JP2006024476A - Manufacturing method of contact material for vacuum valve - Google Patents

Manufacturing method of contact material for vacuum valve Download PDF

Info

Publication number
JP2006024476A
JP2006024476A JP2004202284A JP2004202284A JP2006024476A JP 2006024476 A JP2006024476 A JP 2006024476A JP 2004202284 A JP2004202284 A JP 2004202284A JP 2004202284 A JP2004202284 A JP 2004202284A JP 2006024476 A JP2006024476 A JP 2006024476A
Authority
JP
Japan
Prior art keywords
powder
contact material
auxiliary component
manufacturing
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202284A
Other languages
Japanese (ja)
Inventor
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Keisei Seki
経世 関
Isao Okutomi
功 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2004202284A priority Critical patent/JP2006024476A/en
Publication of JP2006024476A publication Critical patent/JP2006024476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a contact material for a vacuum valve excellent in a breaking property and withstand voltage characteristics. <P>SOLUTION: The manufacturing method of a contact material for a vacuum valve comprises a first process of mixing Cu powder with an average particle size of 20 to 200 μm, Cr powder with an average particle size of 40 to 200 μm, and powder of auxiliary components like W having a melting point higher than that of Cu and an average particle size of 0.3 to 10 μm within a range of 0.1 to 2 vol% against the total volume of the powder; a second process of forming a fused body by fusing the Cu powder and a whole or a part of Cr powder in the mixed powder in a heat resistant container by raising the temperature of the mixed powder obtained by the first process to that of not lower than the melting point of Cu and not higher than that of the auxiliary components, and cooling the fused body in the heat resistant container or by filling the fused body in a mold; and a third process of forming a plurality of contact materials by processing the fused body cooled at the second process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空バルブ用接点材料の製造方法に関わり、より具体的には、優れた大電流遮断特性と耐電圧特性を兼備した接点材料の製造方法に関わる。   The present invention relates to a method for producing a contact material for a vacuum valve, and more specifically, to a method for producing a contact material having both excellent large current interruption characteristics and withstand voltage characteristics.

真空バルブ用接点は、大別すると、以下の4種類が存在する。   The vacuum valve contacts are roughly classified into the following four types.

1) CuBi、CuTeSeに代表される大電流遮断用接点
2) Cu−W等の高電圧用途に用いられる接点
3) Ag−WC等の低サージ性を有する接点
4)Cu−Cr等の、ある程度の耐圧と大電流遮断特性を有する接点
このうちCuCr接点の製造方法としては、一般に下記の3通りの方法が良く知られている。
1) Contact for large current interruption represented by CuBi and CuTeSe 2) Contact used for high voltage applications such as Cu-W 3) Contact having low surge characteristics such as Ag-WC 4) To some extent such as Cu-Cr Of these, the following three methods are generally well known as methods for producing CuCr contacts.

1) 固相焼結法
通常、40〜200μm程度の平均粒径のCr粒子とCu粒子とを混合して成形したのち、Cuの融点以下の温度にて焼結する方法で、場合によっては成形と焼結を複数回繰り返して製造する。Cu/Cr組成比を自由に選択できる利点がある。一方、ガス含有量は2)の溶浸法に比べ、多くなる可能性が高い。
1) Solid-phase sintering method Usually, Cr particles having an average particle diameter of about 40 to 200 μm and Cu particles are mixed and molded, and then sintered at a temperature below the melting point of Cu. And sintering is repeated several times. There is an advantage that the Cu / Cr composition ratio can be freely selected. On the other hand, the gas content is likely to increase as compared with the infiltration method of 2).

2) 溶浸法
通常、40〜200μm程度の平均粒径のCr粒子を容器に入れCuをCr粒子の空隙に溶浸し、場合によってはCr粒子を成形したのち、CuをCr成形体の空隙に溶浸する製造方法である。1)の固相焼結法より高密度な素材を得やすく、従って、ガス含有量も低減しやすいといった特徴を有する。
2) Infiltration method Usually, Cr particles having an average particle diameter of about 40 to 200 μm are put in a container and Cu is infiltrated into the voids of the Cr particles. In some cases, after forming the Cr particles, the Cu is formed into the voids of the Cr compact. This is a manufacturing method for infiltration. It has a feature that it is easier to obtain a material having a higher density than the solid phase sintering method of 1), and hence the gas content is also easily reduced.

3) アーク溶解法
CuとCrの原料をアーク加熱により急熱急冷し、微細組織を形成させる。機械的強度の大きい組織形態となり、耐電圧特性は優れる。
3) Arc melting method Cu and Cr raw materials are rapidly heated and quenched by arc heating to form a fine structure. It has a structure with a high mechanical strength and excellent withstand voltage characteristics.

なお、このアーク溶解法の例としては、特許文献1に示されているものがある。
特許第3382000号公報
An example of this arc melting method is disclosed in Patent Document 1.
Japanese Patent No. 3382000

CuCr接点を構成するCuとCrは密度差が大きいため、溶解法での製造は急冷凝固が条件となり、アーク溶解法のような方法のみ可能であった。しかしながら、この方法では、製造コストの増大は不可避であり、工業的には困難である。また、Cuのみを溶解する溶浸法では、予めCr粒子が流動しないように、Cr含有量を十分高める必要があり、Cu/Cr組成比は、Cuが25〜60%程度に限定されていた。一方、固相焼結では、この組成比を自由に選択できるが、組織中のCr粒子の粒度は原料の粒度をそのまま反映したものとなり、一般的には粗いCr粒子が分散された組織となるため、耐圧特性を向上する成分であるCr量が少なくなると、耐圧上不十分であった。また、耐圧向上のため、微細なCr粒子を原料とした場合には、ガス含有量が高まるため遮断特性が低下するため、固相焼結法においては、優れた遮断性能と耐電圧特性を兼備することには限界があった。   Since Cu and Cr constituting the CuCr contact point have a large density difference, the manufacturing by the melting method requires rapid solidification, and only the method such as the arc melting method is possible. However, this method inevitably increases the manufacturing cost and is industrially difficult. Further, in the infiltration method in which only Cu is dissolved, it is necessary to sufficiently increase the Cr content so that the Cr particles do not flow in advance, and the Cu / Cr composition ratio is limited to about 25 to 60% of Cu. . On the other hand, in solid phase sintering, this composition ratio can be freely selected, but the particle size of the Cr particles in the structure reflects the particle size of the raw material as it is, and generally has a structure in which coarse Cr particles are dispersed. For this reason, if the amount of Cr, which is a component that improves the breakdown voltage characteristics, decreases, the breakdown voltage is insufficient. In order to improve pressure resistance, when fine Cr particles are used as the raw material, the gas content increases and the interruption characteristics deteriorate. Therefore, the solid phase sintering method has both excellent interruption performance and withstand voltage characteristics. There was a limit to doing it.

本発明は、従来のこのような点に鑑みて為されたもので、優れた遮断性能と耐電圧特性を兼備した真空バルブ用接点材料の製造方法を提供することを目的とする。   The present invention has been made in view of such conventional points, and an object of the present invention is to provide a method for producing a contact material for a vacuum valve that has both excellent breaking performance and withstand voltage characteristics.

上記目的を達成するために、本発明に係る真空バルブ用接点材料の製造方法は、平均粒径が20〜200μmのCu粉末、平均粒径が40〜200μmのCr粉末、および粉末全体の0.1〜2vol%の範囲で平均粒径が0.3〜10μmで融点がCuの融点より高い補助成分の粉末を混合する第1の工程と、この第1の工程で得られた混合粉末をCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温して混合粉末の中のCu粉末およびCr粉末の一部または全てを耐熱容器中で溶解して溶解体を形成した後、溶解体を耐熱容器中で冷却するかまたは鋳型に一括充填して冷却する第2の工程と、この第2の工程を終えた溶解体を加工することにより複数の接点材料を取り出す第3の工程とから成ることを特徴とする。   In order to achieve the above object, the method for producing a contact material for a vacuum valve according to the present invention is a Cu powder having an average particle size of 20 to 200 μm, a Cr powder having an average particle size of 40 to 200 μm, and a powder of 0. A first step of mixing auxiliary component powder having an average particle size of 0.3 to 10 μm and a melting point higher than the melting point of Cu in the range of 1 to 2 vol%, and the mixed powder obtained in this first step is Cu After the temperature is raised to a temperature equal to or higher than the melting temperature of the auxiliary component and below the melting point of the auxiliary component, a part or all of the Cu powder and Cr powder in the mixed powder is dissolved in a heat-resistant container to form a solution, From the second step of cooling in a heat-resistant container or filling the mold in a batch and cooling, and the third step of taking out a plurality of contact materials by processing the melt after finishing the second step It is characterized by comprising.

