JP2006023230A - Optical fiber ring interference type sensor and method for correcting fluctuations in interference light intensity - Google Patents

Optical fiber ring interference type sensor and method for correcting fluctuations in interference light intensity Download PDF

Info

Publication number
JP2006023230A
JP2006023230A JP2004203224A JP2004203224A JP2006023230A JP 2006023230 A JP2006023230 A JP 2006023230A JP 2004203224 A JP2004203224 A JP 2004203224A JP 2004203224 A JP2004203224 A JP 2004203224A JP 2006023230 A JP2006023230 A JP 2006023230A
Authority
JP
Japan
Prior art keywords
light
optical fiber
level
interference
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004203224A
Other languages
Japanese (ja)
Other versions
JP4213638B2 (en
Inventor
Takeshi Tokura
武 戸倉
Toru Takashima
徹 高嶋
Shinichi Niimi
慎一 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004203224A priority Critical patent/JP4213638B2/en
Publication of JP2006023230A publication Critical patent/JP2006023230A/en
Application granted granted Critical
Publication of JP4213638B2 publication Critical patent/JP4213638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber interference type sensor which allows to calculate a phase difference with high precision by performing correction using a predetermined maximum value and a minimum value even when there are fluctuations in interference light intensity or the output of an amplifier circuit. <P>SOLUTION: The optical fiber interference type sensor comprises an amplification means for amplifying a light signal received by a light receiving element, a level fluctuations amount decision means for monitoring fluctuations in a signal level outputted from the amplification circuit within a predetermined range of time including the initial state, a vibrationless decision means for monitoring whether the fluctuations in the signal level has exceeded a standard level or not, and a correction calculation means for calculating a light level fluctuations correction value by acquiring a voltage level value calculated by a level signal decision means when the signal level is the standard level or less. The phase difference can be thereby calculated, allowing to calculate the phase difference with high precision even when there are fluctuations in the interference light intensity or the output of the amplification circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ファイバを用いた光ファイバリング干渉型センサ、及び干渉光強度変動補正方法に関し、特に、位相変動量を算出する光ファイバリング干渉型センサ、及び干渉光強度変動補正方法に関する。   The present invention relates to an optical fiber ring interference type sensor using an optical fiber and an interference light intensity fluctuation correction method, and more particularly to an optical fiber ring interference type sensor for calculating a phase fluctuation amount and an interference light intensity fluctuation correction method.

従来、光ファイバを用いた干渉型センサが種々報告されており、例えば、本願出願人が出願した光ファイバリング干渉型センサに関する特許文献1がある。   Conventionally, various interference sensors using optical fibers have been reported. For example, there is Patent Document 1 relating to an optical fiber ring interference sensor filed by the applicant of the present application.

この光ファイバリング干渉型センサは、ループ状に形成された光ファイバリングと、この光ファイバリングの端に接続される3×3光分岐結合素子と、この3×3光分岐結合素子の他端に接続される3個の受光素子、増幅回路及び発光回路から少なくとも構成されている。   This optical fiber ring interference type sensor includes an optical fiber ring formed in a loop shape, a 3 × 3 optical branch coupling element connected to the end of the optical fiber ring, and the other end of the 3 × 3 optical branch coupling element Is composed of at least three light receiving elements, an amplifier circuit, and a light emitting circuit.

この光ファイバリング干渉型センサは、光ファイバリングに加わった振動等の外乱で生じた位相変動により光ファイバリング内を伝播する時計回り光と反時計回り光に生じた位相差を干渉光強度変化で検出するものであり、3×3光分岐結合素子を用いることで干渉光強度と位相差の直線性を改善するものである。この構成図を図4に示し、具体的に説明する。   This optical fiber ring interferometric sensor detects the phase difference generated between clockwise and counterclockwise light propagating in the optical fiber ring due to phase fluctuations caused by disturbances such as vibration applied to the optical fiber ring. The linearity of the interference light intensity and the phase difference is improved by using a 3 × 3 optical branching and coupling element. This configuration diagram is shown in FIG. 4 and will be described in detail.

この特許文献1に開示された光ファイバリング干渉型センサ101によれば、発光回路113から出力され3×3光分岐結合素子107を介して分岐された2つの光信号は、ループ状に構成された光ファイバリング105の両端にそれぞれ入射され、光ファイバリング(同一光路)内を時計回り及び反時計回りにそれぞれ伝搬し、時計回り伝播光及び反時計回り伝播光として再度3×3光分岐結合素子107に入射され、3×3光分岐結合素子107で3つの光信号に分岐された後、それぞれ第1〜第3受光素子111a〜111bに入射される。   According to the optical fiber ring interference sensor 101 disclosed in Patent Document 1, two optical signals output from the light emitting circuit 113 and branched via the 3 × 3 optical branching and coupling element 107 are configured in a loop shape. Are incident on both ends of the optical fiber ring 105, propagated clockwise and counterclockwise in the optical fiber ring (same optical path), respectively, and again 3 × 3 optical branching and coupling as the clockwise propagation light and the counterclockwise propagation light. The light is incident on the element 107, branched into three optical signals by the 3 × 3 optical branching and coupling element 107, and then incident on the first to third light receiving elements 111a to 111b, respectively.

このとき3×3光分岐結合素子107の3つの端から非相反位相バイアスを有する干渉光が出力される。即ち、各端から位相が2π/3ずつずれた光信号が出力される。これら光信号を受光する各受光素子に入力される干渉光強度P(t)は以下の式(1)で与えられ、この式(1)より時計回り光と反時計回り光の位相差Δφを算出することができる。   At this time, interference light having a nonreciprocal phase bias is output from the three ends of the 3 × 3 optical branching and coupling element 107. That is, an optical signal whose phase is shifted by 2π / 3 is output from each end. The interference light intensity P (t) input to each light receiving element that receives these optical signals is given by the following equation (1). From this equation (1), the phase difference Δφ between the clockwise light and the counterclockwise light is calculated. Can be calculated.

ここで受光素子で受光される干渉光成分の大きさをPc、非干渉光成分の大きさをPi、初期位相差をθ、時計回り光と反時計回り光の位相差をΔφ(=φ(t−TCW)−φ(t−TCCW)とする。尚、ここでCWとは時計回り光を示し、CCWとは反時計回り光を示している。 Here, the magnitude of the interference light component received by the light receiving element is Pc, the magnitude of the non-interference light component is Pi, the initial phase difference is θ 0 , and the phase difference between the clockwise light and the counterclockwise light is Δφ (= φ (T−T CW ) −φ (t−T CCW ), where CW indicates clockwise light and CCW indicates counterclockwise light.

P(t)=Pi+Pc{cos(θ+Δφ)}/2 ・・・(1)
上記式(1)によれば、受光素子で検出された干渉光強度に基づいて光ファイバの振動を検出することができる。
P (t) = Pi + Pc {cos (θ 0 + Δφ)} / 2 (1)
According to the above formula (1), vibration of the optical fiber can be detected based on the interference light intensity detected by the light receiving element.

