JP2006022608A - Arrangement method of horizontal supporting force reinforcing material in foundation formation of reinforcing ground and foundation body - Google Patents

Arrangement method of horizontal supporting force reinforcing material in foundation formation of reinforcing ground and foundation body Download PDF

Info

Publication number
JP2006022608A
JP2006022608A JP2004203424A JP2004203424A JP2006022608A JP 2006022608 A JP2006022608 A JP 2006022608A JP 2004203424 A JP2004203424 A JP 2004203424A JP 2004203424 A JP2004203424 A JP 2004203424A JP 2006022608 A JP2006022608 A JP 2006022608A
Authority
JP
Japan
Prior art keywords
foundation
reinforcing material
reinforcing
ground
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004203424A
Other languages
Japanese (ja)
Other versions
JP2006022608A5 (en
JP4869570B2 (en
Inventor
Shigeru Tanabe
成 田邉
Hiroshi Sato
博 佐藤
Makoto Ueno
誠 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Construction
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Dai Nippon Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Dai Nippon Construction filed Critical Tokyo Electric Power Co Inc
Priority to JP2004203424A priority Critical patent/JP4869570B2/en
Publication of JP2006022608A publication Critical patent/JP2006022608A/en
Publication of JP2006022608A5 publication Critical patent/JP2006022608A5/ja
Application granted granted Critical
Publication of JP4869570B2 publication Critical patent/JP4869570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the optimum arrangement method of reinforcing materials of a foundation body on which a horizontal force acts. <P>SOLUTION: A hole is drilled from the excavated face of a foundation into the natural ground 4. After a high rigid reinforcing member 3 is anchored to the natural ground 4 in the drilled hole, the basal end of the reinforcing member is anchored in the foundation main body 2 to construct a foundation body 1. In this ground reinforcing type foundation formation, the reinforcing member 3 is placed from the foundation main body 2 to the horizontal outside, the reinforcing member 3 is arranged in the position where at a proof stress increase is maximum when a horizontal force acts on the foundation body 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築、土木用基礎の水平支持力を強化する地盤補強型の基礎形成における水平支持力型補強材の配置方法並びに基礎体に関するものである。   The present invention relates to an arrangement method of a horizontal supporting force type reinforcing material and a foundation body in formation of a foundation of a ground reinforcing type that reinforces a horizontal supporting force of a foundation for construction and civil engineering.

深礎基礎本体の周囲に放射状に棒鋼による補強材を配した基礎体とすることで支持力を強化する技術がある(特許文献1参照)。   There is a technique for strengthening the supporting force by using a foundation body in which reinforcing members made of steel bars are arranged radially around the deep foundation body (see Patent Document 1).

この基礎体について説明すると、図13及び図14において、1が深礎基礎本体2の周囲に棒鋼による補強材3を配した基礎体である。補強材3は基礎本体2から水平方向に放射状に延び、かつ軸方向にも所定の間隔をもって多数配設され、いずれも周囲の地山4の中に定着している。   The basic body will be described. In FIGS. 13 and 14, reference numeral 1 denotes a basic body in which a reinforcing material 3 made of steel bars is arranged around the deep foundation basic body 2. A number of reinforcing members 3 extend radially from the base body 2 in the horizontal direction and are arranged at predetermined intervals in the axial direction, all of which are fixed in the surrounding natural ground 4.

次に基礎本体2の鉄筋組立が、地山4から突出する補強材3の基端部を避けながら行なわれる。その後、配筋の内側において補強材3の基端部に定着板を固定する。このようにして、各補強材3の基端部を配筋に固定した後に基礎本体2にコンクリートを打設すれば、図13及び図14のような基礎体1が形成される。   Next, rebar assembly of the foundation body 2 is performed while avoiding the base end portion of the reinforcing member 3 protruding from the natural ground 4. Thereafter, the fixing plate is fixed to the base end portion of the reinforcing member 3 inside the bar arrangement. Thus, if concrete is cast in the foundation main body 2 after fixing the base end part of each reinforcement material 3 to reinforcement, the foundation body 1 like FIG.13 and FIG.14 will be formed.

以上のようにして形成された基礎体1の作用について次に説明する。   Next, the operation of the base body 1 formed as described above will be described.

補強材3は地山4との間に充填した固化剤の付着力が地山4への定着力として作用するため地山4と強固に一体化し、補強材3の周囲の地盤強度を高める一方、基端部が基礎本体2の配筋に固着されることから基礎本体2とも剛的に結合する。その結果、基礎体1は周囲の地盤22を含めた一体の基礎として機能し、基礎本体2に引抜力Fvが作用した場合の剪断抵抗sの作用面は、図15のように各補強材3の先端をつないだ大径の仮想支持面23となる。そのため、剪断抵抗sの作用面積が著しく拡大し、引抜力に対する支持力が大幅に増加する。   The reinforcing material 3 is firmly integrated with the natural ground 4 because the adhesion of the solidifying agent filled between the natural ground 4 acts as a fixing force to the natural ground 4 and increases the ground strength around the reinforcing material 3. Since the base end portion is fixed to the reinforcing bar of the base body 2, the base end part is also rigidly coupled. As a result, the foundation body 1 functions as an integral foundation including the surrounding ground 22, and the acting surface of the shear resistance s when the pulling force Fv acts on the foundation body 2 is as shown in FIG. It becomes the large-diameter virtual support surface 23 connecting the tips of the two. For this reason, the working area of the shear resistance s is remarkably enlarged, and the supporting force against the pulling force is greatly increased.

一方、水平力Fhに対する支持構造も図16のように強化される。すなわち、受動土圧p1及び弾性地盤反力p2の作用面が図中の基礎本体2の左半分に位置する各補強材3の先端を結んだ半円形断面の仮想支持面24に拡大し、また補強材3により地盤22が強化されるため弾性地盤反力p2の得られる地層Bの範囲も上方へ拡大する。さらに基礎本体2の図中右半分に位置した補強材3の引き抜き抵抗aが支持力として働く。したがって基礎体1は水平力Fhに対しても支持力を有する。
特公平5−40085号公報
On the other hand, the support structure for the horizontal force Fh is also reinforced as shown in FIG. That is, the working surface of the passive earth pressure p1 and the elastic ground reaction force p2 expands to a virtual support surface 24 having a semicircular cross section connecting the tips of the reinforcing members 3 located on the left half of the base body 2 in the figure, Since the ground 22 is strengthened by the reinforcing material 3, the range of the formation B where the elastic ground reaction force p2 is obtained also expands upward. Further, the pull-out resistance a of the reinforcing member 3 located in the right half of the basic body 2 in the drawing works as a supporting force. Accordingly, the base body 1 has a supporting force for the horizontal force Fh.
Japanese Patent Publication No. 5-40085

しかしながら、上記従来例では、特に地震等により生じる水平力による基礎本体の倒れを抑制する補強材の最適な配置が不明確であった。   However, in the above conventional example, the optimum arrangement of the reinforcing material that suppresses the collapse of the foundation main body due to the horizontal force caused by an earthquake or the like has been unclear.

そこで本発明の目的は、水平力作用時の補強材の配置を最適化して基礎本体の小型化を図ることのできる補強材配置方法並びに基礎体を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a reinforcing material arranging method and a basic body that can optimize the arrangement of reinforcing materials when a horizontal force is applied to reduce the size of the basic body.

