JP2006022753A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2006022753A
JP2006022753A JP2004202665A JP2004202665A JP2006022753A JP 2006022753 A JP2006022753 A JP 2006022753A JP 2004202665 A JP2004202665 A JP 2004202665A JP 2004202665 A JP2004202665 A JP 2004202665A JP 2006022753 A JP2006022753 A JP 2006022753A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
temperature
fuel ratio
gas air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202665A
Other languages
Japanese (ja)
Other versions
JP4241530B2 (en
Inventor
Seiji Kikuchi
誠二 菊池
Kinichi Iwachido
均一 岩知道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004202665A priority Critical patent/JP4241530B2/en
Publication of JP2006022753A publication Critical patent/JP2006022753A/en
Application granted granted Critical
Publication of JP4241530B2 publication Critical patent/JP4241530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, improving the drivability and fuel economy by acceleration the temperature rising rate of a catalyst. <P>SOLUTION: Ni(nickel) is carried on the catalyst of a three way catalytic converter 19 interposed in an exhaust pipe 18, and in regeneration from S (sulfur) poisoning in the catalyst of the three way catalytic converter 19, periodic rich to lean operation is repeated until the catalyst reaches a target set temperature by an exhaust emission air-fuel ratio forced changing means, and when it reaches the target set temperature, rich operation is performed for a predetermined time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車等内燃機関の排気ガス浄化装置に係り、一層詳細には排気系に介装されて排気ガス中の有害物質を浄化・低減する触媒の昇温速度を効果的に早めることができる排気ガス浄化装置に関するものである。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine such as an automobile, and more specifically, can effectively increase the temperature increase rate of a catalyst that is interposed in an exhaust system to purify and reduce harmful substances in the exhaust gas. The present invention relates to an exhaust gas purification device that can be used.

一般に、自動車用内燃機関(エンジン)の排気系には、例えば車両の床下に位置して床下触媒コンバータ(UCC)が介装されており、この床下触媒コンバータでは、主として該触媒コンバータに内蔵された三元触媒によって排気ガス中のHC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)を浄化・低減している。また、近年、床下触媒コンバータに三元触媒とともに、酸化雰囲気でNOxを吸蔵するとともに還元雰囲気で当該吸蔵したNOxを放出し還元するNOx吸蔵触媒(NOxトラップ触媒)を備えた車両も実用化されている。   In general, an exhaust system of an internal combustion engine (engine) for an automobile is provided with, for example, an underfloor catalytic converter (UCC) located under the floor of a vehicle. In this underfloor catalytic converter, the underfloor catalytic converter is mainly built in the catalytic converter. A three-way catalyst purifies and reduces HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) in the exhaust gas. In recent years, a vehicle including a three-way catalyst in an underfloor catalytic converter and a NOx occlusion catalyst (NOx trap catalyst) that occludes NOx in an oxidizing atmosphere and releases and reduces the occluded NOx in a reducing atmosphere has been put into practical use. Yes.

さらに、最近では、床下触媒コンバータ以外に、触媒の早期活性化を図るべくエンジンからの高温の燃焼ガスを受け易い排気マニホールド内や排気マニホールド直後に別途前段触媒コンバータ(MCC、FCC)を介装するようにし、エンジンの冷態始動直後からでも高い排気浄化性能を発揮可能にした排気ガス浄化装置が開発され実用化されている。   Furthermore, recently, in addition to the underfloor catalytic converter, a pre-stage catalytic converter (MCC, FCC) is additionally provided in the exhaust manifold that is susceptible to high-temperature combustion gas from the engine or immediately after the exhaust manifold in order to activate the catalyst early. In this way, an exhaust gas purification device that can exhibit high exhaust purification performance even immediately after the cold start of the engine has been developed and put into practical use.

特開平10−317946号公報JP-A-10-317946

ところで、上述した排気ガス浄化装置においては、燃料中に含まれるS(サルファ,硫黄分)が触媒に付着して触媒へのNOx付着を阻害する等で触媒機能を低下させるという問題がある。触媒の失活度合いは、主にSの触媒通過量に依存し、走行距離とともに堆積量が増し被毒劣化が進行するが、触媒が高温に晒された、排気ガス空燃比のリッチ運転条件下ではSが脱離し、触媒性能が回復することが知られている。   By the way, in the exhaust gas purifying apparatus described above, there is a problem that S (sulfur, sulfur content) contained in the fuel adheres to the catalyst and deteriorates the catalyst function by inhibiting NOx adhesion to the catalyst. The degree of deactivation of the catalyst mainly depends on the amount of S passing through the catalyst. The amount of deposition increases with the travel distance, and the poisoning deterioration proceeds. However, the exhaust gas air-fuel ratio rich operating condition where the catalyst is exposed to high temperature Then, it is known that S is eliminated and the catalyst performance is recovered.