本発明によれば、優れた遮断性能と耐電圧特性を兼備した真空バルブ用接点材料を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the contact material for vacuum valves which has the outstanding interruption | blocking performance and a withstand voltage characteristic can be obtained.

以下、図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

発明が解決しようとする課題の項で述べたようなCuCr接点の各製造方法の現状を鑑み、発明者らはまず、急冷凝固を伴なわず、かつ、Cu/Cr比を選ばずに固相焼結法で製造したCuCr接点と同等の遮断特性を有するCuCr系接点材料を製造することを目的として研究を重ねた結果、本発明の方法を見出すに至った。 In view of the current state of manufacturing methods for CuCr contacts as described in the section of the problem to be solved by the invention, the inventors firstly applied a solid phase without rapid solidification and without selecting a Cu / Cr ratio. As a result of repeated research aimed at producing a CuCr-based contact material having the same breaking characteristics as a CuCr contact produced by a sintering method, the method of the present invention has been found.

また、この発明によって得られる接点材料の良品率を高めることを目的とした製造方法の改良を加え、その条件を見出した。 Moreover, the manufacturing method aimed at increasing the yield rate of the contact material obtained by the present invention was added, and the conditions were found.

さらに発明者らは、この方法を用い、優れた遮断特性を有するCr25wt%付近のCu/Cr組成比において、固相法CuCr接点では到底達成し得ない耐電圧特性を兼備したCuCr系接点材料を製造することに成功した。 Furthermore, the inventors have used this method to obtain a CuCr-based contact material having a withstand voltage characteristic that cannot be achieved with a solid-phase CuCr contact at a Cu / Cr composition ratio in the vicinity of Cr 25 wt%, which has excellent interruption characteristics. Succeeded in manufacturing.

本発明の第1の実施形態に係る真空バルブ用接点材料の製造方法は、平均粒径が20〜200μmのCu粉末、平均粒径が40〜200μmのCr粉末、および粉末全体の0.1〜2vol%の範囲で平均粒径が0.3〜10μmで融点がCuの融点より高い補助成分の粉末を混合する第1の工程と、この第1の工程で得られた混合粉末をCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温して混合粉末の中のCu粉末およびCr粉末の一部または全てを耐熱容器中で溶解して溶解体を形成した後、溶解体を耐熱容器中で冷却するかまたは鋳型に一括充填して冷却する第2の工程と、この第2の工程を終えた溶解体を切削加工、または切断加工することにより複数の接点材料を取り出す第3の工程とから成ることを特徴とする。   The method for producing a contact material for a vacuum valve according to the first embodiment of the present invention includes a Cu powder having an average particle size of 20 to 200 μm, a Cr powder having an average particle size of 40 to 200 μm, and 0.1 to 0.1 of the entire powder. A first step of mixing auxiliary component powder having an average particle size of 0.3 to 10 μm and a melting point higher than the melting point of Cu in the range of 2 vol%, and the mixed powder obtained in the first step is fused with Cu After heating up to a temperature above the temperature and below the melting point of the auxiliary component and dissolving part or all of the Cu powder and Cr powder in the mixed powder in a heat-resistant container to form a solution, the solution is heat-resistant A second step of cooling in a container or filling the mold in a batch and cooling; and a third step of taking out a plurality of contact materials by cutting or cutting the melt after completion of the second step It consists of a process.

この第1の実施形態に係る真空バルブ用接点材料の製造方法においては、混合粉末中の補助成分の微粒子は、混合粉末をCuの溶融温度以上に保持した際に、Cu液相とCr固相の密度差に起因する両者の分離を抑制し、Cr粒子をCu液相中に微細分散させる効果を有する。この効果は、Cu液相中に溶解したCrが補助成分粒子上に晶出することによるものである。   In the manufacturing method of the contact material for a vacuum valve according to the first embodiment, the auxiliary component fine particles in the mixed powder are mixed with a Cu liquid phase and a Cr solid phase when the mixed powder is held at a melting temperature of Cu or higher. The separation of the two due to the difference in density between the two particles is suppressed, and Cr particles are finely dispersed in the Cu liquid phase. This effect is due to the Cr dissolved in the Cu liquid phase crystallizing on the auxiliary component particles.

本発明の第2の実施形態は、第1の実施形態に係る真空バルブ用接点材料の製造方法において、補助成分は、純Cuに1原子%添加した時の固有抵抗の純Cuに対する増分が3μΩcm/原子%以下となる成分を選択していることを特徴とする。   According to a second embodiment of the present invention, in the method for manufacturing a contact material for a vacuum valve according to the first embodiment, the auxiliary component has a specific resistance increment of 3 μΩcm with respect to pure Cu when 1 atomic% is added to pure Cu. / A component that is not more than atomic% is selected.

本発明では、Cu粒子を溶融させるため、このCu液相に溶解することによってCu相の固有抵抗を増大させる成分は補助成分として不適切である。すなわち、補助成分を、純Cuに1原子%添加した時の固有抵抗の純Cuに対する増分が3μΩcm/原子%を越えると、導電性が著しく損なわれるために、遮断特性が低下する。   In the present invention, since the Cu particles are melted, a component that increases the specific resistance of the Cu phase by dissolving in the Cu liquid phase is inappropriate as an auxiliary component. That is, when the increment of the specific resistance with respect to the pure Cu when the auxiliary component is added to the pure Cu exceeds 3 μΩcm / atomic%, the electrical conductivity is remarkably impaired, so that the interruption characteristic is deteriorated.

本発明の第3の実施形態は、第1または第2の実施形態に係る真空バルブ用接点材料の製造方法において、補助成分の密度が融点直上(1083℃)におけるCuの液相の密度(8.00g/cm)より大きいことを特徴とする。 According to a third embodiment of the present invention, in the method for manufacturing a contact material for a vacuum valve according to the first or second embodiment, the density of the liquid phase of Cu (883 ° C.) when the density of the auxiliary component is just above the melting point (883 ° C.). Greater than 0.000 g / cm 3 ).

本発明では、Cu液相に対して密度の小さいCrを補助成分上に晶出させるが、補助成分の密度が小さい場合、Crの晶出前に補助成分自体がCu相と分離してしまう。これを防ぐには、Cu相に対して密度の大きい補助成分上に密度の小さいCrを晶出させる方法が有効である。   In the present invention, Cr having a low density with respect to the Cu liquid phase is crystallized on the auxiliary component. However, when the density of the auxiliary component is small, the auxiliary component itself is separated from the Cu phase before the crystallization of Cr. In order to prevent this, a method of crystallizing Cr having a low density on an auxiliary component having a high density relative to the Cu phase is effective.

本発明の第4の実施形態は、第1乃至第3のいずれかの実施形態に係る真空バルブ用接点材料の製造方法において、前記補助成分がW,Mo,Taまたはこれらの炭化物の少なくとも1種類から選択されることを特徴とする。第2または第3の実施形態の条件を満たす補助成分の具体例としては、これらの物質があげられる。   According to a fourth embodiment of the present invention, in the method for manufacturing a contact material for a vacuum valve according to any one of the first to third embodiments, the auxiliary component is at least one of W, Mo, Ta, or a carbide thereof. It is selected from these. Specific examples of the auxiliary component that satisfies the conditions of the second or third embodiment include these substances.

本発明の第5の実施形態は、第1乃至第4のいずれかの実施形態に係る真空バルブ用接点材料の製造方法において、第1の工程において配合すべきCuと補助成分とを計量し、補助成分微粒子全量とその0.2〜5.0倍の体積のCu粒子とを混合して第1の混合粉末とし、第1の混合粉末に残りのCuを適宜加え、混合して、第2の混合粉末とし、第2の混合粉末にCr粒子を適宜加え、混合して第3の混合粉末を得ることを特徴とする。   The fifth embodiment of the present invention is a method of manufacturing a contact material for a vacuum valve according to any one of the first to fourth embodiments, and measures Cu and auxiliary components to be blended in the first step, The total amount of the auxiliary component fine particles and 0.2 to 5.0 times the volume of the Cu particles are mixed to obtain a first mixed powder. The remaining Cu is added to the first mixed powder as appropriate, mixed, and then the second mixed powder. It is characterized in that Cr particles are appropriately added to the second mixed powder and mixed to obtain a third mixed powder.

Cu粉末が溶融するまでの昇温過程において、補助成分がCr粒子と接触している場合、補助成分はCr表面に固着されてしまう。従って、溶融後、微細分散された状態の補助成分粒子上にCrを晶出させるには、この固着を可能な限り回避する必要がある。これには、混合時におけるCrと補助成分の接触を少なくすることが有効であり、上記手順による混合で、補助成分粒子をまずCu粒子中に均質に分散することが肝要である。   In the temperature rising process until the Cu powder is melted, when the auxiliary component is in contact with the Cr particles, the auxiliary component is fixed to the Cr surface. Therefore, in order to crystallize Cr on the auxiliary component particles in a finely dispersed state after melting, it is necessary to avoid this sticking as much as possible. For this purpose, it is effective to reduce the contact between Cr and auxiliary components during mixing, and it is important to first uniformly disperse auxiliary component particles in Cu particles by mixing according to the above procedure.