第1の発明は、基礎の堀削面から地山内部に削孔し、削孔内に剛性の高い補強材を地山に定着させた後に前記補強材の基端部を基礎本体内に定着させて基礎体を築造する地盤補強型の基礎形成方法において、前記補強材は、前記基礎本体から水平方向外側に向けて打設されるとともに、前記補強材に地山に対する引張応力、圧縮応力及びせん断応力の一部を構造的に分担させることで基礎体に作用する水平力に対する地山の抵抗力を高める、下記式(1)で演算される耐力増分△Psと、
△Ps=Σ(Smaxi・cosΘ+Nmaxi・sinΘ)…(1)
ただし、Smaxiは前記補強材の最大せん断力、
Nmaxiは前記補強材の最大軸力、
Θは水平力の作用方向に直交する水平線と前記補強材の打設方向とがなす角
度、
iは補強材の本数に相当(i≧1)
地山に発生する引張歪みや圧縮歪みを前記補強材により拘束することで基礎体に作用する水平力に対する地山の抵抗力を高める、下記式(2)と式(3)で演算される耐力増分△Prと、
△Pr=Σ(Nmaxi・cosΘ−Smaxi・sinΘ)・tanΦ・f(Θ)…(2)
f(Θ)=[2cos2(Θ−45°+Φ/2)−(1−sinν)]/(1+sinν)…(3)
ただし、Φは前記基礎体が築造される地山の内部摩擦角、
νはダイレイタンシー角
に基づいて前記基礎体に水平力が作用すると想定した時の前記補強材の配置をする。
According to a first aspect of the present invention, a hole is drilled from a base excavation surface into a natural ground, and a stiff reinforcing material is fixed in the natural ground in the drilling hole, and then a base end portion of the reinforcing material is fixed in the basic body. In the ground reinforcing type foundation forming method for constructing the foundation body, the reinforcing material is driven from the foundation main body toward the outside in the horizontal direction, and the tensile stress, compressive stress and shear on the ground are applied to the reinforcing material. Strength increase ΔPs calculated by the following formula (1), which increases the resistance of the ground to the horizontal force acting on the foundation by structurally sharing a part of the stress,
ΔPs = Σ (Smax i · cos Θ + Nmax i · sin Θ) (1)
Where Smax i is the maximum shear force of the reinforcing material,
Nmax i is the maximum axial force of the reinforcing material,
Θ is the angle formed by the horizontal line perpendicular to the direction of the horizontal force and the direction in which the reinforcing material is placed
Every time,
i corresponds to the number of reinforcing materials (i ≧ 1)
Strength which is calculated by the following formula (2) and formula (3), which increases the resistance of the ground to the horizontal force acting on the foundation by restraining the tensile strain and compression strain generated in the ground by the reinforcing material. Increment ΔPr,
ΔPr = Σ (Nmax i · cos Θ−Smax i · sin Θ) · tan Φ · f (Θ) (2)
f (Θ) = [ 2 cos 2 (Θ−45 ° + Φ / 2) − (1-sinν)] / (1 + sinν) (3)
Where Φ is the internal friction angle of the natural ground on which the foundation is built,
ν is the arrangement of the reinforcing material when it is assumed that a horizontal force acts on the foundation body based on the dilatancy angle.

第2の発明は、第1の発明において、前記補強材が、少なくとも前記耐力増分ΔPsとΔPrとを加算した最大値が生じる前記角度Θに配置される。   In a second aspect based on the first aspect, the reinforcing material is disposed at the angle Θ at which a maximum value obtained by adding at least the yield strength increments ΔPs and ΔPr is generated.

第3の発明は、第1の発明において、前記補強材が、前記水平力が前記補強材に引張力として作用する場合には、少なくとも最小主歪み方向に配置される。   In a third aspect based on the first aspect, the reinforcing member is disposed at least in the minimum principal strain direction when the horizontal force acts as a tensile force on the reinforcing member.

第4の発明は、第1から3のいずれか一つの発明において、前記補強材は、前記水平力が前記補強材に圧縮力として作用する場合には、少なくとも最大主歪み方向に配置される。   According to a fourth invention, in any one of the first to third inventions, the reinforcing member is disposed at least in the maximum principal strain direction when the horizontal force acts as a compressive force on the reinforcing member.

第5の発明は、第1から4のいずれか一つの発明において、前記補強材を前記基礎本体の外周面に略2平方メートルに1本の割合で配置する。   According to a fifth invention, in the invention according to any one of the first to fourth inventions, the reinforcing material is arranged on the outer peripheral surface of the foundation main body at a ratio of approximately one per 2 square meters.

第6の発明は、地山を堀削して築造した基礎本体と、前記基礎本体から水平方向外側に打設されて前記地山内に固着される棒状の補強材と、からなり、水平力が作用する地盤補強型の基礎体において、前記水平力が前記補強材に引張力として作用する場合には、前記地山の最小主歪み方向と一致するように前記補強材の少なくとも1本を配置し、かつ、前記水平力が前記補強材に圧縮力として作用する場合には、前記地山の最大主歪み方向と一致するように前記補強材の少なくとも1本を配置する。   6th invention consists of the base main body which excavated and built the natural ground, and the rod-shaped reinforcement material which is cast in the horizontal direction outer side from the said basic main body, and is fixed in the said natural ground, horizontal force is When the horizontal force acts as a tensile force on the reinforcing material in the ground reinforcement type foundation that acts, at least one of the reinforcing materials is arranged so as to coincide with the minimum principal strain direction of the natural ground. And when the said horizontal force acts as a compressive force on the said reinforcing material, at least 1 of the said reinforcing material is arrange | positioned so that it may correspond with the largest main strain direction of the said natural ground.

第7の発明は、地山を堀削して築造した基礎本体と、前記基礎本体から外側に打設されて前記地山内に固着される棒状の補強材と、からなり、水平力が作用する地盤補強型の基礎体において、前記基礎体は水平力により前記基礎体内の回転中心周りに回転し、前記水平力が前記補強材に圧縮力として作用する場合には、前記補強材を前記基礎体から斜め下方向に配置し、かつ前記補強材を前記地山の最大主歪み方向と一致するように前記補強材の少なくとも1本を配置し、前記水平力が前記補強材に引張力として作用する場合には、前記補強材を前記基礎体から水平方向に配置し、前記地山の最小主歪み方向と一致するように前記補強材の少なくとも1本を配置するようにした。   7th invention consists of the foundation main body which excavated and built the natural ground, and the rod-shaped reinforcement material which is driven outside from the basic body and is fixed in the natural ground, and horizontal force acts on it. In the ground reinforcement type foundation body, the foundation body rotates around a rotation center in the foundation body by a horizontal force, and when the horizontal force acts as a compressive force on the reinforcement member, the reinforcement member is used as the foundation body. And at least one of the reinforcing members is disposed so as to coincide with the maximum principal strain direction of the natural ground, and the horizontal force acts as a tensile force on the reinforcing member. In this case, the reinforcing material is arranged in the horizontal direction from the foundation body, and at least one of the reinforcing materials is arranged so as to coincide with the minimum principal strain direction of the natural ground.

第8の発明は、第6または第7の発明において、前記基礎本体の水平断面形状が、円形、楕円形、小判形またはこれらの環状の断面形状のいずれかである。   According to an eighth invention, in the sixth or seventh invention, the horizontal cross-sectional shape of the basic body is any of a circular shape, an elliptical shape, an oval shape, or an annular cross-sectional shape thereof.

