JP2006022853A - Renewal construction method of water pipe - Google Patents

Renewal construction method of water pipe Download PDF

Info

Publication number
JP2006022853A
JP2006022853A JP2004199556A JP2004199556A JP2006022853A JP 2006022853 A JP2006022853 A JP 2006022853A JP 2004199556 A JP2004199556 A JP 2004199556A JP 2004199556 A JP2004199556 A JP 2004199556A JP 2006022853 A JP2006022853 A JP 2006022853A
Authority
JP
Japan
Prior art keywords
water pipe
pipe
water
sheath
grout material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199556A
Other languages
Japanese (ja)
Other versions
JP4496024B2 (en
Inventor
Yoji Akagi
洋二 赤木
Masahiko Saito
昌彦 斉藤
Yasuhiro Komuro
泰寛 小室
Masayoshi Kitagawa
眞好 喜多川
Tetsuji Shimoyasu
哲二 下保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2004199556A priority Critical patent/JP4496024B2/en
Publication of JP2006022853A publication Critical patent/JP2006022853A/en
Application granted granted Critical
Publication of JP4496024B2 publication Critical patent/JP4496024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively replace a large-diameter water pipe D in the plumbing structure of a double pipe. <P>SOLUTION: When laying a sheath pipe A underground, the sheath pipe A having a larger nominal diameter than the water pipe D to be buried in future by one is selected, the sheath pipe A is provided, a water pipe B' is formed in the sheath pipe A by successively inserting and joining the water pipes B having a size (diameter) initially requested, a grout material (a) is filled between the water pipes B' and the sheath pipe A for constructing a double water pipe structure. When performing the piping replacement of a water pipe D' having a large diameter instead of the initial water pipe B', the layer filled with a grout material and the water pipe B' are removed from the inside of the sheath pipe A, and the new, large-diameter water pipe D' is formed similarly in the sheath pipe A for filling the grout material (a). In this manner, only the layer filled with the grout material, or the like in the already installed sheath pipe is removed, and a new water pipe is constructed in the sheath pipe, thus reducing the execution costs of the expansion (increase in diameter) of the water pipe based on an increase in the amount of water usage, and reducing traffic barriers as much as possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、既設水道配管を大径の水道配管に更新する工法に関するものである。   The present invention relates to a method for renewing an existing water pipe to a large-diameter water pipe.

今日、大規模な住宅団地を造成する際、例えば、五万人の住宅団地であっても、当初は、数百人の住民であり、そこから、十数年を経て徐々にその五万人に住民が増えていく。
このとき、当然に、その団地への水道配管も設けられるが、例えば、数千人の住民に対する水道配管の大きさ(径)と数万人の住民に対する水道配管の径とは自ずと前者が小さくなる。
Today, when building a large residential complex, for example, even if it is a residential complex of 50,000 people, it is initially a few hundred residents, and gradually after that, over 50,000 people The number of residents will increase.
At this time, naturally, water pipes to the housing complex are also provided. For example, the size (diameter) of water pipes for thousands of residents and the diameter of water pipes for tens of thousands of residents are naturally smaller. Become.

数千人の住人の場合にも、数万人の住民に対する大きさの水道配管で配水することも考え得るが、数千人の場合には、その使用水量が少なく、大径の水道配管では、水の流通が少なくて水が淀むため、通常は、数千人の住民に合わせた径の水道配管を設置し、住民の増加に応じて、水道配管を新設したり、既設水道配管を大きくしたりして対応している。   Even in the case of thousands of inhabitants, it is conceivable to distribute water with water pipes of a size for tens of thousands of residents, but in the case of thousands of people, the amount of water used is small, Because of the low water distribution and water, usually water pipes with a diameter suitable for thousands of inhabitants are installed, and in response to the increase in residents, new water pipes are installed or existing water pipes are enlarged. It corresponds.

一方、地中に水道配管を構築する際、その水道配管の保護のために、その配管の外側に鞘管を設ける工法が行われている。このとき、従来では、鞘管と水道管の呼び径を、後者を前者より一つ小さいものとし、その両管の間にグラウト材を充填する構造である(特許文献1、2参照)。
特開2001−21063号公報 特開2002−276284号公報
On the other hand, when water pipes are constructed in the ground, a construction method in which a sheath pipe is provided outside the pipes has been performed in order to protect the water pipes. At this time, conventionally, the nominal diameter of the sheath pipe and the water pipe is one smaller than the former, and the grout material is filled between the two pipes (see Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 2001-21063 JP 2002-276284 A

上記大規模団地における住民の増加に応じた水道配管の新設は、通常、既設道路等に行われるが、その用地がない場合には、新たな用地買収費用が必要となる。また、数千人の住民に対する水道配管を撤去し、その撤去跡に、大径の水道配管を新設することも行われている。   The construction of new water pipes in response to the increase in residents in the large-scale housing estate is usually carried out on existing roads, etc., but if there is no such land, new land acquisition costs will be required. In addition, water pipes for thousands of people have been removed, and large-diameter water pipes have been newly installed on the removal sites.