本発明の第6の実施形態は、第1乃至第5のいずれかの実施形態に係る真空バルブ用接点材料の製造方法において、第1の工程におけるCu粉末の混合粉末全体に占める割合が、60〜83vol%であることを特徴とする。   According to a sixth embodiment of the present invention, in the method for manufacturing a contact material for a vacuum valve according to any one of the first to fifth embodiments, the ratio of the Cu powder in the first step to the entire mixed powder is 60. It is -83 vol%.

本実施形態によれば、遮断性能には優れるものの耐電圧特性が不十分であった固相焼結法によるCr含有量25wt%(22vol%)付近の材料において、組織微細化の効果により、優れた耐電圧特性をも兼備させることが可能となる。   According to the present embodiment, in the material having a Cr content of about 25 wt% (22 vol%) by the solid-phase sintering method, which has an excellent breaking performance but has insufficient withstand voltage characteristics, it is excellent due to the effect of refinement of the structure. It is also possible to combine the withstand voltage characteristics.

本発明の第7の実施形態は、第1乃至第6のいずれかの実施形態に係る真空バルブ用接点材料の製造方法において、第2の工程と第3の工程との間に、溶解体に対して圧縮、圧延、または鍛造の少なくとも1つの加工を行う工程を有することを特徴とする。   According to a seventh embodiment of the present invention, in the method for manufacturing a contact material for a vacuum valve according to any one of the first to sixth embodiments, a solution is formed between the second step and the third step. On the other hand, the method includes a step of performing at least one processing of compression, rolling, or forging.

この加工により、溶解体に含まれる微細な欠陥がつぶされ、導電率が高められるため、優れた通電特性も兼備させることが可能となる。   By this processing, fine defects contained in the melt are crushed and the electrical conductivity is increased, so that it is possible to have excellent current-carrying characteristics.

本発明の第8の実施形態は、第1乃至第7のいずれかの実施形態に係る真空バルブ用接点材料の製造方法において、第2の工程と前記第3の工程との間に、前記溶解体を700〜900℃の範囲の温度で保持する工程を有することを特徴とする。   In an eighth embodiment of the present invention, in the method for manufacturing a contact material for a vacuum valve according to any one of the first to seventh embodiments, the dissolution is performed between the second step and the third step. It has the process of hold | maintaining a body at the temperature of the range of 700-900 degreeC.

通電特性の改善は、このような熱処理によっても得ることができる。   Improvement of the current-carrying characteristics can also be obtained by such heat treatment.

本発明の第9の実施形態は、第1乃至第8のいずれかの実施形態に係る真空バルブ用接点材料の製造方法において、第1の工程と第2の工程との間に、混合粉末を5〜8ton/cmの範囲の圧力で成形する工程を有することを特徴とする。 According to a ninth embodiment of the present invention, in the method for producing a contact material for a vacuum valve according to any one of the first to eighth embodiments, a mixed powder is provided between the first step and the second step. It has the process of shape | molding with the pressure of the range of 5-8 ton / cm < 2 >.

第1乃至第8のいずれかの実施形態の方法では、良好な電気特性が期待できる良品部が、溶解体全体の限られた部分にのみ形成される。しかしながらこの第9の実施形態のように、混合粉末をCuの溶融温度以上の温度まで上げる前に予め加圧しておくことによって、この良品部を大幅に拡大することが可能である。ただし、この加圧力を過大にした場合、成形体中に閉じ込められたガスがCuの溶解時に放出されるのを阻害するため遮断性能の低下につながる。   In the method according to any one of the first to eighth embodiments, a non-defective part that can be expected to have good electrical characteristics is formed only in a limited part of the entire solution. However, as in the ninth embodiment, this non-defective part can be greatly enlarged by pressurizing the mixed powder in advance before raising it to a temperature equal to or higher than the melting temperature of Cu. However, when this applied pressure is excessive, it prevents the gas confined in the compact from being released during the dissolution of Cu, leading to a decrease in the shut-off performance.

本発明の第10の実施形態は、第9の実施形態に係る真空バルブ用接点材料の製造方法において、第2の工程において、昇温して溶解体を形成するとき、前記圧力で成形された圧粉成形体の中心線に垂直な2つの平行面で挟まれた領域の全体または一部をCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温し、前記領域を成形体の一端から他端に向かって移動させ、成形体中のCu粉末の一部または全てが溶融した溶解体とすることを特徴とする。   The tenth embodiment of the present invention was molded at the above pressure when forming a solution by raising the temperature in the second step in the method for manufacturing a contact material for a vacuum valve according to the ninth embodiment. The whole or part of the region sandwiched between two parallel surfaces perpendicular to the center line of the green compact is heated to a temperature not lower than the melting temperature of Cu and not higher than the melting point of the auxiliary component, It is made to move toward the other end from one end, and it is set as the melt | dissolution body which a part or all of Cu powder in a molded object fuse | melted.

このように、圧粉成形体を部分的に溶解凝固させることによっても広範囲なCuとCrの組成変動を抑制できるため、良品部の拡大は達成できる。   As described above, since the composition variation of Cu and Cr in a wide range can be suppressed even by partially dissolving and solidifying the green compact, the non-defective product can be enlarged.

以下、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

<供試真空バルブの構成>
まず、本発明により製造される真空バルブ用接点材料が適用される供試真空バルブの構成について説明する。
<Configuration of sample vacuum valve>
First, the configuration of a test vacuum valve to which the contact material for a vacuum valve manufactured according to the present invention is applied will be described.

図1は、供試真空バルブの構成例を説明するための断面図、図2は図1の電極部分の拡大断面図である。   FIG. 1 is a cross-sectional view for explaining a configuration example of a test vacuum valve, and FIG. 2 is an enlarged cross-sectional view of an electrode portion of FIG.

図1において、遮断室1は、絶縁材料によりほぼ円筒状に形成された絶縁容器2と、この両端に封止金具3a,3bを介して設けた金属製の蓋体4a,4bとで真空気密に構成されている。   In FIG. 1, the shut-off chamber 1 is vacuum-tight with an insulating container 2 formed in a substantially cylindrical shape by an insulating material, and metal lids 4 a and 4 b provided at both ends via sealing metal fittings 3 a and 3 b. It is configured.

遮断室1内には、導電棒5,6の対向する端部に取付けられた一対の電極7,8が配設され、上部の電極7を固定電極、下部の電極8を可動電極としている。またこの電極8の導電棒6には、ベローズ9が取付けられ遮断室1内を真空気密に保持しながら電極8の軸方向の移動を可能にしている。また、このベローズ9上部には金属製のアークシールド10が設けられ、ベローズ9がアーク蒸気で覆われることを防止している。また、電極7,8を覆うように、遮断室1内に金属製のアークシールド11が設けられ、これにより絶縁容器2がアーク蒸気で覆われることを防止している。   In the blocking chamber 1, a pair of electrodes 7 and 8 attached to opposite ends of the conductive rods 5 and 6 are disposed. The upper electrode 7 is a fixed electrode and the lower electrode 8 is a movable electrode. A bellows 9 is attached to the conductive rod 6 of the electrode 8 so that the electrode 8 can be moved in the axial direction while keeping the inside of the blocking chamber 1 in a vacuum-tight state. A metal arc shield 10 is provided on the top of the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Further, a metal arc shield 11 is provided in the blocking chamber 1 so as to cover the electrodes 7 and 8, thereby preventing the insulating container 2 from being covered with the arc vapor.

さらに、電極8は、図2に拡大して示す如く、導電棒6にろう付け部12によって固定されるか、又はかしめによって圧着接続されている。接点13aは電極8にろう付け14によってろう付けで取付けられる。なお、接点13bは、電極7にろう付けにより取付けられる。   Furthermore, as shown in an enlarged view in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12 or is crimped and connected by caulking. The contact 13 a is attached to the electrode 8 by brazing 14. The contact 13b is attached to the electrode 7 by brazing.

<接点材料の製造方法>
本発明に係る真空バルブ用接点材料の製造方法における、接点材料の製造工程について説明する。
<Production method of contact material>
The contact material manufacturing process in the vacuum valve contact material manufacturing method according to the present invention will be described.

まず 、実施例1〜実施例21と比較例1〜比較例18の接点の製造工程について説明する。   First, the contact manufacturing process of Examples 1 to 21 and Comparative Examples 1 to 18 will be described.