ところが、車両走行中において触媒の高温下が比較的困難なレイアウト(例えば、ガソリン車の床下触媒コンバータ)では、一般に知られている点火リタード等の昇温制御では効果が小さい上にドライバビリティや燃費の悪化が大きいという問題点があった。また、排気ガス温度が低いディーゼル車のDPF(ディーゼルパティキュレートフィルタ)再生処理制御においても高温化が望まれるが、ポスト噴射等の燃料制御に依存する手法のみでは、大幅な燃費悪化を伴うという問題点もあった。   However, in a layout in which it is relatively difficult to drive the catalyst under high temperatures while the vehicle is running (for example, an underfloor catalytic converter of a gasoline vehicle), generally known temperature increase control such as ignition retard is not only effective, but also drivability and fuel efficiency There was a problem that the deterioration of was large. Also, high temperatures are desired in DPF (diesel particulate filter) regeneration processing control of diesel vehicles having low exhaust gas temperatures, but only a method that relies on fuel control such as post-injection causes a significant deterioration in fuel consumption. There was also a point.

尚、特許文献1では、NOx吸蔵触媒にNi又はNiOを添加させることで臭気を抑制しているもので、Ni又はNiOが昇温に寄与するように空燃比制御を行なっているものではない。従って、従来どおり触媒を昇温させるために点火時期リタード等を行なっており依然として昇温に時間がかかりドライバビリティや燃費の悪化という不具合がある。   In Patent Document 1, the odor is suppressed by adding Ni or NiO to the NOx storage catalyst, and the air-fuel ratio control is not performed so that Ni or NiO contributes to the temperature increase. Therefore, the ignition timing retard or the like is performed to raise the temperature of the catalyst as in the conventional case, and it still takes time to raise the temperature, resulting in a problem of deterioration in drivability and fuel consumption.

そこで、本発明の目的は、触媒の昇温速度を早めてドライバビリティや燃費の改善が図れる内燃機関の排気ガス浄化装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can improve drivability and fuel consumption by increasing the rate of temperature rise of the catalyst.

上記目的を達成するための請求項1に係る発明は、内燃機関の排気通路に設けられた触媒を昇温することにより活性化又は再生する排気ガス浄化装置において、前記触媒に担持されて触媒の昇温を促進し得る遷移金属と、前記触媒の温度を検出又は推定する触媒温度算出手段と、前記触媒上流の排気ガス空燃比をリーンとリッチに切替可能な排気ガス空燃比調整手段と、前記触媒の不活性又は再生の必要を判断し触媒の昇温を決定する触媒昇温決定手段と、前記排気ガス空燃比がリーンのとき触媒の昇温状態を算出する第1昇温状態算出手段と、前記排気ガス空燃比がリッチのとき触媒の昇温状態を算出する第2昇温状態算出手段と、前記第1昇温状態算出手段にて算出された昇温状態が第1所定状態となったとき排気ガス空燃比をリッチに変更し、第2昇温状態算出手段にて算出された昇温状態が第2所定状態となったとき排気ガス空燃比をリーンに変更する排気ガス空燃比強制変更手段と、を備えたことを特徴とする。   In order to achieve the above object, an invention according to claim 1 is an exhaust gas purification device that activates or regenerates a catalyst provided in an exhaust passage of an internal combustion engine by raising the temperature thereof. A transition metal capable of promoting temperature rise, catalyst temperature calculating means for detecting or estimating the temperature of the catalyst, exhaust gas air-fuel ratio adjusting means capable of switching the exhaust gas air-fuel ratio upstream of the catalyst to lean and rich, and A catalyst temperature rise determining means for determining whether the catalyst is inactive or needing regeneration and determining the temperature rise of the catalyst; and a first temperature rise state calculating means for calculating a temperature rise state of the catalyst when the exhaust gas air-fuel ratio is lean; The temperature rise state calculated by the second temperature rise state calculation means for calculating the temperature rise state of the catalyst when the exhaust gas air-fuel ratio is rich and the temperature rise state calculated by the first temperature rise state calculation means become the first predetermined state. The exhaust gas air-fuel ratio And an exhaust gas air-fuel ratio forcibly changing means for changing the exhaust gas air-fuel ratio to lean when the temperature rise state calculated by the second temperature rise state calculation means becomes the second predetermined state. Features.

請求項2に係る発明は、前記遷移金属はNiであることを特徴とする。   The invention according to claim 2 is characterized in that the transition metal is Ni.

請求項3に係る発明は、前記排気ガス空燃比強制変更手段は、前記排気ガス空燃比調整手段を介して、前記触媒が目標設定温度に到達するまで周期的なリッチ→リーン運転を繰り返し、目標設定温度に到達したら所定時間リッチ運転を行なうことを特徴とする。   According to a third aspect of the present invention, the exhaust gas air-fuel ratio forcibly changing means repeats a periodic rich → lean operation until the catalyst reaches a target set temperature via the exhaust gas air-fuel ratio adjusting means, When the set temperature is reached, rich operation is performed for a predetermined time.