したがって、本発明では、少なくとも地山の耐力増分を最大となる位置に補強材を配置することができるため、補強材の補強効果により基礎本体の基礎体を小型化することができる。このため、コストの低減や施工期間の短縮を図ることができる。   Therefore, in the present invention, since the reinforcing material can be disposed at a position where the increase in the proof stress of the natural ground is maximized, the foundation body of the basic body can be downsized due to the reinforcing effect of the reinforcing material. For this reason, cost reduction and shortening of a construction period can be aimed at.

また、補強材に引張力が作用する場合には、地山の最小主応力が生じる方向に配置するため、耐力増分ΔPrを最大とする補強材配置とすることができ、基礎体の小型化を図ることができる。   In addition, when tensile force acts on the reinforcing material, the reinforcing material is arranged in the direction in which the minimum principal stress of the natural ground is generated, so that the reinforcing material arrangement that maximizes the proof stress increment ΔPr can be achieved, thereby reducing the size of the foundation body. Can be planned.

一方、補強材に圧縮力が作用する場合には、地山の最大主応力が生じる方向に配置するため、耐力増分ΔPrを最大とする補強材配置とすることができ、基礎体の小型化を図ることができる。   On the other hand, when the compressive force acts on the reinforcing material, the reinforcing material is arranged in the direction in which the maximum principal stress of the natural ground is generated, so that the reinforcing material can be arranged to maximize the proof stress increment ΔPr, and the foundation body can be downsized. Can be planned.

補強材を基礎本体の外周面に略2平方メートルに1本の割合で配置することにより、補強材の本数に対する補強効果を高めることができる。   By arranging the reinforcing material on the outer peripheral surface of the foundation main body at a ratio of about 1 per 2 square meters, the reinforcing effect on the number of reinforcing materials can be enhanced.

また、基礎本体の水平断面形状が、円形、楕円形、小判形またはこれらの環状の断面形状のいずれかであるため、基礎体が支持する橋脚の形状に応じて最適な断面形状とすることができるとともに、環状断面とすることで、内部の中空部に残土を処理することができ、残土処理の手間を低減することができる。   In addition, since the horizontal cross-sectional shape of the foundation body is one of a circular shape, an oval shape, an oval shape, or an annular cross-sectional shape thereof, the optimum cross-sectional shape may be set according to the shape of the pier supported by the foundation body. In addition, by making an annular cross section, the remaining soil can be processed in the hollow portion inside, and the labor of the remaining soil processing can be reduced.

以下、図13から図16に示した従来の基礎形成方法並びに基礎体との相違点を中心に本発明を説明する。   Hereinafter, the present invention will be described focusing on differences from the conventional foundation forming method and the foundation shown in FIGS.

図1、図2に示すように、本発明が適用される基礎体1は、垂直方向に築造された深礎基礎本体2と、深礎基礎本体2から水平方向に放射状に伸びる補強材3とからなる。なお、本実施形態では、基礎体1を傾斜地に築造したとして説明するが、平坦地に築造しても同様であることはいうまでもない。   As shown in FIGS. 1 and 2, a foundation body 1 to which the present invention is applied includes a deep foundation foundation body 2 constructed in a vertical direction, and a reinforcing material 3 extending radially from the foundation foundation body 2 in a horizontal direction. Consists of. In the present embodiment, the basic body 1 is described as being built on an inclined land, but it goes without saying that the same is true even if it is built on a flat ground.

基礎体1には、地震等により作用する水平力及び/または基礎本体2を倒そうとする曲げモーメントが山側から谷側に作用し、また、基礎体1が支える橋の自重が作用する。周面をモルタルでグラウトされた鋼棒で構成される補強材3は、荷重の作用方向(水平方向)により図3に示すように主として引張力により基礎体1の支持力を補強する引張補強材3aと、圧縮力により基礎体1の支持力を補強する圧縮補強材3bに分けられる。また補強材3による補強効果は、構造的に抵抗する構造効果と、地盤の変形や歪みを拘束し、地盤の耐力を向上させる補強土効果とからなる。したがって、山側の引張補強材3aは引張構造効果と引張補強土効果が、谷側の圧縮補強材3bは圧縮構造効果と圧縮補強土効果が期待できる。   A horizontal force acting due to an earthquake or the like and / or a bending moment for tilting the foundation body 2 acts on the foundation body 1 from the mountain side to the valley side, and the weight of the bridge supported by the foundation body 1 acts. As shown in FIG. 3, the reinforcing member 3 composed of a steel rod grouted with mortar on the peripheral surface mainly reinforces the supporting force of the foundation body 1 by a tensile force as shown in FIG. 3. 3a and a compression reinforcing material 3b that reinforces the supporting force of the base body 1 by a compressive force. The reinforcing effect of the reinforcing member 3 includes a structural effect that resists structurally and a reinforcing earth effect that restrains deformation and distortion of the ground and improves the yield strength of the ground. Therefore, the tensile reinforcement member 3a on the mountain side can be expected to have a tensile structure effect and a tensile reinforcement soil effect, and the compression reinforcement member 3b on the valley side can be expected to have a compression structure effect and a compression reinforcement soil effect.

図1および図2に示すように、本発明の基礎体1が傾斜地に形成される場合、補強材3は、山側と谷側とで構成される本数が異なり、地山4が基礎体1を高くまで覆うことができる山側ほど、補強材3を多く設置するようにしてもよい。   As shown in FIG. 1 and FIG. 2, when the foundation body 1 of the present invention is formed on an inclined ground, the reinforcing material 3 is different in the number of the mountain side and the valley side, and the ground mountain 4 is different from the foundation body 1. You may make it install more reinforcing materials 3 in the mountain side which can be covered to high.

模型を用いた実験によれば、補強材3は、図1に示すように地山のより深い位置、すなわち基礎体1の下端側に築造するのが好ましく、これにより、より高い補強効果が得られる。   According to an experiment using a model, the reinforcing member 3 is preferably constructed at a deeper position in the natural ground, that is, at the lower end side of the foundation body 1 as shown in FIG. 1, thereby obtaining a higher reinforcing effect. It is done.

また、後述する補強効果の算定方法に基づく図4と図5に示すシミュレーション計算とその結果によれば、補強材3は基礎本体2の外周面のおよそ2平方メートルに一本の割合で配設されたときに、補強材3の本数に対して最も大きな補強効果を効率的に得ることができる。すなわち、基礎本体2の外周面における補強材3の配設密度を、例えば図4に示すシミュレーションのモデルのように、1本/4m2、1
本/2m2、1本/1.5m2と、順次、増加させて行ったときに、図5に示す結果の
ように、ほぼ2平方メートルに1本の密度を超えた後は、補強効果の大きさの増大は、ほぼ横這いとなることから、補強材3はおよそ2平方メートルに1本の割合で配設するのが最も効率的であることがわかる。
Further, according to the simulation calculation shown in FIG. 4 and FIG. 5 based on the calculation method of the reinforcing effect described later and the result thereof, the reinforcing material 3 is arranged at a ratio of about one square meter on the outer peripheral surface of the base body 2. In this case, the largest reinforcing effect can be efficiently obtained with respect to the number of the reinforcing members 3. That is, the arrangement density of the reinforcing members 3 on the outer peripheral surface of the base body 2 is set to 1/4 m 2 , 1 as shown in the simulation model shown in FIG.
And present / 2m 2, one /1.5M 2, sequentially, when performed by increasing, as the results shown in FIG. 5, after exceeding the one density of almost two square meters, the reinforcing effect Since the increase in size is almost horizontal, it can be seen that it is most efficient to arrange the reinforcing members 3 at a ratio of about 1 in 2 square meters.

