JP2006022648A - Knock detection device for internal combustion engine, knock detection method, ignition timing adaptation method and ignition timing control method - Google Patents
Knock detection device for internal combustion engine, knock detection method, ignition timing adaptation method and ignition timing control method Download PDFInfo
- Publication number
- JP2006022648A JP2006022648A JP2004198783A JP2004198783A JP2006022648A JP 2006022648 A JP2006022648 A JP 2006022648A JP 2004198783 A JP2004198783 A JP 2004198783A JP 2004198783 A JP2004198783 A JP 2004198783A JP 2006022648 A JP2006022648 A JP 2006022648A
- Authority
- JP
- Japan
- Prior art keywords
- knock
- waveform
- internal combustion
- combustion engine
- ignition timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、ノック信号出力手段の出力信号の波形と予め作成された基準ノック波形との相関性を評価してノック判定する内燃機関のノック検出装置、ノック検出方法、点火時期適合方法及び点火時期制御方法に関する発明である。 The present invention relates to a knock detection device, a knock detection method, an ignition timing adaptation method, and an ignition timing for an internal combustion engine, in which knock is determined by evaluating the correlation between the waveform of the output signal of the knock signal output means and a reference knock waveform prepared in advance. The invention relates to a control method.
近年、特許文献1(特開2003−314349号公報)に示すように、人の聴感に対応したノック判定を自動的に行うために、内燃機関の運転中に発生するノックに応じて出力信号の波形が変化するノック信号出力手段(例えば筒内圧センサ、マイク、ノックセンサ等)を用いて、このノック信号出力手段の出力信号の波形(検出波形)と予め作成された基準ノック波形との相関性を評価してノック判定を行う技術が研究されている。この特許文献1には、基準ノック波形を実験やシミュレーションにより作成することが記載されている。
上記特許文献1のノック検出方法において、検出性・信頼性を高めるためには、基準ノック波形に、エンジン運転条件に依存しないノック現象の共通の特徴を持たせる必要がある。しかし、上記特許文献1には、基準ノック波形を実験やシミュレーションにより作成すると記載されているだけであり、具体的にどの様なノック現象の共通の特徴を基準ノック波形に持たせれば良いかについては、未解決の課題となっていた。
In the knock detection method of
そこで、本発明の目的は、運転条件に依存しないノック現象の共通の特徴を持たせた基準ノック波形を用いて、人の聴感に対応した信頼性の高いノック判定を自動的に行うことができるようにすることである。 Accordingly, an object of the present invention is to automatically perform highly reliable knock determination corresponding to human hearing, using a reference knock waveform having a common characteristic of a knock phenomenon that does not depend on driving conditions. Is to do so.
上記目的を達成するために、本発明は、内燃機関の運転中に発生するノックに応じて出力信号の波形が変化するノック信号出力手段から出力される信号波形と予め作成された基準ノック波形との相関性を評価してノック判定を行うものにおいて、基準ノック波形として、周波数が時間経過に伴って変化する振動波形を用いることを特徴とするものである。本発明者は、基準ノック波形を適正化するために、様々な運転条件で、ノック発生時の信号波形を解析し、周波数変化と振幅変化を分析した結果、ノック発生時の信号波形の振幅変化については、運転条件に応じて複雑な変化が生じて共通の特徴が現れないことが判明した。これに対して、ノック発生時の信号波形の周波数変化については、運転条件が変化しても、共通の特徴が現れることが判明した。この場合、周波数変化についての共通の特徴は、周波数が時間経過に伴って低下するという特徴である。この特徴に着目し、本発明は、基準ノック波形として、周波数が時間経過に伴って変化する振動波形を用いるようにしたものであり、これにより、運転条件に依存しないノック現象の共通の特徴を持たせた基準ノック波形を用いて、人の聴感に対応した信頼性の高いノック判定を自動的に行うことが可能となる。 In order to achieve the above object, the present invention provides a signal waveform output from a knock signal output means in which a waveform of an output signal changes according to a knock generated during operation of an internal combustion engine, and a reference knock waveform created in advance. In the case of performing the knock determination by evaluating the correlation, the vibration waveform whose frequency changes with the passage of time is used as the reference knock waveform. In order to optimize the reference knock waveform, the present inventor analyzed the signal waveform at the time of knock occurrence under various operating conditions and analyzed the frequency change and the amplitude change. As a result, the amplitude change of the signal waveform at the time of knock occurrence As for, it became clear that a complicated change occurred according to the operating conditions and no common features appeared. On the other hand, regarding the frequency change of the signal waveform at the time of knock occurrence, it has been found that common characteristics appear even if the operating conditions change. In this case, a common feature regarding frequency change is that the frequency decreases with time. Focusing on this feature, the present invention uses, as the reference knock waveform, a vibration waveform whose frequency changes with time, and thereby provides a common feature of the knock phenomenon that does not depend on operating conditions. Using the provided reference knock waveform, it is possible to automatically perform a highly reliable knock determination corresponding to human hearing.
