔23aが開口され、燃料貯蔵室3がバルブ7を介して接続部24に連通し、バルブ7の連通遮断動作に応じて液体燃料Fの排出供給が行えるようになっている。このバルブ7の詳細は図2により後述する。   In addition, a through hole 23 a is opened at the center of the upper end of the inner container 23, the fuel storage chamber 3 communicates with the connection portion 24 via the valve 7, and the liquid fuel F flows according to the communication cutoff operation of the valve 7. Emission supply can be performed. Details of the valve 7 will be described later with reference to FIG.

内容器23の上端部の上面には上方に延びる筒壁23b(図2参照)を備え、この筒壁23b内にバルブ7のハウジング71の下端装着筒部71aが嵌合装着され、内容器23が保持されてなる。   A cylindrical wall 23b (see FIG. 2) extending upward is provided on the upper surface of the upper end portion of the inner container 23, and a lower end mounting cylindrical portion 71a of the housing 71 of the valve 7 is fitted and mounted in the cylindrical wall 23b. Is held.

内容器23の下端部は外容器21の底面に接合することなく開放され、この内容器23に摺動可能に嵌挿されたピストン状の隔壁部材5は、外周の上下シール部5a,5bによって、シリンダ状の内容器23の内壁に気密に接触し、安定した姿勢で上下移動し、その上部空間の燃料貯蔵室3に液体燃料Fが封入される。この隔壁部材5は、燃料貯蔵室3に収容した液体燃料Fと気室4に収容した圧縮ガスGとを区画する移動隔壁として機能し、隔壁部材5の背面に作用する圧縮ガスGの圧力によって前面の液体燃料Fを加圧し、バルブ7が連通作動した際に、この液体燃料Fを接続部24より押し出すものである。   The lower end portion of the inner container 23 is opened without being joined to the bottom surface of the outer container 21, and the piston-like partition member 5 slidably fitted into the inner container 23 is separated by upper and lower seal portions 5 a and 5 b on the outer periphery. The cylinder-shaped inner container 23 is in airtight contact with the inner wall of the cylinder-like inner container 23, moves up and down in a stable posture, and the liquid fuel F is sealed in the fuel storage chamber 3 in the upper space. The partition member 5 functions as a moving partition partitioning the liquid fuel F stored in the fuel storage chamber 3 and the compressed gas G stored in the air chamber 4, and is caused by the pressure of the compressed gas G acting on the back surface of the partition member 5. When the liquid fuel F on the front surface is pressurized and the valve 7 communicates, the liquid fuel F is pushed out from the connecting portion 24.

なお、燃料貯蔵室3に残留する液体燃料Fの貯蔵容積に応じて隔壁部材5の位置が変化し、それに応じて圧縮ガスGの体積が変化するとともに圧力が変化するが、液体燃料Fの貯蔵量が無くなるまで押し出すことができるように隔壁部材5を移動させる圧力を確保する。   The position of the partition member 5 changes according to the storage volume of the liquid fuel F remaining in the fuel storage chamber 3, and the volume of the compressed gas G changes and the pressure changes accordingly. A pressure for moving the partition member 5 is secured so that the partition member 5 can be pushed out until the amount disappears.

また、上記隔壁部材5のシール部5a,5bの表面または内容器23の内壁面に、さらには両方に、液体燃料Fに対して非溶出性のPTFE(ポリテトラフルオロエチレン)コーティング、または、DLC(ダイヤモンドライクカーボン)コーティングなどによる低摩擦係数コーティングを施して、隔壁部材5の移動抵抗を低減し、圧縮ガスGの圧力が低くても確実で良好な作動を確保するように構成されてなる。   Further, the surface of the seal portions 5a and 5b of the partition wall member 5 or the inner wall surface of the inner container 23, and both, PTFE (polytetrafluoroethylene) coating that is non-eluting with respect to the liquid fuel F, or DLC A low friction coefficient coating such as a (diamond-like carbon) coating is applied to reduce the movement resistance of the partition member 5 and ensure a reliable and good operation even when the pressure of the compressed gas G is low.

ここで、バルブ7の機構例を説明する。図2に拡大図示するように、バルブ7は、蓋体22への固定部材としてのハウジング71、燃料電池との接続に応じて移動するステム72、ステム72を閉方向に付勢するスプリング73、燃料の供給を開閉する弁体74(Oリング)などで構成され、これらは好ましくは非金属材料で形成されてなる。   Here, an example of the mechanism of the valve 7 will be described. As shown in an enlarged view in FIG. 2, the valve 7 includes a housing 71 as a fixing member to the lid body 22, a stem 72 that moves according to the connection with the fuel cell, a spring 73 that biases the stem 72 in the closing direction, A valve body 74 (O-ring) for opening and closing the supply of fuel is formed, and these are preferably formed of a non-metallic material.

ハウジング71は筒状に形成され、下端部に延長された装着筒部71aと、内部に突出する環状突起71bを備える。ステム72は棒状に形成され、上端に外側に広がる頭部72aと、その下部の軸部72bとを備える。そして、ハウジング71内にステム72が軸方向に移動可能に挿入され、その頭部72aの下面と環状突起71bの上面との間にスプリング73が介装されてステム72が上方に付勢されている。ステム72の軸部72bの先端は環状突起71bの内孔を挿通して突出し、軸部72bの先端外周部に装着したOリングによる弁体74が環状突起71bの下端部に圧接することで、その内孔を閉塞して燃料の供給を開閉作動するようになっている。   The housing 71 is formed in a cylindrical shape, and includes a mounting cylinder portion 71a extended to the lower end portion and an annular protrusion 71b protruding inside. The stem 72 is formed in a rod shape, and includes a head portion 72a spreading outward at the upper end and a shaft portion 72b below the head portion 72a. A stem 72 is inserted into the housing 71 so as to be movable in the axial direction, and a spring 73 is interposed between the lower surface of the head 72a and the upper surface of the annular projection 71b, and the stem 72 is biased upward. Yes. The distal end of the stem 72b of the stem 72 protrudes through the inner hole of the annular protrusion 71b, and the valve body 74 by an O-ring attached to the outer periphery of the distal end of the axle 72b presses against the lower end of the annular protrusion 71b. The inner hole is closed to open and close the fuel supply.

そして、容器本体2の接続部24に対し、ハウジング71はその下部外周に装着されたシール用のOリング76を介してボス部24aに組み付けられている。ハウジング71の装着筒部71aはボス部24aより外容器21の内部に突出し、この装着筒部71aに前述のように内容器23の上端筒壁23bが嵌着されて内容器23が保持されるもので、装着筒部71aの外周に装着されたシール材75(Oリング)によって両者間のシールが行われ、気室4の圧縮ガスが燃料貯蔵室3へ流入する連通経路を遮断している。   The housing 71 is assembled to the boss portion 24a with respect to the connecting portion 24 of the container body 2 via a sealing O-ring 76 attached to the outer periphery of the lower portion thereof. The mounting cylinder portion 71a of the housing 71 protrudes from the boss portion 24a into the outer container 21, and the upper cylinder wall 23b of the inner container 23 is fitted into the mounting cylinder portion 71a as described above to hold the inner container 23. Therefore, the sealing material 75 (O-ring) mounted on the outer periphery of the mounting cylinder 71a is sealed between the two, and the communication path through which the compressed gas in the air chamber 4 flows into the fuel storage chamber 3 is blocked. .