請求項1の発明によれば、触媒の昇温を促進し得る遷移金属を担持した触媒において、排気ガス空燃比がリッチからリーンに切り替わる瞬間にベッド温度が急激に上昇する現象が得られ、触媒が早期に昇温されるので、触媒及びDPF機能の再生処理にあたって、ドライバビリティを損なうことなく消費燃料を最小限に抑えられる。また、再生処理可能な運転条件が拡大するので、排気エミッションの悪化を最小限に抑えられる。   According to the first aspect of the present invention, in the catalyst supporting the transition metal that can promote the temperature rise of the catalyst, the phenomenon that the bed temperature rapidly rises at the moment when the exhaust gas air-fuel ratio switches from rich to lean is obtained. Since the temperature of the fuel cell is raised quickly, the fuel consumption can be minimized in the regeneration process of the catalyst and the DPF function without impairing drivability. In addition, since the operating conditions capable of regeneration are expanded, the deterioration of exhaust emission can be minimized.

請求項2の発明によれば、触媒上に存在する余剰還元物質との酸化反応が促進され、排気ガス空燃比がリッチ運転からリーン運転に切り替わる瞬間にベッド温度が急激に上昇する現象がより顕著に得られる。   According to the invention of claim 2, the oxidation reaction with the surplus reducing substance present on the catalyst is promoted, and the phenomenon that the bed temperature rapidly increases at the moment when the exhaust gas air-fuel ratio is switched from the rich operation to the lean operation is more remarkable. Is obtained.

請求項3の発明によれば、速やかにかつ確実に触媒及びDPF機能の再生処理制御に移行することができる。   According to invention of Claim 3, it can transfer to the regeneration process control of a catalyst and a DPF function promptly and reliably.

以下、本発明に係る内燃機関の排気ガス浄化装置を実施例により図面を用いて詳細に説明する。   Hereinafter, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一実施例を示す内燃機関の排気ガス浄化装置の概略構成図、図2は同じく昇温制御処理のフローチャート、図3は同じく昇温制御のイメージを示すグラフ、図4は同じく触媒温度履歴を示すグラフ、図5はNi担持量の温度特性の比較を示すグラフ、図6はNi担持量に対するHC浄化性能の比較を示すグラフである。   FIG. 1 is a schematic configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine showing an embodiment of the present invention, FIG. 2 is a flowchart of temperature increase control processing, FIG. 3 is a graph showing an image of temperature increase control, and FIG. Similarly, FIG. 5 is a graph showing the catalyst temperature history, FIG. 5 is a graph showing a comparison of the temperature characteristics of the Ni carrying amount, and FIG. 6 is a graph showing a comparison of the HC purification performance with respect to the Ni carrying amount.

図1に示すように、内燃機関本体(以下、単にエンジンという)1としては、例えば、燃料噴射モードを切り換えることで吸気行程での燃料噴射(吸気行程噴射)とともに圧縮行程での燃料噴射(圧縮行程噴射)を実施可能な筒内噴射型火花点火式ガソリンエンジンが採用される。この筒内噴射型のエンジン1は、容易にして理論空燃比(ストイキオ)での運転やリッチ空燃比での運転(リッチ運転)の他、リーン空燃比での運転(リーン運転)が実現可能である。   As shown in FIG. 1, as an internal combustion engine body (hereinafter simply referred to as an engine) 1, for example, by switching a fuel injection mode, fuel injection in an intake stroke (intake stroke injection) and fuel injection in a compression stroke (compression) An in-cylinder spark-ignition gasoline engine capable of performing stroke injection) is employed. This in-cylinder injection type engine 1 can easily realize an operation at a lean air-fuel ratio (lean operation) in addition to an operation at a stoichiometric air-fuel ratio (stoichio) or an operation at a rich air-fuel ratio (rich operation). is there.

エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ3とともに電磁式の燃料噴射弁4が取り付けられており、これにより、燃料を燃焼室内に直接噴射可能である。点火プラグ3には高電圧を出力する点火コイル5が接続されている。また、燃料噴射弁4には、燃料パイプ6を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。より詳しくは、燃料供給装置には、低圧燃料ポンプと高圧燃料ポンプとが設けられており、これにより、燃料タンク内の燃料を燃料噴射弁4に対し低燃圧或いは高燃圧で供給し、該燃料を燃料噴射弁4から燃焼室内に向けて所望の燃圧で噴射可能である。   An electromagnetic fuel injection valve 4 is attached to the cylinder head 2 of the engine 1 together with a spark plug 3 for each cylinder, so that fuel can be directly injected into the combustion chamber. An ignition coil 5 that outputs a high voltage is connected to the spark plug 3. Further, a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 4 via a fuel pipe 6. More specifically, the fuel supply device is provided with a low pressure fuel pump and a high pressure fuel pump, whereby fuel in the fuel tank is supplied to the fuel injection valve 4 at a low fuel pressure or a high fuel pressure. Can be injected from the fuel injection valve 4 into the combustion chamber at a desired fuel pressure.