この場合、上述したように、ノック発生時の信号波形の振幅変化については、運転条件に応じて複雑な変化が生じて共通の特徴が現れないため、基準ノック波形の振幅を変化させても、あまり意味がないと思われる。従って、基準ノック波形の振幅については、一定とし、周波数のみを変化させるようにすると良い。このように、基準ノック波形の振幅を一定とすれば、基準ノック波形の作成が容易になると共に、ノック信号出力手段の信号波形と基準ノック波形との相関性を評価するための積和演算等の演算処理も容易となり、演算負荷を軽減できる利点がある。 In this case, as described above, for the amplitude change of the signal waveform at the time of knock occurrence, a complicated change occurs according to the operating conditions and no common features appear, so even if the amplitude of the reference knock waveform is changed, It doesn't seem to make much sense. Therefore, it is preferable that the amplitude of the reference knock waveform is constant and only the frequency is changed. Thus, if the amplitude of the reference knock waveform is constant, the creation of the reference knock waveform is facilitated, and a product-sum operation for evaluating the correlation between the signal waveform of the knock signal output means and the reference knock waveform, etc. The calculation processing is easy, and there is an advantage that the calculation load can be reduced.
本発明のノック検出方法は、内燃機関の設計開発段階で点火時期を適合する工程に適用しても良い。点火時期の適合工程で、本発明のノック検出方法で得られたノック判定結果に基づいてノック許容範囲を確認しながら点火時期を適合すれば、人の聴感に対応したノック判定を人の聴感に頼らずに自動的に行うことができ、点火時期の適合工数を大幅に削減して適合時間を短くできて、車両の設計開発期間を短くすることができる。 The knock detection method of the present invention may be applied to a process for adjusting the ignition timing at the design and development stage of the internal combustion engine. In the ignition timing adaptation process, if the ignition timing is adapted while checking the knock allowable range based on the knock determination result obtained by the knock detection method of the present invention, the knock determination corresponding to the human audibility is made to the human audibility. This can be done automatically without relying on, significantly reducing the number of man-hours for ignition timing and shortening the adaptation time, and shortening the vehicle design and development period.
また、本発明のノック検出装置を車両に搭載して、内燃機関の運転中に本発明のノック検出方法で得られたノック判定結果に基づいてノック許容範囲を確認しながら点火時期を制御するようにしても良い。このようにすれば、運転者の聴感に対応したノック制御を行うことができ、全運転領域で運転者に不快感を感じさせない範囲で、点火時期を進角させて、出力や燃費を向上させることができる。 Further, the knock detection device of the present invention is mounted on a vehicle, and the ignition timing is controlled while confirming the knock allowable range based on the knock determination result obtained by the knock detection method of the present invention during operation of the internal combustion engine. Anyway. In this way, knock control corresponding to the driver's audibility can be performed, and the ignition timing is advanced within a range where the driver does not feel uncomfortable in all driving regions, thereby improving output and fuel consumption. be able to.
以下、本発明を実施するための最良の形態を具体化した一実施例を図面に基づいて説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment embodying the best mode for carrying out the invention will be described with reference to the drawings.