また、ステム72の頭部72aが、外方よりスプリング73に抗して押し込まれると、ステム72先端の弁体74が環状突起71bより離れて内孔が開口し、軸部72bと環状突起71bの隙間から頭部72aとハウジング71との間を通って燃料貯蔵室3内の液体燃料Fを噴出供給するようになっている。   Further, when the head 72a of the stem 72 is pushed against the spring 73 from the outside, the valve body 74 at the tip of the stem 72 is separated from the annular protrusion 71b and the inner hole is opened, and the shaft portion 72b and the annular protrusion 71b are opened. The liquid fuel F in the fuel storage chamber 3 is jetted and supplied through the gap between the head 72 a and the housing 71.

さらに、バルブ7は、弁体74をOリングによる弾性材で構成し、この弾性材を弁開閉方向(軸方向)に膨潤変形しないよう、軸部72bの周溝によって規制して配置してなり、液体燃料Fに接する弁体74(弾性材)が膨潤等で体積膨張したとしても、その体積変化は弁開閉移動方向に垂直な方向に規制されているため、弁開閉動作および燃料流量の変化は抑制される。   Further, the valve 7 is configured such that the valve body 74 is made of an elastic material using an O-ring, and the elastic material is regulated by a circumferential groove of the shaft portion 72b so as not to swell and deform in the valve opening / closing direction (axial direction). Even if the valve body 74 (elastic material) in contact with the liquid fuel F expands due to swelling or the like, the volume change is regulated in a direction perpendicular to the valve opening / closing movement direction. Is suppressed.

気室4に封入する圧縮ガスは、燃料電池での反応に悪影響を及ぼす酸素が液体燃料Fへ混入するのを防ぐという観点から、さらには液体燃料Fが酸化するのを防止するという観点から、窒素、炭酸ガス、脱酸素空気などの酸素を含まないガスが選択される。   From the viewpoint of preventing oxygen that adversely affects the reaction in the fuel cell from being mixed into the liquid fuel F, and further from preventing the liquid fuel F from being oxidized, A gas that does not contain oxygen, such as nitrogen, carbon dioxide, or deoxygenated air, is selected.

次に、図2により気室4への圧縮ガスGの封入を説明する。なお、この圧縮ガスGの封入は燃料貯蔵室3に液体燃料Fを注入する前であって、後述する高濃度の液体F′を供給する前に行う。   Next, the sealing of the compressed gas G into the air chamber 4 will be described with reference to FIG. The compressed gas G is sealed before the liquid fuel F is injected into the fuel storage chamber 3 and before the high-concentration liquid F ′ described later is supplied.

バルブ7を通して圧縮ガスGを燃料貯蔵室3に注入するのに応じて隔壁部材5が下降し、図1に示す位置で支持部材52の底面に弾性体8が当接するものであり、例えば、バルブ7を通して圧縮ガスGを燃料貯蔵室3に注入するのに応じて隔壁部材5が下降し、連通路25によって、隔壁部材5の上下を連通状態とし、燃料貯蔵室3より気室4へ圧縮ガスを注入する。そして、気室4内が所定圧力となった際に圧縮ガスの注入を停止した後、閉作動したバルブ7を開作動して燃料貯蔵室3の圧縮ガスを排出する。   As the compressed gas G is injected into the fuel storage chamber 3 through the valve 7, the partition member 5 descends, and the elastic body 8 comes into contact with the bottom surface of the support member 52 at the position shown in FIG. As the compressed gas G is injected into the fuel storage chamber 3 through 7, the partition wall member 5 descends, and the upper and lower sides of the partition wall member 5 are brought into a communication state by the communication passage 25, and the compressed gas is transferred from the fuel storage chamber 3 to the air chamber 4 Inject. And when the inside of the air chamber 4 reaches a predetermined pressure, the injection of the compressed gas is stopped, and then the valve 7 which is closed is opened to discharge the compressed gas in the fuel storage chamber 3.

これに応じ、隔壁部材5は弾性体8の反発力によって上昇して燃料貯蔵室3のシール状態に戻り、さらなるガスの排出で隔壁部材5は、その背部に気室4の圧縮ガスの圧力が作用した状態で内容器23の上端にまで上昇移動し、燃料貯蔵室3のガスを全て排出することで、気室4に圧縮ガスGが封入される。   In response to this, the partition member 5 rises due to the repulsive force of the elastic body 8 and returns to the sealed state of the fuel storage chamber 3, and further gas discharge causes the partition member 5 to have the pressure of the compressed gas in the air chamber 4 on its back. The gas chamber 4 is enclosed in the air chamber 4 by moving up to the upper end of the inner container 23 in an acted state and discharging all the gas in the fuel storage chamber 3.

次に、図3を用いて燃料貯蔵室3に液体燃料Fを充填する方法を説明する。図3は燃料電池用燃料容器に燃料を充填する一の実施の形態を示す模式図である。本発明の液体燃料充填方法は、燃料貯蔵室3に液体燃料Fを充填する前に、充填する液体燃料Fと同種の液体燃料の濃度よりも高濃度の液体F′を燃料貯蔵室3に供給し、次いで供給した高濃度の液体F′を廃棄し、その後に、燃料貯蔵室3に本来充填される液体燃料Fを充填するものである。   Next, a method of filling the fuel storage chamber 3 with the liquid fuel F will be described with reference to FIG. FIG. 3 is a schematic view showing one embodiment of filling a fuel container for a fuel cell with fuel. In the liquid fuel filling method of the present invention, before the fuel storage chamber 3 is filled with the liquid fuel F, the fuel storage chamber 3 is supplied with a liquid F ′ having a higher concentration than the liquid fuel of the same type as the liquid fuel F to be filled. Then, the supplied high-concentration liquid F ′ is discarded, and then the liquid fuel F originally filled in the fuel storage chamber 3 is filled.

液体燃料Fはメタノール水溶液またはエタノール水溶液であり、高濃度の液体F′は本来充填される液体燃料Fがメタノール水溶液であれば、このメタノール水溶液よりも高濃度のメタノール水溶液であり、本来充填される液体燃料Fがエタノール水溶液であれば、このエタノール水溶液よりも高濃度のエタノール水溶液である。   The liquid fuel F is a methanol aqueous solution or an ethanol aqueous solution, and the high concentration liquid F ′ is a methanol aqueous solution having a concentration higher than that of the methanol aqueous solution if the liquid fuel F to be originally filled is a methanol aqueous solution. If the liquid fuel F is an ethanol aqueous solution, the ethanol aqueous solution has a higher concentration than the ethanol aqueous solution.