ここで具体的な作用を説明する。まず各受光素子111a〜111cで光電変換された信号は各増幅回路115a〜115cで増幅される。増幅された信号の光強度出力が、時計回り光と反時計回り光の位相差との相関関係において直線状となる区間を予め決定しておく。ここで直線状になる区間とは、3つの受光素子から出力される各余弦関数はそれぞれ2π/3ずづずれており、これらの一部が重複しているため、この重複部分における直線部分のみを結ぶと鋸状の波形が得られる。この鋸状の波形の最大値と最小値の間を直線状となる区間と称している。   A specific operation will be described here. First, the signals photoelectrically converted by the light receiving elements 111a to 111c are amplified by the amplifier circuits 115a to 115c. A section in which the light intensity output of the amplified signal is linear in the correlation between the phase difference between the clockwise light and the counterclockwise light is determined in advance. Here, the section that is linear is that each cosine function output from each of the three light receiving elements is shifted by 2π / 3, and a part of these overlaps. Saw-like waveform is obtained by connecting A section between the maximum value and the minimum value of the sawtooth waveform is referred to as a straight section.

このように位相が2π/3ずつずれた3×3光分岐結合素子107を用いた場合は、各端から出力された信号の位相がπ/3+nπから2π/3+nπ(n=0、±1、±2・・・)の間となるように上記区間を設定することで、高い直線性を得られ、且つ測定区間の全範囲をカバーすることができる。   Thus, when the 3 × 3 optical branching and coupling element 107 having a phase shift of 2π / 3 is used, the phase of the signal output from each end is changed from π / 3 + nπ to 2π / 3 + nπ (n = 0, ± 1, By setting the section so as to be between ± 2..., High linearity can be obtained and the entire range of the measurement section can be covered.

続いて受光素子で検出した光強度が、上記区間に相当する光強度に達すると、その受光素子111aから出力される信号の位相差を算出する。一方、上記区間に設定された上限値或いは下限値を超過した場合は、次の受光素子111bから出力される信号の位相差を算出することで、広い範囲の位相差を直線性良く算出することができる。   Subsequently, when the light intensity detected by the light receiving element reaches the light intensity corresponding to the section, the phase difference of the signal output from the light receiving element 111a is calculated. On the other hand, when the upper limit value or the lower limit value set in the above section is exceeded, the phase difference of the signal output from the next light receiving element 111b is calculated to calculate a wide range of phase difference with good linearity. Can do.

即ち、光ファイバリング干渉型センサで検出される干渉光強度は、時計回り光と反時計回り光の位相差が2nπ(n=0、±1、±2・・・)になると最大レベルで折り返し、位相差が(2n+1)π(n=0、±1、±2・・・)になると最小レベルで折り返す。   That is, the interference light intensity detected by the optical fiber ring interference sensor is folded back to the maximum level when the phase difference between the clockwise light and the counterclockwise light is 2nπ (n = 0, ± 1, ± 2...). When the phase difference becomes (2n + 1) π (n = 0, ± 1, ± 2...), The signal is folded back at the minimum level.

このように位相差を算出する場合には、第1〜第3増幅回路115a〜115cの出力レベルの最大レベル(時計回り光と反時計回り光の足し合わされるレベル:位相差2nπ)と最小レベル(打ち消し合うレベル:位相差(2n+1)π)を予め既知としておき、その値をもとに干渉光強度を規格化することが必要である。この値を知るには、図5に示すように、干渉光強度が上下の折り返しレベルに達するような位相変調が生じる振動を光ファイバリング105内に印加して、そのときに増幅回路から出力される電圧の最大値と最小値を予め測定することによって実現することができる。
特開2003−139540号公報 特開2003−344147号公報 戸倉武、外3名、「光ファイバリング干渉型振動センサによる振動位置の同定」、フジクラ技報、株式会社フジクラ、2002年10月、103号、P.18−21
When the phase difference is calculated in this way, the maximum level of the output levels of the first to third amplifier circuits 115a to 115c (the level of adding the clockwise light and the counterclockwise light: phase difference 2nπ) and the minimum level. It is necessary to make (cancellation level: phase difference (2n + 1) π) known in advance and normalize the interference light intensity based on the value. In order to know this value, as shown in FIG. 5, a vibration that causes phase modulation such that the intensity of the interference light reaches the upper and lower folding levels is applied to the optical fiber ring 105 and is then output from the amplifier circuit. This can be realized by measuring in advance the maximum and minimum values of the voltage.
JP 2003-139540 A JP 2003-344147 A Takeshi Tokura, 3 others, “Identification of vibration position by optical fiber ring interference type vibration sensor”, Fujikura Technical Report, Fujikura Co., Ltd., October 2002, No. 103, p. 18-21

ところで、上述した光ファイバリング干渉型センサは、一定条件のもとでは正常動作するが、下記の状況変化によりその出力が変動する。   By the way, the above-described optical fiber ring interference type sensor operates normally under a certain condition, but its output fluctuates due to the following situation change.

(1)発光回路の温度変動や経時的変化による光出力変動。 (1) Light output fluctuations due to temperature fluctuations and temporal changes of the light emitting circuit.

(2)光ファイバリング、光分岐結合素子、及びその他光ファイバの接続点等における損失変動。 (2) Loss fluctuations at connection points of optical fiber rings, optical branching coupling elements, and other optical fibers.

(3)受光素子の温度変動や経時的変化による受光感度変動。 (3) Light reception sensitivity fluctuations due to temperature fluctuations and changes with time of the light receiving element.

ここで図6を参照して、これら問題により生じる現象を説明する。図6(a)は、ある一定条件のもとに正常動作している時の干渉光強度を示しており、図6(b)は、その時点から一定時間経過後で、且つ環境の温度変動があった場合の干渉光強度を示している。   Here, the phenomenon caused by these problems will be described with reference to FIG. FIG. 6 (a) shows the interference light intensity during normal operation under a certain condition, and FIG. 6 (b) shows the temperature fluctuation of the environment after a lapse of a certain time from that point. It shows the interference light intensity when there is.

同図に示すように、正常動作時から上記(1)〜(3)が原因の変動により、図6(b)に示すように光分岐結合素子の各出力端子の干渉光強度、或いは増幅回路の出力が変動(以下、干渉光レベル変動と呼ぶ。)する。このような干渉光レベル変動があった場合に、図6(a)に示した、予め設定した最大値と最小値から干渉光強度を規格化して位相差を求めると誤差が生じ、位相差を精度良く算出することができない。   As shown in FIG. 6, due to fluctuations caused by the above (1) to (3) from the normal operation, the interference light intensity at each output terminal of the optical branching coupling element or the amplification circuit as shown in FIG. 6 (b) Output fluctuates (hereinafter referred to as interference light level fluctuation). When such interference light level fluctuations occur, an error occurs when the phase difference is obtained by standardizing the interference light intensity from the preset maximum value and minimum value shown in FIG. It cannot be calculated with high accuracy.