一方、鞘管の中に水道管を配設する二重管構造においても、従来では、同様に、既設配管とは別に新設したり、既設配管を撤去し、その撤去跡に、大径の水道配管を新設している。   On the other hand, in the double pipe structure in which a water pipe is arranged in a sheath pipe, conventionally, a new pipe is installed separately from the existing pipe, or the existing pipe is removed and a large-diameter water pipe is removed in the removal trace. Piping is newly established.

しかし、水道配管を多くすることは、給水効率の点で好ましくない。また、既設配管の撤去作業は、道路等の掘り起こし等の作業を招いており、この改善が望まれている。   However, increasing the number of water pipes is not preferable in terms of water supply efficiency. Moreover, the removal work of existing piping invites work such as digging up roads and the like, and this improvement is desired.

この発明は、上記二重管の水道配管構造において、その大径水道管への更新を安価に行い得るようにすることを課題とする。   This invention makes it a subject to make it possible to update to the large diameter water pipe at low cost in the double pipe water pipe structure.

上記課題を解決するために、この発明は、既設鞘管内のグラウト材充填層及び既設水道配管のみを除去し、その鞘管内に新水道配管を構築することとしたのである。
このようにすれば、道路には、その除去のための竪穴などを形成するだけでよいため、交通障害も極力少なくすることができる。
In order to solve the above-mentioned problems, the present invention removes only the grout material filling layer and the existing water pipe in the existing sheath pipe, and constructs a new water pipe in the sheath pipe.
In this way, since it is only necessary to form a pit for removing the road on the road, the traffic obstacle can be reduced as much as possible.

この発明は、以上のように、既設鞘管内のグラウト材充填層及び既設水道配管のみを除去し、その鞘管内に新水道配管を構築することとしたので、水道使用量増加に基づく水道管の増設(大径化)の施工費を安くできるとともに、交通障害も極力少なくすることができる。   As described above, the present invention removes only the grout material filling layer and the existing water pipe in the existing sheath pipe, and constructs a new water pipe in the sheath pipe. The construction cost for expansion (large diameter) can be reduced, and traffic obstacles can be minimized.

この発明の実施形態としては、地中に敷設された鞘管内に水道管を順々に挿入してその各水道管を継ぎ合わせて水道配管を形成し、その水道配管と前記鞘管の間にグラウト材を充填した水道配管構造において、前記水道配管に代えてその水道配管より大径の新水道配管を構築する工法であって、前記鞘管を前記新水道配管を予め配設し得る径のものとし、前記水道配管に代えて前記新水道配管を配設する際、前記グラウト材の充填層及び前記水道配管を前記鞘管内から除去した後、その鞘管内に、前記水道管より大径の新水道管を順々に挿入してその各新水道管を継ぎ合わせて新水道配管を形成し、その新水道配管と前記鞘管の間にグラウト材を充填する構成を採用することができる。   As an embodiment of the present invention, water pipes are sequentially inserted into a sheath pipe laid in the ground, and the water pipes are joined together to form a water pipe, and between the water pipe and the sheath pipe. In a water pipe structure filled with grout material, a construction method for constructing a new water pipe having a larger diameter than the water pipe instead of the water pipe, the sheath pipe having a diameter capable of arranging the new water pipe in advance. When arranging the new water pipe instead of the water pipe, after removing the grout material filling layer and the water pipe from the inside of the sheath pipe, the sheath pipe is larger in diameter than the water pipe. It is possible to adopt a configuration in which new water pipes are inserted in sequence, the new water pipes are joined together to form a new water pipe, and a grout material is filled between the new water pipe and the sheath pipe.

上記グラウト材の充填層及び水道配管の鞘管内からの除去は、種々の手段を採用できるが、例えば、前記水道配管をその一端から押して前記グラウト材充填層に亀裂を生じさせた後、その水道配管を鞘管から引き出すことにより行うようにすることができる。
このとき、上記グラウト材充填層に亀裂を生じるように、そのグラウト材には、充填強度としては十分で、かつ圧縮には容易に破壊するものを使用するとよい。このグラウト材は、十分な流動性を得て、所要の充填強度(圧縮強度)を得ることができるとともに、管の引き出し初期、その引き出し力は、管内壁接触面積と充填材(グラウト材)付着強度との積の力以上が必要となるが、引き出し管が順次挙動することで、充填層(グラウト層)は低強度ゆえに破壊されるものと考えられ、小さな引き出し力でもって管とともに容易に引き出し得る。
The removal of the grout material filling layer and the water pipe from the sheath pipe can employ various means. For example, after the water pipe is pushed from one end to cause cracks in the grout material filling layer, the water supply is removed. This can be done by pulling the piping out of the sheath tube.
At this time, it is preferable to use a grout material that has sufficient filling strength and easily breaks for compression so as to cause cracks in the grout material filling layer. This grout material has sufficient fluidity to obtain the required filling strength (compressive strength), and at the initial stage of pipe withdrawal, the withdrawal force depends on the inner wall contact area of the pipe and the filler (grouting material) adhesion. More than the product of strength is required, but it is considered that the packed layer (grouting layer) is destroyed due to its low strength because the drawer tube behaves sequentially, and it can be easily pulled out with the tube with a small drawing force. obtain.