シリンダヘッド2には、各気筒毎に略直立方向に吸気ポート7が形成されており、各吸気ポート7と連通するようにして吸気マニホールド8の一端がそれぞれ接続されている。また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポート9が形成されており、各排気ポート9と連通するようにして排気マニホールド10の一端がそれぞれ接続されている。図中11は吸気ポート7を開閉する吸気弁で、12は排気ポート9を開閉する排気弁である。   An intake port 7 is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and one end of an intake manifold 8 is connected so as to communicate with each intake port 7. Further, an exhaust port 9 is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of an exhaust manifold 10 is connected to communicate with each exhaust port 9. In the figure, 11 is an intake valve for opening and closing the intake port 7, and 12 is an exhaust valve for opening and closing the exhaust port 9.

なお、当該筒内噴射型のエンジン1は既に公知のものであるため、その構成の詳細については説明を省略する。そして、図に示すように、吸気マニホールド8には吸入空気量を調節する電磁式のスロットル弁13及び当該スロットル弁13の開度thを検出するスロットルポジションセンサ(TPS)14が設けられている。さらに、吸気マニホールド8に接続された吸気管(吸気通路)15には、吸入空気量を計測するエアフローセンサ16が介装されている。エアフローセンサ16としては、カルマン渦式エアフローセンサが使用される。図中17はエアークリーナである。   The in-cylinder injection type engine 1 is already known, and therefore, the detailed description of the configuration is omitted. As shown in the figure, the intake manifold 8 is provided with an electromagnetic throttle valve 13 for adjusting the amount of intake air and a throttle position sensor (TPS) 14 for detecting the opening th of the throttle valve 13. Further, an air flow sensor 16 for measuring an intake air amount is interposed in an intake pipe (intake passage) 15 connected to the intake manifold 8. As the air flow sensor 16, a Karman vortex air flow sensor is used. In the figure, 17 is an air cleaner.

一方、排気マニホールド10には排気管(排気通路)18が接続されており、この排気管18には、UCCとしての三元触媒コンバータ19が介装されている。この三元触媒コンバータ19は、HC選択酸化機能、酸素ストレージ機能(O2 Storage Component:OSC)及びCOストレージ機能(CO Storage Component:COSC)を兼ね備えている。 On the other hand, an exhaust pipe (exhaust passage) 18 is connected to the exhaust manifold 10, and a three-way catalytic converter 19 serving as a UCC is interposed in the exhaust pipe 18. The three-way catalytic converter 19 includes an HC selective oxidation function, an oxygen storage function (O 2 Storage Component: OSC), and a CO storage function (CO Storage Component (COSC).

そして、本実施例では、前記三元触媒コンバータ19の貴金属担持層(あるいは層分けでも良い)に、Ni(ニッケル)又はNiの酸化物が触媒の昇温を促進し得る遷移金属として担持されている。また、三元触媒コンバータ19直下の排気管18には排温センサ(触媒温度算出手段)20が介装される。   In this embodiment, Ni (nickel) or an oxide of Ni is supported as a transition metal capable of promoting the temperature rise of the catalyst in the noble metal support layer (or may be divided into layers) of the three-way catalytic converter 19. . In addition, an exhaust temperature sensor (catalyst temperature calculation means) 20 is interposed in the exhaust pipe 18 directly below the three-way catalytic converter 19.

車両には、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を有するECU(電子制御ユニット)21が設けられており、このECU21によりエンジン1を含めた総合的な制御が行なわれる。即ち、ECU21の入力側には、前述したスロットルポジションセンサ14、エアフローセンサ16及び排温センサ20の他にクランク角センサ22、アクセルポジションセンサ23等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力する。   The vehicle is provided with an ECU (electronic control unit) 21 having an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), a timer counter, and the like. Overall control including 1 is performed. That is, various sensors such as a crank angle sensor 22 and an accelerator position sensor 23 are connected to the input side of the ECU 21 in addition to the throttle position sensor 14, the airflow sensor 16, and the exhaust temperature sensor 20 described above. Detection information from is input.

一方、ECU21の出力側には、前述した点火コイル5を介して点火プラグ3、燃料噴射弁4及びスロットル弁13等が接続されており、これら点火プラグ3、燃料噴射弁4及びスロットル弁13等には、各種センサ類からの検出情報に基づいて演算された点火時期、燃料噴射量及びスロットル開度th等の最適値がそれぞれ出力される。これにより、点火プラグ3によって適正なタイミングで点火が実施されると共に、燃料噴射弁4から所定の空燃比(A/F)となるように適正量の燃料が適正なタイミングで噴射される。   On the other hand, the ignition plug 3, the fuel injection valve 4, the throttle valve 13, and the like are connected to the output side of the ECU 21 through the ignition coil 5 described above. The ignition plug 3, the fuel injection valve 4, the throttle valve 13, and the like. Are respectively output optimum values such as ignition timing, fuel injection amount, throttle opening th and the like calculated based on detection information from various sensors. Thus, ignition is performed at an appropriate timing by the spark plug 3, and an appropriate amount of fuel is injected from the fuel injection valve 4 at an appropriate timing so that a predetermined air-fuel ratio (A / F) is obtained.