本発明は、上記課題に鑑みてなされたもので、その目的は、干渉光強度の変動或いは増幅回路の出力に変動が生じた場合でも、予め設定した最大値、最小値を用いて補正を行い、精度良く位相差を算出することができる光ファイバリング干渉型センサ、及び干渉光強度変動補正方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to perform correction using the preset maximum and minimum values even when fluctuations in interference light intensity or fluctuations occur in the output of the amplifier circuit. Another object of the present invention is to provide an optical fiber ring interference sensor capable of calculating a phase difference with high accuracy, and an interference light intensity fluctuation correction method.

上記目的を解決するために、請求項1記載の本発明は、光源と受光素子とループ状光ファイバの開放部の両端とが分岐結合素子に接続され、前記光源から出射された光を分岐結合素子によって分岐して、ループ状光ファイバに開放部の両端それぞれから入射させ、このループ状光ファイバ中を時計回りと反時計回りに伝播させ、時計回り伝播光と反時計回り伝播光とを分岐結合素子にて結合し、結合された時計回り伝播光と反時計回り伝播光とを受光素子に入射させ、この時計回り伝播光と反時計回り伝播光との位相差により干渉光の強度変化を示す信号をこの受光素子から出力することによりループ状光ファイバの任意の場所に局所的に加わる物理的変化に起因するこの時計回り伝搬光と反時計回り伝搬光との位相差による干渉光の強度変化を示す信号を受光素子から出力する光ファイバリング干渉型センサであって、受光素子が受光した光信号を増幅する増幅手段と、増幅回路から出力される信号レベルの初期状態から一定時間の範囲内の変動量を監視するレベル変動量判定手段と、信号レベルの変動が基準レベルを超えたか否か監視する無振動判定手段と、この信号レベルがこの基準レベル以下である時はレベル信号判定手段で算出された電圧レベル値を取得して光レベル変動補正値を算出する補正計算手段と、を備えることを要旨とする。   In order to solve the above object, according to the present invention, the light source, the light receiving element, and both ends of the open portion of the loop optical fiber are connected to the branch coupling element, and the light emitted from the light source is branched and coupled. Branched by the element and made incident on the looped optical fiber from both ends of the open part, propagated in the looped optical fiber clockwise and counterclockwise, and branched clockwise and counterclockwise propagating light Coupled by a coupling element, the coupled clockwise and counterclockwise propagating light is incident on the light receiving element, and the intensity difference of the interference light is changed by the phase difference between the clockwise and counterclockwise propagating light. The intensity of the interference light due to the phase difference between the clockwise and counterclockwise propagated light caused by a physical change locally applied to an arbitrary place of the loop optical fiber by outputting the signal shown from the light receiving element Strange An optical fiber ring interference type sensor that outputs a signal indicating light from the light receiving element, amplifying means for amplifying the optical signal received by the light receiving element, and within a predetermined time range from the initial state of the signal level output from the amplifier circuit A level variation determining means for monitoring the amount of fluctuation, a no-vibration determining means for monitoring whether the fluctuation of the signal level exceeds the reference level, and a level signal determining means when the signal level is equal to or lower than the reference level. The gist of the present invention is to provide correction calculation means for acquiring the calculated voltage level value and calculating the light level fluctuation correction value.

請求項2記載の本発明は、光源から出射された光を分岐結合素子によって分岐して、ループ状光ファイバの開放部の両端それぞれから入射させて、このループ状光ファイバ中を時計回りと反時計回りに伝搬させ、ループ状光ファイバ中を伝搬した時計回り伝搬光と反時計回り伝搬光とを分岐結合素子によって結合して受光素子に入射させ、受光素子が出力する時計回り伝搬光と反時計回り伝搬光との位相差による干渉光の強度変化を示す信号に基づいて、ループ状光ファイバの任意の場所に局所的に加わる物理的変化を検出する干渉光強度変動補正方法であって、一定時間内の干渉光強度を測定するステップと、この一定時間内の干渉光強度の変動量が予め設定された振幅以下であるか否かを判定するステップと、この変動量がこの振幅以下の時は無振動と判定して、この無振動と判定された期間の干渉光強度平均値を予め設定した初期値と比較するステップと、比較の結果、干渉光強度平均値と初期値の比から干渉光強度の変動補正値計算を行い位相差を算出するステップと、を有することを要旨とする。   According to the second aspect of the present invention, the light emitted from the light source is branched by the branch coupling element and is incident from both ends of the open portion of the loop-shaped optical fiber, and the loop-shaped optical fiber is counterclockwise. The clockwise and counterclockwise propagated light propagated in the clockwise direction and coupled in the loop optical fiber are combined by the branch coupling element and made incident on the light receiving element, and counteract with the clockwise propagated light output from the light receiving element. An interference light intensity fluctuation correction method for detecting a physical change locally applied to an arbitrary place of a loop-shaped optical fiber based on a signal indicating an intensity change of the interference light due to a phase difference with the clockwise propagation light, Measuring the interference light intensity within a certain time, determining whether the fluctuation amount of the interference light intensity within the certain time is less than or equal to a preset amplitude, and the fluctuation amount being less than or equal to this amplitude When it is determined that there is no vibration, the step of comparing the interference light intensity average value during the period determined as no vibration with a preset initial value, and the comparison result shows that the ratio of the interference light intensity average value and the initial value is And a step of calculating a phase difference by performing fluctuation correction value calculation of the interference light intensity.

請求項3記載の本発明は、請求項2記載の干渉光強度変動補正方法であって、干渉光強度平均値が、初期値と比較して、予め設定された偏差以上に変動した時は、変動補正値計算を行うことを要旨とする。   The present invention described in claim 3 is the interference light intensity fluctuation correction method according to claim 2, wherein the average interference light intensity value fluctuates more than a preset deviation compared to the initial value. The gist is to perform fluctuation correction value calculation.

本発明によれば、一定時間内の干渉光強度を測定し、この一定時間内の干渉光強度の変動量が予め設定された振幅以下であるか否かを判定して、この変動量がこの振幅以下の時は無振動と判定された期間の干渉光強度平均値を予め設定した初期値と比較し、この比較の結果、干渉光強度平均値と初期値の比から干渉光強度の変動補正値計算を行うことで位相差を算出することができるので、干渉光強度の変動、或いは増幅回路の出力の変動があった場合でも位相差を精度良く算出することができる。   According to the present invention, the interference light intensity within a certain time is measured, it is determined whether or not the fluctuation amount of the interference light intensity within this certain time is equal to or less than a preset amplitude, and this fluctuation amount is When the amplitude is equal to or less than the amplitude, the average value of the interference light intensity during the period determined as no vibration is compared with the preset initial value. As a result of this comparison, the fluctuation of the interference light intensity is corrected from the ratio of the average interference light intensity value to the initial value. Since the phase difference can be calculated by performing the value calculation, the phase difference can be calculated with high accuracy even when the interference light intensity varies or the output of the amplifier circuit varies.