そのグラウト材の一例として、セメントと水からなる充填材であって、保水剤、発泡剤及びAE減水剤からなる流動化剤を混合したものであり、その固化後の圧縮強度が0.1〜0.5N/mm2であるものとし得る。
ここで、セメントとしてはあらゆる種類のセメントが使用できるが、安価で入手しやすいことから、普通ポルトランドセメント、高炉セメント、フライアッシュセメントなどが望ましい。
As an example of the grout material, it is a filler composed of cement and water, which is a mixture of a water retaining agent, a foaming agent, and a fluidizing agent composed of an AE water reducing agent, and its compressive strength after solidification is 0.1 to 0.1. It may be 0.5 N / mm 2 .
Here, all kinds of cement can be used as the cement, but ordinary portland cement, blast furnace cement, fly ash cement and the like are desirable because they are inexpensive and easily available.

保水剤としては、保水効果が大きくブリージング低減作用に優れることから、モンモリロナイト又は、それを主成分とするベントナイトが望ましい。   As the water-retaining agent, montmorillonite or bentonite containing it as a main component is desirable because it has a large water-retaining effect and is excellent in reducing breathing.

流動化剤としては、リグニンスルホン酸塩、オキシカルボン酸塩、ポリオール誘導体、ポリオキシエチレンアルキルアリルエーテル誘導体、アルキルアリルスルホン酸塩のホルマリン縮合物、メラミンスルホン酸塩のホルマリン縮合物、ポリカルボン酸系高分子化合物などが挙げられるが、保水剤添加による増粘作用を低減する効果が大きい点を考慮すると、アルキルアリルスルホン酸塩、メラミンスルホン酸塩のホルマリン縮合物、リグニンスルホン酸塩が望ましい。   As a fluidizing agent, lignin sulfonate, oxycarboxylate, polyol derivative, polyoxyethylene alkyl allyl ether derivative, alkyl allyl sulfonate formalin condensate, melamine sulfonate formalin condensate, polycarboxylic acid type Examples of the polymer compound include alkylallyl sulfonates, formalin condensates of melamine sulfonates, and lignin sulfonates in view of the great effect of reducing the thickening effect due to the addition of a water retention agent.

発泡剤には合成界面活性剤系や加水分解タンパク系といった有機系のものと金属系のものがあるが、有機系のものは液状であるため、保水剤や流動化剤といった粉末状材料とのプレミックスが困難であるため、金属粉末状のものが望ましい。具体的には、アルミニウム、バリウム、マグネシウム、亜鉛などの金属粉末を用いることができるが、安価で入手しやすいことやガスの性質(充填材そのもの、又は管に対して腐食などの悪影響を及ぼさないという意味)などを考慮するとアルミニウムが望ましい。   There are two types of foaming agents, organic surfactants such as synthetic surfactants and hydrolyzed proteins, and metallic ones, but since organic ones are liquid, they can be used together with powdered materials such as water retention agents and fluidizing agents. Since premixing is difficult, a metal powder is desirable. Specifically, metal powders such as aluminum, barium, magnesium, and zinc can be used, but they are inexpensive and easily available, and the nature of the gas (the filler itself or the tube does not have adverse effects such as corrosion) For example, aluminum is preferable.

また、金属粉末の発泡時間はかなり長い時間継続するが、発泡による膨張が終わった後に充填材が流動すると、金属粉末から発生した気泡が消滅して、体積収縮が発生する恐れがある。また、逆に発泡による膨張が終わる前に充填材の硬化が始まると、気泡の分布が不均一になったり、膨張が不十分となるため体積収縮の恐れがある。このように、充填材の配合において発泡速度の制御が非常に重要となる。
ここで、一般に、金属粉末の粒径が小さい(比表面積が大きい)と、発泡速度が速くなり、粒径が大きい(比表面積)と発泡速度が遅くなる。このため、金属粉末の粒径の範囲を1〜500μm、好ましくは80〜200μmとすることにより、通常の充填作業において、充填材の流動が終わってから硬化が始まるまでの間に、その発泡がなされるように、発泡速度を制御することが可能となる。
Further, although the foaming time of the metal powder continues for a considerably long time, if the filler flows after the expansion due to foaming ends, the bubbles generated from the metal powder may disappear and volume shrinkage may occur. On the other hand, if the filler starts to be cured before the expansion due to foaming ends, the distribution of bubbles becomes non-uniform or the expansion becomes insufficient, which may cause volume shrinkage. As described above, the control of the foaming speed is very important in the blending of the filler.
Here, in general, when the particle size of the metal powder is small (the specific surface area is large), the foaming speed becomes fast, and when the particle size is large (the specific surface area), the foaming speed becomes slow. For this reason, by setting the range of the particle size of the metal powder to 1 to 500 μm, preferably 80 to 200 μm, in the normal filling operation, the foaming occurs between the end of the flow of the filler and the start of curing. As is done, the foaming rate can be controlled.