図3(a)に示すように、液体燃料用燃料容器1の接続部24にはコックQが接続され、このコックQには、さらにタンク30に接続される2本の管32および33、タンク31に接続される管34が接続され、コックQは、管32,33,34および液体燃料用燃料容器1に対して液流れの方向を変えることが可能なように構成されている。管32および管34には液体燃料FあるいはF′を吸い上げるポンプP1およびポンプP2がそれぞれ設けられている。また、タンク30には燃料貯蔵室3内に本来充填される液体燃料Fの濃度よりも高濃度の液体F′が収容され、一方タンク31には燃料貯蔵室3内に本来充填される液体燃料Fが収容されている。   As shown in FIG. 3A, a cock Q is connected to the connecting portion 24 of the fuel container 1 for liquid fuel, and two pipes 32 and 33 further connected to the tank 30 are connected to the cock Q. A pipe 34 connected to 31 is connected, and the cock Q is configured to be able to change the direction of liquid flow with respect to the pipes 32, 33, 34 and the liquid fuel fuel container 1. The pipe 32 and the pipe 34 are respectively provided with a pump P1 and a pump P2 that suck up the liquid fuel F or F ′. The tank 30 stores a liquid F ′ having a concentration higher than that of the liquid fuel F originally filled in the fuel storage chamber 3, while the tank 31 stores the liquid fuel originally filled in the fuel storage chamber 3. F is accommodated.

まず、コックQを動かして管33および管34を閉状態に、管32と液体燃料用燃料容器1を開状態となるようにした後、ポンプP1を作動させると、タンク30内の高濃度の液体F′は図3(a)の矢印方向に向かって流れ、液体燃料用燃料容器1内の燃料貯蔵室3に入った高濃度の液体F′は、隔壁部材5を下降させつつ燃料貯蔵室3内に仮充填される。   First, the cock Q is moved so that the pipe 33 and the pipe 34 are closed, the pipe 32 and the liquid fuel fuel container 1 are opened, and then the pump P1 is operated. The liquid F ′ flows in the direction of the arrow in FIG. 3A, and the high-concentration liquid F ′ that has entered the fuel storage chamber 3 in the fuel container 1 for liquid fuel lowers the partition member 5 and moves to the fuel storage chamber. 3 is temporarily filled.

続いて、コックQを動かして管32および管34を閉状態とし、管33と液体燃料用燃料容器1を開状態となるようにすると、液体燃料用燃料容器1内の圧縮ガスGの圧力によって、燃料貯蔵室3内に仮充填された高濃度の液体F′は図3(b)に示す矢印方向に流れ、空気とともにタンク30に排出される。これによって内容器23の僅かな隙間には空気が存在せず、高濃度の液体F′で満たされた状態となる。なお、この動作を数回繰り返すことによって、バルブ7近傍に存在する僅かな空気に起因する内容器23の内壁面や隔壁部材5に固着している空気(気泡)が、高濃度の液体F′の流動によって離され、気泡をタンク30に排出することができる。   Subsequently, when the cock Q is moved to close the pipe 32 and the pipe 34 and the pipe 33 and the liquid fuel fuel container 1 are opened, the pressure of the compressed gas G in the liquid fuel fuel container 1 is increased. The high-concentration liquid F ′ temporarily filled in the fuel storage chamber 3 flows in the direction of the arrow shown in FIG. 3B and is discharged to the tank 30 together with air. As a result, air is not present in the slight gap of the inner container 23 and is filled with the high-concentration liquid F ′. By repeating this operation several times, the air (bubbles) adhering to the inner wall surface of the inner container 23 and the partition wall member 5 due to the slight air existing in the vicinity of the valve 7 becomes the high-concentration liquid F ′. The air bubbles can be discharged into the tank 30 by being separated by the flow of.

次に、コックQを動かして管32および管33を閉状態に、管34と液体燃料用燃料容器1を開状態となるようにした後、ポンプP2を作動させるとタンク31内の液体燃料Fは図3(c)の矢印方向に向かって流れ、液体燃料Fは隔壁部材5を下降させつつ燃料貯蔵室3内に注入される。こうして、液体燃料Fを噴出可能に収容した燃料電池用燃料容器1が完成する。   Next, after the cock Q is moved so that the pipe 32 and the pipe 33 are closed and the pipe 34 and the liquid fuel fuel container 1 are opened, the liquid fuel F in the tank 31 is operated when the pump P2 is operated. Flows in the direction of the arrow in FIG. 3 (c), and the liquid fuel F is injected into the fuel storage chamber 3 while lowering the partition member 5. In this way, the fuel cell fuel container 1 containing the liquid fuel F so as to be ejected is completed.

なお、ここでは、高濃度の液体F′をタンク30に排出した後、燃料貯蔵室3内にタンク31内の液体燃料Fを注入する場合について説明したが、高濃度の液体F′を流動させて気泡を高濃度の液体F′とともにタンク30に排出させた後、あらためてタンク30の高濃度の液体F′を燃料貯蔵室3内に充填して燃料電池用燃料容器1を完成させてもよい。   Here, the case where the liquid fuel F in the tank 31 is injected into the fuel storage chamber 3 after the high concentration liquid F ′ is discharged into the tank 30 has been described. However, the high concentration liquid F ′ is caused to flow. After the bubbles are discharged together with the high-concentration liquid F ′ to the tank 30, the high-concentration liquid F ′ in the tank 30 may be refilled in the fuel storage chamber 3 to complete the fuel container 1 for the fuel cell. .

図4は燃料電池用燃料容器に燃料を充填する別の実施の形態を示す模式図であり、この実施の形態では、燃料貯蔵室3内に仮充填された高濃度の液体F′を排出するタンク35が高濃度の液体F′を収容しているタンク31とは別に設けられている(その他は図3と同一の構造であり、図3と同一構成部分には図4において同一符号を付し、以下においてはその説明を省略する)。燃料貯蔵室3内に仮充填された高濃度の液体F′には気泡の他に、夾雑物が混じる可能性があるが、このように、仮充填された高濃度の液体F′を別に設けたタンク35に排出することによって、この夾雑物が再び燃料貯蔵室3に仮充填されることを防止することができる。
次に、本発明の液体燃料充填方法の実施例を示す。
FIG. 4 is a schematic view showing another embodiment in which fuel is filled in a fuel container for a fuel cell. In this embodiment, the high-concentration liquid F ′ temporarily filled in the fuel storage chamber 3 is discharged. The tank 35 is provided separately from the tank 31 containing the high-concentration liquid F ′ (others have the same structure as in FIG. 3, and the same components as in FIG. 3 are assigned the same reference numerals in FIG. In the following, the description is omitted). The high-concentration liquid F ′ temporarily filled in the fuel storage chamber 3 may be mixed with foreign substances in addition to bubbles. In this way, the high-concentration liquid F ′ temporarily filled is provided separately. By discharging to the tank 35, it is possible to prevent the foreign matter from being temporarily filled in the fuel storage chamber 3 again.
Next, an embodiment of the liquid fuel filling method of the present invention will be shown.