[第1の工程]
はじめに所定粒径のCr粉末、Cu粉末および補助成分粉末を下記のいずれかの手順で混合する。
[First step]
First, Cr powder, Cu powder and auxiliary component powder having a predetermined particle diameter are mixed in any of the following procedures.

A:全ての粉末を一度に混ぜ、混合する。   A: Mix all powders at once and mix.

B:Cr粉末および補助成分粉末を混合し、この混合粉末にCu粉末を混合する。   B: Cr powder and auxiliary component powder are mixed, and Cu powder is mixed with this mixed powder.

C:補助成分粉末全量とこれと同量のCu粉末とをまず混合し、この混合粉末と残りの Cu粉末とを混合した後、さらにCr粉末を混合する。   C: First, the total amount of the auxiliary component powder and the same amount of Cu powder are mixed, and after mixing this mixed powder and the remaining Cu powder, Cr powder is further mixed.

D:補助成分粉末全量とこれと同量のCu粉末とをまず混合し、この混合粉末と同量の Cu粉末をさらに加えて混合する。この動作を繰り返し、新たなCu粉末を加えたそれぞれの時点において、残りのCu粉末が混合粉末の量より少なくなった場合、この残りのCu粉末もさらに加えて混合し、その後Cr粉末を混合して、混合工程を終了する。   D: First, the total amount of the auxiliary component powder and the same amount of Cu powder are mixed, and the same amount of Cu powder as this mixed powder is further added and mixed. This operation is repeated, and at each time when new Cu powder is added, if the remaining Cu powder becomes less than the amount of mixed powder, this remaining Cu powder is further added and mixed, and then Cr powder is mixed. Then, the mixing step is completed.

E:Cu粉末とCr粉末のみを混合する。   E: Only Cu powder and Cr powder are mixed.

[第2の工程]
次いで、この混合粉末をφ60mmの溶解ルツボに入れ、真空中にて高周波誘導加熱によりCuの融点以上の温度にて溶解する(溶解方法A)。そして溶解体をルツボ内で冷却する。
[Second step]
Next, this mixed powder is put into a melting crucible having a diameter of 60 mm and melted at a temperature equal to or higher than the melting point of Cu by high-frequency induction heating in a vacuum (dissolution method A). The melt is then cooled in the crucible.

[第3の工程]
さらにルツボから溶解体を取りだし、φ40mmの接点を加工して取り出す。これらの実施例および比較例は以下に示す条件を標準の製造条件とし、これらの条件のいずれかをパラメータとして変化させた場合について調べたものである。
[Third step]
Further, the melt is taken out from the crucible, and a contact of φ40 mm is processed and taken out. In these examples and comparative examples, the conditions shown below were used as standard manufacturing conditions, and the case where any of these conditions was changed as a parameter was examined.

・原料粉末平均粒径:
Cu…100μm
Cr…100μm
補助成分…1μm
・ 補助成分…W
・原料粉末体積比:
Cu:Cr:補助成分=71.2:28.3:0.5
実施例22では、円柱状の溶解体をルツボから取り出した後、鍛造して角柱状にし、さらにこれを圧延することにより板状とした。
・ Raw material average particle size:
Cu: 100 μm
Cr ... 100μm
Auxiliary component: 1 μm
・ Auxiliary ingredient… W
・ Raw material volume ratio:
Cu: Cr: auxiliary component = 71.2: 28.3: 0.5
In Example 22, the columnar melt was taken out of the crucible, forged into a prismatic shape, and further rolled into a plate shape.

実施例23〜24および比較例19〜20では、溶解体をルツボから取り出した後、溶解体を真空中において600〜1000℃の範囲の温度で保持した。   In Examples 23 to 24 and Comparative Examples 19 to 20, after the melt was taken out of the crucible, the melt was held at a temperature in the range of 600 to 1000 ° C. in a vacuum.

実施例25〜26および比較例21〜22では、混合粉末をルツボに入れる前に、3〜10ton/cmの範囲の圧力で成形し、この成形体をルツボにセットした。 In Examples 25 to 26 and Comparative Examples 21 to 22, before the mixed powder was put into the crucible, it was molded at a pressure in the range of 3 to 10 ton / cm 2 and this molded body was set in the crucible.

実施例27では、第2の工程において、粉末全体を一度に溶解せず、図3のように、圧粉成形体の中心線に垂直な2つの平行面で挟まれた領域を誘導加熱してCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温してCu粉末のみを溶融させ、この領域を成形体の一端から他端に向かって移動させることにより成形体中のCu粉末を順次溶融させ溶解体とした(溶解方法B)。すなわち、図3に示すように、圧粉成形された成形体15をルツボ(耐熱容器)20に入れ、成形体15の中心線21に垂直な2つの平行面18で挟まれた領域を誘導溶解コイル17により誘導加熱してCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温してCu粉末のみを溶融させて溶融層16とし、この平行面18で挟まれ、誘導溶解コイル17により誘導加熱する領域を成形体の一端から他端に向かって移動させることにより成形体中のCu粉末を順次溶融させ溶解体とした。なお、平行面18で挟まれ、誘導溶解コイル17により誘導加熱する領域を移動させるには、誘導溶解コイル17を移動させてもよいし、成形体15を収容したルツボ(耐熱容器)20を移動させてもよい。   In Example 27, in the second step, the entire powder was not melted at once, and an area sandwiched between two parallel surfaces perpendicular to the center line of the green compact was inductively heated as shown in FIG. Only the Cu powder is melted by raising the temperature to a temperature equal to or higher than the melting temperature of Cu and equal to or lower than the melting point of the auxiliary component, and the Cu powder in the molded body is moved by moving this region from one end to the other end of the molded body. It melted sequentially and it was set as the solution (dissolution method B). That is, as shown in FIG. 3, the green compact 15 is put in a crucible (heat-resistant container) 20, and a region sandwiched between two parallel surfaces 18 perpendicular to the center line 21 of the green body 15 is induction-dissolved. The coil 17 is induction-heated to raise the temperature to a temperature equal to or higher than the melting temperature of Cu and lower than the melting point of the auxiliary component to melt only the Cu powder to form a molten layer 16 and sandwiched between the parallel surfaces 18. The Cu powder in the compact was sequentially melted by moving the region to be heated by induction from one end of the compact toward the other end to obtain a melt. In addition, in order to move the area | region which is pinched | interposed by the parallel surface 18 and is induction-heated with the induction melting coil 17, the induction melting coil 17 may be moved, or the crucible (heat-resistant container) 20 which accommodated the molded object 15 is moved. You may let them.

<評価方法および評価条件>
次に、本発明の実施例および比較例を説明するデータを得た評価方法、および評価条件について説明する。
<Evaluation method and conditions>
Next, evaluation methods and evaluation conditions for obtaining data explaining examples and comparative examples of the present invention will be described.

(材料特性評価)
(1)相対密度
アルキメデス法により密度を測定して組成比から真密度を求めて相対密度に換算した。結果は、比較例1の値を1.00として相対比較し、0.95以上を合格とした。
(Material property evaluation)
(1) Relative density The density was measured by the Archimedes method, the true density was determined from the composition ratio, and converted to the relative density. As a result, the value of Comparative Example 1 was relatively compared with 1.00, and 0.95 or more was regarded as acceptable.

(2)硬さのばらつき
ロックウエル硬さを測定し、実施例1の値を1.00として相対比較し、2.00未満を合格とした。
(2) Hardness variation Rockwell hardness was measured, and the value of Example 1 was relatively compared as 1.00, and less than 2.00 was accepted.

(電気特性評価)
(1)遮断特性
遮断試験をJEC規格の5号試験により行い、これにより遮断特性を評価した。
(Electrical characteristics evaluation)
(1) Breaking characteristic The breaking test was conducted according to the JEC standard No. 5 test, thereby evaluating the breaking characteristic.

(2)耐電圧特性
進み小電流試験における再点弧発生確率にて評価した。電流は500Aであり、回復電圧は12.5kVである。試験回数は2000回である。実施例17の再点弧発生確率を1.0とした場合の相対値を示し、この相対値が1.2以下のものを合格とした。
(2) Dielectric strength characteristics Evaluated based on the probability of re-ignition in advanced small current tests. The current is 500 A and the recovery voltage is 12.5 kV. The number of tests is 2000. The relative value when the re-ignition occurrence probability of Example 17 is 1.0 is shown, and the relative value of 1.2 or less was accepted.

(3)通電特性
渦電流測定により導電率を評価し、実施例1の測定との相対値で表示し、大電流通電領域で使用される開閉機器への適用を考慮して、この値が1.1以上を合格とした。
(3) Energization characteristics Conductivity is evaluated by eddy current measurement, displayed as a relative value to the measurement of Example 1, and this value is 1 in consideration of application to switchgear used in a large current energization region. .1 or higher was accepted.