因みに、流動化剤と発泡剤の組合せとしては、流動性と硬化性、ブリージングのバランスを考慮すると、リグニンスルホン酸塩とアルミニウムの組み合わせが最も望ましい。   Incidentally, as a combination of a fluidizing agent and a foaming agent, a combination of lignin sulfonate and aluminum is most desirable in consideration of a balance between fluidity, curability, and breathing.

これらの配合比としては、例えば、セメント重量:1に対して、ベントナイト重量:0.05〜0.45、金属粉末重量:0.00005〜0.001、上記リグニンスルホン酸塩重量:0.0015〜0.05とし得る。セメントと水の重量比は、例えば1:3.0〜10.0とすることにより、流動性に優れた低強度の充填材を得る。   As these compounding ratios, for example, for cement weight: 1, bentonite weight: 0.05 to 0.45, metal powder weight: 0.00005 to 0.001, and lignin sulfonate weight: 0.0015 Can be -0.05. By setting the weight ratio of cement and water to, for example, 1: 3.0 to 10.0, a low-strength filler excellent in fluidity is obtained.

ベントナイトが規定値(0.05)より少量であると、膨潤不良、ブリージングの発生、体積収縮などの問題が生じ、規定値(0.45)より過剰となると、増粘、流動不良などの問題が生じる。リグニンスルホン酸塩が規定値(0.0015)より少量であると、流動不良という問題が生じ、規定値(0.05)より過剰となると、ブリージングの発生、硬化遅延という問題が生じる。金属粉末が規定値(0.00005)より少量であると、ベントナイトと同様の問題があり、規定値(0.001)より過剰となると、過膨張、流動不良となる問題が生じる。   If the bentonite is less than the specified value (0.05), problems such as poor swelling, occurrence of breathing and volume shrinkage occur, and if it exceeds the specified value (0.45), problems such as thickening and poor flow. Occurs. If the amount of lignin sulfonate is less than the specified value (0.0015), a problem of poor flow occurs. If the amount of lignin sulfonate exceeds the specified value (0.05), problems such as occurrence of breathing and delay in curing occur. When the amount of the metal powder is less than the specified value (0.00005), there is a problem similar to bentonite, and when it exceeds the specified value (0.001), problems such as overexpansion and poor flow occur.

因みに、今日、グラウト材として主流のエアモルタルは、流動性と充填強度の調整が難しく、十分な流動性を確保して、低強度(例えば、0.1〜0.5N/mm2)の充填材を得ることはできず、上記亀裂が生じても、管の引き抜きによって容易に破壊しない。このため、除去作業が容易ではない。 Incidentally, today's mainstream air mortar as a grout material is difficult to adjust fluidity and filling strength, ensuring sufficient fluidity and filling with low strength (for example, 0.1 to 0.5 N / mm 2 ). The material cannot be obtained, and even if the crack occurs, it is not easily broken by pulling out the tube. For this reason, removal work is not easy.

一実施例を図1(a)〜(f)に示し、まず、図1(a)に示すように、従来公知の種々の手段により、鞘管Aを地中に敷設する際、将来、埋設を予定する水道管Dより大径、例えば、その予定水道管Dより呼び径が1つ大きい鞘管Aを選択して、その鞘管Aを施設し、その鞘管A内に、当初に要求される大きさ(径)の水道管Bを順々に挿入してその各水道管Bを継ぎ合わせて水道配管B´を形成し、その水道配管B´と前記鞘管Aの間にグラウト材aを充填して二重の水道配管構造を構築する。   One embodiment is shown in FIGS. 1 (a) to 1 (f). First, as shown in FIG. 1 (a), when the sheath A is laid in the ground by various conventionally known means, it is buried in the future. Select a sheath pipe A having a larger diameter than the planned water pipe D, for example, one larger nominal diameter than the planned water pipe D, and install the sheath pipe A. The water pipes B of the size (diameter) to be inserted are sequentially inserted and the water pipes B are joined together to form a water pipe B ', and a grout material is provided between the water pipe B' and the sheath pipe A. Fill a and build a double water pipe structure.

このとき、水道管Bの挿入には、竪穴H等を適宜に形成する。また、グラウト材aは、下記表1に示す配合のものを使用して、従来公知の種々の手段により、水道配管B´と前記鞘管Aの間に充填する。その充填区間の両端にはモルタルバック等により間仕切り壁Eを形成してその間を閉塞する。   At this time, for insertion of the water pipe B, a hole H or the like is appropriately formed. Moreover, the grout material a is filled between the water supply pipe B ′ and the sheath pipe A by various conventionally known means using the composition shown in Table 1 below. Partition walls E are formed at both ends of the filling section by a mortar bag or the like, and the space between them is closed.