(実施例1)
図3に示すタンク30内に、100重量%メタノール水溶液(以下、この燃料容器に液体燃料を充填する前に供給されるメタノール水溶液を仮充填メタノール水溶液という)を収容し、タンク31内に、メタノール10重量%、蒸留水90重量%の10重量%メタノール水溶液5mlを収容した。
Example 1
A tank 30 shown in FIG. 3 contains a 100 wt% methanol aqueous solution (hereinafter, the methanol aqueous solution supplied before filling the fuel container with liquid fuel is referred to as a temporarily filled methanol aqueous solution). 5 ml of a 10 wt% aqueous methanol solution containing 10 wt% and distilled water 90 wt% was accommodated.

コックQを動かして管33および管34を閉状態に、管32と液体燃料用燃料容器1を開状態となるようにした後、ポンプP1を作動させ、燃料貯蔵室3に高濃度の液体F′を仮充填した。続いて、コックQを動かして管32および管34を閉状態とし、管33と液体燃料用燃料容器1を開状態となるようにして、燃料貯蔵室3内に仮充填された高濃度の液体F′を排出した。次に、コックQを動かして管32および管33を閉状態に、管34と液体燃料用燃料容器1を開状態となるようにした後、ポンプP2を作動させて燃料貯蔵室3へ10重量%メタノール水溶液を注入した。注入後、燃料電池用燃料容器1を置いた床面から支持部材52の底面までの高さhをハイトゲージで測定した。ここまでの動作を1回として、30回繰り返し高さhの平均値を出した。   The cock Q is moved so that the pipe 33 and the pipe 34 are closed, and the pipe 32 and the liquid fuel fuel container 1 are opened. Then, the pump P1 is operated, and the fuel storage chamber 3 is filled with the high-concentration liquid F. ′ Was temporarily filled. Subsequently, the cock Q is moved so that the pipe 32 and the pipe 34 are closed, the pipe 33 and the liquid fuel fuel container 1 are opened, and the high concentration liquid temporarily filled in the fuel storage chamber 3 is obtained. F ′ was discharged. Next, the cock Q is moved so that the pipe 32 and the pipe 33 are closed, and the pipe 34 and the liquid fuel fuel container 1 are opened, and then the pump P2 is operated to bring the fuel storage chamber 3 to 10 weight. % Methanol aqueous solution was injected. After the injection, the height h from the floor surface on which the fuel cell fuel container 1 was placed to the bottom surface of the support member 52 was measured with a height gauge. The operation so far was performed once, and the average value of the height h was repeated 30 times.

続いて、仮充填メタノール水溶液を、80重量%メタノール水溶液、60重量%メタノール水溶液、40重量%メタノール水溶液、20重量%メタノール水溶液と変えた以外は上記と同様にして、高さhを求めた。結果を図5に示す。   Subsequently, the height h was determined in the same manner as above except that the temporarily filled methanol aqueous solution was changed to an 80 wt% methanol aqueous solution, a 60 wt% methanol aqueous solution, a 40 wt% methanol aqueous solution, and a 20 wt% methanol aqueous solution. The results are shown in FIG.

図5は燃料電池用燃料容器に10重量%メタノール水溶液を充填した場合における、仮充填メタノール水溶液の濃度と10重量%メタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に10重量%メタノール水溶液を充填した場合には、仮充填メタノール水溶液の濃度が約70重量%の時点まで、高さhは約17.6mmと変わらず、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填メタノール水溶液の濃度が下がるにつれて高さhは次第に小さくなり、すなわち、仮充填メタノール水溶液の濃度が下がるにつれて、燃料貯蔵室3内には気泡が増えるために隔壁部材5は床面に近づき、高さhが小さくなった。   FIG. 5 is a graph showing the relationship between the concentration of the temporarily filled methanol aqueous solution and the bubbles in the fuel cell fuel container after the 10 wt% methanol aqueous solution is filled when the fuel cell fuel container is filled with the 10 wt% methanol aqueous solution. It is. According to this, when the fuel container for a fuel cell is filled with a 10 wt% aqueous methanol solution, the height h remains about 17.6 mm until the concentration of the temporarily filled aqueous methanol solution is about 70 wt%, Until this time, no bubbles were observed in the fuel storage chamber 3. As the concentration of the temporarily filled methanol aqueous solution decreases, the height h gradually decreases. That is, as the concentration of the temporarily filled methanol aqueous solution decreases, the number of bubbles in the fuel storage chamber 3 increases, so that the partition member 5 approaches the floor surface. The height h has become smaller.

図5に示すグラフから明らかなように、10重量%メタノール水溶液を充填する場合には、50重量%よりも濃度の高いメタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のメタノール水溶液を仮充填すれば空気を混入させることなく、10重量%メタノール水溶液を充填することができた。   As is clear from the graph shown in FIG. 5, when the 10% by weight aqueous methanol solution is filled, if the aqueous methanol solution having a concentration higher than 50% by weight is temporarily filled, bubbles are not formed at all. When a 70% by weight or more methanol aqueous solution was temporarily filled, a 10% by weight methanol aqueous solution could be filled without mixing air.

(実施例2)
図3に示すタンク30内に、仮充填メタノール水溶液として100重量%メタノール水溶液を収容し、タンク31内に、メタノール20重量%、蒸留水80重量%の20重量%メタノール水溶液5mlを収容した。実施例1と同様の手順で燃料貯蔵室3へ20重量%メタノール水溶液を注入した。注入後、燃料貯蔵室3内に付着した気泡をバルブ3付近に集め、用意した水槽内でバルブ3を開放し逆さにしたビーカー内に気泡を集め、この気泡を注射器で吸い取って体積を測定した。続いて、仮充填メタノール水溶液を、80重量%メタノール水溶液、60重量%メタノール水溶液、40重量%メタノール水溶液、20重量%メタノール水溶液と変え、それぞれの場合における気泡体積を測定した。結果を図6に示す。
(Example 2)
In the tank 30 shown in FIG. 3, a 100 wt% methanol aqueous solution was accommodated as a temporarily filled methanol aqueous solution, and in the tank 31, 5 ml of a 20 wt% methanol aqueous solution of 20 wt% methanol and 80 wt% distilled water was accommodated. A 20 wt% aqueous methanol solution was injected into the fuel storage chamber 3 in the same procedure as in Example 1. After the injection, the bubbles adhering in the fuel storage chamber 3 were collected near the valve 3, the bubbles were collected in a beaker which was opened and inverted in a prepared water tank, and the volume was measured by sucking the bubbles with a syringe. . Subsequently, the temporarily filled methanol aqueous solution was changed to an 80 wt% methanol aqueous solution, a 60 wt% methanol aqueous solution, a 40 wt% methanol aqueous solution, and a 20 wt% methanol aqueous solution, and the bubble volume in each case was measured. The results are shown in FIG.