次に、補強材3の作用について説明する。   Next, the operation of the reinforcing material 3 will be described.

基礎体1に対する補強効果には、地山4に対する引張応力、圧縮応力及び剪断応力の一部を補強材3自身が構造的に分担することにより生じる構造効果と、地山4に発生する引張歪み/圧縮歪みを補強材3によって拘束し、拘束圧を増大させることで地山4全体の強度や剛性を増加させる補強土効果の二つが考えられる。   The reinforcement effect on the foundation 1 includes structural effects caused by structurally sharing a part of the tensile stress, compressive stress and shear stress on the natural ground 4 and the tensile strain generated in the natural ground 4. / There are two possible effects of reinforcing soil, which restrains compressive strain with the reinforcing material 3 and increases the strength and rigidity of the natural ground 4 by increasing the restraining pressure.

本発明では、補強材3の配設方向を特定することにより、この周辺地山4の力学的性質を向上させ、補強効果を高めることができる。   In the present invention, by specifying the direction in which the reinforcing material 3 is disposed, the mechanical properties of the surrounding natural ground 4 can be improved and the reinforcing effect can be enhanced.

具体的には、基礎体1に山側から谷側への水平力または曲げモーメントが負荷された時に、山側の補強材3は引張補強材3aとして基礎体1の山側の地山4を基礎体1側に引き寄せる効果がある。引張補強材3aの効果を打設角度Θによって評価した図6によれば、打設角度Θが小さい範囲、すなわち基礎体1の側面部では大きな補強土効果が現れ、角度Θが大きくなり山側になるにつれ補強土効果が減少する。これに対し構造効果は、角度Θが大きくなるほど増加し、水平力作用方向と平行方向で最大となる。なお、ここで打設角度Θは、水平力の作用方向に直交する水平線と補強材3の打設方向とがなす角度である。   Specifically, when a horizontal force or bending moment from the mountain side to the valley side is applied to the foundation body 1, the mountain side reinforcing material 3 serves as the tension reinforcing material 3 a and the ground side 4 on the mountain side of the foundation body 1 is used as the foundation body 1. Has the effect of pulling to the side. According to FIG. 6 in which the effect of the tensile reinforcing material 3a is evaluated by the placement angle Θ, a large reinforcing soil effect appears in the range where the placement angle Θ is small, that is, the side surface portion of the foundation body 1, and the angle Θ becomes large and the mountain side is increased. As a result, the reinforced soil effect decreases. On the other hand, the structural effect increases as the angle Θ increases and becomes maximum in the direction parallel to the horizontal force acting direction. Here, the placement angle Θ is an angle formed by a horizontal line perpendicular to the direction of application of the horizontal force and the placement direction of the reinforcing member 3.

補強土効果の大きな範囲では、補強材3によって、地山4の剪断破壊時において最小歪み増分△ε3の絶対値(膨張)が小さく抑えられるので、最小主応力σ3´が増加する。これは、最大主応力σ1´に対する剪断強度(σ1´−σ3´)/2の増加を促し、地山4を強化する。このように、補強土効果は、正のダイレイタンシー(体積歪み)抑制による地盤改良効果である。 In a large range of the reinforced soil effect, the absolute value (expansion) of the minimum strain increment Δε 3 is suppressed to a small value by the reinforcing material 3 when the ground 4 is sheared, so that the minimum principal stress σ 3 ′ increases. This promotes an increase of the shear strength (σ 1 ′ −σ 3 ′) / 2 with respect to the maximum principal stress σ 1 ′, and strengthens the natural ground 4. Thus, the reinforced soil effect is a ground improvement effect by suppressing positive dilatancy (volume distortion).

したがって、補強土効果による支持力増強は、補強材3の配設方向が伸び縮みのない方向と一致しているときには得られず、水平力により地山4が剪断破壊に至る最小主歪みの増分方向Θと一致して引張補強材3aが配設されているときに最も効果が大きくなる。具体的には図6に示す打設角度Θと効果代の関係から、引張補強材3aの打設角度Θが20°を最大として10°から30°で効果が大きくなる。構造効果と補強土効果との合計の全補強効果では、打設角度Θは略35°を最大として20°から50°で大きな効果を生じる。ここで補強材の打設角度Θによる効果は、水平力に対して対称に生じるから、引張補強材3aの全補強効果の観点から適切な引張補強材3aの打設角度は、略35°を最大として20°から50°及び略145°を最大として130°から160°である。   Therefore, the bearing capacity increase by the reinforced soil effect cannot be obtained when the direction in which the reinforcing material 3 is disposed coincides with the direction in which the reinforcing material 3 does not expand and contract, and the increment of the minimum main strain that causes the ground 4 to undergo shear failure due to the horizontal force. The effect is greatest when the tensile reinforcing material 3a is disposed so as to coincide with the direction Θ. Specifically, from the relationship between the placement angle Θ shown in FIG. 6 and the effect margin, the effect increases when the placement angle Θ of the tensile reinforcement 3a is 10 ° to 30 ° with 20 ° being the maximum. In the total reinforcing effect including the structural effect and the reinforcing soil effect, a large effect is produced when the placing angle Θ is 20 ° to 50 ° with a maximum of about 35 °. Here, the effect due to the placement angle Θ of the reinforcing material is generated symmetrically with respect to the horizontal force. Therefore, the appropriate placement angle of the tensile reinforcing material 3a from the viewpoint of the total reinforcing effect of the tensile reinforcing material 3a is approximately 35 °. The maximum is 20 ° to 50 ° and the maximum is approximately 145 ° to 130 ° to 160 °.

対して、水平線に対して谷側に配置された圧縮補強材3bは、基礎体2から地山に作用する圧縮力を分坦して支持し、補強効果を発揮する性能を有する。圧縮構造効果は圧縮補強材3bが直接分担する力として定義され、圧縮補強土効果は地盤の最大主応力σ1´を減少させることにより効果が発揮される。この圧縮補強土効果は、補強材3bが地盤の最大主歪み方向に打設された場合に最も効果的となる。圧縮補強材3bの効果について引張補強材3aと同様に打設角度Θによって評価した図7によれば、打設角度Θが略−55°を最大として−40°から−70°の範囲、すなわち基礎の側面部では補強土効果が現れ、打設角度Θが大きくなり谷側に近づくにつれ補強土効果が減少する。これに対し構造効果は打設角度Θが大きくなるほど増加し、水平力作用方向と平行な谷側方向で最大となる。構造効果と補強土効果との合計の全補強効果では、打設角度Θは略−65°を最大として−50°から−90°で大きな効果を生じることがわかる。したがって、引張補強材3aと同様に、圧縮補強材3bの全補強効果の観点から適切な圧縮補強材3bの打設角度は、略−65°と略−115°を最大として−50°から−130°である。 On the other hand, the compression reinforcing material 3b arranged on the valley side with respect to the horizon has the performance of distributing and supporting the compressive force acting on the ground from the foundation body 2 and exhibiting the reinforcing effect. The compression structure effect is defined as a force directly shared by the compression reinforcing material 3b, and the compression reinforcement soil effect is exhibited by reducing the maximum principal stress σ 1 ′ of the ground. This compression-reinforced soil effect is most effective when the reinforcing material 3b is driven in the maximum principal strain direction of the ground. According to FIG. 7 in which the effect of the compression reinforcing material 3b was evaluated by the placement angle Θ in the same manner as the tensile reinforcement 3a, the placement angle Θ was in the range of −40 ° to −70 ° with about −55 ° being the maximum, that is, Reinforced soil effect appears at the side of the foundation, and the reinforced soil effect decreases as the placement angle Θ increases and approaches the valley side. On the other hand, the structural effect increases as the driving angle Θ increases and becomes maximum in the valley side direction parallel to the horizontal force acting direction. It can be seen that in the total reinforcement effect of the structure effect and the reinforcing soil effect, a large effect is produced when the placing angle Θ is approximately −65 ° to −90 ° to −90 °. Therefore, in the same manner as the tensile reinforcement member 3a, the appropriate placement angle of the compression reinforcement member 3b from the viewpoint of the total reinforcement effect of the compression reinforcement member 3b is about −65 ° and about −115 ° at the maximum, from −50 ° to − 130 °.