これにより温度変化や経年変化が原因で出力が変動しても、随時その変動に応じて最大値、最小値を補正することができるので、例えば、この光ファイバリング干渉型センサによる位置同定を行う場合には、低感度の光ファイバリング中点付近から高感度の光ファイバリング端付近まで広範囲の感度において位相差を正確に検出することができる。   As a result, even if the output fluctuates due to temperature change or secular change, the maximum value and the minimum value can be corrected at any time according to the fluctuation. For example, position identification by this optical fiber ring interference sensor is performed. In this case, the phase difference can be accurately detected in a wide range of sensitivity from the vicinity of the middle point of the low-sensitivity optical fiber ring to the vicinity of the end of the high-sensitivity optical fiber ring.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る光ファイバリング干渉型センサ1の概略構成図である。   FIG. 1 is a schematic configuration diagram of an optical fiber ring interference type sensor 1 according to an embodiment of the present invention.

この光ファイバリング干渉型センサ1は、従来の光ファイバリング干渉型センサ101に、干渉光強度の出力変動に応じた最大値、最小値を設定する補正機能を設けた点に特徴がある。従って、従来構成と同じ部材には同符号を付している。   This optical fiber ring interference type sensor 1 is characterized in that the conventional optical fiber ring interference type sensor 101 is provided with a correction function for setting the maximum value and the minimum value according to the output fluctuation of the interference light intensity. Accordingly, the same members as those in the conventional configuration are denoted by the same reference numerals.

本センサの構成は、従来構成で説明した通り、ループ状に構成された光ファイバリング105と、この光ファイバリング105の開放端に接続される3×3の光分岐結合素子107と、この3×3光分岐結合素子107に接続される第1受光素子111aと、光分岐結合素子109を介して接続される第2受光素子111b及び発光回路と、第3受光素子111cと、これら第1〜第3受光素子111a〜111cに接続される第1〜第3増幅回路115a〜115cを少なくとも備えている。   As described in the conventional configuration, the configuration of this sensor includes an optical fiber ring 105 configured in a loop shape, a 3 × 3 optical branching and coupling element 107 connected to the open end of the optical fiber ring 105, A first light receiving element 111a connected to the × 3 optical branching and coupling element 107, a second light receiving element 111b and a light emitting circuit connected via the optical branching and coupling element 109, a third light receiving element 111c, At least first to third amplifier circuits 115a to 115c connected to the third light receiving elements 111a to 111c are provided.

そして更に、補正機能として、第1〜第3増幅回路115a〜115cに接続される第1〜第3無振動判定回路3a〜3cと、第1〜第3無振動判定回路3a〜3cと並列接続される第1〜第3レベル変動量判定回路5a〜5cと、これら第1〜第3無振動判定回路3a〜3c及び第1〜第3レベル変動量判定回路5a〜5cに接続される第1〜第3補正計算回路7a〜7cと、第1〜第3増幅回路115a〜115c及び第1〜第3補正計算回路7a〜7cに接続される位相差算出回路9とを少なくとも備えている。   Further, as a correction function, the first to third vibrationless determination circuits 3a to 3c connected to the first to third amplifier circuits 115a to 115c and the first to third vibrationless determination circuits 3a to 3c are connected in parallel. First to third level fluctuation amount determination circuits 5a to 5c, and the first to third no-vibration determination circuits 3a to 3c and the first to third level fluctuation amount determination circuits 5a to 5c. To third correction calculation circuits 7a to 7c, and first to third amplification circuits 115a to 115c and a phase difference calculation circuit 9 connected to the first to third correction calculation circuits 7a to 7c.

ここで第1〜第3無振動判定回路3a〜3cとは、第1〜第3増幅回路115a〜115bから出力される各干渉光強度を取得して、無振動判定を行った後、その判定結果をそれぞれ第1〜第3補正計算回路7a〜7cに出力する機能部である。   Here, the first to third no-vibration determination circuits 3a to 3c acquire the respective interference light intensities output from the first to third amplification circuits 115a to 115b, perform the no-vibration determination, and then perform the determination. It is a function part which outputs a result to the 1st-3rd correction | amendment calculation circuits 7a-7c, respectively.

具体的には、第1〜第3増幅回路115a〜115cの出力が、測定時間Tの間に、予め設定した振幅(=無振動判定振幅:Anv(本実施の形態において基準値Anvと呼ぶ))以下であることを検出した場合は「無振動」と判定し、予め設定した振幅以上であることを検出した場合は「有振動」と判定する回路である。この無振動判定振幅Anvは、本センサを設置する振動環境及び電気的ノイズの大きさをもとにして決定される振幅である。   Specifically, the outputs of the first to third amplifier circuits 115a to 115c are set to a preset amplitude (= no vibration determination amplitude: Anv (referred to as a reference value Anv in this embodiment) during the measurement time T. ) A circuit that determines “no vibration” when it is detected that the frequency is less than or equal to a predetermined amplitude and detects “vibration”. This no-vibration determination amplitude Anv is an amplitude that is determined based on the vibration environment in which this sensor is installed and the magnitude of electrical noise.

次に第1〜第3レベル変動量判定回路5a〜5cとは、第1〜第3増幅回路115a〜115bから出力される各干渉光強度を取得して、この干渉光強度の最大値及び最小値を、予め設定されている最大値及び最小値と比較し、その比較結果を第1〜第3補正計算回路7a〜7cに出力する機能部である。   Next, the first to third level fluctuation amount determination circuits 5a to 5c obtain the interference light intensity output from the first to third amplification circuits 115a to 115b, and the maximum value and the minimum value of the interference light intensity. The function unit compares the value with preset maximum and minimum values and outputs the comparison result to the first to third correction calculation circuits 7a to 7c.

具体的には、観測開始前に予め測定される第1〜第3増幅回路115a〜115cから出力される正常動作時の各干渉光強度の最大値及び最小値を記憶させておき、第1〜第3無振動判定回路3a〜3cにおいて「無振動」と判定された場合に、第1補正計算回路7a〜7cから読み込まれるための記憶手段である。   Specifically, the maximum value and the minimum value of each interference light intensity during normal operation output from the first to third amplifier circuits 115a to 115c, which are measured in advance before the start of observation, are stored. This is a storage means for reading from the first correction calculation circuits 7a to 7c when the third no-vibration determination circuits 3a to 3c determine “no vibration”.

測定時間T中に光ファイバリング105内を伝播する時計回り光と反時計回り光の干渉光強度の最大値と最小値を取得して、予め記憶されている最大値及び最小値と比較し、その変動量を算出して、第1〜第3補正計算回路に出力する。   Obtaining the maximum and minimum values of the interference light intensity of the clockwise light and the counterclockwise light propagating in the optical fiber ring 105 during the measurement time T, and comparing the maximum value and the minimum value stored in advance; The fluctuation amount is calculated and output to the first to third correction calculation circuits.

一方、第1〜第3補正計算回路7a〜7cとは、第1〜第3レベル変動量判定回路5a〜5cから「無振動」又は「有振動」の判定結果を取得し、第1〜第3レベル変動量判定回路5a〜5cから正常動作時の最大値と最小値を取得して、これら情報に基づいてリアルタイムでの干渉光強度の最大値と最小値を算出して出力する機能部である。   On the other hand, the first to third correction calculation circuits 7a to 7c obtain the determination result of “no vibration” or “vibration” from the first to third level variation determination circuits 5a to 5c, and A function unit that obtains the maximum value and the minimum value during normal operation from the three-level fluctuation amount determination circuits 5a to 5c, calculates the maximum value and the minimum value of the interference light intensity in real time based on these information, and outputs them. is there.