図6は燃料電池用燃料容器に10重量%メタノール水溶液を充填した場合における、仮充填メタノール水溶液の濃度と20重量%メタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に20重量%メタノール水溶液を充填した場合には、仮充填メタノール水溶液の濃度が約70重量%の時点までは気泡体積はゼロであり、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填メタノール水溶液の濃度が下がるにつれて徐々に気泡体積が増えた。   FIG. 6 is a graph showing the relationship between the concentration of the temporarily filled methanol aqueous solution and the bubbles in the fuel cell fuel container after filling the 20 wt% methanol aqueous solution when the fuel cell fuel container is filled with the 10 wt% methanol aqueous solution. It is. According to this, when the fuel container for fuel cell is filled with 20% by weight methanol aqueous solution, the bubble volume is zero until the concentration of the temporarily filled methanol aqueous solution is about 70% by weight. No bubbles were found in the storage chamber 3. The bubble volume gradually increased as the concentration of the temporarily filled methanol aqueous solution decreased.

図6に示すグラフから明らかなように、20重量%メタノール水溶液を充填する場合には、50重量%以上のメタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のメタノール水溶液を仮充填すれば空気を混入させることなく、20重量%メタノール水溶液を充填することができた。   As is clear from the graph shown in FIG. 6, when 20% by weight aqueous methanol solution is filled, if the 50% by weight methanol aqueous solution is temporarily filled, bubbles are reduced compared to the case where no temporary filling is performed. When a methanol aqueous solution of 70% by weight or more was temporarily filled, a 20% by weight methanol aqueous solution could be filled without mixing air.

(実施例3)
実施例2において、タンク31内に収容したメタノール水溶液を、メタノール30重量%、蒸留水70重量%の30重量%メタノール水溶液とした以外は実施例2と同様にして実験を行った。結果を図7に示す。
Example 3
In Example 2, the experiment was performed in the same manner as in Example 2 except that the methanol aqueous solution housed in the tank 31 was changed to 30% by weight methanol and 70% by weight distilled water. The results are shown in FIG.

図7は燃料電池用燃料容器に30重量%メタノール水溶液を充填した場合における、仮充填メタノール水溶液の濃度と30重量%メタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に30重量%メタノール水溶液を充填した場合には、仮充填メタノール水溶液の濃度が約70重量%の時点までは気泡体積はゼロであり、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填メタノール水溶液の濃度が下がるにつれて徐々に気泡体積が増えた。なお、仮充填メタノール水溶液の濃度は本充填するメタノール水溶液の濃度よりも高濃度であるため、仮充填メタノール水溶液濃度が30重量%よりも低い濃度での実験は行っていないが、実施例2から推測すれば、仮充填エタノール水溶液の濃度が下がるに従って、燃料貯蔵室3内の気泡も増加するものと推測される。   FIG. 7 is a graph showing the relationship between the concentration of the temporarily filled methanol aqueous solution and the bubbles in the fuel cell fuel container after filling the 30 wt% methanol aqueous solution when the fuel cell fuel container is filled with the 30 wt% methanol aqueous solution. It is. According to this, when the fuel container for fuel cell is filled with 30% by weight methanol aqueous solution, the bubble volume is zero until the concentration of the temporarily filled methanol aqueous solution is about 70% by weight. No bubbles were found in the storage chamber 3. The bubble volume gradually increased as the concentration of the temporarily filled methanol aqueous solution decreased. Since the concentration of the temporarily filled methanol aqueous solution is higher than the concentration of the methanol aqueous solution to be filled, an experiment was not performed with a concentration of the temporarily filled methanol aqueous solution lower than 30% by weight. Assuming that the bubbles in the fuel storage chamber 3 increase as the concentration of the temporarily filled ethanol aqueous solution decreases.

図7に示すグラフから明らかなように、30重量%メタノール水溶液を充填する場合には、50重量%以上のメタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のメタノール水溶液を仮充填すれば空気を混入させることなく、30重量%メタノール水溶液を充填することができた。   As is clear from the graph shown in FIG. 7, when 30% by weight methanol aqueous solution is filled, if 50% by weight or more methanol aqueous solution is temporarily filled, bubbles are reduced compared to the case where no temporary filling is performed. If a 70% by weight or more methanol aqueous solution was temporarily filled, it was possible to fill the 30% by weight methanol aqueous solution without mixing air.

(実施例4)
実施例2において、タンク31内に収容したメタノール水溶液を、メタノール50重量%、蒸留水50重量%の50重量%メタノール水溶液とした以外は実施例2と同様にして実験を行った。結果を図8に示す。
Example 4
In Example 2, an experiment was performed in the same manner as in Example 2 except that the methanol aqueous solution housed in the tank 31 was changed to a 50 wt% methanol aqueous solution of 50 wt% methanol and 50 wt% distilled water. The results are shown in FIG.

図8は燃料電池用燃料容器に50重量%メタノール水溶液を充填した場合における、仮充填メタノール水溶液の濃度と50重量%メタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に50重量%メタノール水溶液を充填した場合には、仮充填メタノール水溶液の濃度が約70重量%の時点までは気泡体積はゼロであり、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填メタノール水溶液の濃度が下がるにつれて徐々に気泡体積が増えた。なお、仮充填メタノール水溶液の濃度は本充填するメタノール水溶液の濃度よりも高濃度であるため、仮充填メタノール水溶液濃度が50重量%よりも低い濃度での実験は行っていないが、実施例2から推測すれば、仮充填メタノール水溶液の濃度が下がるに従って、燃料貯蔵室3内の気泡も増加するものと推測される。   FIG. 8 is a graph showing the relationship between the concentration of the temporarily filled methanol aqueous solution and the bubbles in the fuel cell fuel container after filling the 50 wt% aqueous methanol solution when the fuel cell fuel container is filled with the 50 wt% methanol aqueous solution. It is. According to this, when the fuel container for a fuel cell is filled with 50% by weight methanol aqueous solution, the bubble volume is zero until the concentration of the temporarily filled methanol aqueous solution is about 70% by weight. No bubbles were found in the storage chamber 3. The bubble volume gradually increased as the concentration of the temporarily filled methanol aqueous solution decreased. Since the concentration of the temporarily filled methanol aqueous solution is higher than the concentration of the methanol aqueous solution to be filled, the experiment was not performed with the concentration of the temporarily filled methanol aqueous solution lower than 50% by weight. Assuming that the bubbles in the fuel storage chamber 3 increase as the concentration of the temporarily filled methanol aqueous solution decreases.