なお、図6と図7から明らかなように、補強土効果の効果代としては、引張補強材3aが圧縮補強材3bより大きく、補強土効果の点からは引張補強材3aを多く配設した方が効率的である。   As apparent from FIGS. 6 and 7, as the effect margin of the reinforcing soil effect, the tensile reinforcing material 3a is larger than the compression reinforcing material 3b, and from the point of the reinforcing soil effect, a large amount of the tensile reinforcing material 3a is provided. Is more efficient.

また、構造効果については、前述のように打設角度Θが0のとき最も小さくなり、引張補強材3aではΘ=90°で、または圧縮補強材3bではΘ=−90°で最大の構造効果となる。   Further, as described above, the structural effect is the smallest when the driving angle Θ is 0, and the maximum structural effect is Θ = 90 ° in the tensile reinforcement 3a or Θ = −90 ° in the compression reinforcement 3b. It becomes.

このような補強材3による補強効果の算定方法について、図3に基づいて説明する。   The calculation method of the reinforcement effect by such a reinforcing material 3 is demonstrated based on FIG.

全補強効果△Pを算定するためには、まず、構造効果による耐力増分△Psを、補強材1本当たりの最大軸力Nmaxiおよび補強材1本当りの最大剪断力Smaxiから、
△Ps=Σ(Smaxi・cosΘ+Nmaxi・sinΘ)…(1)
として算定する。また、総和は、基礎本体2に配設される総ての補強材3について、すなわち補強材3がn本であればi=1〜nにわたってとる。したがって、構造効果による耐力増分ΔPsは、角度Θが0°で剪断力Sが最大となり、角度Θが90°で軸力Nが最大となる。
In order to calculate the total reinforcement effect ΔP, first, the yield strength increase ΔPs due to the structural effect is calculated from the maximum axial force Nmax i per reinforcement and the maximum shear force Smax i per reinforcement.
ΔPs = Σ (Smax i · cos Θ + Nmax i · sin Θ) (1)
Calculated as Further, the sum is taken over all the reinforcing members 3 arranged on the basic body 2, i.e., i = 1 to n if there are n reinforcing members 3. Therefore, in the proof stress increment ΔPs due to the structural effect, the shear force S is maximized when the angle Θ is 0 °, and the axial force N is maximized when the angle Θ is 90 °.

次に、補強土効果による耐力増分△Prを、補強材1本当たりの最大軸力Nmaxiおよび補強材1本当たりの最大剪断力Smaxiから、
△Pr=Σ(Nmaxi・cosΘ−Smaxi・sinΘ)・tanΦ・f(Θ)…(2)
f(Θ)=[2cos2(Θ−45°+Φ/2)−(1−sinν)]/(1+sinν)…(3)
と算定する。ここで、Θは水平面上での水平力に直交する基準線に対する補強材3の打設角度である。Φは基礎体1が築造される地山4の内部摩擦角であり、νは地盤のダイレイタンシー角(=Φ/3)である。また、総和は、基礎本体2に配設される総ての補強材3について、すなわち補強材3がn本であればi=1〜nにわたってとる。
Next, the yield strength increase ΔPr due to the reinforcing soil effect is calculated from the maximum axial force Nmax i per reinforcing material and the maximum shearing force Smax i per reinforcing material,
ΔPr = Σ (Nmax i · cos Θ−Smax i · sin Θ) · tan Φ · f (Θ) (2)
f (Θ) = [ 2 cos 2 (Θ−45 ° + Φ / 2) − (1-sinν)] / (1 + sinν) (3)
Calculate. Here, Θ is a placement angle of the reinforcing member 3 with respect to a reference line orthogonal to the horizontal force on the horizontal plane. Φ is the internal friction angle of the ground 4 where the foundation body 1 is built, and ν is the dilatancy angle of the ground (= Φ / 3). Further, the sum is taken over all the reinforcing members 3 arranged on the basic body 2, i.e., i = 1 to n if there are n reinforcing members 3.

全補強効果△Pは、この構造効果による耐力増分△Psと、補強土効果による耐力増分△Prから、
△P=△Ps+△Pr…(4)
として算定される。なお、このような算定方法によって補強効果が正しく算定されることは、一連の模型を用いた実験により確認されている。
The total reinforcement effect ΔP is obtained from the yield strength increase ΔPs due to this structural effect and the yield strength increase ΔPr due to the reinforcement soil effect.
ΔP = ΔPs + ΔPr (4)
Calculated as It has been confirmed by experiments using a series of models that the reinforcing effect is correctly calculated by such a calculation method.

つまり、補強効果の観点からは、式(1)から(4)の結果に基づき、全補強効果△Pが略最大となる前述の打設角度Θに少なくとも補強材3を設置することが効率的である。   That is, from the viewpoint of the reinforcing effect, it is efficient to install at least the reinforcing material 3 at the above-described placement angle Θ at which the total reinforcing effect ΔP is substantially maximum based on the results of the expressions (1) to (4). It is.

なお、補強材3の配置条件から全補強効果ΔPが最大となる打設角度Θに補強材3を配置できない場合においては、構造効果による耐力増分△Psまたは補強土効果による耐力増分△Prのいずれかが最大となる打設角度Θに補強材3を配置するようにしてもよい。さらに、作用する水平力と平行に補強材を基礎体2に設置することにより、各補強材3の構造効果が最大となり、補強材3トータルとしての補強効果を高めることができる。   When the reinforcing material 3 cannot be disposed at the placement angle Θ that maximizes the total reinforcing effect ΔP due to the arrangement condition of the reinforcing material 3, either the strength increment ΔPs due to the structural effect or the strength increment ΔPr due to the reinforcing soil effect The reinforcing material 3 may be arranged at the placement angle Θ where the maximum is. Furthermore, by installing the reinforcing material on the base body 2 in parallel with the acting horizontal force, the structural effect of each reinforcing material 3 is maximized, and the reinforcing effect as a total of the reinforcing material 3 can be enhanced.

式(1)、(2)によると、図3に示すように、補強材3の効果は、水平力の作用方向に対して、平行に近い(つまり、打設角度Θが90°近傍の)山側では引張応力の一部を分担する構造効果が期待でき、対して谷側では圧縮応力の一部を分担する構造効果が期待できる。さらに、水平力の作用方向に角度を持って配置された補強材3は、剪断応力の一部分担による構造効果と補強土効果が期待される。   According to the equations (1) and (2), as shown in FIG. 3, the effect of the reinforcing member 3 is almost parallel to the direction of the horizontal force (that is, the placement angle Θ is near 90 °). A structural effect that shares a part of the tensile stress can be expected on the mountain side, while a structural effect that shares a part of the compressive stress can be expected on the valley side. Furthermore, the reinforcing material 3 arranged with an angle in the direction of the horizontal force is expected to have a structural effect and a reinforced soil effect due to a part of the shear stress.