Figure 2006022853
Figure 2006022853

この表1において、セメント、ベントナイト、金属粉末、流動化剤、水からなる充填材配合と各種試験結果を示し、その配合表において、「◎」はそのものを使用したことを示す。   In Table 1, the filler composition composed of cement, bentonite, metal powder, fluidizing agent, and water and various test results are shown. In the composition table, “◎” indicates that the material itself was used.

充填材の流動性の評価項目としては、フロー性試験、コンシステンシー試験を行った。また、充填材の基礎試験として、ブリージング試験、体積変化試験、一軸圧縮強度試験を行った。   As an evaluation item of the fluidity of the filler, a flow property test and a consistency test were performed. In addition, as a basic test for the filler, a breathing test, a volume change test, and a uniaxial compressive strength test were performed.

(フロー値試験)JHS:日本道路公団規格
JHS A 313-1992「エアモルタル及びエアミルクの試験方法」のシリンダー法により測定する。具体的には、平滑な板面上に静置した直径φ80mm×高さ80mmの円筒に充填材を入れ、これを素早く垂直に引き上げ、板面上に広がった充填材の最大、最小寸法を測定する。
(Flow value test) JHS: Japan Highway Public Corporation standard
Measured by the cylinder method of JHS A 313-1992 “Testing methods for air mortar and air milk”. Specifically, a filler is placed in a cylinder with a diameter of φ80 mm x height of 80 mm that is placed on a smooth plate surface, and then the material is quickly pulled up vertically to measure the maximum and minimum dimensions of the filler spread on the plate surface. To do.

(コンシステンシー試験)JSCE:土木学会基準
JSCE F 531-1999「PCグラウトの流動性試験方法」に準拠し、J14ロートによる充填材の流下時間を測定する。
(Consistency test) JSCE: Japan Society of Civil Engineers
In accordance with JSCE F 531-1999 “PC grout fluidity test method”, measure the flow time of the filler through the J14 funnel.

(ブリージング試験)
容量500mlのメスシリンダーに充填材を400ml注入し、上部開口部をラップフィルムで密閉し、24時間静置後のブリージング水量(A ml)の測定を行い、下記の式によりブリージング率に換算して評価する。
ブリージング率={100 × ブリージング水量(A)} ÷ 400
(Breathing test)
Inject 400 ml of filler into a 500 ml graduated cylinder, seal the top opening with a wrap film, measure the amount of breathing water (A ml) after standing for 24 hours, and convert it to the breathing rate using the following formula. evaluate.
Breathing rate = {100 x Breathing water volume (A)} ÷ 400

(体積変化試験)
容量500mlのメスシリンダーに充填材を400ml注入し、上部開口部をラップフィルムで密閉し、24時間静置後の体積変化量(B ml)の測定を行い、下記の式により体積変化率に換算して評価する。
体積変化率={100 × 体積変化量(B)} ÷ 400
(Volume change test)
Fill the 500 ml graduated cylinder with 400 ml of filler, seal the top opening with a wrap film, measure the volume change (B ml) after standing for 24 hours, and convert it to the volume change rate using the following formula. And evaluate.
Volume change rate = {100 × volume change (B)} ÷ 400

(一軸圧縮強度試験)JSCE:土木学会基準
材齢28日における一軸圧縮強度の測定をJSCE G 505−1999「円柱供試体を用いたモルタルまたはセメントペーストの圧縮試験方法」により行った。
(Uniaxial compressive strength test) JSCE: Japan Society of Civil Engineers Standard Uniaxial compressive strength at the age of 28 days was measured by JSCE G 505-1999 “Compression test method of mortar or cement paste using cylindrical specimen”.

この試験結果によれば、各実施例は、各試験において、満足した結果「○」を得ているのに対し、各比較例においては、何れかの試験において、満足し得ない結果「△」又は「×」となっている。このことから、実施例は、低強度であって、水道管Bの引き抜きができる等の所要の目的を達成できるものであることを確認できる。   According to this test result, each example obtained a satisfactory result “◯” in each test, whereas in each comparative example, a result “Δ” that could not be satisfied in any of the tests. Or it becomes "x". From this, it can confirm that an Example is low intensity | strength and can achieve | achieve the required objectives, such as the water pipe B being drawable.

因みに、充填材設定強度:0.5 N/mm2により、図1(a)に示した2重管配管構造の充填材として使用したところ、注入口7の間隔は50m以上とすることができ、また、耐震管継手とした場合においても、その継手部の十分な伸縮を得ることができた。このとき、既設管呼び径:700mm、新管呼び径:500mm、管路延長は100m、間隙容積は20m3であった。充填には、市販のグラウトポンプ(充填速度:約40L/min)を用いた。充填時間は約9時間であった。 Incidentally, when the filler setting strength: 0.5 N / mm 2 is used as the filler of the double pipe piping structure shown in FIG. 1 (a), the interval between the inlets 7 can be 50 m or more. In addition, even when a seismic tube joint was used, sufficient expansion and contraction of the joint portion could be obtained. At this time, the existing pipe nominal diameter: 700 mm, the new pipe nominal diameter: 500 mm, the pipeline extension was 100 m, and the gap volume was 20 m 3 . A commercially available grout pump (filling speed: about 40 L / min) was used for filling. The filling time was about 9 hours.