まず、図1に基づいてノック検出装置全体のシステム構成を説明する。内燃機関であるエンジン11のシリンダヘッドには、筒内圧を検出する筒内圧センサ12がノック信号出力手段として取り付けられている。この筒内圧センサ12は、点火プラグ13と一体化されたものを用いても良いし、点火プラグ13とは別個に構成されたものを用いても良い。この筒内圧センサ12の出力信号は、ハイパスフィルタ14とA/D変換装置15を介してノック判定用コンピュータ16(相関性評価手段,ノック判定手段)に取り込まれる。図2に示すように、筒内圧センサ12の出力信号の波形からハイパスフィルタ14によって筒内圧の振動成分(ノック成分)のみが抽出される。
First, the system configuration of the entire knock detection apparatus will be described with reference to FIG. An in-
ノック判定用コンピュータ16は、筒内圧センサ12の信号波形と予め作成された基準ノック波形との相関性(類似性)を相互相関法で評価してノックを判定するようにしている。このようなノック検出方法において、検出性・信頼性を高めるためには、基準ノック波形に、エンジン運転条件に依存しないノック現象の共通の特徴を持たせる必要がある。
The
そこで、本発明者は、基準ノック波形を適正化するために、様々なエンジン運転条件でノック発生時の信号波形を解析し、周波数変化と振幅変化を分析した。筒内圧センサ12の信号波形の周波数成分を解析すると、様々なエンジン運転条件で、共通してノックの2次周波数成分(14kHz付近の周波数成分)が多く含まれることが判明した。これは、ノックの2次周波数の振動がシリンダ内の上下方向(つまり筒内圧センサ12の設置方向)に生じるためと思われる。
Therefore, in order to optimize the reference knock waveform, the inventor analyzed the signal waveform at the time of occurrence of the knock under various engine operating conditions, and analyzed the frequency change and the amplitude change. Analysis of the frequency component of the signal waveform of the in-
この周波数成分の分析結果から、本実施例では、ノックの2次周波数成分に着眼して周波数変化と振幅変化を分析した。図3は、様々なエンジン運転条件で、ノック発生時の信号波形の振幅変化を測定した結果を表している。この測定結果から明らかなように、ノック発生時の信号波形の振幅変化については、エンジン運転条件に応じて複雑な変化が生じて共通の特徴が現れないことが判明した。従って、基準ノック波形の振幅を変化させても、あまり意味がないと思われるため、基準ノック波形の振幅については、一定とするものとする。 From the analysis result of the frequency component, in this embodiment, the frequency change and the amplitude change are analyzed focusing on the secondary frequency component of the knock. FIG. 3 shows the results of measuring the change in amplitude of the signal waveform when knocking occurs under various engine operating conditions. As is clear from this measurement result, it has been found that the amplitude change of the signal waveform at the time of knock occurrence has a complicated change depending on the engine operating condition, and no common feature appears. Therefore, since it seems that there is not much meaning even if the amplitude of the reference knock waveform is changed, the amplitude of the reference knock waveform is assumed to be constant.
一方、ノック発生時の信号波形の周波数変化については、図4に示すような測定結果が得られた。ノックの2次周波数成分に関して見ると、様々なエンジン運転条件で、ノック発生当初θ1(25℃A)の周波数がほぼ14〜15kHzとなり、この周波数が時間経過に伴ってほぼリニアに低下し、ノック振動が十分に減衰する所定クランク角θ2(50℃A)で、ほぼ10〜11kHzになり、エンジン運転条件を変えても、周波数変化度合はクランク角に対して同じになることが判明した。 On the other hand, the measurement results as shown in FIG. 4 were obtained for the change in frequency of the signal waveform when knocking occurred. Looking at the secondary frequency component of knock, the frequency of θ1 (25 ° C. A) at the initial occurrence of knock becomes approximately 14 to 15 kHz under various engine operating conditions, and this frequency decreases almost linearly with time. It has been found that the predetermined crank angle θ2 (50 ° C. A) at which the vibration is sufficiently attenuated is about 10 to 11 kHz, and the frequency change degree is the same as the crank angle even if the engine operating conditions are changed.