なお、傾斜地に基礎体1が築造される場合においては、補強材3を山側にのみ設置してもよく、また図2に示すように補強材3の一部、例えば上部に位置する補強材3は山側にのみ設置するようにしてもよい。   When the foundation body 1 is built on an inclined land, the reinforcing material 3 may be installed only on the mountain side, and as shown in FIG. 2, a part of the reinforcing material 3, for example, the reinforcing material 3 located at the upper part. May be installed only on the mountain side.

なお、基礎本体2に外力として水平力と曲げモーメントを山側から谷側に負荷すると、基礎本体2は図8に示すように回転する。この時、基礎本体2の山側下部の補強材3cは、図に示すように剪断力を受けることになり、この力の方向は、基本的に地盤補強型基礎において、引揚荷重が負荷された際と同じとなる。したがって、補強材3を斜め下方向に打設することによって、大きな剪断抵抗力が得られることになる。   When a horizontal force and a bending moment are loaded from the mountain side to the valley side as external forces on the foundation body 2, the foundation body 2 rotates as shown in FIG. At this time, the reinforcing member 3c at the lower part of the mountain side of the foundation body 2 is subjected to a shearing force as shown in the figure, and the direction of this force is basically when a lifting load is applied to the ground-reinforced foundation. Will be the same. Therefore, a large shear resistance can be obtained by placing the reinforcing material 3 obliquely downward.

一方、谷側の特に上部に位置する補強材3dには、山側下部の補強材3cとは逆方向(下方向)に剪断力が作用する。この場合でも、補強材3dを斜め下方向に打設することにより、大きな剪断抵抗力を得ることができる。   On the other hand, a shearing force is applied to the reinforcing member 3d located at the upper part of the valley side in the opposite direction (downward) to the reinforcing member 3c of the lower part of the mountain side. Even in this case, a large shear resistance can be obtained by driving the reinforcing material 3d obliquely downward.

また、補強材3cと3dにより、基礎の回転が抑制され、基礎の転倒に対して大きな補強効果を得ることができる。また、補強材3cは基礎の谷側に生ずる可能性のあるくさび型のすべり土塊に対して,土塊のすべり面を下向きに拘束する力を増大させることになるため、この効果によっても基礎の水平抵抗力を高めることができる。   Further, the reinforcing members 3c and 3d suppress the rotation of the foundation, and a great reinforcing effect can be obtained against the falling of the foundation. In addition, the reinforcing member 3c increases the force that restrains the slip surface of the soil block downward with respect to the wedge-shaped slip soil mass that may occur on the valley side of the foundation. Resistance can be increased.

以上のように本発明によれば、水平力が作用する基礎体1に設置された補強材3の配設方向を、少なくとも耐力増分ΔPが最大となる方向を含むようにしたので、補強効果としての補強土効果と構造効果とを合わせた最大値に補強材3を配置でき、効率よく基礎体1を補強でき、基礎工事のコストを大幅に削減でき、施工期間も短縮することができるとともに、基礎体1が小さくなった分、堀削作業の残土の削減も可能となる。   As described above, according to the present invention, the reinforcing member 3 installed in the foundation body 1 on which the horizontal force acts is arranged in a direction including at least the direction in which the proof stress increment ΔP is maximized. The reinforcing material 3 can be placed at the maximum value that combines the reinforced soil effect and the structural effect, and the foundation 1 can be efficiently reinforced, the cost of foundation work can be greatly reduced, and the construction period can be shortened. As the foundation body 1 becomes smaller, it is possible to reduce the remaining soil from the excavation work.

また、各補強材を水平力の作用方向と平行に配置することで、各補強材の構造効果を最大とし、効率よく補強効果を高めることができる。   Further, by arranging each reinforcing member in parallel with the direction of the horizontal force, the structural effect of each reinforcing member can be maximized and the reinforcing effect can be enhanced efficiently.

また、補強材を少なくとも耐力増分ΔPrの最大値が生じる角度Θに配置、つまり、水平力が補強材に引張力として作用する場合には、少なくとも最小主歪み方向に配置され、また、水平力が前記補強材に圧縮力として作用する場合には、少なくとも最大主歪み方向に配置されるため、補強効果を高めることができる。   Further, when the reinforcing material is disposed at least at an angle Θ where the maximum value of the proof stress increment ΔPr occurs, that is, when the horizontal force acts as a tensile force on the reinforcing material, the reinforcing material is disposed at least in the minimum principal strain direction. In the case where the reinforcing material acts as a compressive force, the reinforcing effect can be enhanced because the reinforcing material is disposed at least in the maximum principal strain direction.

また、補強材を基礎本体の外周面に略2平方メートルに1本の割合で配置するため、補強材の本数に対する補強効果を高めることができる。   In addition, since the reinforcing material is arranged at a ratio of approximately 1 to 2 square meters on the outer peripheral surface of the basic body, the reinforcing effect on the number of reinforcing materials can be enhanced.

また、基礎本体2を構築する際に掘削面とこの掘削面を支保するライナープレートとの間にはモルタルが打設されるが、モルタルが掘削面とライナープレートとの間を完全に埋めることの保証ができない。しかしながら本発明においては、地山4内に定着した複数の補強材3が、ライナープレートを貫通して基礎本体2と固定されているため、地震等による外力が基礎体1に加わったとしても、補強材3が地山4から抜け出ることはない。このため、結果として補強材3が地山内に定着することで、ライナープレートと掘削面との間に摩擦力を確実に生じさせることができる。   Further, when the foundation body 2 is constructed, a mortar is placed between the excavation surface and the liner plate that supports the excavation surface, and the mortar completely fills the space between the excavation surface and the liner plate. I cannot guarantee it. However, in the present invention, since the plurality of reinforcing members 3 fixed in the natural ground 4 are fixed to the base body 2 through the liner plate, even if an external force due to an earthquake or the like is applied to the base body 1, The reinforcing material 3 does not escape from the natural ground 4. For this reason, as a result, the reinforcing material 3 is fixed in the ground, so that a frictional force can be reliably generated between the liner plate and the excavation surface.

図10は、第2の実施形態としての基礎体1の形状を示しており、第1の実施形態では円柱状であった基礎本体2の水平断面形状を楕円状にした点に特徴を有する。図に点線で示すように基礎体1上に固定される橋脚の断面形状が長方形である場合には、基礎体1の大きさは橋脚外周から基礎体1外周までの最短距離により規定されるため、基礎体1が円柱状である場合に対して楕円状とすることで基礎体1の小型化を図ることができる。なお、基礎本体2の水平断面形状は楕円状に限らず、小判状であってもよい。   FIG. 10 shows the shape of the base body 1 as the second embodiment, which is characterized in that the horizontal cross-sectional shape of the base body 2 that was columnar in the first embodiment is elliptical. When the cross-sectional shape of the pier fixed on the foundation body 1 is a rectangle as shown by the dotted line in the figure, the size of the foundation body 1 is defined by the shortest distance from the outer circumference of the pier to the outer circumference of the foundation body 1. The base body 1 can be reduced in size by making it elliptical with respect to the case where the base body 1 is cylindrical. The horizontal cross-sectional shape of the basic body 2 is not limited to an elliptical shape, and may be an oval shape.