また、位相差算出回路9とは、第1〜第3増幅回路115a〜115cから出力される各干渉光強度と、第1〜第3補正計算回路7a〜7cから出力される干渉光強度の最大値及び最小値を取得して、これら情報に基づいて位相差を算出し、外部接続されている報知装置に出力する機能部である。   The phase difference calculation circuit 9 is the maximum of the interference light intensity output from the first to third amplification circuits 115a to 115c and the interference light intensity output from the first to third correction calculation circuits 7a to 7c. It is a functional unit that acquires a value and a minimum value, calculates a phase difference based on the information, and outputs the phase difference to an externally connected notification device.

尚、本実施の形態において、第1〜第3増幅回路115a〜115b、第1〜第3無振動判定回路3a〜3c、第1〜第3レベル変動量判定回路5a〜5c、第1〜第3補正計算回路7a〜7c、位相差算出回路9は、オペアンプ、トランジスタ等の電子部品により構成されるアナログ回路である。   In the present embodiment, the first to third amplifier circuits 115a to 115b, the first to third no-vibration determination circuits 3a to 3c, the first to third level fluctuation amount determination circuits 5a to 5c, and the first to first levels. The three correction calculation circuits 7a to 7c and the phase difference calculation circuit 9 are analog circuits configured by electronic components such as operational amplifiers and transistors.

しかし回路構成はアナログ回路に限らず、上記第1〜第3増幅回路115a〜115cの後段にアナログ/デジタル変換回路を挿入し、以降の処理をデジタル処理するようにしても良い。   However, the circuit configuration is not limited to an analog circuit, and an analog / digital conversion circuit may be inserted after the first to third amplifier circuits 115a to 115c, and the subsequent processing may be digitally processed.

この場合、第1〜第3無振動判定回路3a〜3c、第1〜第3レベル変動量判定回路5a〜5c、第1〜第3補正計算回路7a〜7c、位相差算出回路9の判定機能及び算出機能を論理回路に置換し、補助記憶装置である不揮発性メモリ等に保存する。そしてこれら機能部の制御をCPU(Central Processing Unit)又はFPGA(Field Programmable Gate Array)等で行うことにより位相差算出することができる。   In this case, determination functions of the first to third no-vibration determination circuits 3a to 3c, the first to third level fluctuation amount determination circuits 5a to 5c, the first to third correction calculation circuits 7a to 7c, and the phase difference calculation circuit 9 The calculation function is replaced with a logic circuit, and the calculation function is stored in a nonvolatile memory or the like as an auxiliary storage device. The phase difference can be calculated by controlling these functional units by a CPU (Central Processing Unit) or an FPGA (Field Programmable Gate Array).

次に、図2を参照して、本発明の光ファイバリング干渉型センサ1の測定開始前の設定手順について説明する。   Next, with reference to FIG. 2, the setting procedure before the measurement start of the optical fiber ring interference sensor 1 of the present invention will be described.

まず、光ファイバリング干渉型センサ1の発光回路113から伝播光を出力させ、光分岐結合素子109、3×3光分岐結合素子107を介して伝播光を2本の信号光に分岐させた後、光ファイバリング105内に時計回り光と反時計回り光を伝播させる。   First, after propagating light is output from the light emitting circuit 113 of the optical fiber ring interference sensor 1, the propagating light is branched into two signal lights via the optical branching coupling element 109 and the 3 × 3 optical branching coupling element 107. The clockwise light and the counterclockwise light are propagated in the optical fiber ring 105.

ここでまずステップS11として、光ファイバリング105のある一部分を加振する。   Here, as step S11, a certain part of the optical fiber ring 105 is vibrated.

次にステップS13で、加振により生じた時計回り光と反時計回り光の位相差を第1〜第3受光素子111a〜111cでそれぞれ受光し、更に第1〜第3増幅回路115a〜115cで信号を増幅させる。次いで増幅された信号を第1〜第3レベル変動量判定回路5a〜5cで電圧監視し、測定した電圧レベルの中から、最も高い干渉高強度と最も低い干渉光強度を抽出する。   In step S13, the phase difference between the clockwise light and the counterclockwise light generated by the vibration is received by the first to third light receiving elements 111a to 111c, respectively, and further, the first to third amplifier circuits 115a to 115c. Amplify the signal. Next, the amplified signals are voltage monitored by the first to third level fluctuation amount determination circuits 5a to 5c, and the highest interference high intensity and the lowest interference light intensity are extracted from the measured voltage levels.

そしてステップS15で、最も高い干渉高強度を「基準最大値」とし、最も低い干渉光強度を「基準最小値」として、第1〜第3補正計算回路7a〜7cに記憶させる。そして光ファイバリングの加振を終了する。   In step S15, the first to third correction calculation circuits 7a to 7c store the highest interference high intensity as the “reference maximum value” and the lowest interference light intensity as the “reference minimum value”. Then, the vibration of the optical fiber ring is finished.

次に、所定時間内の電圧レベルを測定し、その平均レベルを算出する手順を説明する。   Next, a procedure for measuring the voltage level within a predetermined time and calculating the average level will be described.

まずステップS17で、図示していないタイマーカウンタを用いて、予め設定された測定時間の計時を開始する。ここで測定時間をTとし電圧をVとする。また計時開始時点での時間をT=0とし、電圧V=0にとなるように初期設定を行う。   First, in step S17, the measurement of a preset measurement time is started using a timer counter (not shown). Here, the measurement time is T and the voltage is V. Further, the time at the start of timing is set to T = 0, and initial setting is performed so that the voltage V = 0.

続いてステップS19で、第1〜第3レベル変動量判定回路5a〜5cは、一定時間毎に第1〜第3増幅回路115a〜115cの出力電圧レベルを取得して一時的に記憶回路にその値を保持させると共に、前回の測定結果に電圧Vを積算させる。   Subsequently, in step S19, the first to third level variation determination circuits 5a to 5c acquire the output voltage levels of the first to third amplifier circuits 115a to 115c at regular intervals and temporarily store them in the storage circuit. The value is held and the voltage V is added to the previous measurement result.

続いてステップS21で、第1〜第3無振動判定回路3a〜3cは、上記ステップS19で一時的に記憶保持させた電圧レベルと予め第1〜第3無振動判定回路に設定されている基準値Anvとを比較し、取得した電圧レベルが基準値Anvを超えたか否かを比較して、超えていないこと検出した場合はステップS25に進み、超えたことを検出した場合は、ステップS23に進むと共に、超えた回数をカウントアップするカウンタXに1を加算してXに収納する。   Subsequently, in step S21, the first to third no-vibration determination circuits 3a to 3c are temporarily stored and held in step S19 and the reference set in advance to the first to third no-vibration determination circuits. The value Anv is compared, and it is compared whether or not the acquired voltage level exceeds the reference value Anv. If it is detected that the voltage level is not exceeded, the process proceeds to step S25. If it is detected that the voltage level is exceeded, the process proceeds to step S23. As the process proceeds, 1 is added to the counter X that counts up the number of times that the number of times has been exceeded and stored in X.