この図1(a)の水道配管構造により給水し、数年後、大径の水道配管D´に更新する場合には、図1(b)に示すように、プレス機Pにより、その水道配管B´をその一端から押すと、同図(c)に示すように、各水道管Bの継手部の凸部(管継手部C)がグラウト材充填層に食い込んでいるため、その押し込みにつれてグラウト材充填層には亀裂cが生じ、引き抜きにより破壊し得るようになる。   When water is supplied by the water pipe structure shown in FIG. 1 (a) and is renewed to a large-diameter water pipe D 'several years later, the water pipe is used by a press machine P as shown in FIG. 1 (b). When B 'is pushed from one end, as shown in the figure (c), since the convex part (pipe joint part C) of the joint part of each water pipe B bites into the grout material filling layer, the grout as it is pushed. Cracks c occur in the material-filled layer and can be broken by drawing.

このとき、一工区の水道配管D´の長さは、押し込みにより、グラウト材aの充填層に亀裂cが入って、引き抜きにより破壊し得る点や、作業性等を考慮して適宜に設定し、その長さの両端に、竪穴Hを形成する。しかし、好ましくは、既設水道配管B´の一工区の長さにし(D´=B´)、その時の竪穴Hの位置に新たな竪穴Hを形成すると良い。さらに、水道配管B´両端の間仕切り壁Eは、適宜に破壊して撤去する。押圧力で破壊し得れば、撤去しなくても良い。   At this time, the length of the water supply pipe D ′ in one work area is appropriately set in consideration of the workability and the like that can be broken by pulling out the crack c in the packed layer of the grout material a by pushing. The hole H is formed at both ends of the length. However, it is preferable that the length of the existing water pipe B ′ is set to a length of one work area (D ′ = B ′), and a new pothole H is formed at the position of the pothole H at that time. Further, the partition wall E at both ends of the water pipe B ′ is appropriately destroyed and removed. If it can be destroyed by pressing force, it does not have to be removed.

グラウト材充填層に亀裂cが入れば、図1(d)に示すように、水道配管B´の一方の端にフックeを係止し、そのフックeからロープgをその水道配管B´内を通して他方の端から導き出し、その端をウインチWで引くことにより、水道配管B´をその他方の端側に引き出す。このとき、上記押し込みと同様に、各水道管Bの継手部の凸部(管継手部C)がグラウト材充填層に食い込んでいるため、その水道配管B´の引き出しとともに、グラウト材充填層が引き出される。   If crack c enters the grout material filling layer, as shown in FIG. 1 (d), hook e is locked to one end of water pipe B ', and rope g is hooked from hook e into water pipe B'. The water pipe B 'is pulled out to the other end side by drawing from the other end through the winch and pulling that end with the winch W. At this time, similar to the above pushing, the convex portion (pipe joint portion C) of the joint portion of each water pipe B bites into the grout material filling layer. Pulled out.

水道配管B´を全て引き出せば、鞘管A内のグラウト材aの塊りを除去して、図1(e)に示す、鞘管A内にグラウト材aの残っていない状態とする。この状態となれば、図1(f)に示すように、水道配管B´と同様にして、その鞘管A内に、大径の水道管Dを順々に挿入してその各水道管Dを継ぎ合わせて水道配管D´を形成し、その水道配管D´と前記鞘管Aの間にグラウト材aを充填して二重の水道配管構造を構築する。   If all the water supply pipes B ′ are pulled out, the lump of the grout material a in the sheath tube A is removed, and the grout material a is not left in the sheath tube A as shown in FIG. If it will be in this state, as shown in FIG.1 (f), like water pipe B ', the large diameter water pipe D will be inserted in order in the sheath pipe A, and each water pipe D will be inserted. Are connected together to form a water pipe D ', and a grout material a is filled between the water pipe D' and the sheath pipe A to construct a double water pipe structure.

なお、水道配管の径を二回に限らず、三回以上更新する場合には、その径の水道管に応じて、上記の作用を繰り返すことにより、一の鞘管A内において、順々に、大径の水道配管路にする。
また、グラウト材aは、表1に示す組成のものに限らず、ベントナイトに代えて浄水発生土、又は両者を採用できる等、この発明を実施し得る限りにおいて、その組成は自由である。
さらに、水道管B、Dの継手部構造としては、図示のものに限らず、従来周知のK形、A形、U形、T形、PII形、S形、NS形、SII形等と任意のものが採用できることは勿論である。
In addition, when the diameter of the water supply pipe is not limited to twice, and is renewed three or more times, by repeating the above-described action according to the water pipe of that diameter, in one sheath pipe A, one by one , Make a large-diameter water pipe.
Moreover, the composition of grout material a is not limited as long as the present invention can be implemented, such as not only having the composition shown in Table 1 but also adopting purified water generating soil or both instead of bentonite.
Further, the structure of the joint portion of the water pipes B and D is not limited to the one shown in the drawing, and any conventionally known K type, A type, U type, T type, PII type, S type, NS type, SII type, etc. Of course, it can be adopted.