図8に示すグラフから明らかなように、50重量%メタノール水溶液を充填する場合には、50重量%より濃度の高いメタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のメタノール水溶液を仮充填すれば空気を混入させることなく、50重量%メタノール水溶液を充填することができた。   As is apparent from the graph shown in FIG. 8, when 50% by weight methanol aqueous solution is filled, if the methanol aqueous solution having a concentration higher than 50% by weight is temporarily filled, bubbles are not formed at all. It was possible to reduce the amount of methanol aqueous solution by 70% by weight or more, and 50% by weight methanol aqueous solution could be filled without air mixing.

(実施例5)
実施例2において、タンク30内に100重量%エタノール水溶液(以下、この燃料容器に液体燃料を充填する前に供給されるエタノール水溶液を仮充填エタノール水溶液という)を収容し、タンク31内に、エタノール10重量%、蒸留水90重量%の10重量%エタノール水溶液を収容し、実施例2と同様にして気泡体積を測定した。続いて、仮充填メタノール水溶液を、80重量%エタノール水溶液、60重量%エタノール水溶液、40重量%エタノール水溶液、20重量%エタノール水溶液と変え、それぞれの場合における気泡体積を測定した。結果を図9に示す。
(Example 5)
In Example 2, a 100 wt% ethanol aqueous solution (hereinafter referred to as an ethanol aqueous solution supplied before filling the fuel container with liquid fuel) is accommodated in the tank 30, and the ethanol is stored in the tank 31. A 10 wt% ethanol aqueous solution containing 10 wt% and distilled water 90 wt% was contained, and the bubble volume was measured in the same manner as in Example 2. Subsequently, the temporarily filled methanol aqueous solution was changed to an 80 wt% ethanol aqueous solution, a 60 wt% ethanol aqueous solution, a 40 wt% ethanol aqueous solution, and a 20 wt% ethanol aqueous solution, and the bubble volume in each case was measured. The results are shown in FIG.

図9は燃料電池用燃料容器に10重量%エタノール水溶液を充填した場合における、仮充填エタノール水溶液の濃度と10重量%エタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に10重量%エタノール水溶液を充填した場合には、仮充填エタノール水溶液の濃度が約70重量%の時点までは気泡体積はゼロであり、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填エタノール水溶液の濃度が下がるにつれて徐々に気泡体積が増え、仮充填エタノール水溶液の濃度が40重量%よりも低濃度では、燃料貯蔵室3内の気泡体積はほぼ一定となった。   FIG. 9 is a graph showing the relationship between the concentration of the temporarily filled ethanol aqueous solution and the bubbles in the fuel cell fuel container after the 10 wt% ethanol aqueous solution is filled when the fuel cell fuel container is filled with the 10 wt% ethanol aqueous solution. It is. According to this, when a 10 wt% ethanol aqueous solution is filled in a fuel cell fuel container, the bubble volume is zero until the concentration of the temporarily filled ethanol aqueous solution is about 70 wt%. No bubbles were found in the storage chamber 3. As the concentration of the temporarily filled ethanol aqueous solution decreases, the bubble volume gradually increases. When the concentration of the temporarily filled ethanol aqueous solution is lower than 40% by weight, the bubble volume in the fuel storage chamber 3 becomes substantially constant.

図9に示すグラフから明らかなように、10重量%エタノール水溶液を充填する場合には、50重量%以上のエタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のエタノール水溶液を仮充填すれば空気を混入させることなく、10重量%エタノール水溶液を充填することができた。   As is apparent from the graph shown in FIG. 9, when 10% by weight ethanol aqueous solution is filled, if 50% by weight or more ethanol aqueous solution is temporarily filled, bubbles are reduced compared to the case where no temporary filling is performed. If a 70% by weight or more ethanol aqueous solution was temporarily filled, a 10% by weight ethanol aqueous solution could be filled without air mixing.

(実施例6)
実施例5において、タンク31内に、エタノール30重量%、蒸留水70重量%の30重量%エタノール水溶液を収容した以外は実施例5と同様にして実験を行った。結果を図10に示す。
(Example 6)
In Example 5, an experiment was conducted in the same manner as in Example 5 except that a 30 wt% aqueous ethanol solution containing 30 wt% ethanol and 70 wt% distilled water was contained in the tank 31. The results are shown in FIG.

図10は燃料電池用燃料容器に30重量%エタノール水溶液を充填した場合における、仮充填エタノール水溶液の濃度と30重量%エタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に30重量%エタノール水溶液を充填した場合には、仮充填エタノール水溶液の濃度が約70重量%の時点までは気泡体積はゼロであり、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填エタノール水溶液の濃度が下がるにつれて徐々に気泡体積が増えた。なお、仮充填エタノール水溶液の濃度は本充填するエタノール水溶液の濃度よりも高濃度であるため、仮充填エタノール水溶液濃度が30重量%よりも低い濃度での実験は行っていないが、実施例5から推測すれば、仮充填エタノール水溶液の濃度が30重量%よりも低濃度では、燃料貯蔵室3内の気泡体積は一定になるものと推測される。   FIG. 10 is a graph showing the relationship between the concentration of the temporarily filled ethanol aqueous solution and the bubbles in the fuel cell fuel container after filling the 30 wt% aqueous ethanol solution when the fuel cell fuel vessel is filled with the 30 wt% aqueous ethanol solution. It is. According to this, when a 30 wt% ethanol aqueous solution is filled in a fuel cell fuel container, the bubble volume is zero until the concentration of the temporarily filled ethanol aqueous solution is about 70 wt%. No bubbles were found in the storage chamber 3. The bubble volume gradually increased as the concentration of the temporarily filled ethanol aqueous solution decreased. Since the concentration of the temporarily filled ethanol aqueous solution is higher than the concentration of the ethanol aqueous solution to be filled, no experiment was conducted at a concentration of the temporarily filled ethanol aqueous solution lower than 30% by weight. Assuming that the bubble volume in the fuel storage chamber 3 is constant when the concentration of the temporarily filled ethanol aqueous solution is lower than 30% by weight.

図10に示すグラフから明らかなように、30重量%エタノール水溶液を充填する場合には、55重量%以上のエタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のエタノール水溶液を仮充填すれば空気を混入させることなく、10重量%エタノール水溶液を充填することができた。   As is apparent from the graph shown in FIG. 10, when 30% by weight ethanol aqueous solution is filled, if the 55% by weight ethanol aqueous solution is temporarily filled, bubbles are reduced compared to the case where no temporary filling is performed. If a 70% by weight or more ethanol aqueous solution was temporarily filled, a 10% by weight ethanol aqueous solution could be filled without air mixing.