次に、周波数変化のメカニズムについて考察する。シリンダ内のボア方向の共振周波数Frは次式により算出される。
Fr=C・ρ/(π・ボア径)
ここで、Cは音速、ρはガス密度である。
Next, the mechanism of frequency change will be considered. The resonance frequency Fr in the bore direction in the cylinder is calculated by the following equation.
Fr = C · ρ / (π · bore diameter)
Here, C is the speed of sound and ρ is the gas density.
音速Cは、次式により算出される。
C=√(κ・R・T)
ここで、κはガス定数、Rは比熱比、Tは温度である。
The speed of sound C is calculated by the following equation.
C = √ (κ ・ R ・ T)
Here, κ is a gas constant, R is a specific heat ratio, and T is a temperature.
燃焼行程のピストンの移動による燃焼室の体積変化を断熱変化と見なして、ノック発生当初θ1(25℃A)からノック振動が十分に減衰する所定クランク角θ2(50℃A)までのシリンダ内の温度変化(T1→T2)を気体の状態方程式により算出すると、次式の関係が得られる。
T2=0.630・T1
ここで、T1はノック発生当初θ1(25℃A)の温度であり、T2はノック振動減衰時(50℃A)の温度である。
The change in the volume of the combustion chamber due to the movement of the piston during the combustion stroke is regarded as an adiabatic change, and from the initial knock generation θ1 (25 ° C. A) to the predetermined crank angle θ 2 (50 ° C. A) in which the knock vibration is sufficiently damped. When the temperature change (T1 → T2) is calculated by the gas state equation, the following relationship is obtained.
T2 = 0.630 · T1
Here, T1 is the temperature at the initial occurrence of knocking θ1 (25 ° C. A), and T2 is the temperature at the time of knock vibration attenuation (50 ° C. A).
次に、シリンダ内の音速Cの変化(C1→C2)を考える。
C2=√(κ・R・T2)
=√(κ・R・0.630・T1)
=0.794・√(κ・R・T1)
=0.794・C1
ここで、C1はノック発生当初θ1(25℃A)の音速であり、C2はノック振動減衰時(50℃A)の音速である。上式では、ガス定数κと比熱比Rに変化がないものと仮定したが、実際には、混合気の燃焼によるCO2 の増加により比熱比Rが下がる方向に変化する。
Next, consider the change in the speed of sound C in the cylinder (C1 → C2).
C2 = √ (κ ・ R ・ T2)
= √ (κ ・ R ・ 0.630 ・ T1)
= 0.794 · √ (κ · R · T1)
= 0.794 · C1
Here, C1 is the speed of sound at the initial occurrence of knock θ1 (25 ° C. A), and C2 is the speed of sound when knock vibration is attenuated (50 ° C. A). In the above equation, it is assumed that there is no change in the gas constant κ and the specific heat ratio R. However, in actuality, the specific heat ratio R changes in the direction of decreasing due to the increase in CO 2 due to the combustion of the air-fuel mixture.
上述した音速Cの変化(C1→C2)の関係から、共振周波数Frの変化(Fr1→Fr2)は次式で表される。
Fr2=0.794・Fr1 ……[理論値]
ここで、Fr1はノック発生当初θ1(25℃A)の共振周波数であり、Fr2はノック振動減衰時(50℃A)の共振周波数である。
From the relationship of the change in the sound speed C (C1 → C2) described above, the change in the resonance frequency Fr (Fr1 → Fr2) is expressed by the following equation.
Fr2 = 0.794 · Fr1 [theoretical value]
Here, Fr1 is the resonance frequency at the initial occurrence of knock θ1 (25 ° C. A), and Fr2 is the resonance frequency at the time of knock vibration attenuation (50 ° C. A).
本発明者の実験結果によれば、共振周波数Frの変化(Fr1→Fr2)は次式で表される。
Fr2=0.727・Fr1 ……[実験値]
実験値が理論値と異なる理由は、冷却水による温度低下により周波数低下幅が大きくなるものと考えられる。このように、実験値と理論値との間に若干の相違があるものの、エンジン運転条件を問わず、周波数変化度合がクランク角に対して同じになるという特徴には変わりがない。
According to the experiment result of the present inventor, the change (Fr1 → Fr2) of the resonance frequency Fr is expressed by the following equation.