(量産性評価)
(1) 良品率
溶解体のうち、材料特性評価項目(1),(2)および電気特性評価項目(1)の全てを満足できる領域の割合を調べた。評価する接点径rを一定とし、溶解体の径を変化させて作成し、上記条件を満足できる溶解体径の下限値Rを求め、(r/R)により算出した。量産性という観点から、良品率として0.9以上を合格とした。
(Mass productivity evaluation)
(1) Non-defective product ratio The ratio of the area | region which can satisfy | fill all of material property evaluation item (1), (2) and electrical property evaluation item (1) among melt | dissolution was investigated. The contact diameter r to be evaluated was made constant, the diameter of the melt was changed, and the lower limit R of the melt diameter satisfying the above conditions was determined and calculated by (r / R) 2 . From the viewpoint of mass productivity, the acceptable product rate was 0.9 or more.

<実施例および比較例>
次に、各接点の製造条件とその問題点およびこれらに対応する材料的特性および電気的特性データを、図4〜図7を参照しながら考察する。
<Examples and Comparative Examples>
Next, the manufacturing conditions of each contact, its problems, and the corresponding material characteristics and electrical characteristics data will be discussed with reference to FIGS.

まず、実施例1〜19および比較例1〜15では、製造した材料の健全性の評価項目である、材料の相対密度および硬さのばらつきについて調べ、これと併せて、CuCr接点の具備すべき基本的特性である遮断性能について評価した。   First, in Examples 1 to 19 and Comparative Examples 1 to 15, the relative density and hardness variation of the material, which are evaluation items of the soundness of the manufactured material, are examined, and in addition to this, a CuCr contact should be provided. The blocking performance, which is a basic characteristic, was evaluated.

(実施例1〜2および比較例1〜2)
前記標準製造条件のCr:補助成分の比を28.8:0〜24.8:4.0まで変化させ特性評価を行った。補助成分量が0.1〜2vol%の範囲にある実施例1および実施例2は比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、補助成分を含まない比較例1では、CrがCuと分離した状態となってしまっているため、硬さのばらつき(特に異なる接点の間のばらつき)が大きく、遮断性能も不合格となっている。また、補助成分量が4vol%と多い比較例2では、補助成分の局部加熱による遮断性能の低下により、遮断特性は不合格となっている。
(Examples 1-2 and Comparative Examples 1-2)
The characteristics were evaluated by changing the ratio of Cr: auxiliary component in the standard production conditions from 28.8: 0 to 24.8: 4.0. In Example 1 and Example 2 in which the amount of auxiliary component is in the range of 0.1 to 2 vol%, a contact with relatively little variation is obtained and the interruption characteristic is passed, but in Comparative Example 1 that does not include an auxiliary component, Since Cr is in a state separated from Cu, variation in hardness (particularly, variation between different contacts) is large, and the interruption performance is also rejected. Further, in Comparative Example 2 where the amount of the auxiliary component is as large as 4 vol%, the interruption characteristic is rejected due to a decrease in the interruption performance due to local heating of the auxiliary component.

(実施例3〜5および比較例3〜4)
前記標準製造条件のCu粉末の平均粒径を10〜400μmの範囲で変化させ特性評価を行った。Cu粉末の平均粒径が20〜200μmの範囲にある実施例3〜5はいずれも比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、Cuの平均粒径が10μmの比較例3では、接点材料の含有ガス量が高すぎるため、遮断特性が不合格となっている。また、Cuの平均粒径が400μmと大きい比較例4は、接点材料中に欠陥が分散した状態となっているため導電率が低く、遮断特性が不十分である。
(Examples 3-5 and Comparative Examples 3-4)
The average particle size of the Cu powder under the standard production conditions was changed in the range of 10 to 400 μm, and the characteristics were evaluated. In Examples 3 to 5 in which the average particle diameter of the Cu powder is in the range of 20 to 200 μm, contacts with relatively little variation are obtained and the interruption characteristics are passed, but the comparison is made with the average particle diameter of Cu being 10 μm. In Example 3, since the gas content of the contact material is too high, the interruption characteristic is rejected. Further, Comparative Example 4 having a large average particle diameter of Cu of 400 μm is in a state where defects are dispersed in the contact material, so that the electrical conductivity is low and the interruption characteristic is insufficient.

(実施例6〜8および比較例5〜6)
前記標準製造条件のCr粉末の平均粒径を20〜400μmの範囲で変化させ特性評価を行った。Cr粉末の平均粒径が40〜200μmの範囲にある実施例6〜8はいずれも比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、Crの平均粒径が20μmの比較例5では、接点材料の含有ガス量が高すぎるため、遮断特性が不合格となっている。また、Crの平均粒径が400μmと大きい比較例6は、接点材料中に欠陥が分散した状態となっているため導電率が低く、遮断特性が不十分である。
(Examples 6-8 and Comparative Examples 5-6)
The average particle diameter of Cr powder under the standard production conditions was changed in the range of 20 to 400 μm, and the characteristics were evaluated. In Examples 6 to 8 in which the average particle diameter of the Cr powder is in the range of 40 to 200 μm, contacts with relatively little variation are obtained and the interruption characteristics are passed, but the comparison is made with the average particle diameter of Cr being 20 μm. In Example 5, since the gas content of the contact material is too high, the interruption characteristic is rejected. Further, Comparative Example 6 having a large average particle size of Cr of 400 μm is in a state in which defects are dispersed in the contact material, so that the electrical conductivity is low and the interruption characteristic is insufficient.

(実施例9〜11および比較例7〜8)
前記標準製造条件の補助成分粉末の平均粒径を0.1〜10μmの範囲で変化させ特性評価を行った。補助成分粉末の平均粒径が0.3〜3μmの範囲にある実施例9〜11はいずれも比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、補助成分の平均粒径が0.1μmの比較例7では、補助成分粒子が凝集し、かえって大きな複合粒子となってしまうため、Crの分散が不十分となり、かつガス含有量も多くなるため、遮断特性が不合格となっている。また、補助成分の平均粒径が10μmと大きい比較例8は、CrとCuの分離が顕著であるため、接点材料組織が不均質となり遮断特性が不十分である。
(Examples 9-11 and Comparative Examples 7-8)
The average particle size of the auxiliary component powder under the standard production conditions was changed in the range of 0.1 to 10 μm, and the characteristics were evaluated. In Examples 9 to 11 in which the average particle diameter of the auxiliary component powder is in the range of 0.3 to 3 μm, contacts with relatively little variation are obtained, and the interruption characteristics are also passed. In Comparative Example 7 having a thickness of 0.1 μm, the auxiliary component particles agglomerate and become large composite particles. Therefore, the dispersion of Cr is insufficient, and the gas content is increased. It has become. Further, in Comparative Example 8 in which the average particle size of the auxiliary component is as large as 10 μm, separation of Cr and Cu is remarkable, so that the contact material structure is inhomogeneous and the interruption characteristic is insufficient.

(実施例12および比較例9)
前記標準製造条件の補助成分としてAgおよびWを用いて接点を製造し、特性評価を行った。補助成分がWである実施例12は比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、補助成分としてAgを使用した比較例9では、AgがCu中に完全に溶解してしまうためCrの微細分散が起こらず、CrとCuの分離が顕著となるため材料組織が不均質となり、遮断特性が不合格となっている。
(Example 12 and Comparative Example 9)
Contacts were produced using Ag and W as auxiliary components for the standard production conditions, and the characteristics were evaluated. In Example 12, where the auxiliary component is W, a contact with relatively little variation was obtained and the interruption characteristic was also passed. However, in Comparative Example 9 in which Ag was used as the auxiliary component, Ag was completely dissolved in Cu. Therefore, the fine dispersion of Cr does not occur, and the separation of Cr and Cu becomes remarkable, so that the material structure becomes inhomogeneous and the barrier property is rejected.

(実施例13〜14および比較例10)
前記標準製造条件の補助成分としてNb,MoおよびWCを用いて接点を製造し、特性評価を行った。補助成分がそれぞれMo、WCである実施例13〜14はいずれも比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、補助成分としてNbを使用した比較例10では、CuへのNbの固溶による導電率の低下の影響により、遮断特性が不合格となっている。
(Examples 13 to 14 and Comparative Example 10)
Contacts were manufactured using Nb, Mo and WC as auxiliary components for the standard manufacturing conditions, and the characteristics were evaluated. In Examples 13 to 14 where the auxiliary components are Mo and WC, respectively, contacts with relatively little variation are obtained and the interruption characteristics are also passed. However, in Comparative Example 10 using Nb as the auxiliary component, Cu is changed to Cu. Due to the influence of the decrease in the conductivity due to the solid solution of Nb, the interruption characteristic is rejected.