次いでステップS25で、図示しない制御部は、予め設定した測定時間Tに達したか否かタイマーカウンタの計時を監視して、測定時間Tに達したときは、ステップS27に進み、測定時間Tに達していないときは、ステップS19に戻って、再度ステップS19〜ステップS25の処理を繰り返す。   Next, in step S25, the control unit (not shown) monitors the time of the timer counter to determine whether or not the preset measurement time T has been reached. When the measurement time T has been reached, the process proceeds to step S27, where the measurement time T is reached. If not, the process returns to step S19, and the processes of steps S19 to S25 are repeated again.

測定時間Tが終了したときは、ステップS25で、第1〜第3無振動判定回路3a〜3cは、カウンタXのカウント数を取得して、1回でも基準値Anvを超える電圧レベルが検出された場合は(即ち、X>0のとき)は「有振動」と判定して、ステップS17に戻り、再度ステップS17〜ステップS25の処理を繰り返す。   When the measurement time T ends, in step S25, the first to third no-vibration determination circuits 3a to 3c acquire the count number of the counter X, and a voltage level exceeding the reference value Anv is detected even once. In the case (ie, when X> 0), it is determined as “vibration”, the process returns to step S17, and the processes of steps S17 to S25 are repeated again.

一方、基準値Anvを越える電圧レベルが検出されない場合は、ステップS19で積算した電圧レベルを測定時間Tで除算して電圧レベルの平均値を求め、これを静的平均レベルLaとして第1〜第3レベル変動量判定回路5a〜5cに記憶させる。   On the other hand, if a voltage level exceeding the reference value Anv is not detected, the voltage level integrated in step S19 is divided by the measurement time T to obtain an average value of the voltage level, which is set as the static average level La as the first to first values. The data is stored in the three-level variation determination circuits 5a to 5c.

上記処理により、本光ファイバリング干渉型センサの使用開始時の電圧レベル最大値と最小値が設定される。以降に示す図3の処理は、実際にセンサを使用することにより生じる経年変化や環境の温度変化に対応して、図2で設定した基準値(最大値、最小値)をもとに測定時にリアルタイムで最大値と最小値を補正し、その最大値と最小値から位相差を算出する。   By the above processing, the maximum and minimum voltage levels at the start of use of the present optical fiber ring interference type sensor are set. The processing of FIG. 3 shown below is performed at the time of measurement based on the reference values (maximum value and minimum value) set in FIG. 2 corresponding to the secular change caused by actually using the sensor and the environmental temperature change. The maximum and minimum values are corrected in real time, and the phase difference is calculated from the maximum and minimum values.

次に図3を参照して、本発明の光ファイバリング干渉型センサ1の使用開始後の電圧レベルの最大値と最小値の補正方法、及びこの補正に追随する位相差算出方法を説明する。   Next, with reference to FIG. 3, the correction method of the maximum value and the minimum value of the voltage level after the start of use of the optical fiber ring interference sensor 1 of the present invention and the phase difference calculation method following this correction will be described.

尚、図3に示す測定手順においてステップS31〜ステップS41は、図2に示した設定手順のステップS19〜ステップS27に対応しているため、これらステップの説明は省略する。   In the measurement procedure shown in FIG. 3, steps S31 to S41 correspond to steps S19 to S27 of the setting procedure shown in FIG.

また本実施の形態は、位相差計算と平行して定期的に第1〜第3レベル変動量判定回路5a〜5cにて測定時間T間での第1〜第3増幅回路115a〜115cからの出力電圧レベルの平均値を算出するものである。   In the present embodiment, in parallel with the phase difference calculation, the first to third level fluctuation amount determination circuits 5a to 5c periodically output from the first to third amplifier circuits 115a to 115c during the measurement time T. The average value of the output voltage level is calculated.

そこでステップS43から説明する。ステップS43で、第1〜第3無振動判定回路3a〜3bにより「無振動」と判定されると、第1〜第3レベル変動量判定回路5a〜5cは、ステップS33で積算した電圧レベルを測定時間Tで除算して電圧レベルの平均値を求め、これをカレント静的平均レベルLacとして記憶する。   Therefore, the description starts from step S43. If the first to third no-vibration determination circuits 3a to 3b determine “no vibration” in step S43, the first to third level fluctuation amount determination circuits 5a to 5c determine the voltage level integrated in step S33. The average value of the voltage level is obtained by dividing by the measurement time T, and this is stored as the current static average level Lac.

そしてステップS45で、第1〜第3レベル変動量判定回路5a〜5cは、カレント静的平均レベルLacと静的平均レベルLaとを比較し、予め設定された補正実施偏差をΔLとして、ABS(Lac−La)>ΔLのときにLac=Laとして、カレント静的平均レベルLacを静的平均レベルLaに更新してステップS47に進み、ABS(Lac−La)<ΔLのときは、ステップS31に戻り、次のカレント静的平均レベルLacの測定を開始する。   In step S45, the first to third level fluctuation amount determination circuits 5a to 5c compare the current static average level Lac and the static average level La, set a preset correction execution deviation as ΔL, and set ABS ( Lac = La when Lac−La)> ΔL, the current static average level Lac is updated to the static average level La, and the process proceeds to step S47. If ABS (Lac−La) <ΔL, the process proceeds to step S31. Return and start measuring the next current static average level Lac.

次いでステップS47で、第1〜第3補正計算回路7a〜7cは、最大値と最小値の補正計算を行う。ここで補正値は、カレント静的平均レベルLacと静的平均レベルLaの比を予め設定されている基準最大値と基準最小値に乗算することで求める。即ち、現測定点の最大値を基準最大値×(Lac/La)から算出し、現測定時の最小値を基準最小値×(Lac/La)から算出する。   Next, in step S47, the first to third correction calculation circuits 7a to 7c perform correction calculation of the maximum value and the minimum value. Here, the correction value is obtained by multiplying a preset reference maximum value and reference minimum value by a ratio of the current static average level Lac and the static average level La. That is, the maximum value at the current measurement point is calculated from the reference maximum value × (Lac / La), and the minimum value at the current measurement is calculated from the reference minimum value × (Lac / La).

次いで、ステップS49で、第1〜第3補正計算回路7a〜7cは、カレント静的平均レベルLacを静的平均レベルLaに更新する。第1〜第3補正計算回路7a〜7cは、最大値及び最小値が更新されると、この更新結果を位相差算出回路9に出力し、位相差算出回路9は、この更新結果をもとに位相差算出を行う。   Next, in step S49, the first to third correction calculation circuits 7a to 7c update the current static average level Lac to the static average level La. When the maximum value and the minimum value are updated, the first to third correction calculation circuits 7a to 7c output the update result to the phase difference calculation circuit 9, and the phase difference calculation circuit 9 based on the update result. The phase difference is calculated.

このように測定時の環境要因により変動する干渉光強度の最大値と最小値に基づいて位相差を算出することで、上記式(1)を用いてP(t)を求めれば、第1〜第3受光素子111a〜111cで検出された干渉光強度に基づいて光ファイバリング105の振動を検出することができる。   Thus, by calculating the phase difference based on the maximum value and the minimum value of the interference light intensity that varies depending on the environmental factors at the time of measurement, if P (t) is obtained using the above equation (1), The vibration of the optical fiber ring 105 can be detected based on the interference light intensity detected by the third light receiving elements 111a to 111c.

尚、本測定方法においてはステップS45で、ABS(Lac−La)>ΔLのときにだけ補正を行うようにしているが、ある一定の間隔で測定を行い「無振動」と判定されたときは必ず補正を行うようにしても良い。   In this measurement method, correction is performed only when ABS (Lac−La)> ΔL in step S45. However, when measurement is performed at a certain interval and it is determined that there is no vibration, You may make it correct | amend.

また本測定方法においてステップS41で「有振動」が検出された場合には、ステップS31に戻り、次のカレント静的平均レベルLacの測定を開始する。またステップS51においても測定が全範囲での測定が終了していない場合には、ステップS31に戻り、次のカレント静的平均レベルLacの測定を開始する。   If “vibration” is detected in step S41 in this measurement method, the process returns to step S31 to start measurement of the next current static average level Lac. In step S51, if the measurement in the entire range is not completed, the process returns to step S31, and measurement of the next current static average level Lac is started.

尚、本実施の形態においては、3×3光分岐結合素子を適用する場合を説明したが、3×3光分岐結合素子に限らず、時計回り光と反時計回り光の初期位相差がnπ(n=0,1,2・・・)以外である光強度出力を少なくとも2つ以上有するN×N光分岐結合素子を用いて位相差算出を行う場合にも有効である。   In this embodiment, the case where the 3 × 3 optical branching and coupling element is applied has been described. However, the present invention is not limited to the 3 × 3 optical branching and coupling element, and the initial phase difference between the clockwise light and the counterclockwise light is nπ. This is also effective when calculating the phase difference using an N × N optical branching and coupling element having at least two light intensity outputs other than (n = 0, 1, 2,...).

また、最大値、最小値の補正結果が、アナログ/デジタル変換回路のダイナミックレンジを超える場合、或いは十分な分解能とならないほど小さい値となった場合には、第1〜第3増幅回路115a〜115cの増幅率を予め設定した値で変動させることで、大きな光レベル変動にも対応することができるようになる。   Further, when the correction result of the maximum value and the minimum value exceeds the dynamic range of the analog / digital conversion circuit or becomes a value that is not so large as to have sufficient resolution, the first to third amplifier circuits 115a to 115c. It is possible to cope with large light level fluctuations by changing the amplification factor of 1 by a preset value.

本発明の実施の形態に係る光ファイバリング干渉型センサの概略構成図である。It is a schematic block diagram of the optical fiber ring interference type sensor which concerns on embodiment of this invention. 本発明の光ファイバリング干渉型センサに予め設定する最大値及び最小値を測定するためのフローチャートである。It is a flowchart for measuring the maximum value and minimum value which are preset in the optical fiber ring interference type sensor of the present invention. 本発明の光ファイバリング干渉型センサの測定手順及び補正手順を示すためのフローチャートである。It is a flowchart for showing the measurement procedure and correction | amendment procedure of the optical fiber ring interference type sensor of this invention. 従来の光ファイバリング干渉型センサの概略構成図である。It is a schematic block diagram of the conventional optical fiber ring interference type sensor. 光ファイバリング干渉型センサの構成(a)と、増幅回路115aから出力される出力波形(b)を示す図である。It is a figure which shows the structure (a) of an optical fiber ring interference type sensor, and the output waveform (b) output from the amplifier circuit 115a. 正常時の出力波形(a)と、外的要因により変動した出力波形(b)を示す図である。It is a figure which shows the output waveform (a) at the time of normal, and the output waveform (b) fluctuate | varied by the external factor.

符号の説明Explanation of symbols

1…光ファイバリング干渉型センサ
3a〜3c…第1〜第3無振動判定回路
5a〜5b…第1〜第3レベル変動量判定回路
7a〜7c…第1〜第3補正計算回路
9…位相差算出回路
101…光ファイバリング干渉型センサ
105…光ファイバリング
107…3×3光分岐結合素子
109…光分岐結合素子
111a…第1〜第3受光素子
113…発光回路
115a…第1〜第3増幅回路
DESCRIPTION OF SYMBOLS 1 ... Optical fiber ring interference type | mold sensor 3a-3c ... 1st-3rd non-vibration determination circuit 5a-5b ... 1st-3rd level variation | change_quantity determination circuit 7a-7c ... 1st-3rd correction | amendment calculation circuit 9 ... rank Phase difference calculation circuit 101 ... Optical fiber ring interference type sensor 105 ... Optical fiber ring 107 ... 3x3 optical branch coupling element 109 ... Optical branch coupling element 111a ... First to third light receiving elements 113 ... Light emitting circuit 115a ... First to first 3 amplifier circuit

Claims (3)