実際に、ECU21では、アクセルポジションセンサ23からのアクセル開度情報とクランク角センサ22からのエンジン回転速度情報とに基づいてエンジン負荷に対応する目標筒内圧、即ち目標平均有効圧Peを求めるようにされており、更に、この目標平均有効圧Peとエンジン回転速度Neとに応じてマップ(図示せず)より燃料噴射モードを決定するようにされている。例えば、目標平均有効圧Peとエンジン回転速度Neとがともに小さいときには、燃料噴射モードは圧縮行程噴射モードとされて燃料が圧縮行程で噴射される一方、目標平均有効圧Peが大きくなり、あるいはエンジン回転速度Neが大きくなると燃料噴射モードは吸気行程噴射モードとされ、燃料が吸気行程で噴射される。そして、目標平均有効圧Peとエンジン回転速度Neとから制御目標となる目標空燃比(目標A/F)が設定され、適正量の燃料噴射量がこの目標A/Fに基づいて決定される(排気ガス空燃比調整手段)。   Actually, the ECU 21 obtains the target in-cylinder pressure corresponding to the engine load, that is, the target average effective pressure Pe, based on the accelerator opening information from the accelerator position sensor 23 and the engine rotational speed information from the crank angle sensor 22. Further, the fuel injection mode is determined from a map (not shown) according to the target average effective pressure Pe and the engine rotational speed Ne. For example, when the target average effective pressure Pe and the engine rotational speed Ne are both small, the fuel injection mode is set to the compression stroke injection mode, and fuel is injected in the compression stroke, while the target average effective pressure Pe increases, or the engine When the rotational speed Ne increases, the fuel injection mode is changed to the intake stroke injection mode, and fuel is injected in the intake stroke. Then, a target air-fuel ratio (target A / F) as a control target is set from the target average effective pressure Pe and the engine rotational speed Ne, and an appropriate amount of fuel injection is determined based on this target A / F ( Exhaust gas air-fuel ratio adjusting means).

また、本実施例では、ECU21は、三元触媒コンバータ19における触媒のS被毒からの再生処理制御にあたっては、図3に示すイメージに沿って触媒の昇温制御が実行される。即ち、触媒が目標設定温度(650℃〜700℃)に到達するまで周期的なリッチ→リーン運転を繰り返し、目標設定温度に到達したら所定時間リッチ運転(再生処理運転)を行なうのである(排気ガス空燃比強制変更手段)。   In the present embodiment, the ECU 21 executes the catalyst temperature increase control according to the image shown in FIG. 3 in the regeneration process control from the S poisoning of the catalyst in the three-way catalytic converter 19. That is, the periodic rich → lean operation is repeated until the catalyst reaches the target set temperature (650 ° C. to 700 ° C.), and when the target set temperature is reached, the rich operation (regeneration processing operation) is performed for a predetermined time (exhaust gas). Air-fuel ratio forced change means).

前記昇温制御を図2に示すフローチャートに基づいて詳細に説明する。
先ず、走行距離、運転時間、触媒温度履歴、NOxセンサによる検出値等により、三元触媒コンバータ19における触媒の再生処理制御を実行すべく昇温制御を開始する条件になったら(触媒昇温決定手段)、ステップP1でリッチ運転モード(λ(空気過剰率)<1)に切り替える。
The temperature increase control will be described in detail based on the flowchart shown in FIG.
First, when the conditions for starting the temperature increase control to execute the regeneration process control of the catalyst in the three-way catalytic converter 19 are met based on the travel distance, the operation time, the catalyst temperature history, the detected value by the NOx sensor, etc. (determining the catalyst temperature increase) Means), the operation mode is switched to the rich operation mode (λ (excess air ratio) <1) in step P1.

次に、ステップP2で排温センサ20により触媒が目標温度に到達したか否かを判断し、この時点で既に可であればステップP7で再生処理運転(リッチ運転続行)を行ない、所定期間(時間)経過後に昇温制御を終了する。   Next, in step P2, it is determined whether or not the catalyst has reached the target temperature by the exhaust temperature sensor 20, and if it is already possible at this time, a regeneration processing operation (continuous rich operation) is performed in step P7, and a predetermined period ( After the elapse of time, the temperature raising control is terminated.

一方、ステップP2で否であれば、ステップP3で昇温率が所定値1(リッチ運転での単位時間あたりの温度上昇率)以下か否かを判断し(第2昇温状態算出手段)、否であればステップP2に戻る。一方、可であれば(第2所定状態)、ステップP4でリーン運転モード(λ(空気過剰率)>1)に切り替える。尚、温度上昇率で切り替えることによりリッチ運転による昇温効率の低下をいち早く判断することができる。   On the other hand, if the answer is NO in Step P2, it is determined in Step P3 whether or not the temperature increase rate is equal to or less than a predetermined value 1 (temperature increase rate per unit time in rich operation) (second temperature increase state calculation means). If NO, return to Step P2. On the other hand, if it is possible (second predetermined state), the operation mode is switched to the lean operation mode (λ (excess air ratio)> 1) in step P4. Note that it is possible to quickly determine a decrease in temperature rise efficiency due to the rich operation by switching at the temperature increase rate.