(実施例15および比較例11)
前記標準製造条件の補助成分としてTiCおよびTaを用いて接点を製造し、特性評価を行った。補助成分がTaである実施例15は比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、補助成分としてTiCを使用した比較例11では、密度の小さいTiCがCu液相上に浮上してしまうため、Crの微細分散が起こらず、CrとCuの分離が顕著となるため材料組織が不均質となり、遮断特性が不合格となっている。
(Example 15 and Comparative Example 11)
Contacts were manufactured using TiC and Ta as auxiliary components of the standard manufacturing conditions, and the characteristics were evaluated. In Example 15 where the auxiliary component is Ta, contacts with relatively little variation are obtained and the interruption characteristics are also passed. However, in Comparative Example 11 using TiC as the auxiliary component, TiC having a low density is on the Cu liquid phase. As a result, the Cr is not finely dispersed and the separation of Cr and Cu becomes remarkable, so that the material structure becomes inhomogeneous and the barrier property is rejected.

(実施例16〜17および比較例12〜13)
前記標準製造条件と粉末の混合手順をA〜Dで変えて、特性評価を行った。手順CおよびDを用いた実施例16および実施例17は比較的ばらつきの少ない接点が得られ、遮断特性も合格しているが、手順AおよびBを用いた比較例12および比較例13では、補助成分のWがCr粒子表面に固着してしまうため、Crの微細分散が起こらず、CrとCuの分離が顕著となるため材料組織が不均質となり、遮断特性が不合格となっている。
(Examples 16 to 17 and Comparative Examples 12 to 13)
Characteristic evaluation was performed by changing the standard production conditions and the mixing procedure of powders A to D. In Example 16 and Example 17 using procedures C and D, a contact with relatively little variation was obtained and the interruption characteristics passed, but in Comparative Examples 12 and 13 using Procedures A and B, Since the auxiliary component W adheres to the surface of the Cr particles, the fine dispersion of Cr does not occur, the separation of Cr and Cu becomes remarkable, the material structure becomes inhomogeneous, and the barrier property is rejected.

(実施例18〜19および比較例14〜15)
粉末混合手順DのCu粉末とW粉末の初回混合におけるW粉末体積に対するCu粉末体積の比を0.1から10の範囲で変えて、特性評価を行った。W粉末体積に対するCu粉末体積の比が0.2〜5の範囲にある実施例18および実施例19は比較的硬度のばらつきの少ない接点が得られ、遮断特性も合格しているが、この体積比が0.1の比較例14および10の比較例15では、補助成分のWとCuとの分散が不十分なため一部のW粒子がCr粒子に固着してしまうため、Crの微細分散が不十分となり、遮断特性が不合格となっている。
(Examples 18 to 19 and Comparative Examples 14 to 15)
Characteristic evaluation was performed by changing the ratio of the Cu powder volume to the W powder volume in the initial mixing of the Cu powder and the W powder in the powder mixing procedure D in the range of 0.1 to 10. In Examples 18 and 19 in which the ratio of the volume of Cu powder to the volume of W powder is in the range of 0.2 to 5, a contact with a relatively small variation in hardness is obtained, and the breaking characteristics are also passed. In Comparative Example 14 having a ratio of 0.1 and Comparative Example 15 having a ratio of 0.1, since the dispersion of the auxiliary components W and Cu is insufficient, some W particles adhere to the Cr particles. Is insufficient, and the shut-off characteristics are rejected.

以上の実施例では、遮断特性で特性の良否を判断しているが、CuCr接点は、高電圧領域で使用される開閉機器にもしばしば適用される。そこで以下の実施例では、耐電圧特性も同時に満足するための条件について評価した。   In the above embodiments, the quality of the characteristics is judged by the interruption characteristics, but the CuCr contacts are often applied to switchgears used in a high voltage region. Therefore, in the following examples, conditions for satisfying the withstand voltage characteristics at the same time were evaluated.

(実施例20〜21および比較例16〜17)
前記標準製造条件のCu:Cr比を49.9:49.6〜88.5:11.0まで変化させ特性評価を行った。Cu量が60〜83vol%の範囲にある実施例20および実施例21は比較的ばらつきの少ない接点が得られ、遮断特性、耐電圧特性がともに合格しているが、Cu量が49.6vol%と少ない比較例16では、Cr量が多く熱伝導率が低いため遮断性能が不合格となっている。また、Cu量が88.5vol%と多い比較例17では、Cr分散粒子が少なく、また、補助成分粒子のWの表面の一部が晶出したCrに覆われていない状態となるため、耐電圧特性が不合格となっている。
(Examples 20 to 21 and Comparative Examples 16 to 17)
The characteristics were evaluated by changing the Cu: Cr ratio of the standard production conditions from 49.9: 49.6 to 88.5: 11.0. In Examples 20 and 21 in which the Cu amount is in the range of 60 to 83 vol%, contacts with relatively little variation are obtained, and both the breaking characteristics and the withstand voltage characteristics pass, but the Cu amount is 49.6 vol%. In comparative example 16 with a small amount, the amount of Cr is large and the thermal conductivity is low, so the interruption performance is unacceptable. Further, in Comparative Example 17 where the amount of Cu is as large as 88.5 vol%, the amount of Cr dispersed particles is small, and a part of the surface of W of the auxiliary component particles is not covered with crystallized Cr. The voltage characteristics are rejected.

また、CuCr接点は、大電流通電領域で使用される開閉機器にも適用されるので、以下の実施例では、遮断特性に加えて通電特性も同時に満足するための諸条件について評価した。   In addition, since the CuCr contact is also applied to a switching device used in a large current energizing region, in the following examples, various conditions for simultaneously satisfying the energizing characteristics in addition to the breaking characteristics were evaluated.

(実施例22および比較例18)
前記標準製造条件の第2の工程と第3の工程の間に溶解体の鍛造、圧延工程を入れた場合と入れない場合の両者の特性評価を行った。鍛造圧延工程が追加された実施例22ではいずれも比較的ばらつきの少ない接点が得られ、遮断特性、通電特性がともに合格しているが、この工程を追加しない比較例18では、内蔵する欠陥が熱伝導を低減するため、通電特性が不合格となっている。
(Example 22 and Comparative Example 18)
Characteristic evaluation of both the case where the forging and rolling step of the melt was put between the second step and the third step of the standard production conditions and the case where it was not put was performed. In Example 22 in which the forging and rolling process was added, contacts with relatively little variation were obtained, and both the breaking characteristics and the current-carrying characteristics passed, but in Comparative Example 18 in which this process was not added, there was a built-in defect. In order to reduce heat conduction, the current-carrying characteristics are rejected.

(実施例23〜24および比較例19〜20)
前記標準製造条件の第2の工程と第3の工程の間に溶解体の熱処理工程を入れ、熱処理温度を変化させて特性評価を行った。熱処理温度が700〜900℃の範囲にある実施例23および実施例24ではいずれも比較的ばらつきの少ない接点が得られ、遮断特性、通電特性がともに合格しているが、熱処理温度が600℃と低い比較例19では、Cu相中に固溶しているCrの析出が不十分であるため、通電特性が不合格となっている。また、熱処理温度が1000℃と高い比較例20では、熱処理中にCu相中のCrの固溶量が増大してしまうため、通電特性が不合格となっている。
(Examples 23 to 24 and Comparative Examples 19 to 20)
The melt was subjected to a heat treatment step between the second step and the third step under the standard production conditions, and the characteristics were evaluated by changing the heat treatment temperature. In Example 23 and Example 24 where the heat treatment temperature is in the range of 700 to 900 ° C., contacts with relatively little variation are obtained, and both the breaking characteristics and the energization characteristics pass, but the heat treatment temperature is 600 ° C. In the low comparative example 19, since the precipitation of Cr dissolved in the Cu phase is insufficient, the current-carrying characteristics are rejected. Further, in Comparative Example 20, where the heat treatment temperature is as high as 1000 ° C., the amount of Cr dissolved in the Cu phase is increased during the heat treatment, and thus the energization characteristics are unacceptable.

以上の実施例では、φ60mmの溶解体からφ40mmの接点を取りだして評価したが、量産性を考慮するには、この使用していない部分についても評価する必要がある。そこで溶解体のうち、材料特性評価項目(1),(2)および電気特性評価項目(1)の全てを満足できる領域の割合を調べた。評価する接点径rを一定とし、溶解体の径を変化させて作成し、上記条件を満足できる溶解体径の下限値Rを求め、良品率を(r/R)により算出した。 In the above example, evaluation was performed by taking out a contact of φ40 mm from a melt of φ60 mm. However, in consideration of mass productivity, it is also necessary to evaluate the unused portion. Then, the ratio of the area | region which can satisfy | fill all of material property evaluation item (1), (2) and electrical property evaluation item (1) among melt | dissolution was investigated. The contact diameter r to be evaluated was made constant, the diameter of the melt was changed, the lower limit R of the melt diameter that satisfies the above conditions was determined, and the yield rate was calculated from (r / R) 2 .