(実施例7)
実施例5において、タンク31内に、エタノール50重量%、蒸留水50重量%の50重量%エタノール水溶液を収容した以外は実施例5と同様にして実験を行った。結果を図11に示す。
(Example 7)
In Example 5, an experiment was performed in the same manner as in Example 5 except that a 50 wt% aqueous ethanol solution containing 50 wt% ethanol and 50 wt% distilled water was contained in the tank 31. The results are shown in FIG.

図11は燃料電池用燃料容器に50重量%エタノール水溶液を充填した場合における、仮充填エタノール水溶液の濃度と50重量%エタノール水溶液を充填した後の燃料電池用燃料容器中の気泡の関係を示すグラフである。これによれば、燃料電池用燃料容器に50重量%エタノール水溶液を充填した場合には、仮充填エタノール水溶液の濃度が約70重量%の時点まで気泡体積はゼロであり、この時点までは燃料貯蔵室3内に気泡は見られなかった。仮充填エタノール水溶液の濃度が下がるにつれて徐々に気泡体積が増えた。なお、仮充填エタノール水溶液の濃度は本充填するエタノール水溶液の濃度よりも高濃度であるため、仮充填メタノール水溶液濃度が50重量%よりも低い濃度での実験は行っていないが、実施例5から推測すれば、仮充填エタノール水溶液の濃度が50重量%よりも低濃度では、燃料貯蔵室3内の気泡体積は一定になるものと推測される。   FIG. 11 is a graph showing the relationship between the concentration of the temporarily filled ethanol aqueous solution and the bubbles in the fuel cell fuel container after filling the 50 wt% ethanol aqueous solution when the fuel cell fuel container is filled with the 50 wt% ethanol aqueous solution. It is. According to this, when a 50 wt% aqueous ethanol solution is filled in a fuel cell fuel container, the bubble volume is zero until the concentration of the temporarily filled ethanol aqueous solution is about 70 wt%. No bubbles were seen in chamber 3. The bubble volume gradually increased as the concentration of the temporarily filled ethanol aqueous solution decreased. Since the concentration of the temporarily filled ethanol aqueous solution is higher than the concentration of the ethanol aqueous solution to be filled, no experiment was conducted at a concentration of the temporarily filled methanol aqueous solution lower than 50% by weight. Assuming that the bubble volume in the fuel storage chamber 3 is constant when the concentration of the temporarily filled ethanol aqueous solution is lower than 50% by weight.

図11に示すグラフから明らかなように、50重量%エタノール水溶液を充填する場合には、55重量%以上のエタノール水溶液を仮充填すれば全く仮充填を行わない場合に比べて、気泡を減らすことが可能であり、70重量%以上のエタノール水溶液を仮充填すれば空気を混入させることなく、50重量%エタノール水溶液を充填することができた。   As is clear from the graph shown in FIG. 11, when 50% by weight ethanol aqueous solution is filled, if the 55% by weight or more ethanol aqueous solution is temporarily filled, bubbles are reduced compared to the case where no temporary filling is performed. If a 70% by weight or more ethanol aqueous solution was temporarily filled, a 50% by weight ethanol aqueous solution could be filled without mixing air.

なお、実施例では図1に示すような燃料電池用燃料容器を用いて説明したが、本発明の液体燃料充填方法は液体燃料を燃料電池に補充するあらゆる燃料電池用燃料容器に液体燃料を充填する場合にも利用可能である。   In the embodiment, the fuel cell fuel container as shown in FIG. 1 is used for explanation. However, the liquid fuel filling method of the present invention fills the liquid fuel in any fuel cell fuel container for replenishing the fuel cell with the liquid fuel. It is also possible to use it.

また、ここに示す実施例では、仮充填メタノールあるいはエタノールを排出した後、別途用意した本充填メタノールあるいはエタノールを注入しているが、仮充填メタノールあるいはエタノールの濃度が50%程度以上の高い濃度の場合には、仮充填に用いたメタノールあるいはエタノールを本充填メタノールあるいはエタノールとして用いても、本発明の空気を混入させることなく充填するという効果を得ることができる。   Further, in the embodiment shown here, after temporarily filling methanol or ethanol is discharged, separately prepared main filling methanol or ethanol is injected. However, the concentration of temporary filling methanol or ethanol is about 50% or higher. In this case, even if the methanol or ethanol used for the temporary filling is used as the main filling methanol or ethanol, the effect of filling without mixing air of the present invention can be obtained.

以上のように、本発明の液体燃料充填方法は、燃料電池用燃料容器に液体燃料を充填する前に、充填する液体燃料と同種のこの液体燃料の濃度よりも高濃度の液体を燃料電池用燃料容器に供給するので、燃料電池用燃料容器の内壁面やピストン状の隔壁部材における濡れ性が良くなり、燃料容器の内壁面やピストン状の隔壁部材に気泡が固着することが抑制されるので、その後に充填される液体燃料に空気を混入させることなく、液体燃料を充填することができる。   As described above, in the liquid fuel filling method of the present invention, before filling the fuel container for the fuel cell with the liquid fuel, a liquid having a higher concentration than the liquid fuel of the same type as the liquid fuel to be filled is used for the fuel cell. Since the fuel is supplied to the fuel container, the wettability of the inner wall surface of the fuel container for the fuel cell and the piston-shaped partition wall member is improved, and bubbles are prevented from sticking to the inner wall surface of the fuel container and the piston-shaped partition wall member. The liquid fuel can be filled without mixing air into the liquid fuel to be filled thereafter.

燃料電池用燃料容器の中央断面正面図Center cross-sectional front view of fuel cell fuel container 図1の閉状態のバルブ部位の拡大断面図1 is an enlarged cross-sectional view of the valve portion in the closed state in FIG. 燃料電池用燃料容器に燃料を充填する一の実施の形態を示す模式図Schematic diagram showing one embodiment of filling a fuel cell fuel container with fuel 燃料電池用燃料容器に燃料を充填する別の実施の形態を示す模式図Schematic diagram showing another embodiment of filling a fuel container for a fuel cell with fuel 本充填メタノール水溶液10重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporarily filling methanol aqueous solution in 10 weight% of this filling methanol aqueous solution, and the bubble in a fuel container. 本充填メタノール水溶液20重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporarily filling methanol aqueous solution in 20 weight% of this filling methanol aqueous solution, and the bubble in a fuel container. 本充填メタノール水溶液30重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporarily filling methanol aqueous solution in 30 weight% of this filling methanol aqueous solution, and the bubble in a fuel container. 本充填メタノール水溶液50重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporarily filling methanol aqueous solution in 50 weight% of this filling methanol aqueous solution, and the bubble in a fuel container. 本充填エタノール水溶液10重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporarily filling methanol aqueous solution in 10 weight% of this filling ethanol aqueous solution, and the bubble in a fuel container. 本充填エタノール水溶液30重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporary filling methanol aqueous solution in 30 weight% of this filling ethanol aqueous solution, and the bubble in a fuel container. 本充填エタノール水溶液50重量%における仮充填メタノール水溶液の濃度と燃料容器中の気泡の関係を示すグラフThe graph which shows the relationship between the density | concentration of the temporarily filling methanol aqueous solution in 50 weight% of this filling ethanol aqueous solution, and the bubble in a fuel container.