図11と図12は、第3の実施形態としての基礎体1の形状を示しており、基礎本体2を有底円筒状に構成した点に特徴を有する。この実施形態では、底部を下に配置した基礎本体2の内部空間に基礎本体2を築造する際に生じた残土を埋めることにより、残土の処理を容易にすることができる。残土で内部空間を埋めた後に基礎本体2の上部開口を閉じ、その上に橋脚等を築造する。なお、本実施形態では、円筒状の基礎本体としたが、断面形状を円形ではなく、前述のような楕円形や小判形としてこれらを中空状としても良い。   FIG. 11 and FIG. 12 show the shape of the foundation body 1 as the third embodiment, which is characterized in that the foundation body 2 is configured in a bottomed cylindrical shape. In this embodiment, the remaining soil generated when the foundation body 2 is built in the internal space of the foundation body 2 with the bottom portion disposed below can be easily treated. After filling the internal space with the remaining soil, the upper opening of the foundation main body 2 is closed, and a pier or the like is built thereon. In this embodiment, the cylindrical basic body is used. However, the cross-sectional shape is not circular, and these may be hollow as an oval or oval shape as described above.

本発明の地盤補強型の基礎形成における補強材の配置方法は、橋脚等が築造される基礎体の小型化に有用である。   The arrangement method of the reinforcing material in the foundation formation of the ground reinforcement type of the present invention is useful for downsizing the foundation body on which the piers and the like are built.

本発明の実施形態の垂直断面図。The vertical sectional view of the embodiment of the present invention. 図1の断面A−Aの断面図。Sectional drawing of the cross section AA of FIG. 本発明の補強材の補強効果を説明する概念図。The conceptual diagram explaining the reinforcement effect of the reinforcing material of this invention. シミュレーション計算のメッシュの一例。An example of mesh for simulation calculation. 補強材本数と補強効果の関係を示す図。The figure which shows the relationship between a reinforcement material number and a reinforcement effect. 引張補強材の補強効果を示す図。The figure which shows the reinforcement effect of a tensile reinforcement material. 圧縮補強材の補強効果を示す図。The figure which shows the reinforcement effect of a compression reinforcement material. 基礎体の他の実施形態を示す図。The figure which shows other embodiment of a basic body. 補強材の他の打設方法を示す図。The figure which shows the other placement method of a reinforcing material. 補強材の他の打設方法を示す図。The figure which shows the other placement method of a reinforcing material. 基礎体の他の実施形態を示す正面図。The front view which shows other embodiment of a foundation. 同じく平面図。FIG. 従来の基礎体の垂直断面図。The vertical sectional view of the conventional basic body. 同じく水平断面図。Similarly horizontal sectional view. 同じく引抜力に対する基礎体の支持構造を説明する基礎体の断面図。Sectional drawing of the basic body explaining the support structure of the basic body with respect to extraction force similarly. 同じく水平力に対する基礎体の支持構造を説明する基礎体の断面図。Sectional drawing of the base body explaining the support structure of the base body with respect to a horizontal force similarly.

符号の説明Explanation of symbols

1 基礎体
2 基礎本体
3 補強材
3a 引張補強材
3b 圧縮補強材
4 地山
DESCRIPTION OF SYMBOLS 1 Foundation body 2 Foundation body 3 Reinforcement material 3a Tensile reinforcement material 3b Compression reinforcement material 4 Ground

Claims (8)