(実施例25〜26および比較例21〜22)
前記標準製造条件の第1の工程と第2の工程の間に混合粉末の成形工程を入れ、成形圧力を変化させて特性評価を行った。成形圧力が5〜8ton/cmの範囲にある実施例25および実施例26では、良品率が90%以上と合格しているが、成形圧力が3ton/cmと低い比較例21では、Cu粉末粒子初期にCr粒子の移動が発生するため、通電特性が不合格となっている。また、成形圧力が10ton/cmと高い比較例22では、Cu粉末の溶融時に粉末中のガスが完全に抜けきらないため、遮断特性が不合格となっている。
(Examples 25-26 and Comparative Examples 21-22)
A mixed powder forming step was inserted between the first step and the second step under the standard production conditions, and the characteristics were evaluated by changing the forming pressure. In Examples 25 and Example 26 the molding pressure is in the range of 5~8ton / cm 2, but the yield rate is passed 90% or more, the low molding pressure and 3 ton / cm 2 Comparative Example 21, Cu Since the movement of Cr particles occurs at the initial stage of the powder particles, the current-carrying characteristics are rejected. Further, in Comparative Example 22 where the molding pressure is as high as 10 ton / cm 2 , the gas in the powder cannot be completely removed when the Cu powder is melted, so that the cutoff characteristic is unacceptable.

(実施例27および比較例23)
第2の工程において粉末全体を一度に溶解する比較例23と、粉末全体を一度に溶解せず、圧粉成形体の中心線に垂直な2つの平行面で挟まれた領域を誘導加熱してCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温してCu粉末のみを溶融させ、この領域を成形体の一端から他端に向かって移動させることにより成形体中のCu粉末を順次溶融させ溶解体とした実施例27とを比較評価した。粉末を順次溶解した実施例27では、良品率が90%以上と合格しているが、粉末を一度に溶解した比較例23では、Cu粉末の溶融時に粉末中のガスが完全に抜けきらない部分があるため、良品率が低下している。
(Example 27 and Comparative Example 23)
In Comparative Example 23, in which the entire powder is dissolved at the same time in the second step, and the region sandwiched between two parallel surfaces perpendicular to the center line of the green compact is not heated at the same time. Only the Cu powder is melted by raising the temperature to a temperature equal to or higher than the melting temperature of Cu and equal to or lower than the melting point of the auxiliary component, and the Cu powder in the molded body is moved by moving this region from one end to the other end of the molded body. Comparative evaluation was made with Example 27, which was sequentially melted to form a solution. In Example 27 in which the powder was sequentially dissolved, the non-defective product ratio passed 90% or more, but in Comparative Example 23 in which the powder was dissolved at one time, the gas in the powder was not completely removed when the Cu powder was melted. As a result, the yield rate is decreasing.

(他の実施例)
上記の実施例で示した補助成分の他、補助成分としてMoC,TaCを用いた場合でも、同様の効果が得られている。
(Other examples)
Similar effects can be obtained when Mo 2 C, TaC is used as an auxiliary component in addition to the auxiliary components shown in the above-described embodiments.

(実施例の効果)
以上のように、本発明の実施例では補助成分の作用により溶融CuとCr粒子が分離することなく存在し、かつ、微細なCr粒子を原料から導入されたCr粒子間に微細に分散した接点材料の製造方法の提供を可能とした。また本発明の実施例によって、Cr量を適切な範囲とすることにより、従来の固相焼結法で製造された接点材料では実現不可能であった、優れた遮断性能と耐電圧性能を兼備した接点材料の提供を可能とした。また、この基本的な製造方法に鍛造・圧延等の工程や熱処理工程を付与することにより、通電特性も兼備することができた。さらに、溶解前の粉末を成形することや溶解を部分的かつ連続的に実施することにより、量産に適した良品率の高い製造方法が提供できた。
(Effect of Example)
As described above, in the embodiment of the present invention, the molten Cu and Cr particles exist without being separated by the action of the auxiliary component, and the fine Cr particles are finely dispersed between the Cr particles introduced from the raw material. It was possible to provide a method for manufacturing a material. In addition, according to the embodiment of the present invention, by setting the amount of Cr in an appropriate range, it has excellent breaking performance and withstand voltage performance that could not be realized with a contact material manufactured by a conventional solid phase sintering method. We made it possible to provide contact materials. In addition, by applying a process such as forging and rolling and a heat treatment process to this basic manufacturing method, it was possible to combine current-carrying characteristics. Furthermore, by forming the powder before dissolution and performing the dissolution partially and continuously, a production method with a high yield rate suitable for mass production could be provided.

本発明により製造される真空バルブ用接点材料が適用される真空バルブの一例を示す断面図。Sectional drawing which shows an example of the vacuum valve to which the contact material for vacuum valves manufactured by this invention is applied. 図1の要部拡大断面図。The principal part expanded sectional view of FIG. 本発明の実施例27を説明するための、成形体を収容したルツボの断面図。Sectional drawing of the crucible which accommodated the molded object for demonstrating Example 27 of this invention. 実施例1〜15、および比較例1〜11の製造条件(一部)を示す表図。The table | surface which shows Examples 1-15 and the manufacturing conditions (part) of Comparative Examples 1-11. 実施例1〜15、および比較例1〜11の製造条件(残部)および評価結果を示す表図。The table | surface which shows Examples 1-15 and the manufacture conditions (remainder) and evaluation result of Comparative Examples 1-11. 実施例16〜27、および比較例12〜23の製造条件(一部)を示す表図。The table | surface which shows Example 16-27 and the manufacturing conditions (part) of Comparative Examples 12-23. 実施例16〜27、および比較例12〜23の製造条件(残部)および評価結果を示す表図。The table | surface which shows the manufacturing conditions (remainder) and evaluation result of Examples 16-27 and Comparative Examples 12-23.

符号の説明Explanation of symbols

1…遮断室
2…絶縁容器
3a,3b…封止金具
4a,4b…蓋体
5,6…導電棒
7,8…電極
9…ベローズ
12…ろう付け部
10,11…アークシールド
13a,13b…接点
14…ろう付け層
15…成形体
16…溶融層
17…誘導溶解コイル
18…成形体中心線に平行な2面
20…ルツボ(耐熱容器)
21…成形体中心線

DESCRIPTION OF SYMBOLS 1 ... Shut-off chamber 2 ... Insulation container 3a, 3b ... Sealing metal fittings 4a, 4b ... Lid bodies 5, 6 ... Conductive rod 7, 8 ... Electrode 9 ... Bellows 12 ... Brazing part 10, 11 ... Arc shield 13a, 13b ... Contact 14 ... Brazing layer 15 ... Molded body 16 ... Molten layer 17 ... Induction melting coil 18 ... Two surfaces 20 parallel to the center line of the molded body ... Crucible (heat-resistant container)
21 ... Molded body center line

Claims (10)