符号の説明Explanation of symbols

1 燃料電池用燃料容器
2 容器本体
3 燃料貯蔵室
4 気室
5 隔壁部材
5a,5b シール部
7 バルブ
8 弾性体
21 外容器
22 蓋体
23 内容器
24 接続部
25 連通路
30,31,35 タンク
32,33,34 管
40 スリーブ
52 支持部材
71 ハウジング
72 ステム
73 スプリング
74 弁体
75 シール材
F 液体燃料
F′ 高濃度の液体
G 圧縮ガス
P1,P2 タンク
Q コック
DESCRIPTION OF SYMBOLS 1 Fuel container for fuel cells 2 Container body 3 Fuel storage chamber 4 Air chamber 5 Bulkhead member
5a, 5b Seal part 7 Valve 8 Elastic body
21 Outer container
22 Lid
23 Inner container
24 connections
25 passage
30,31,35 tanks
32,33,34 tubes
40 sleeves
52 Support member
71 housing
72 stem
73 Spring
74 Disc
75 Sealant F Liquid fuel F 'High concentration liquid G Compressed gas
P1, P2 Tank Q Cock

Claims (7)

燃料電池用の液体燃料を収容する燃料電池用燃料容器に液体燃料を充填する方法において、前記燃料電池用燃料容器に前記液体燃料を充填する前に、充填する前記液体燃料と同種の該液体燃料の濃度よりも高濃度の液体を前記燃料電池用燃料容器に供給し、次いで供給した前記高濃度の液体を廃棄し、その後、前記燃料電池用燃料容器に前記液体燃料を充填することを特徴とする液体燃料充填方法。   In a method of filling a liquid fuel for a fuel cell containing liquid fuel for a fuel cell with the liquid fuel, the liquid fuel of the same type as the liquid fuel to be filled before filling the liquid fuel in the fuel cell fuel container A liquid having a concentration higher than that of the fuel cell is supplied to the fuel container for the fuel cell, and then the supplied high-concentration liquid is discarded, and then the liquid fuel is filled in the fuel container for the fuel cell. Liquid fuel filling method. 前記液体燃料がメタノールまたはメタノール水溶液であることを特徴とする請求項1記載の液体燃料充填方法。   2. The liquid fuel filling method according to claim 1, wherein the liquid fuel is methanol or a methanol aqueous solution. 前記高濃度の液体が50重量%以上のメタノール水溶液であることを特徴とする請求項2記載の液体燃料充填方法。   3. The liquid fuel filling method according to claim 2, wherein the high-concentration liquid is an aqueous methanol solution of 50% by weight or more. 前記高濃度の液体が70重量%以上のメタノール水溶液であることを特徴とする請求項3記載の液体燃料充填方法。   4. The liquid fuel filling method according to claim 3, wherein the high-concentration liquid is an aqueous methanol solution of 70% by weight or more. 前記液体燃料がエタノールまたはエタノール水溶液であることを特徴とする請求項1記載の液体燃料充填方法。   The liquid fuel filling method according to claim 1, wherein the liquid fuel is ethanol or an aqueous ethanol solution. 前記高濃度の液体燃料が50重量%以上のエタノール水溶液であることを特徴とする請求項5記載の液体燃料充填方法。   6. The liquid fuel filling method according to claim 5, wherein the high-concentration liquid fuel is an ethanol aqueous solution of 50% by weight or more. 前記高濃度の液体燃料が70重量%以上のエタノール水溶液であることを特徴とする請求項6記載の液体燃料充填方法。   The liquid fuel filling method according to claim 6, wherein the high-concentration liquid fuel is an ethanol aqueous solution of 70% by weight or more.
JP2004251517A 2004-06-08 2004-08-31 Liquid fuel charge method Pending JP2006024541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251517A JP2006024541A (en) 2004-06-08 2004-08-31 Liquid fuel charge method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004169440 2004-06-08
JP2004251517A JP2006024541A (en) 2004-06-08 2004-08-31 Liquid fuel charge method

Publications (1)

Publication Number Publication Date
JP2006024541A true JP2006024541A (en) 2006-01-26

Family

ID=35797651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251517A Pending JP2006024541A (en) 2004-06-08 2004-08-31 Liquid fuel charge method

Country Status (1)

Country Link
JP (1) JP2006024541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027896A (en) * 2006-06-20 2008-02-07 Mitsubishi Pencil Co Ltd Fuel cartridge
JP2008201428A (en) * 2007-02-19 2008-09-04 Casio Comput Co Ltd Filling apparatus for liquid fuel, and filling method of liquid fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027896A (en) * 2006-06-20 2008-02-07 Mitsubishi Pencil Co Ltd Fuel cartridge
JP2008201428A (en) * 2007-02-19 2008-09-04 Casio Comput Co Ltd Filling apparatus for liquid fuel, and filling method of liquid fuel

Similar Documents

Publication Publication Date Title
KR101109428B1 (en) Fuel cartridge with flexible liner
RU2315396C2 (en) Fuel bottle and its connecting valve
KR101432142B1 (en) Valves for fuel cartridges
JP5809178B2 (en) Valve for fuel cartridge
US6808833B2 (en) Fuel supply for a fuel cell
US20080171258A1 (en) Liquid injector for fuel cell, fuel cell and fuel cartridge
JP2009039710A (en) Potable gas generation device and electric fuel cell power source equipped with the same
JP4944444B2 (en) Fuel container for fuel cell
JP2006024541A (en) Liquid fuel charge method
JP5180626B2 (en) Fuel cartridge and fuel supply method to fuel cell
CN101375453B (en) Fuel cartridge
JP4634728B2 (en) Fuel container for fuel cell
KR20090024350A (en) The fuel cartridge for the fuel cell
JP4733351B2 (en) Fuel container for fuel cell
JP2007059224A (en) Liquid container inspection method
JP2007095537A (en) Liquid container
JP2005353299A (en) Manufacturing method of flow volume adjusting filter and flow volume adjusting filter
JP2009231055A (en) Valve body for fuel cartridge
JP2008146989A (en) Connecting structure and connecting method of fuel cartridge
JP2008218152A (en) Fuel cartridge
JP2008176985A (en) Fuel cartridge
JP2007066617A (en) Fuel cell
JP2008192345A (en) Connecting structure of fuel cartridge
JP2007323917A (en) Solid-state methanol fuel cartridge for direct methanol type fuel cell and direct methanol type fuel cell system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110413