基礎の堀削面から地山内部に削孔し、削孔内に剛性の高い補強材を地山に定着させた後に前記補強材の基端部を基礎本体内に定着させて基礎体を築造する地盤補強型の基礎形成方法において、
前記補強材は、前記基礎本体から水平方向外側に向けて打設されるとともに、
前記補強材に地山に対する引張応力、圧縮応力及びせん断応力の一部を構造的に分担させることで基礎体に作用する水平力に対する地山の抵抗力を高める、下記式(1)で演算される耐力増分△Psと、
△Ps=Σ(Smaxi・cosΘ+Nmaxi・sinΘ)…(1)
ただし、Smaxiは前記補強材の最大せん断力、
Nmaxiは前記補強材の最大軸力、
Θは水平力の作用方向に直交する水平線と前記補強材の打設方向とがなす角
度、
iは補強材の本数に相当(i≧1)
地山に発生する引張歪みや圧縮歪みを前記補強材により拘束することで基礎体に作用する水平力に対する地山の抵抗力を高める、下記式(2)と式(3)で演算される耐力増分△Prと、
△Pr=Σ(Nmaxi・cosΘ−Smaxi・sinΘ)・tanΦ・f(Θ)…(2)
f(Θ)=[2cos2(Θ−45°+Φ/2)−(1−sinν)]/(1+sinν)…(3)
ただし、Φは前記基礎体が築造される地山の内部摩擦角、
νはダイレイタンシー角
に基づいて前記基礎体に水平力が作用すると想定した時の前記補強材の配置をしたことを特徴とする地盤補強型の基礎形成における水平支持力強化型補強材の配置方法。
Drill a hole from the excavated surface of the foundation into the ground, fix a rigid reinforcing material in the ground and fix the base end of the reinforcing material in the foundation body to build the foundation. In the ground reinforcement type foundation forming method,
The reinforcing member is driven from the base body toward the outside in the horizontal direction,
It is calculated by the following equation (1), which increases the resistance of the natural ground to the horizontal force acting on the foundation by structurally sharing a part of the tensile stress, compressive stress and shear stress with respect to the natural ground. Proof strength increment ΔPs,
ΔPs = Σ (Smax i · cos Θ + Nmax i · sin Θ) (1)
Where Smax i is the maximum shear force of the reinforcing material,
Nmax i is the maximum axial force of the reinforcing material,
Θ is the angle formed by the horizontal line perpendicular to the direction of the horizontal force and the direction in which the reinforcing material is placed
Every time,
i corresponds to the number of reinforcing materials (i ≧ 1)
Strength which is calculated by the following formula (2) and formula (3), which increases the resistance of the ground to the horizontal force acting on the foundation by restraining the tensile strain and compression strain generated in the ground by the reinforcing material. Increment ΔPr,
ΔPr = Σ (Nmax i · cos Θ−Smax i · sin Θ) · tan Φ · f (Θ) (2)
f (Θ) = [ 2 cos 2 (Θ−45 ° + Φ / 2) − (1-sinν)] / (1 + sinν) (3)
Where Φ is the internal friction angle of the natural ground on which the foundation is built,
ν is the arrangement of the reinforcing material for reinforcing the horizontal bearing force in the foundation formation of the ground reinforcing type, wherein the reinforcing material is arranged when it is assumed that a horizontal force acts on the foundation body based on the dilatancy angle. Method.
前記補強材は、少なくとも前記耐力増分ΔPsとΔPrとを加算した最大値が生じる前記角度Θに配置されることを特徴とする請求項1に記載の地盤補強型の基礎形成における水平支持力強化型補強材の配置方法。   2. The horizontal supporting force strengthening type in the foundation formation of the ground reinforcing type according to claim 1, wherein the reinforcing material is disposed at the angle Θ in which a maximum value obtained by adding at least the yield strength increments ΔPs and ΔPr is generated. Reinforcing material placement method. 前記補強材は、前記水平力が前記補強材に引張力として作用する場合には、少なくとも最小主歪み方向に配置されることを特徴とする請求項1に記載の地盤補強型の基礎形成における水平支持力強化型補強材の配置方法。   2. The horizontal in the foundation formation of the ground reinforcement type according to claim 1, wherein the reinforcing material is disposed at least in the direction of the minimum principal strain when the horizontal force acts as a tensile force on the reinforcing material. Arrangement method of reinforcing capacity reinforcement. 前記補強材は、前記水平力が前記補強材に圧縮力として作用する場合には、少なくとも最大主歪み方向に配置されることを特徴とする請求項1から3のいずれか一つに記載の地盤補強型の基礎形成における水平支持力強化型補強材の配置方法。   The ground according to any one of claims 1 to 3, wherein the reinforcing material is disposed at least in a maximum principal strain direction when the horizontal force acts as a compressive force on the reinforcing material. Arrangement method of reinforcing material for strengthening horizontal bearing capacity in reinforced foundation formation. 前記補強材を前記基礎本体の外周面に略2平方メートルに1本の割合で配置することを特徴とする請求項1から4のいずれか一つに記載の地盤補強型の基礎形成における水平支持力強化型補強材の配置方法。   The horizontal supporting force in the foundation formation of the ground reinforcement type according to any one of claims 1 to 4, wherein the reinforcing material is disposed on the outer peripheral surface of the foundation main body at a ratio of approximately one per 2 square meters. Arrangement method of reinforced reinforcement. 地山を堀削して築造した基礎本体と、
前記基礎本体から水平方向外側に打設されて前記地山内に固着される棒状の補強材と、
からなり、水平力が作用する地盤補強型の基礎体において、
前記水平力が前記補強材に引張力として作用する場合には、前記地山の最小主歪み方向と一致するように前記補強材の少なくとも1本を配置し、
かつ、前記水平力が前記補強材に圧縮力として作用する場合には、前記地山の最大主歪み方向と一致するように前記補強材の少なくとも1本を配置するようにしたことを特徴とする地盤補強型の基礎体。
The basic body built by excavating the natural ground,
A rod-shaped reinforcing material that is placed in the horizontal direction from the foundation body and is fixed in the natural ground;
In the ground-reinforced foundation with horizontal force acting,
When the horizontal force acts as a tensile force on the reinforcing material, arrange at least one of the reinforcing materials so as to coincide with the minimum principal strain direction of the natural ground,
In addition, when the horizontal force acts as a compressive force on the reinforcing material, at least one of the reinforcing materials is arranged so as to coincide with the maximum principal strain direction of the natural ground. A ground-reinforced foundation.
地山を堀削して築造した基礎本体と、
前記基礎本体から外側に打設されて前記地山内に固着される棒状の補強材と、
からなり、水平力が作用する地盤補強型の基礎体において、
前記基礎体は水平力により前記基礎体内の回転中心周りに回転し、
前記水平力が前記補強材に圧縮力として作用する場合には、前記補強材を前記基礎体から斜め下方向に配置し、かつ前記補強材を前記地山の最大主歪み方向と一致するように前記補強材の少なくとも1本を配置し、
前記水平力が前記補強材に引張力として作用する場合には、前記補強材を前記基礎体から水平方向に配置し、前記地山の最小主歪み方向と一致するように前記補強材の少なくとも1本を配置するようにしたことを特徴とする地盤補強型の基礎体。
The basic body built by excavating the natural ground,
A rod-shaped reinforcing material that is placed outside from the foundation body and is fixed in the natural ground;
In the ground-reinforced foundation with horizontal force acting,
The foundation body rotates around the center of rotation in the foundation body by horizontal force,
When the horizontal force acts as a compressive force on the reinforcing material, the reinforcing material is disposed obliquely downward from the foundation body, and the reinforcing material is aligned with the maximum principal strain direction of the natural ground. Arranging at least one of the reinforcing members,
When the horizontal force acts as a tensile force on the reinforcing material, the reinforcing material is arranged in the horizontal direction from the foundation body, and at least one of the reinforcing materials is aligned with the minimum principal strain direction of the natural ground. A ground-reinforced foundation that features books.
前記基礎本体の水平断面形状は、円形、楕円形、小判形またはこれらの環状の断面形状のいずれかであることを特徴とする請求項6または7に記載の地盤補強型の基礎体。   The ground reinforcing-type foundation body according to claim 6 or 7, wherein a horizontal sectional shape of the foundation body is any one of a circular shape, an elliptical shape, an oval shape, or an annular sectional shape thereof.
JP2004203424A 2004-07-09 2004-07-09 Arrangement method and foundation of horizontal bearing reinforcement type reinforcement in foundation formation of ground reinforcement type Expired - Lifetime JP4869570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203424A JP4869570B2 (en) 2004-07-09 2004-07-09 Arrangement method and foundation of horizontal bearing reinforcement type reinforcement in foundation formation of ground reinforcement type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203424A JP4869570B2 (en) 2004-07-09 2004-07-09 Arrangement method and foundation of horizontal bearing reinforcement type reinforcement in foundation formation of ground reinforcement type

Publications (3)

Publication Number Publication Date
JP2006022608A true JP2006022608A (en) 2006-01-26
JP2006022608A5 JP2006022608A5 (en) 2008-02-21
JP4869570B2 JP4869570B2 (en) 2012-02-08

Family

ID=35796079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203424A Expired - Lifetime JP4869570B2 (en) 2004-07-09 2004-07-09 Arrangement method and foundation of horizontal bearing reinforcement type reinforcement in foundation formation of ground reinforcement type

Country Status (1)

Country Link
JP (1) JP4869570B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051868A1 (en) * 1997-05-12 1998-11-19 Tokyo Electric Power Company Method of arranging reinforcement in forming foundation of ground reinforcing type and foundation body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051868A1 (en) * 1997-05-12 1998-11-19 Tokyo Electric Power Company Method of arranging reinforcement in forming foundation of ground reinforcing type and foundation body
JP3165450B2 (en) * 1997-05-12 2001-05-14 東京電力株式会社 Arrangement method of reinforcement and foundation body in foundation formation of ground reinforcement type

Also Published As

Publication number Publication date
JP4869570B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP3165450B2 (en) Arrangement method of reinforcement and foundation body in foundation formation of ground reinforcement type
KR20080005109A (en) Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
JP6650257B2 (en) Mountain retaining structure and construction method thereof
JP6021993B1 (en) Rigid connection structure of lower end of support and concrete pile
JP5092705B2 (en) Support structure of structure, construction method of underground structure, replacement method of foundation load
JP4705513B2 (en) Foundation structure
JP2009046879A (en) Pile head structure of double tube type
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
JP2004244955A (en) Cast-in-place concrete-filled steel pipe pile, construction method for cast-in-place concrete-filled steel pipe pile and foundation structure of structure
JP5077857B1 (en) Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology
JP6542036B2 (en) Pile foundation structure
JP4869570B2 (en) Arrangement method and foundation of horizontal bearing reinforcement type reinforcement in foundation formation of ground reinforcement type
JP6461690B2 (en) Foundation structure and foundation construction method
JP3787109B2 (en) Pile foundation and its construction method
JP5423134B2 (en) Foundation structure
KR101744378B1 (en) Method for Constructing Retaining Wall
KR101920223B1 (en) Efficient Basement Structure by changing connection betwwon piles and footing
JP6774774B2 (en) Pile foundation structure
JP5267242B2 (en) Pier foundation structure and bridge pier foundation construction method
JP2005082995A (en) Pile head connection structure
JP7406476B2 (en) Existing building reinforcement structure and existing building reinforcement method
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP4060137B2 (en) Civil engineering structures and construction methods
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
RU2457292C2 (en) Earthquake-proof pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4869570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250