平均粒径が20〜200μmのCu粉末、平均粒径が40〜200μmのCr粉末、および粉末全体の0.1〜2vol%の範囲で平均粒径が0.3〜10μmで融点がCuの融点より高い補助成分の粉末を混合する第1の工程と、この第1の工程で得られた混合粉末をCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温して混合粉末の中のCu粉末およびCr粉末の一部または全てを耐熱容器中で溶解して溶解体を形成した後、前記溶解体を耐熱容器中で冷却するかまたは鋳型に一括充填して冷却する第2の工程と、この第2の工程を終えた前記溶解体を加工することにより複数の接点材料を取り出す第3の工程とから成ることを特徴とする真空バルブ用接点材料の製造方法。   Cu powder having an average particle diameter of 20 to 200 μm, Cr powder having an average particle diameter of 40 to 200 μm, and an average particle diameter of 0.3 to 10 μm and a melting point of Cu in the range of 0.1 to 2 vol% of the whole powder The first step of mixing the powder of the higher auxiliary component, and the mixed powder obtained in the first step is heated to a temperature not lower than the melting temperature of Cu and lower than the melting point of the auxiliary component. A second step of melting a part or all of the Cu powder and Cr powder in a heat-resistant container to form a melt, and then cooling the melt in the heat-resistant container or filling it in a mold and cooling it. And a third step of taking out a plurality of contact materials by processing the melt after finishing the second step, and a method for producing a contact material for a vacuum valve. 前記補助成分は、純Cuに1原子%添加した時の固有抵抗の純Cuに対する増分が3μΩcm/原子%以下となる成分を選択していることを特徴とする請求項1に記載の真空バルブ用接点材料の製造方法。   2. The vacuum valve component according to claim 1, wherein the auxiliary component is selected such that an increment of specific resistance with respect to pure Cu when added at 1 atomic% to pure Cu is 3 μΩcm / atomic% or less. Manufacturing method of contact material. 前記補助成分の密度が融点直上におけるCuの液相の密度より大きいことを特徴とする請求項1または請求項2に記載の真空バルブ用接点材料の製造方法。   The method for producing a contact material for a vacuum valve according to claim 1 or 2, wherein the density of the auxiliary component is larger than the density of the liquid phase of Cu immediately above the melting point. 前記補助成分がW,Mo,Taまたはこれらの炭化物の少なくとも1種類から選択されることを特徴とする請求項1乃至請求項3のいずれかに記載の真空バルブ用接点材料の製造方法。   The method for manufacturing a contact material for a vacuum valve according to any one of claims 1 to 3, wherein the auxiliary component is selected from at least one of W, Mo, Ta, and carbides thereof. 前記第1の工程において配合すべきCuと補助成分とを計量し、補助成分微粒子全量とその0.2〜5.0倍の体積のCu粒子とを混合して第1の混合粉末とし、前記第1の混合粉末に残りのCuを適宜加え、混合して、第2の混合粉末とし、前記第2の混合粉末にCr粒子を適宜加え、混合して第3の混合粉末を得ることを特徴とする請求項1乃至請求項4のいずれかに記載の真空バルブ用接点材料の製造方法。   Cu and auxiliary components to be blended in the first step are weighed, and the total amount of auxiliary component fine particles and Cu particles of 0.2 to 5.0 times the volume thereof are mixed to form a first mixed powder, The remaining Cu is appropriately added to the first mixed powder and mixed to obtain a second mixed powder, and Cr particles are appropriately added to the second mixed powder and mixed to obtain a third mixed powder. The manufacturing method of the contact material for vacuum valves in any one of Claim 1 thru | or 4. 前記第1の工程におけるCu粉末の混合粉末全体に占める割合が、60〜83vol%であることを特徴とする請求項1乃至請求項5のいずれかに記載の真空バルブ用接点材料の製造方法。   6. The method for producing a contact material for a vacuum valve according to claim 1, wherein a ratio of the Cu powder to the entire mixed powder in the first step is 60 to 83 vol%. 前記第2の工程と前記第3の工程との間に、前記溶解体に対して圧縮、圧延、鍛造の少なくとも1つの加工を行う工程を有することを特徴とする請求項1乃至請求項6のいずれかに記載の真空バルブ用接点材料の製造方法。   7. The method according to claim 1, further comprising a step of performing at least one processing of compression, rolling, and forging on the melt between the second step and the third step. The manufacturing method of the contact material for vacuum valves in any one. 前記第2の工程と前記第3の工程との間に、前記溶解体を700〜900℃の範囲の温度で保持する工程を有することを特徴とする請求項1乃至請求項7のいずれかに記載の真空バルブ用接点材料の製造方法。   8. The method according to claim 1, further comprising a step of holding the melt at a temperature in a range of 700 to 900 ° C. between the second step and the third step. The manufacturing method of the contact material for vacuum valves of description. 前記第1の工程と前記第2の工程との間に、前記混合粉末を5〜8ton/cmの範囲の圧力で成形する工程を有することを特徴とする請求項1乃至請求項8のいずれかに記載の真空バルブ用接点材料の製造方法。 9. The method according to claim 1, further comprising a step of forming the mixed powder at a pressure in a range of 5 to 8 ton / cm < 2 > between the first step and the second step. A method for producing a contact material for a vacuum valve according to claim 1. 前記第2の工程において、昇温して溶解体を形成するとき、前記圧力で成形された圧粉成形体の中心線に垂直な2つの平行面で挟まれた領域の全体または一部をCuの溶融温度以上でかつ補助成分の融点以下の温度まで昇温し、前記領域を成形体の一端から他端に向かって移動させ、成形体中のCu粉末の一部または全てが溶融した溶解体とすることを特徴とする請求項9に記載の真空バルブ用接点材料の製造方法。   In the second step, when forming a melt by raising the temperature, the whole or part of the region sandwiched between two parallel surfaces perpendicular to the center line of the compact formed by the pressure is Cu. The molten body is heated to a temperature equal to or higher than the melting temperature of the auxiliary component and equal to or lower than the melting point of the auxiliary component, the region is moved from one end of the molded body toward the other end, and a part or all of Cu powder in the molded body is melted. The manufacturing method of the contact material for vacuum valves of Claim 9 characterized by the above-mentioned.
JP2004202284A 2004-07-08 2004-07-08 Manufacturing method of contact material for vacuum valve Pending JP2006024476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202284A JP2006024476A (en) 2004-07-08 2004-07-08 Manufacturing method of contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202284A JP2006024476A (en) 2004-07-08 2004-07-08 Manufacturing method of contact material for vacuum valve

Publications (1)

Publication Number Publication Date
JP2006024476A true JP2006024476A (en) 2006-01-26

Family

ID=35797593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202284A Pending JP2006024476A (en) 2004-07-08 2004-07-08 Manufacturing method of contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP2006024476A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090835A (en) * 2009-10-21 2011-05-06 Mitsubishi Electric Corp Method of manufacturing contact for vacuum valve
JP2019192463A (en) * 2018-04-24 2019-10-31 株式会社東芝 Manufacturing method of contact material for vacuum valve
JP2020027741A (en) * 2018-08-10 2020-02-20 株式会社東芝 Contact material for vacuum valve, manufacturing method of contact material for vacuum valve, and vacuum valve
JP2020509163A (en) * 2016-12-13 2020-03-26 イートン インテリジェント パワー リミテッドEaton Intelligent Power Limited Improved electrical contact alloy for vacuum contactors
CN115323217A (en) * 2022-08-23 2022-11-11 陕西斯瑞新材料股份有限公司 Preparation method of low-cost CuCr25 contact material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090835A (en) * 2009-10-21 2011-05-06 Mitsubishi Electric Corp Method of manufacturing contact for vacuum valve
JP2020509163A (en) * 2016-12-13 2020-03-26 イートン インテリジェント パワー リミテッドEaton Intelligent Power Limited Improved electrical contact alloy for vacuum contactors
JP2019192463A (en) * 2018-04-24 2019-10-31 株式会社東芝 Manufacturing method of contact material for vacuum valve
JP7034821B2 (en) 2018-04-24 2022-03-14 株式会社東芝 Manufacturing method of contact material for vacuum valve
JP2020027741A (en) * 2018-08-10 2020-02-20 株式会社東芝 Contact material for vacuum valve, manufacturing method of contact material for vacuum valve, and vacuum valve
JP7182946B2 (en) 2018-08-10 2022-12-05 株式会社東芝 Contact material for vacuum valve, method for manufacturing contact material for vacuum valve, and vacuum valve
CN115323217A (en) * 2022-08-23 2022-11-11 陕西斯瑞新材料股份有限公司 Preparation method of low-cost CuCr25 contact material

Similar Documents

Publication Publication Date Title
EP3098829B1 (en) Method for producing electrode material
JPH01111832A (en) Electrode material for vacuum switch
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP4979993B2 (en) Contact material and manufacturing method thereof
JP2002313196A (en) Electric contact member and manufacturing method for the same
JP6311325B2 (en) Electrode material and method for producing electrode material
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JP2006024476A (en) Manufacturing method of contact material for vacuum valve
CN107709583B (en) Method for producing electrode material and electrode material
JP4143308B2 (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JP2007066753A (en) Contact material for vacuum valve, and manufacturing method therefor
JP5506873B2 (en) Contact material and manufacturing method thereof
US10058923B2 (en) Method for manufacturing electrode material and electrode material
JP2004211173A (en) Manufacturing method of contact material for vacuum valve
JP4619821B2 (en) Contact material and vacuum valve
JP2005150032A (en) Manufacturing method for contact for vacuum bulb
JP2006233298A (en) Contact material for vacuum valve and its production method
JP5116538B2 (en) Contact material
JP6398530B2 (en) Method for producing electrode material
JPWO2021038706A1 (en) Vacuum valve with electrical contacts, electrical contacts
JP6657655B2 (en) Manufacturing method of electrode material
JP2006032036A (en) Contact material for vacuum valve
JP6381860B1 (en) Contact material, manufacturing method thereof and vacuum valve
JP7062504B2 (en) Manufacturing method of contact material for vacuum valve and contact material for vacuum valve
KR0171607B1 (en) Vacuum circuit breaker and contact