次に、ステップP5で排温センサ20により触媒が目標温度に到達したか否かを判断し、この時点で可であればステップP7で即再生処理運転(リッチ運転)を行ない、所定期間(時間)経過後に昇温制御を終了する。   Next, in step P5, it is determined whether or not the catalyst has reached the target temperature by the exhaust temperature sensor 20. If yes at this time, an immediate regeneration processing operation (rich operation) is performed in step P7, and a predetermined period (time) is reached. ) After the elapse, the temperature raising control is finished.

一方、ステップP5で否であれば、ステップP6で昇温率が所定値2(リーン運転での単位時間あたりの温度上昇率)以上か否かを判断し(第1昇温状態算出手段)、否であればステップP2に戻る。一方、可であれば(第1所定状態)、ステップP5に戻る。尚、昇温率の所定値1及び所定値2は等しくても良いが、リッチ運転での昇温特性とリーン運転での昇温特性に応じて所定値1≠所定値2としてもよい。例えばリーン運転での昇温率はリッチ運転に比べ急激であるため所定値1<所定値2とすればリーン運転からリッチ運転への切替の遅れによる温度低下を抑制できる。   On the other hand, if NO in step P5, it is determined in step P6 whether or not the temperature increase rate is equal to or greater than a predetermined value 2 (temperature increase rate per unit time in lean operation) (first temperature increase state calculation means). If NO, return to Step P2. On the other hand, if yes (first predetermined state), the process returns to Step P5. The predetermined value 1 and the predetermined value 2 of the temperature increase rate may be equal, but the predetermined value 1 may not be equal to the predetermined value 2 according to the temperature increase characteristic in the rich operation and the temperature increase characteristic in the lean operation. For example, the temperature increase rate in the lean operation is abrupt compared to the rich operation. Therefore, if the predetermined value 1 <predetermined value 2 is satisfied, a temperature decrease due to a delay in switching from the lean operation to the rich operation can be suppressed.

このようにして、Ni(ニッケル)又はNiの酸化物を担持した三元触媒コンバータ19に燃料制御(空燃比強制変更)を組み合わせることで、触媒の昇温速度を早める(目標温度到達時間を短縮する)ことができ、触媒の再生処理時において消費燃料を最小限に抑えられ、燃費が改善される。   In this way, by combining the three-way catalytic converter 19 supporting Ni (nickel) or Ni oxide with fuel control (forcibly changing the air-fuel ratio), the catalyst heating rate is increased (the target temperature arrival time is shortened). In the catalyst regeneration process, fuel consumption can be minimized and fuel consumption can be improved.

尚、本発明者等は、図4の触媒温度履歴を示すグラフで解るように、Ni担持触媒で、空燃比(A/F)がリッチ(Rich)からリーン(Lean)に切り替わる瞬間に中心(Bed)温度が急激に上昇する(逆に入口(Inlet)温度は下がる)ことが確認できた。これは、Ni又はNiの酸化物はNOx触媒として利用されることがあり、またOSC機能も備え持つことが知られており、触媒上に存在する余剰還元物質との酸化反応が促進されることに起因すると考えられる。   In addition, as understood from the graph showing the catalyst temperature history in FIG. 4, the present inventors are centered at the moment when the air-fuel ratio (A / F) is switched from rich to lean in the Ni-supported catalyst ( It was confirmed that the (Bed) temperature increased rapidly (in contrast, the inlet (Inlet) temperature decreased). This is because Ni or Ni oxides are sometimes used as NOx catalysts and are also known to have an OSC function, which promotes the oxidation reaction with surplus reducing substances present on the catalyst. It is thought to be caused by.

また、本発明者等は、図5のNi担持量の温度特性の比較を示すグラフで解るように、Ni担持量が多いほど温度上昇もそれだけ大きくなるが、逆に、図6のNi担持量に対するHC浄化性能の比較を示すグラフで解るように、HC浄化性能は悪化することも確認できている。因みに、図5及び図6中におけるA(×1)は11g/l(NiO量)程度である。   Further, as can be seen from the graph showing the comparison of the temperature characteristics of the Ni carrying amount in FIG. 5, the present inventors increase the temperature as the Ni carrying amount increases, but conversely, the Ni carrying amount in FIG. As can be seen from the graph showing the comparison of the HC purification performance against the HC, it has been confirmed that the HC purification performance deteriorates. Incidentally, A (x1) in FIGS. 5 and 6 is about 11 g / l (NiO amount).

このように触媒の再生処理にあたって、点火リタード等に代えて燃料制御による昇温制御で早期に触媒を昇温するようにしたので、ドライバビリティを損なうことなく消費燃料を最小限に抑えられる。また、再生処理可能な運転条件が拡大するので、排気エミッションの悪化を最小限に抑えられる。   Thus, in the regeneration process of the catalyst, the temperature of the catalyst is raised at an early stage by the temperature rise control by the fuel control instead of the ignition retard or the like, so that the fuel consumption can be minimized without impairing the drivability. In addition, since the operating conditions capable of regeneration are expanded, the deterioration of exhaust emission can be minimized.

尚、上記実施例では、三元触媒コンバータ19に例をとって説明したが、NOxトラップ触媒に適用することもできる。もちろん昇温を促進し得る遷移金属として、Ni又はNiの酸化物以外の例えばMn(マンガン)等の物質を用いても良い。また、ECU21による昇温制御で強制的にS再生を行うようにしたが、ガソリンMPI(マルチポイントインジェクション)車やリーンバーン車においては、触媒がNi又はNiの酸化物を担持していれば、運転状態によっては自然にS再生が行われる場合がある。さらに、本発明は、ディーゼル車のコーティッドDPF(ディーゼルパティキュレートフィルタ)に、あるいは酸化触媒+DPFの場合の酸化触媒(前段触媒)にNi又はNiの酸化物を担持することで、前述した昇温制御と組み合わせてPM(パティキュレートマター)再生を行う場合に適用することができる。   In the above embodiment, the three-way catalytic converter 19 is described as an example, but the present invention can also be applied to a NOx trap catalyst. Of course, as the transition metal capable of promoting the temperature rise, a substance such as Mn (manganese) other than Ni or an oxide of Ni may be used. Further, the S regeneration is forcibly performed by the temperature rise control by the ECU 21, but in a gasoline MPI (multipoint injection) vehicle or lean burn vehicle, if the catalyst carries Ni or an oxide of Ni, Depending on the driving state, S regeneration may occur naturally. Further, according to the present invention, the above-described temperature rise control is performed by supporting Ni or Ni oxide on a coated DPF (diesel particulate filter) of a diesel vehicle or an oxidation catalyst (pre-stage catalyst) in the case of an oxidation catalyst + DPF. It can be applied to the case where PM (particulate matter) regeneration is performed in combination.

本発明の一実施例を示す内燃機関の排気ガス浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine showing an embodiment of the present invention. 同じく昇温制御処理のフローチャートである。It is a flowchart of temperature rising control processing similarly. 同じく昇温制御のイメージを示すグラフである。It is a graph which similarly shows the image of temperature rising control. 同じく触媒温度履歴を示すグラフである。It is a graph which similarly shows a catalyst temperature history. Ni担持量の温度特性の比較を示すグラフである。It is a graph which shows the comparison of the temperature characteristic of Ni carrying amount. Ni担持量に対するHC浄化性能の比較を示すグラフである。It is a graph which shows the comparison of the HC purification performance with respect to Ni carrying amount.

符号の説明Explanation of symbols

1 エンジン、2 シリンダヘッド、3 点火プラグ、4 燃料噴射弁、5 点火コイル、6 燃料パイプ、7 吸気ポート、8 吸気マニホールド、9 排気ポート、10 排気マニホールド、11 吸気弁、12 排気弁、13 スロットル弁、14 スロットルポジションセンサ、15 吸気管、16 エアフローセンサ、17 エアークリーナ、18 排気管、19 三元触媒コンバータ、20 排温センサ、21 ECU(電子制御ユニット)、22 クランク角センサ、23 アクセルポジションセンサ。   1 engine, 2 cylinder head, 3 spark plug, 4 fuel injection valve, 5 ignition coil, 6 fuel pipe, 7 intake port, 8 intake manifold, 9 exhaust port, 10 exhaust manifold, 11 intake valve, 12 exhaust valve, 13 throttle Valve, 14 Throttle position sensor, 15 Intake pipe, 16 Air flow sensor, 17 Air cleaner, 18 Exhaust pipe, 19 Three-way catalytic converter, 20 Exhaust temperature sensor, 21 ECU (electronic control unit), 22 Crank angle sensor, 23 Accelerator position Sensor.

Claims (3)

内燃機関の排気通路に設けられた触媒を昇温することにより活性化又は再生する排気ガス浄化装置において、
前記触媒に担持されて触媒の昇温を促進し得る遷移金属と、
前記触媒の温度を検出又は推定する触媒温度算出手段と、
前記触媒上流の排気ガス空燃比をリーンとリッチに切替可能な排気ガス空燃比調整手段と、
前記触媒の不活性又は再生の必要を判断し触媒の昇温を決定する触媒昇温決定手段と、 前記排気ガス空燃比がリーンのとき触媒の昇温状態を算出する第1昇温状態算出手段と、
前記排気ガス空燃比がリッチのとき触媒の昇温状態を算出する第2昇温状態算出手段と、
前記第1昇温状態算出手段にて算出された昇温状態が第1所定状態となったとき排気ガス空燃比をリッチに変更し、第2昇温状態算出手段にて算出された昇温状態が第2所定状態となったとき排気ガス空燃比をリーンに変更する排気ガス空燃比強制変更手段と、
を備えたことを特徴とする内燃機関の排気ガス浄化装置。
In an exhaust gas purification device that is activated or regenerated by raising the temperature of a catalyst provided in an exhaust passage of an internal combustion engine,
A transition metal supported on the catalyst and capable of promoting the temperature rise of the catalyst;
A catalyst temperature calculating means for detecting or estimating the temperature of the catalyst;
Exhaust gas air-fuel ratio adjusting means capable of switching the exhaust gas air-fuel ratio upstream of the catalyst between lean and rich;
A catalyst temperature increase determining means for determining whether the catalyst is inactive or needing regeneration and determining a temperature increase of the catalyst; and a first temperature increase state calculating means for calculating a temperature increase state of the catalyst when the exhaust gas air-fuel ratio is lean When,
Second temperature rise state calculating means for calculating a temperature rise state of the catalyst when the exhaust gas air-fuel ratio is rich;
When the temperature rise state calculated by the first temperature rise state calculation means becomes the first predetermined state, the exhaust gas air-fuel ratio is changed to rich, and the temperature rise state calculated by the second temperature rise state calculation means Exhaust gas air-fuel ratio forcibly changing means for changing the exhaust gas air-fuel ratio to lean when the engine reaches the second predetermined state;
An exhaust gas purification device for an internal combustion engine, comprising:
前記遷移金属はNiであることを特徴とする請求項1記載の内燃機関の排気ガス浄化装置。   The exhaust gas purifying device for an internal combustion engine according to claim 1, wherein the transition metal is Ni. 前記排気ガス空燃比強制変更手段は、前記排気ガス空燃比調整手段を介して、前記触媒が目標設定温度に到達するまで周期的なリッチ→リーン運転を繰り返し、目標設定温度に到達したら所定時間リッチ運転を行なうことを特徴とする請求項1又は2記載の内燃機関の排気ガス浄化装置。   The exhaust gas air-fuel ratio forcibly changing means repeats the periodic rich → lean operation until the catalyst reaches the target set temperature via the exhaust gas air-fuel ratio adjusting means, and when the target set temperature is reached, the rich for a predetermined time. The exhaust gas purification device for an internal combustion engine according to claim 1 or 2, wherein the operation is performed.
JP2004202665A 2004-07-09 2004-07-09 Exhaust gas purification device for internal combustion engine Active JP4241530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202665A JP4241530B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202665A JP4241530B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006022753A true JP2006022753A (en) 2006-01-26
JP4241530B2 JP4241530B2 (en) 2009-03-18

Family

ID=35796206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202665A Active JP4241530B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4241530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604335A (en) * 2013-11-28 2014-02-26 重庆长安汽车股份有限公司 Inspection device for three-way catalyst assembly of automobile
JP2022077243A (en) * 2020-11-11 2022-05-23 トヨタ自動車株式会社 Controller for internal combustion engine
EP4001623A1 (en) 2020-11-11 2022-05-25 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604335A (en) * 2013-11-28 2014-02-26 重庆长安汽车股份有限公司 Inspection device for three-way catalyst assembly of automobile
JP2022077243A (en) * 2020-11-11 2022-05-23 トヨタ自動車株式会社 Controller for internal combustion engine
EP4001623A1 (en) 2020-11-11 2022-05-25 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
CN114542244A (en) * 2020-11-11 2022-05-27 丰田自动车株式会社 Control device and method for internal combustion engine
US11530661B2 (en) 2020-11-11 2022-12-20 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
US11566573B2 (en) 2020-11-11 2023-01-31 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN114542244B (en) * 2020-11-11 2023-09-08 丰田自动车株式会社 Control device and method for internal combustion engine
JP7480679B2 (en) 2020-11-11 2024-05-10 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP4241530B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US20110219752A1 (en) Targeted particular matter filter regeneration system
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JP4544011B2 (en) Internal combustion engine exhaust purification system
JP2008031901A (en) Catalyst degradation detecting apparatus of internal-combustion engine
JP4267414B2 (en) Catalyst control device for internal combustion engine
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
WO2005088095A1 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP2008128162A (en) Exhaust emission control device of internal combustion engine
JP4114077B2 (en) Exhaust gas purification device for internal combustion engine
JPH08105318A (en) Internal combustion engine provided with exhaust purifying catalyst
JP4221125B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP4375311B2 (en) Exhaust gas purification system for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP3584798B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP4241530B2 (en) Exhaust gas purification device for internal combustion engine
JP2006226190A (en) Controller of lean burn engine
JP2008255972A (en) Air-fuel ratio control device
JP5459261B2 (en) Exhaust control device for internal combustion engine
JP2007023807A (en) Exhaust emission control device for engine
KR100529751B1 (en) Exhaust purification system of internal comb u stion engine
JP4512519B2 (en) Exhaust gas purification device for internal combustion engine
JP4924924B2 (en) Catalyst deterioration detection device for internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4241530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350