実施例の作用説明図Action explanatory diagram of the embodiment 同実施例の作用説明図Action explanatory diagram of the same embodiment 同実施例の作用説明図Action explanatory diagram of the same embodiment 同実施例の作用説明図Action explanatory diagram of the same embodiment 同実施例の作用説明図Action explanatory diagram of the same embodiment 同実施例の作用説明図Action explanatory diagram of the same embodiment

符号の説明Explanation of symbols

A 鞘管
B 小径水道管
B´ 小径水道配管
C 管継手部
D 大径水道管
D´ 大径水道配管
E 間仕切り壁
P プレス機
W ウインチ
a グラウト材

A Sheath pipe B Small-diameter water pipe B 'Small-diameter water pipe C Pipe joint D Large-diameter water pipe D' Large-diameter water pipe E Partition wall P Press machine W Winch a Grout material

Claims (7)

地中に敷設された鞘管A内に水道管Bを順々に挿入してその各水道管Bを継ぎ合わせて水道配管B´を形成し、その水道配管B´と前記鞘管Aの間にグラウト材aを充填した水道配管構造において、前記水道配管B´に代えてその水道配管B´より大径の新水道配管D´を構築する工法であって、
上記鞘管Aを上記新水道配管D´を予め配設し得る径のものとし、上記水道配管B´に代えて前記新水道配管D´を配設する際、上記グラウト材aの充填層及び前記水道配管B´を前記鞘管A内から除去した後、その鞘管A内に、上記水道管Bより大径の新水道管Dを順々に挿入してその各新水道管Dを継ぎ合わせて新水道配管D´を形成し、その新水道配管D´と前記鞘管Aの間にグラウト材aを充填することを特徴とする水道管の更新工法。
A water pipe B is inserted into the sheath pipe A laid in the ground one after another, and the water pipes B are joined together to form a water pipe B ′. Between the water pipe B ′ and the sheath pipe A In the water pipe structure filled with the grout material a, a construction method for constructing a new water pipe D 'having a larger diameter than the water pipe B' instead of the water pipe B ',
The sheath pipe A has a diameter that allows the new water pipe D ′ to be disposed in advance, and when the new water pipe D ′ is disposed instead of the water pipe B ′, the filling layer of the grout material a and After the water pipe B 'is removed from the sheath pipe A, new water pipes D larger in diameter than the water pipe B are sequentially inserted into the sheath pipe A, and the new water pipes D are joined. In addition, a new water pipe D 'is formed, and a grout material a is filled between the new water pipe D' and the sheath pipe A.
上記グラウト材aの充填層及び前記水道配管B´の前記鞘管A内からの除去を、上記水道配管B´をその一端から押して前記グラウト材aの充填層に亀裂を生じさせた後、その水道配管B´を上記鞘管Aから引き出すことにより行うようにしたことを特徴とする請求項1に記載の水道管の更新工法。   After removing the filling layer of the grout material a and the water pipe B ′ from the sheath pipe A, the water pipe B ′ is pushed from one end thereof to cause a crack in the filling layer of the grout material a, The water pipe renewal method according to claim 1, wherein the water pipe B 'is pulled out from the sheath pipe A. 上記グラウト材aが、セメントと水からなる充填材であって、保水剤、発泡剤及び流動化剤を混合したものであり、その固化後の圧縮強度が0.1〜0.5N/mm2であるものとしたことを特徴とする請求項1又は2に記載の水道管の更新工法。 The grout material a is a filler composed of cement and water, which is a mixture of a water retention agent, a foaming agent and a fluidizing agent, and has a compressive strength after solidification of 0.1 to 0.5 N / mm 2. The water pipe renewal method according to claim 1 or 2, wherein the water pipe is renewed. 上記保水剤がベントナイト、上記流動化剤がリグニンスルホン酸塩及び上記発泡剤が金属粉末であることを特徴とする請求項3に記載の水道管の更新工法。   4. The water pipe renewal method according to claim 3, wherein the water retention agent is bentonite, the fluidizing agent is lignin sulfonate, and the foaming agent is a metal powder. 上記セメント重量:1に対して、上記ベントナイト重量:0.05〜0.45、上記金属粉末重量:0.00005〜0.001、上記リグニンスルホン酸塩重量:0.0015〜0.05であることを特徴とする請求項4に記載の水道管の更新工法。   The cement weight is 1, the bentonite weight is 0.05 to 0.45, the metal powder weight is 0.00005 to 0.001, and the lignin sulfonate weight is 0.0015 to 0.05. The water pipe renewal construction method according to claim 4. 上記セメントと水の重量比が、1:3.0〜10.0であることを特徴とする請求項3乃至5のいずれかに記載の水道管の更新工法。   The water pipe renewal method according to any one of claims 3 to 5, wherein a weight ratio of the cement and water is 1: 3.0 to 10.0. 地中に敷設された鞘管A内に水道管を順々に挿入してその各水道管を継ぎ合わせて水道配管を形成し、その水道配管と前記鞘管Aの間にグラウト材aを充填した請求項1乃至6のいずれかに記載の水道管の更新工法を成すための水道配管構造であって、前記鞘管A内に最終的に形成される新水道配管D´に代えてその水道配管D´より小径の新水道配管B´を形成した水道配管構造。   Water pipes are inserted into the sheath pipe A laid in the ground one after another, and the water pipes are joined together to form a water pipe, and the grout material a is filled between the water pipe and the sheath pipe A. A water pipe structure for forming the water pipe renewal method according to any one of claims 1 to 6, wherein the water pipe is replaced with a new water pipe D 'finally formed in the sheath pipe A. A water pipe structure in which a new water pipe B 'having a smaller diameter than the pipe D' is formed.
JP2004199556A 2004-07-06 2004-07-06 Water pipe renewal method Expired - Fee Related JP4496024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199556A JP4496024B2 (en) 2004-07-06 2004-07-06 Water pipe renewal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199556A JP4496024B2 (en) 2004-07-06 2004-07-06 Water pipe renewal method