光源と受光素子とループ状光ファイバの開放部の両端とが分岐結合素子に接続され、前記光源から出射された光を前記分岐結合素子によって分岐して、前記ループ状光ファイバに前記開放部の両端それぞれから入射させ、該ループ状光ファイバ中を時計回りと反時計回りに伝播させ、時計回り伝播光と反時計回り伝播光とを前記分岐結合素子にて結合し、結合された前記時計回り伝播光と反時計回り伝播光とを前記受光素子に入射させ、この時計回り伝播光と反時計回り伝播光との位相差により干渉光の強度変化を示す信号を該受光素子から出力することにより前記ループ状光ファイバの任意の場所に局所的に加わる物理的変化に起因する該時計回り伝搬光と反時計回り伝搬光との位相差による干渉光の強度変化を示す信号を前記受光素子から出力する光ファイバリング干渉型センサであって、
前記受光素子が受光した光信号を増幅する増幅手段と、前記増幅回路から出力される信号レベルの初期状態から一定時間の範囲内の変動量を監視するレベル変動量判定手段と、前記信号レベルの変動が基準レベルを超えたか否か監視する無振動判定手段と、該信号レベルが該基準レベル以下である時は前記レベル信号判定手段で算出された電圧レベル値を取得して光レベル変動補正値を算出する補正計算手段と、を備えることを特徴とする光ファイバリング干渉型センサ。
A light source, a light receiving element, and both ends of the open portion of the loop optical fiber are connected to the branch coupling element, and the light emitted from the light source is branched by the branch coupling element, and the loop optical fiber has Incident from both ends, propagating clockwise and counterclockwise in the loop-shaped optical fiber, and coupling the clockwise and counterclockwise propagating light with the branch coupling element, the coupled clockwise rotation By propagating propagating light and counterclockwise propagating light to the light receiving element, and outputting a signal indicating the intensity change of interference light from the light receiving element due to the phase difference between the clockwise propagating light and the counterclockwise propagating light. A signal indicating a change in intensity of the interference light due to a phase difference between the clockwise propagation light and the counterclockwise propagation light caused by a physical change locally applied to an arbitrary place of the loop optical fiber is transmitted from the light receiving element. An optical fiber ring interferometer type sensor outputs,
Amplifying means for amplifying an optical signal received by the light receiving element; level fluctuation amount judging means for monitoring a fluctuation amount within a predetermined time range from an initial state of a signal level output from the amplifier circuit; Non-vibration determination means for monitoring whether or not the fluctuation exceeds a reference level, and when the signal level is equal to or lower than the reference level, the voltage level value calculated by the level signal determination means is acquired to obtain a light level fluctuation correction value. And an optical fiber ring interference sensor.
光源から出射された光を分岐結合素子によって分岐して、ループ状光ファイバの開放部の両端それぞれから入射させて、該ループ状光ファイバ中を時計回りと反時計回りに伝搬させ、前記ループ状光ファイバ中を伝搬した時計回り伝搬光と反時計回り伝搬光とを前記分岐結合素子によって結合して受光素子に入射させ、前記受光素子が出力する前記時計回り伝搬光と反時計回り伝搬光との位相差による干渉光の強度変化を示す信号に基づいて、前記ループ状光ファイバの任意の場所に局所的に加わる物理的変化を検出する干渉光強度変動補正方法であって、
一定時間内の干渉光強度を測定するステップと、該一定時間内の干渉光強度の変動量が予め設定された振幅以下であるか否かを判定するステップと、該変動量が該振幅以下の時は無振動と判定して、該無振動と判定された期間の干渉光強度平均値を予め設定した初期値と比較するステップと、比較の結果、前記干渉光強度平均値と前記初期値の比から干渉光強度の変動補正値計算を行い位相差を算出するステップと、を有することを特徴とする干渉光強度変動補正方法。
The light emitted from the light source is branched by the branch coupling element, and is incident from both ends of the open portion of the loop-shaped optical fiber, and propagates in the loop-shaped optical fiber in the clockwise and counterclockwise directions. The clockwise propagation light and the counterclockwise propagation light propagated in the optical fiber are combined by the branch coupling element and incident on the light receiving element, and the clockwise propagation light and the counterclockwise propagation light output from the light receiving element are An interference light intensity fluctuation correction method for detecting a physical change locally applied to an arbitrary place of the loop optical fiber based on a signal indicating an intensity change of the interference light due to a phase difference of
Measuring the interference light intensity within a fixed time; determining whether the fluctuation amount of the interference light intensity within the fixed time is less than or equal to a preset amplitude; and When determining that there is no vibration, the step of comparing the interference light intensity average value of the period determined as no vibration with a preset initial value, and as a result of the comparison, the interference light intensity average value and the initial value And a step of calculating a phase difference by calculating a fluctuation correction value of the interference light intensity from the ratio.
前記干渉光強度平均値が、前記初期値と比較して予め設定された偏差以上に変動した時は、前記変動補正値計算を行うことを特徴とする請求項2記載の干渉光強度変動補正方法。   3. The interference light intensity fluctuation correction method according to claim 2, wherein the fluctuation correction value calculation is performed when the interference light intensity average value fluctuates more than a preset deviation compared to the initial value. .
JP2004203224A 2004-07-09 2004-07-09 Optical fiber ring interference type sensor and interference light intensity fluctuation correction method Expired - Lifetime JP4213638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203224A JP4213638B2 (en) 2004-07-09 2004-07-09 Optical fiber ring interference type sensor and interference light intensity fluctuation correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203224A JP4213638B2 (en) 2004-07-09 2004-07-09 Optical fiber ring interference type sensor and interference light intensity fluctuation correction method

Publications (2)

Publication Number Publication Date
JP2006023230A true JP2006023230A (en) 2006-01-26
JP4213638B2 JP4213638B2 (en) 2009-01-21

Family

ID=35796595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203224A Expired - Lifetime JP4213638B2 (en) 2004-07-09 2004-07-09 Optical fiber ring interference type sensor and interference light intensity fluctuation correction method

Country Status (1)

Country Link
JP (1) JP4213638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127705A (en) * 2008-11-26 2010-06-10 Furukawa Electric Co Ltd:The Fiber optic sensor
JP6002830B1 (en) * 2015-12-02 2016-10-05 株式会社フジクラ Optical fiber ring interference sensor
WO2022185539A1 (en) * 2021-03-05 2022-09-09 日本電気株式会社 Environment information acquisition device, environment information acquisition method, and computer readable medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127705A (en) * 2008-11-26 2010-06-10 Furukawa Electric Co Ltd:The Fiber optic sensor
JP6002830B1 (en) * 2015-12-02 2016-10-05 株式会社フジクラ Optical fiber ring interference sensor
WO2022185539A1 (en) * 2021-03-05 2022-09-09 日本電気株式会社 Environment information acquisition device, environment information acquisition method, and computer readable medium

Also Published As

Publication number Publication date
JP4213638B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
KR101130344B1 (en) Apparatus and method of distributed fiber sensor using Brillouin optical time domain analysis based on Brillouin dynamic grating
US20070253719A1 (en) Wide dynamic range sensor signal processing method &amp; circuitry for analog and digital information signals
KR102408644B1 (en) Method and apparatus for monitoring and optimizing OFDR interrogators
JP2008089592A (en) Digital intensity control for vibration and radiation insensitivity in optical fiber gyroscope
US20180364121A1 (en) Force sensing device and a force sensing system
JP2020063971A (en) Optical fiber characteristic measuring device and optical fiber characteristic measurement method
US6426496B1 (en) High precision wavelength monitor for tunable laser systems
JP4213638B2 (en) Optical fiber ring interference type sensor and interference light intensity fluctuation correction method
JP2015520368A (en) Transducer acceleration compensation using delay to match phase characteristics
JP3639673B2 (en) Distance measuring method and apparatus
JPH11287659A (en) Optical fiber gyro having failure self-diagnostic function
JPH0726851B2 (en) Fiber-optic Sagnac interferometer for measuring rotational speed
JP4274749B2 (en) Phase difference calculation method and phase difference calculation system for optical fiber ring interference type sensor
JP2011033439A (en) Coriolis mass flowmeter
JP3510419B2 (en) Vibration pickup calibration device
JP2011174731A (en) Coriolis mass flowmeter
JPH08304084A (en) Optical fiber gyro
US5995211A (en) Method for determining the rate of rotation
WO2006025134A1 (en) Semiconductor integrated circuit having jitter measuring function
CN116249871A (en) Circuit for a MEMS gyroscope and method for operating a corresponding circuit
JP2004177288A (en) Optimal amplification setting method and system of amplifying circuit for optical fiber interference type sensor, and optimal amplification setting program
CN115164955A (en) Feedback loop control method and device of double Mach-Zehnder interferometer
JPS63188704A (en) High-sensitivity optical fiber sensor
JP2632236B2 (en) Optical interference angular velocity meter
Froggatt et al. High precision wavelength monitor for tunable laser systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4213638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250