Fr2 = 0.727 · Fr1 [Experimental value]
The reason why the experimental value is different from the theoretical value is considered to be that the frequency decrease width becomes large due to the temperature decrease due to the cooling water. Thus, although there is a slight difference between the experimental value and the theoretical value, the characteristic that the frequency change degree is the same with respect to the crank angle is not changed regardless of the engine operating conditions.
この特徴に着目し、本実施例では、基準ノック波形として、振幅が一定で、周波数のみが時間経過に伴って低下する振動波形を用いる。図5は、ノックの2次周波数についての基準ノック波形であり、ノック発生当初(25℃A)の周波数が14kHz、ノック振動減衰時(50℃A)の周波数が10.5kHzとなる振動波形を基準ノック波形として用いる。 Focusing on this feature, in this embodiment, a vibration waveform in which the amplitude is constant and only the frequency decreases with time is used as the reference knock waveform. FIG. 5 shows a reference knock waveform with respect to the secondary frequency of the knock. The vibration waveform has a frequency of 14 kHz at the initial occurrence of the knock (25 ° C. A) and a frequency of 10.5 kHz at the time of knock vibration attenuation (50 ° C. A). Used as a reference knock waveform.
尚、図6は、ノックの1.5次周波数についての基準ノック波形であり、ノック発生当初(25℃A)の周波数が11kHz、ノック振動減衰時(50℃A)の周波数が8.25kHzとなる振動波形を基準ノック波形として用いれば良い。 FIG. 6 is a reference knock waveform for the 1.5th order frequency of the knock. The frequency at the time of knock generation (25 ° C. A) is 11 kHz, and the frequency at the time of knock vibration attenuation (50 ° C. A) is 8.25 kHz. This vibration waveform may be used as the reference knock waveform.
また、図7は、ノックの1次周波数についての基準ノック波形であり、ノック発生当初(25℃A)の周波数が6.7kHz、ノック振動減衰時(50℃A)の周波数が5kHzとなる振動波形を基準ノック波形として用いれば良い。 FIG. 7 shows a reference knock waveform with respect to the primary frequency of the knock, in which the frequency at the initial occurrence of the knock (25 ° C. A) is 6.7 kHz, and the frequency when the knock vibration is attenuated (50 ° C. A) is 5 kHz. The waveform may be used as a reference knock waveform.
筒内圧センサ12のノック発生時の信号波形は、基準ノック波形と互いに相関性(類似性)があるため、図8に示すように、観測波形である信号波形x(n) と検索波形である基準ノック波形y(n) を積和演算して両者の相互相関値Rxy(k) を求める。この相互相関値Rxy(k) は、次式で表される。
Since the signal waveform at the time of occurrence of knocking in the in-
この相互相関値Rxy(k) の波形は、信号波形x(n) と基準ノック波形y(n) からノック成分を抽出した波形となる。この相互相関値Rxy(k) はノック強度の測定値に相当し、人の聴感によるノック強度と相互相関値Rxy(k) との関係が図9に示すように測定される。この図9の測定データから明らかなように、相互相関値Rxy(k) と聴感によるノック強度とは、ほぼリニアな関係となるため、相互相関値Rxy(k) をノック強度の測定値として用いれば、ノック強度の測定値を聴感によるノック強度とほぼ対応させることができ、点火時期の適合工程で人がエンジン運転騒音の中からノック音を聞き分けて判定する必要がなくなる。これにより、点火時期の適合工数を大幅に削減して適合時間を短くでき、車両の設計開発期間を短くすることができる。 The waveform of the cross-correlation value Rxy (k) is a waveform obtained by extracting a knock component from the signal waveform x (n) and the reference knock waveform y (n). This cross-correlation value Rxy (k) corresponds to a measured value of knock strength, and the relationship between the knock strength due to human hearing and the cross-correlation value Rxy (k) is measured as shown in FIG. As is apparent from the measurement data of FIG. 9, the cross-correlation value Rxy (k) and the knocking intensity due to hearing have a substantially linear relationship. Therefore, the cross-correlation value Rxy (k) is used as a measurement value of the knocking intensity. For example, the measured value of the knock intensity can be made to substantially correspond to the knock intensity based on the sense of hearing, and it is not necessary for the person to hear the knock noise from the engine operating noise in the ignition timing adapting process. Thereby, the adaptation man-hour of the ignition timing can be significantly reduced, the adaptation time can be shortened, and the vehicle design and development period can be shortened.
しかも、本実施例では、基準ノック波形の振幅を一定にしたため、基準ノック波形の作成が容易になると共に、信号波形x(n) と基準ノック波形y(n) との相関性を評価するための積和演算等の演算処理も容易となり、演算負荷を軽減できる利点がある。
しかしながら、本発明は、基準ノック波形の振幅を変化させても良いことは言うまでもない。
In addition, in this embodiment, since the amplitude of the reference knock waveform is made constant, the creation of the reference knock waveform becomes easy and the correlation between the signal waveform x (n) and the reference knock waveform y (n) is evaluated. It is easy to perform arithmetic processing such as sum-of-products calculation, and there is an advantage that the calculation load can be reduced.
However, it goes without saying that the present invention may change the amplitude of the reference knock waveform.
尚、本実施例では、ノック信号出力手段として筒内圧センサ12を用いたが、これに限定されず、エンジン11のシリンダブロックの振動を検出するノックセンサをエンジン11に取り付けて、このノックセンサの信号波形と基準ノック波形との相関性を評価するようにしても良く、また、エンジン運転中に発生する音を検出するマイクをエンジン11に対して適当な間隔を隔てて設置し、このマイクで集音した音の信号波形と基準ノック波形との相関性を評価するようにしても良い。或は、燃焼時に筒内で発生するイオン電流を点火プラグ等を介して検出するイオン電流検出システムをノック信号出力手段として用いて、そのイオン電流検出信号の波形と基準ノック波形との相関性を評価するようにしても良い。
In this embodiment, the in-
また、上記のいずれかのノック信号出力手段を車両に搭載して、エンジン運転中に本実施例と同様の方法でノック許容範囲を確認しながら点火時期を制御するようにしても良い。このようにすれば、運転者の聴感に対応したノック制御を行うことができ、全運転領域で運転者に不快感を感じさせない範囲で、点火時期を進角させて、出力や燃費を向上させることができる。 Further, any one of the above knock signal output means may be mounted on the vehicle, and the ignition timing may be controlled while confirming the knock allowable range by the same method as in this embodiment during engine operation. In this way, knock control corresponding to the driver's audibility can be performed, and the ignition timing is advanced within a range where the driver does not feel uncomfortable in all driving regions, thereby improving output and fuel consumption. be able to.
11…エンジン(内燃機関)、12…筒内圧センサ(ノック信号出力手段)、13…点火プラグ、16…ノック判定用コンピュータ(相関性評価手段,ノック判定手段)
DESCRIPTION OF
Claims (6)
前記基準ノック波形は、周波数が時間経過に伴って変化する振動波形であることを特徴とする内燃機関のノック検出装置。 A knock signal output means whose output signal waveform changes according to a knock generated during operation of the internal combustion engine, and a correlation between the waveform of the output signal of the knock signal output means and a reference knock waveform prepared in advance is evaluated. In a knock detection device for an internal combustion engine comprising a correlation evaluation unit and a knock determination unit that performs a knock determination based on the correlation evaluated by the correlation evaluation unit,
The knock detection device for an internal combustion engine, wherein the reference knock waveform is a vibration waveform whose frequency changes with time.
前記基準ノック波形として、周波数が時間経過に伴って変化する振動波形を用いることを特徴とする内燃機関のノック検出方法。 An internal combustion engine that performs knock determination by evaluating the correlation between a signal waveform output from a knock signal output means that changes the waveform of an output signal in response to a knock that occurs during operation of the internal combustion engine and a reference knock waveform that has been created in advance. In the engine knock detection method,
A knock detection method for an internal combustion engine, wherein a vibration waveform whose frequency changes with time is used as the reference knock waveform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004198783A JP2006022648A (en) | 2004-07-06 | 2004-07-06 | Knock detection device for internal combustion engine, knock detection method, ignition timing adaptation method and ignition timing control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004198783A JP2006022648A (en) | 2004-07-06 | 2004-07-06 | Knock detection device for internal combustion engine, knock detection method, ignition timing adaptation method and ignition timing control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006022648A true JP2006022648A (en) | 2006-01-26 |
Family
ID=35796118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004198783A Pending JP2006022648A (en) | 2004-07-06 | 2004-07-06 | Knock detection device for internal combustion engine, knock detection method, ignition timing adaptation method and ignition timing control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006022648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7441543B2 (en) | 2006-06-16 | 2008-10-28 | Toyota Jidosha Kabushiki Kaisha | Device and method for controlling ignition timing of internal combustion engine |
CN103306841A (en) * | 2012-03-14 | 2013-09-18 | 三菱电机株式会社 | Internal combustion engine knock controlling apparatus |
-
2004
- 2004-07-06 JP JP2004198783A patent/JP2006022648A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7441543B2 (en) | 2006-06-16 | 2008-10-28 | Toyota Jidosha Kabushiki Kaisha | Device and method for controlling ignition timing of internal combustion engine |
CN103306841A (en) * | 2012-03-14 | 2013-09-18 | 三菱电机株式会社 | Internal combustion engine knock controlling apparatus |
DE102012213559A1 (en) | 2012-03-14 | 2013-09-19 | Mitsubishi Electric Corporation | Engine knock control apparatus |
US20130245924A1 (en) * | 2012-03-14 | 2013-09-19 | Mitsubishi Electric Corporation | Internal combustion engine knock controlling apparatus |
US9164012B2 (en) | 2012-03-14 | 2015-10-20 | Mitsubishi Electric Corporation | Internal combustion engine knock controlling apparatus |
CN103306841B (en) * | 2012-03-14 | 2016-08-31 | 三菱电机株式会社 | The knock control apparatus of internal combustion engine |
DE102012213559B4 (en) * | 2012-03-14 | 2017-11-09 | Mitsubishi Electric Corporation | Engine knock control apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bares et al. | A new knock event definition for knock detection and control optimization | |
JP4165751B2 (en) | Knock detection device for internal combustion engine | |
EP1848974B1 (en) | Knock determination device for internal combustion engine | |
Samimy et al. | Mechanical signature analysis using time-frequency signal processing: application to internal combustion engine knock detection | |
Galloni | Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method | |
US7624619B2 (en) | Knocking detecting device for an internal combustion engine | |
Elmqvist et al. | Optimizing engine concepts by using a simple model for knock prediction | |
JP2007077969A (en) | Knock determining device for internal combustion engine | |
JP4327582B2 (en) | Knocking detection device | |
JP2009042027A (en) | Device for determining knock in internal combustion engine | |
MX2009011928A (en) | Knocking determination device and knocking determination method for internal combustion engine. | |
JP3997878B2 (en) | Misfire detection device | |
Jia et al. | Review of sensing methodologies for estimation of combustion metrics | |
Siano et al. | The use of vibrational signals for on-board knock diagnostics supported by in-cylinder pressure analyses | |
Jones et al. | The statistical properties of raw knock signal time histories | |
JP7204458B2 (en) | Method of controlling combustion in a spark-ignited internal combustion engine by knock estimation | |
JP2008095602A (en) | Knock judging device for internal combustion engine | |
Moreno et al. | Cylinder pressure based method for in-cycle pilot misfire detection | |
CN102808700B (en) | Estimate the method for the knock intensity of explosive motor by reversion wave equation | |
JP4802905B2 (en) | Control device for internal combustion engine | |
JP2006022648A (en) | Knock detection device for internal combustion engine, knock detection method, ignition timing adaptation method and ignition timing control method | |
Cavina et al. | Combustion and intake/exhaust systems diagnosis based on acoustic emissions of a GDI TC engine | |
Lonari et al. | Stochastic knock detection model for spark ignited engines | |
Cavina et al. | Application of acoustic and vibration-based knock detection techniques to a high speed engine | |
JP2005083314A (en) | Knocking detection device for internal combustion engine |