Publications (2)

Publication Number Publication Date
JP2006022853A true JP2006022853A (en) 2006-01-26
JP4496024B2 JP4496024B2 (en) 2010-07-07

Family

ID=35796281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199556A Expired - Fee Related JP4496024B2 (en) 2004-07-06 2004-07-06 Water pipe renewal method

Country Status (1)

Country Link
JP (1) JP4496024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292189A (en) * 2006-04-25 2007-11-08 Kiyohiro Hasegawa Underground pipe improving method
KR20240024655A (en) * 2022-08-17 2024-02-26 박재원 Method for replacing a superannuated pipes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250594A (en) * 1987-12-31 1989-10-05 Kyokuto Kaihatsu Kogyo Co Ltd Replacement of buried piping
JPH09157646A (en) * 1995-12-12 1997-06-17 Tachibana Material:Kk Production of solidifying materail-bentonite injecting solution and powder for producing the same injecting solution
JP2002097894A (en) * 2000-09-26 2002-04-05 Kubota Corp Method for relaying embedded lead pipe
JP2003119066A (en) * 2001-10-16 2003-04-23 Denki Kagaku Kogyo Kk Self-filling mortar composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250594A (en) * 1987-12-31 1989-10-05 Kyokuto Kaihatsu Kogyo Co Ltd Replacement of buried piping
JPH09157646A (en) * 1995-12-12 1997-06-17 Tachibana Material:Kk Production of solidifying materail-bentonite injecting solution and powder for producing the same injecting solution
JP2002097894A (en) * 2000-09-26 2002-04-05 Kubota Corp Method for relaying embedded lead pipe
JP2003119066A (en) * 2001-10-16 2003-04-23 Denki Kagaku Kogyo Kk Self-filling mortar composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292189A (en) * 2006-04-25 2007-11-08 Kiyohiro Hasegawa Underground pipe improving method
KR20240024655A (en) * 2022-08-17 2024-02-26 박재원 Method for replacing a superannuated pipes
KR102652353B1 (en) 2022-08-17 2024-03-27 박재원 Method for replacing a superannuated pipes

Also Published As

Publication number Publication date
JP4496024B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US10480145B2 (en) Method for burying precast pile
CN103889918B (en) The foamed cement composition comprising metal silicide in missile silo operation can be used in
JP2007009194A (en) Plastic gel grout and method of ground reinforcement and method and device for management of introducing pressure into ground
JP6139749B2 (en) Cast-in-place pile method
JP5999718B2 (en) Underground impermeable wall construction material
JP2009150130A (en) Backfill grouting material
Lee et al. Shear strength and interface friction characteristics of expandable foam grout
US9829143B2 (en) Compositions and methods for in-situ macro-encapsulation treatment of friable asbestos fibers generated by trenchless pipe bursting of asbestos cement pipe
JP4496024B2 (en) Water pipe renewal method
JP2009180078A (en) Ground reinforcing method and press fitting management method
JP4651979B2 (en) Filler
WO2020008794A1 (en) Cement composition for bolt anchoring and bolt anchoring method
JP4651403B2 (en) Filler
JP5354373B2 (en) Grout material and grout injection method
JP2010018474A (en) Filler
JP5002896B2 (en) Gap filler and manufacturing method thereof
KR20210057477A (en) Method for filling cavity formed under road using low flowrate filler
JP2006213589A5 (en)
JP2015155637A (en) Construction method for cast-in-place concrete pile
JP4536702B2 (en) Waterway repair method
JP5976478B2 (en) Thixotropic hydraulic binder
Hill et al. Use of tremie concrete in New Zealand deep foundations
Yao et al. Underwater Concrete in Drilled Shafts: The Key Issues and Case Histories
JP2010241895A (en) Foundation consolidation fluid of precast pile, and method for burying precast pile burying using the same
KR20220069372A (en) Method for filling used pipe and underground cavity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4496024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees