JP2006022346A - Method and apparatus for degreasing grease-containing scale - Google Patents

Method and apparatus for degreasing grease-containing scale Download PDF

Info

Publication number
JP2006022346A
JP2006022346A JP2004199245A JP2004199245A JP2006022346A JP 2006022346 A JP2006022346 A JP 2006022346A JP 2004199245 A JP2004199245 A JP 2004199245A JP 2004199245 A JP2004199245 A JP 2004199245A JP 2006022346 A JP2006022346 A JP 2006022346A
Authority
JP
Japan
Prior art keywords
oil
deoiling
scale
steam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199245A
Other languages
Japanese (ja)
Other versions
JP4317495B2 (en
Inventor
Morimasa Ichida
守政 一田
Yutaka Sato
佐藤  裕
Nakamichi Yamazaki
仲道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004199245A priority Critical patent/JP4317495B2/en
Publication of JP2006022346A publication Critical patent/JP2006022346A/en
Application granted granted Critical
Publication of JP4317495B2 publication Critical patent/JP4317495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus in which grease content stuck to the surface of grease-containing scale is safely and efficiently removed without causing any environmental problem. <P>SOLUTION: This method for degreasing grease-containing scale is characterized in that dry steam (preferably, having a steam saturation degree of 20 to 80%) superheated to a temperature at which grease is thermally decomposed or lower (preferably, 100 to 220°C) is brought into contact with grease-containing scale (e.g., scale having a grease content of ≥0.5%). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、製鉄所等で発生する含油スケールから、油を、熱分解させることなく効率よく充分に脱油する方法と装置に関する。   The present invention relates to a method and an apparatus for efficiently and sufficiently deoiling oil without thermally decomposing it from an oil-impregnated scale generated at a steel mill or the like.

製鉄所等では、熱延工程、冷延工程、線材工程等において、多量の含油スケールが発生する。この含油スケールは、酸化鉄、特に、FeOやFe23を主成分としているので、製鉄原料として有効に再利用できるものであるが、そのためには、油分をできるだけ除去する必要がある。 In steelworks and the like, a large amount of oil-impregnated scale is generated in the hot rolling process, cold rolling process, wire rod process, and the like. Since this oil-containing scale is mainly composed of iron oxide, particularly FeO or Fe 2 O 3 , it can be effectively reused as a raw material for iron making. However, it is necessary to remove oil as much as possible.

含油量が0.5%以下程度(以下、「Aスケール」という。)であれば、油分が熱分解して生成するガス等の熱分解生成物の量も少ないので、含油スケールを、脱油処理をせずそのまま製鉄原料として再利用できるが、含油量が0.5%以上程度であると(以下、「Bスケール」という。)、熱分解生成物が大量に発生するので、事前に脱油処理が必要となる。   If the oil content is about 0.5% or less (hereinafter referred to as “A scale”), the amount of pyrolysis products such as gas generated by thermal decomposition of the oil component is small, so the oil content scale is deoiled. It can be reused as it is as a raw material for steelmaking without treatment, but if the oil content is about 0.5% or more (hereinafter referred to as “B scale”), a large amount of thermal decomposition products are generated. Oil treatment is required.

しかし、例えば、Bスケールを高温に加熱して油分を熱分解すれば脱油できるが、大量に発生する熱分解生成物は大気汚染等の原因物質ともなるので、Bスケールの脱油には、脱油処理設備の他に、別途、熱分解生成物を無害化処理する大規模な設備が必要となる。   However, for example, the oil can be deoiled by heating the B scale to a high temperature and thermally decomposing the oil. However, since the pyrolysis products generated in large quantities can cause air pollution and the like, In addition to the deoiling treatment facility, a large-scale facility for detoxifying the pyrolysis product is required separately.

そのため、これまで、環境問題を起こすことなく、含油スケールを効率よく脱油する各種の脱油処理技術が提案されている。   For this reason, various deoiling treatment techniques for efficiently deoiling oil-containing scales have been proposed so far without causing environmental problems.

例えば、特許文献1には、アルカリで油分を洗浄できることに着目し、アルカリ塩とポリオキシアルキレン誘導体を溶解した水溶液にスケールを投入し脱油する技術が開示されている。上記技術は脱油性に優れているが、洗浄液を含む洗浄設備の建設に費用がかかる点や、投入後の脱油処理に時間がかかる点が難点である。   For example, Patent Document 1 discloses a technique for deoiling by adding scale to an aqueous solution in which an alkali salt and a polyoxyalkylene derivative are dissolved, focusing on the fact that the oil can be washed with an alkali. Although the above technique is excellent in deoiling property, it is difficult to construct a cleaning facility including a cleaning liquid and to take time for deoiling treatment after the introduction.

含油スケールに係る技術ではないが、特許文献2には、金属又は非鉄金属の素材や被加工物の表面に、150〜600℃の低圧及び高圧高温過熱蒸気を噴射し、上記表面に付着する油分を脱油する技術が開示されている。   Although it is not a technique related to an oil-impregnated scale, Patent Document 2 discloses an oil component that adheres to the surface by injecting low-pressure and high-pressure high-temperature superheated steam at 150 to 600 ° C. onto the surface of a metal or non-ferrous metal material or workpiece. A technique for deoiling oil is disclosed.

この技術も脱油性に優れているが、油が熱分解する温度範囲の蒸気を被加工物の表面に噴射するので、表面付着油は熱分解し、別途、熱分解で生成する物質を含む水、ガス等を処理する技術が必要となる。結局、上記技術は、処理費用が嵩むという問題や、環境保護上の問題を抱えるものである。   Although this technology is also excellent in deoiling property, since steam in the temperature range where the oil is thermally decomposed is sprayed onto the surface of the work piece, the oil adhering to the surface is thermally decomposed, and water that contains substances generated by thermal decomposition separately. In addition, a technology for treating gas and the like is required. After all, the above technique has a problem that the processing cost increases and an environmental protection problem.

特開2003−27147号公報JP 2003-27147 A 特開平9−143775号公報JP 9-143775 A

本発明は、アルカリ洗浄(特許文献1、参照)や、過熱蒸気噴射(特許文献2、参照)による脱油技術が抱える諸問題に鑑み、含油スケールの表面に付着する油分を、環境問題を起こすことなく安全に、かつ、効率よく脱油する方法と装置を提供することを課題とする。   The present invention causes environmental problems with oil adhering to the surface of the oil-impregnated scale in view of various problems of deoiling technology by alkali cleaning (see Patent Document 1) and superheated steam injection (see Patent Document 2). It is an object of the present invention to provide a method and apparatus for deoiling safely and efficiently without any problems.

本発明者は、含油スケールの表面に付着する油分を効率よく脱油する方法について鋭意検討した。そして、本発明者は、蒸気の脱油能力に着目し、油の熱分解を回避するため、油が熱分解する温度以下の温度に過熱した乾燥蒸気を用い、含油量0.5%以上のスケール(Bスケール)から油分を脱油する脱油試験を行った。   The present inventor has intensively studied a method for efficiently deoiling oil adhering to the surface of the oil-containing scale. And this inventor pays attention to the deoiling capability of steam, in order to avoid thermal decomposition of oil, using dry steam overheated to a temperature below the temperature at which oil is thermally decomposed, the oil content is 0.5% or more A deoiling test was conducted to deoil oil from the scale (B scale).

その結果、本発明者は、
(i)油が熱分解する温度以下の温度に過熱した乾燥蒸気で、Bスケールから油分を充分に脱油できること、及び、
(ii)乾燥蒸気の脱油能力と蒸気飽和度との間には、脱油能力を最大化する最適蒸気飽和度範囲が存在すること、
を見出した。
As a result, the present inventor
(I) The oil can be sufficiently deoiled from the B scale with dry steam heated to a temperature below the temperature at which the oil is thermally decomposed; and
(Ii) that there is an optimum steam saturation range that maximizes the deoiling capacity between the deoiling capacity and steam saturation of the dry steam;
I found.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 油が熱分解する温度以下の温度に過熱した乾燥蒸気を含油スケールに接触させることを特徴とする含油スケールの脱油方法。   (1) A method for deoiling an oil-impregnated scale, comprising bringing dry steam heated to a temperature equal to or lower than a temperature at which oil is thermally decomposed into contact with the oil-impregnated scale.

(2) 前記油が熱分解する温度以下の温度が220℃以下の温度であることを特徴とする前記(1)に記載の含油スケールの脱油方法。   (2) The oil-retaining scale deoiling method according to (1) above, wherein a temperature not higher than a temperature at which the oil is thermally decomposed is 220 ° C. or lower.

(3) 前記油が熱分解する温度以下の温度が100℃以上の温度であることを特徴とする前記(1)又は(2)に記載の含油スケールの脱油方法。   (3) The oil-retaining scale deoiling method according to (1) or (2) above, wherein a temperature not higher than a temperature at which the oil is thermally decomposed is a temperature of 100 ° C. or higher.

(4) 前記乾燥蒸気の蒸気飽和度が20〜80%であることを特徴とする前記(1)〜(3)のいずれかに記載の含油スケールの脱油方法。   (4) The method for deoiling an oil-containing scale according to any one of (1) to (3), wherein the dry steam has a steam saturation of 20 to 80%.

(5) 前記含油スケールが含油量0.5%以上のスケールであることを特徴とする前記(1)〜(4)のいずれかに記載の含油スケールの脱油方法。   (5) The method for deoiling an oil-containing scale according to any one of (1) to (4), wherein the oil-containing scale is a scale having an oil content of 0.5% or more.

(6) 前記乾燥蒸気の気流を含油スケールに接触させることを特徴とする前記(1)〜(5)のいずれかに記載の含油スケールの脱油方法。   (6) The method of deoiling an oil-containing scale according to any one of (1) to (5), wherein the air flow of the dry steam is brought into contact with the oil-containing scale.

(7) 油が熱分解する温度以下の温度に過熱した乾燥蒸気を含油スケールに接触させて脱油を行う脱油装置であって、少なくとも、
(a)乾燥蒸気を、油が熱分解する温度以下の温度に過熱する蒸気過熱装置、及び、
(b)上記蒸気過熱装置から過熱乾燥蒸気を導入して含油スケールに接触させ、脱油を行う脱油処理装置、
を備えることを特徴とする含油スケールの脱油装置。
(7) A deoiling device that performs deoiling by bringing dry steam heated to a temperature equal to or lower than a temperature at which oil is thermally decomposed into contact with an oil-containing scale,
(A) a steam superheater that superheats dry steam to a temperature below the temperature at which oil is thermally decomposed; and
(B) a deoiling treatment apparatus for deoiling by introducing superheated dry steam from the steam superheater and bringing it into contact with the oil-impregnated scale;
An oil-retaining scale deoiling device comprising:

(8) 前記(7)に記載の含油スケールの脱油装置において、更に、
(c)脱油処理装置から導出する含油蒸気から油分を分離回収する油分離回収装置、
を備えることを特徴とする含油スケールの脱油装置。
(8) In the oil removal scale deoiling device according to (7),
(C) an oil separation and recovery device that separates and recovers oil from the oil-containing steam derived from the deoiling treatment device;
An oil-retaining scale deoiling device comprising:

(9) 前記(7)又は(8)に記載の含油スケールの脱油装置において、脱油処理装置に、含油スケールを連続的に送給、排出するとともに、蒸気過熱装置から過熱乾燥蒸気を連続的に導入、導出することを特徴とする含油スケールの脱油装置。   (9) In the oil-impregnated scale deoiling device according to (7) or (8), the oil-impregnated scale is continuously supplied to and discharged from the deoiling treatment device, and superheated dry steam is continuously supplied from the steam superheater. The oil-retaining scale deoiling device is characterized in that it is introduced and derived automatically.

本発明によれば、製鉄所等で発生する含油スケールから、油分を、熱分解させることなく、効率よく脱油することができる。   ADVANTAGE OF THE INVENTION According to this invention, oil can be efficiently deoiled from the oil-impregnated scale generate | occur | produced in a steel mill etc., without thermally decomposing.

まず、本発明の脱油方法について説明する。   First, the deoiling method of the present invention will be described.

本発明者は、バッチ式脱油処理装置、及び、流通式脱油処理装置を用い、油分が熱分解しない220℃以下の温度に過熱した乾燥蒸気を用い、その蒸気飽和度を種々変えて、表1に成分及び含油量を示す含油スケールの脱油試験を行い、蒸気飽和度が脱油率に及ぼす影響を調査した。   The inventor uses a batch-type deoiling treatment apparatus and a flow-type deoiling treatment apparatus, using dry steam superheated to a temperature of 220 ° C. or less at which the oil component is not thermally decomposed, and changing the steam saturation in various ways. Table 1 was subjected to a deoiling test of oil-impregnated scales showing the components and oil content, and the effect of steam saturation on the deoiling rate was investigated.

Figure 2006022346
Figure 2006022346

ここで、蒸気飽和度は、
蒸気飽和度=(脱油処理装置内の蒸気圧/飽和蒸気圧)×100(%)
で定義され、脱油処理装置内の湿度を示すものである。即ち、蒸気飽和度が低ければ、脱油処理装置内はより乾燥していて、蒸気の密度が低い状態にある。
Where the steam saturation is
Vapor saturation = (Vapor pressure in deoiling device / Saturated vapor pressure) × 100 (%)
It shows the humidity in the deoiling treatment apparatus. That is, if the steam saturation is low, the inside of the deoiling apparatus is more dry and the steam density is low.

バッチ式脱油処理装置を用い、含油量1.40%の含油スケール(表1中、スケールB2)を、蒸気飽和度を種々変えた130℃及び170℃の乾燥蒸気中に1時間保持して行った脱油試験の結果を図1に示す。   Using a batch-type deoiling treatment device, hold an oil-containing scale with an oil content of 1.40% (scale B2 in Table 1) in dry steam at 130 ° C and 170 ° C with varying steam saturation for 1 hour. The results of the deoiling test performed are shown in FIG.

図1に示すように、脱油率(図では、減量率(%)=(スケールの初期重量−脱油処理後のスケールの重量)/スケールの初期重量×100で示す)は、蒸気飽和度20〜80%で上昇していて、しかも、蒸気飽和度40〜60%で顕著に上昇している。   As shown in FIG. 1, the oil removal rate (in the figure, weight loss rate (%) = (initial weight of scale−weight of scale after deoiling treatment) / initial weight of scale × 100) is the steam saturation. It rises at 20 to 80% and rises remarkably at a vapor saturation of 40 to 60%.

即ち、(i)油が熱分解しない温度に過熱した乾燥蒸気で、Bスケールから油分を充分に脱油できるし、また、(ii)乾燥蒸気の脱油能力と蒸気飽和度との間には、脱油能力を最大化する最適蒸気飽和度範囲が存在する。   That is, (i) oil can be sufficiently deoiled from B scale with dry steam heated to a temperature at which the oil does not thermally decompose, and (ii) between the deoiling capacity and steam saturation of dry steam. There is an optimal steam saturation range that maximizes the deoiling capacity.

この点が、前述したように、本発明者が見出し、本発明の基礎とした知見である。そして、本発明においては、上記試験結果を踏まえ、蒸気飽和度20〜80%を好ましい範囲とし、同40〜60%をより好ましい範囲とする。   As described above, this is a finding found by the present inventor and based on the present invention. And in this invention, based on the said test result, 20-80% of steam saturation is made into a preferable range, and 40-60% is made into the more preferable range.

図1に示すように、過熱蒸気温度が130℃の場合の減量率は、過熱蒸気温度が170℃の場合の減量率より小さいので、本発明者は、脱油現象が発現する臨界過熱温度を確認する意図で、更に、乾燥蒸気の過熱温度と含油スケールの減量率の関係を調査した。   As shown in FIG. 1, since the weight loss rate when the superheated steam temperature is 130 ° C. is smaller than the weight loss rate when the superheated steam temperature is 170 ° C., the present inventor has determined the critical superheat temperature at which the deoiling phenomenon appears. For the purpose of confirmation, the relationship between the superheat temperature of the dry steam and the weight loss rate of the oil-impregnated scale was further investigated.

図2に、飽和蒸気度40%の乾燥蒸気を用い、過熱蒸気温度を60〜200℃の範囲内で変えて、含油量1.40%の含油スケール(表1中、スケールB2)の油分を脱油した結果を示す。   In FIG. 2, using dry steam with a saturation steam degree of 40%, changing the superheated steam temperature within the range of 60 to 200 ° C., the oil content of the oil-impregnated scale with an oil content of 1.40% (scale B2 in Table 1) is The result of deoiling is shown.

図2から、過熱蒸気温度60℃においても脱油現象が発現するが、100℃から脱油率が顕著に上昇することが解かる。それ故、本発明では、過熱蒸気温度の下限を、好ましくは100℃とする。   From FIG. 2, it is understood that the deoiling phenomenon occurs even at the superheated steam temperature of 60 ° C., but the deoiling rate significantly increases from 100 ° C. Therefore, in the present invention, the lower limit of the superheated steam temperature is preferably 100 ° C.

また、図2から、過熱蒸気温度は高いほど好ましいことが解かるが、油分の熱分解を極力抑制するため、本発明においては、加熱蒸気温度の上限を、油分が熱分解しない温度とする。   Moreover, although it turns out that a superheated steam temperature is so high that FIG. 2 is high, in order to suppress thermal decomposition of an oil component as much as possible, in this invention, the upper limit of heating steam temperature is made into the temperature which an oil component does not thermally decompose.

この温度は、通常、油成分で変動するが、220℃であれば、油分の熱分解を確実に抑制することができるので、過熱蒸気温度の上限は220℃が好ましい。   This temperature usually varies depending on the oil component, but if it is 220 ° C, the thermal decomposition of the oil component can be reliably suppressed, so the upper limit of the superheated steam temperature is preferably 220 ° C.

ここで、油が熱分解しない温度に過熱した乾燥蒸気を用いて、含油スケールから油分を充分に脱油できる理由、及び、乾燥蒸気の蒸気飽和度に最適範囲が存在する理由について説明する。   Here, the reason why the oil component can be sufficiently deoiled from the oil-containing scale using the dry steam heated to a temperature at which the oil is not thermally decomposed, and the reason why the optimum range of the steam saturation of the dry steam exists will be described.

まず、図3に、乾燥蒸気の存在下における脱油機構を模式的に示す。この脱油機構においては、水粒子3が、スケール表面1に付着している油粒子2を包み込んでスケール表面1から分離して脱油が進行する。   First, FIG. 3 schematically shows a deoiling mechanism in the presence of dry steam. In this deoiling mechanism, the water particles 3 enclose the oil particles 2 adhering to the scale surface 1 and are separated from the scale surface 1 so that deoiling proceeds.

このように、油が熱分解しない温度に過熱した乾燥蒸気を用いれば、スケール表面に付着した油粒子を、油粒子のままの状態で包み込み、熱分解生成物を生成せずに分離することができるので、スケール表面の脱油を行うことができる。この点が、本発明の基礎をなす技術思想である。   In this way, if dry steam heated to a temperature at which the oil does not thermally decompose is used, the oil particles adhering to the scale surface can be wrapped in the state of the oil particles and separated without producing a pyrolysis product. Therefore, the scale surface can be deoiled. This is the technical idea that forms the basis of the present invention.

そして、スケール表面において、脱油が効率よく充分に進行するか否かは、水粒子(脱油媒体として機能する)の親油性と存在量に大きく依存する。   Whether or not deoiling proceeds efficiently and sufficiently on the scale surface largely depends on the lipophilicity and abundance of water particles (functioning as a deoiling medium).

水は、誘電率が低下すると有機物質に溶解し易くなる性質を有している。したがって、水粒子の誘電率が低いと、水粒子の親油性は良好であるが、この誘電率は、蒸気飽和度に比例する。即ち、乾燥蒸気の蒸気飽和度が低いと、水粒子の親油性は良好である。   Water has a property of being easily dissolved in an organic substance when the dielectric constant is lowered. Therefore, if the water particles have a low dielectric constant, the water particles have good lipophilicity, but this dielectric constant is proportional to the vapor saturation. That is, when the steam saturation of the dry steam is low, the lipophilicity of the water particles is good.

しかし、乾燥蒸気の脱油能力は、脱油処理装置内の蒸気の密度状態(水粒子の存在量)、即ち、蒸気飽和度にも大きく依存する。   However, the deoiling ability of the dry steam greatly depends on the density state of the steam (the amount of water particles) in the deoiling apparatus, that is, the degree of steam saturation.

脱油処理装置内において乾燥蒸気の蒸気飽和度が低ければ、水粒子(脱油媒体)の誘電率は低く、親油性は良好であるから、図4に示すように、水粒子3(脱油媒体)は油粒子2に直ちに付着するが、水粒子3(脱油媒体)の量が少ないので、油粒子2を包み込んで、スケール表面1から分離する脱油が充分に進行しない。結局、乾燥蒸気の蒸気飽和度が低ければ、脱油量は少ない。   If the steam saturation of the dry steam is low in the deoiling treatment device, the dielectric constant of the water particles (deoiling medium) is low and the oleophilicity is good. Therefore, as shown in FIG. The medium) immediately adheres to the oil particles 2, but since the amount of the water particles 3 (deoiled medium) is small, the deoiling that encloses the oil particles 2 and separates from the scale surface 1 does not proceed sufficiently. After all, if the steam saturation of dry steam is low, the amount of deoiling is small.

一方、脱油処理装置内において乾燥蒸気の蒸気飽和度が高ければ、図5に示すように、水粒子3(脱油媒体)は充分な量存在することになるが、水粒子3の誘電率が高くなり親油性が低下しているので、水粒子3は、脱油媒体として充分に機能せず、むしろ、水粒子3同士が凝集してしまい、脱油が進行しない。結局、乾燥蒸気の蒸気飽和度が高ければ、脱油は進行しない。   On the other hand, if the steam saturation of the dry steam is high in the deoiling treatment apparatus, a sufficient amount of water particles 3 (deoiling medium) are present as shown in FIG. Therefore, the water particles 3 do not function sufficiently as a deoiling medium. Rather, the water particles 3 aggregate together and deoiling does not proceed. After all, if the steam saturation of the dry steam is high, deoiling does not proceed.

したがって、乾燥蒸気を用いる含油スケールの脱油においては、相反する二つの要因、即ち、スケール表面から油分を分離する機能を担う水粒子(脱油媒体)の量と親油性(誘電率)との兼ね合いで、乾燥蒸気の脱油能力を最大化する蒸気飽和度の最適範囲が存在することになる。   Therefore, in deoiling of oil-impregnated scale using dry steam, there are two contradictory factors: the amount of water particles (deoiling medium) responsible for separating oil from the scale surface and lipophilicity (dielectric constant). In balance, there will be an optimum range of steam saturation that maximizes the deoiling capability of the dry steam.

本発明は、上記上記飽和度の最適範囲を見出した点にも特徴があるものである。   The present invention is also characterized in that the optimum range of the above-mentioned saturation is found.

次に、本発明の脱油装置について説明する。図7に、本発明の脱油装置の一態様を示す。図7において、蒸気発生装置4で発生した蒸気を、蒸気過熱装置5へ送給し、油が熱分解する温度以下の温度(好ましくは100℃以上220℃以下)に過熱する。この時、過熱した乾燥蒸気の蒸気飽和度を、適宜、例えば、好ましくは20〜80%に、より好ましくは、40〜60%に調整する。   Next, the deoiling device of the present invention will be described. In FIG. 7, the one aspect | mode of the deoiling apparatus of this invention is shown. In FIG. 7, the steam generated by the steam generator 4 is supplied to the steam superheater 5 and superheated to a temperature not higher than the temperature at which the oil is thermally decomposed (preferably 100 ° C. or higher and 220 ° C. or lower). At this time, the steam saturation of the overheated dry steam is appropriately adjusted to, for example, preferably 20 to 80%, and more preferably 40 to 60%.

蒸気飽和度を適宜調整した過熱乾燥蒸気を、含油スケール(例えば、含油量0.5%以上のスケール)を収容した脱油処理装置6に導入し脱油を行う。   The superheated dry steam whose vapor saturation is appropriately adjusted is introduced into a deoiling treatment apparatus 6 containing an oil impregnated scale (for example, a scale having an oil content of 0.5% or more) to perform deoiling.

脱油処理装置6は、バッチ式及び流通式のいずれの脱油処理装置でもよいが、流通式の方が、図6に示すような脱油機構、即ち、スケール表面1に付着している油粒子3を水粒子3(脱油媒体)で迅速に包み込み、スケール表面1から、迅速に分離し運び去る脱油機構により、脱油を、より効率よく充分に行うことができる。   The deoiling treatment device 6 may be either a batch type or a flow type deoiling treatment device, but the flow type is a deoiling mechanism as shown in FIG. 6, that is, the oil adhering to the scale surface 1. Deoiling can be performed more efficiently and sufficiently by a deoiling mechanism that quickly envelops the particles 3 with water particles 3 (deoiling medium) and quickly separates them from the scale surface 1 and carries them away.

図8に、流通式脱硫処理装置の一態様を示す。含油スケールは、その所定量が、スケール装入口13から連続的に装入され、スクリュー9の回転に伴い、脱油処理装置内を、攪拌されつつスケール排出口14に向かって移動する。   FIG. 8 shows one mode of a flow-type desulfurization processing apparatus. A predetermined amount of the oil-impregnated scale is continuously charged from the scale charging inlet 13, and moves toward the scale discharge port 14 while being stirred in the deoiling processing device as the screw 9 rotates.

この間、含油スケールは、蒸気送給スクリュー軸12から送給され、蒸気導入口11から脱油処理装置内に連続的に導入される乾燥蒸気に曝されて脱油が進行する。   During this time, the oil-impregnated scale is fed from the steam feed screw shaft 12 and exposed to the dry steam continuously introduced from the steam inlet 11 into the deoiling processing apparatus, and deoiling proceeds.

脱油機能を果たした含油蒸気は、含油蒸気導出口15から、微粒のスケールと分離するために設けたフィルター10を経て、脱油処理装置の外に導出される。   The oil-impregnated steam that has achieved the deoiling function is led out of the oil-removing treatment apparatus from the oil-impregnated steam outlet 15 through the filter 10 provided for separation from the fine scale.

脱油処理装置から導出された含油蒸気は、図7に示すように、蒸気冷却装置7を経て油分離回収装置8に送給され、そこで、油が分離回収される。なお、この油は、燃料等としてリサイクルされる。   As shown in FIG. 7, the oil-impregnated steam derived from the deoiling processing apparatus is sent to the oil separation / recovery device 8 via the steam cooling device 7, where the oil is separated and recovered. This oil is recycled as fuel or the like.

油分が表面から分離、除去されたスケールは、FeOやFe23が主成分で、全Fe量(表1中、T−Fe)が約70%に達するものである(表1、参照)ので、製鉄原料や、その他の鉄原料、例えば、フェライト製造用原料としても利用できる可能性がある。 The scale from which oil is separated and removed from the surface is composed mainly of FeO and Fe 2 O 3 , and the total Fe amount (T-Fe in Table 1) reaches about 70% (see Table 1). Therefore, there is a possibility that it can be used as an iron-making raw material or other iron raw materials, for example, a raw material for producing ferrite.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
含油量1.80%のスケール(表1中、スケールB3)100gをバッチ式脱油処理装置内に収容し、170℃に過熱した過熱蒸気(蒸気飽和度40%)を同装置内に送給し、1時間保持した。
Example 1
100g of oil content 1.80% scale (scale B3 in Table 1) is stored in a batch-type deoiling equipment, and superheated steam (steam saturation 40%) heated to 170 ° C is fed into the equipment. And held for 1 hour.

その結果、含油量は0.2%に低減した。脱油後のスケールは、Aスケールとしてリサイクルが可能なものである。   As a result, the oil content was reduced to 0.2%. The scale after deoiling can be recycled as A scale.

(実施例2)
図8に示す流通式脱油処理装置を用いて、含油量1.40%のスケール(表1中、スケールB2)の脱油を行った。乾燥蒸気としては、過熱温度130〜220℃、蒸気飽和度40〜60%の乾燥蒸気を用いた。
(Example 2)
Using a flow-type deoiling treatment apparatus shown in FIG. 8, a scale having an oil content of 1.40% (scale B2 in Table 1) was deoiled. As the dry steam, dry steam having a superheating temperature of 130 to 220 ° C. and a steam saturation of 40 to 60% was used.

送給する乾燥蒸気量、及び、スケール滞留時間を適宜調整して、脱油率を調査した。   The amount of dry steam to be fed and the scale residence time were adjusted as appropriate to investigate the oil removal rate.

その結果、含油量が0.30%のスケールを、スケール排出口から連続的に得ることができた。脱油後のスケールは、Aスケールとしてリサイクルが可能なものである。   As a result, a scale having an oil content of 0.30% could be continuously obtained from the scale outlet. The scale after deoiling can be recycled as A scale.

前述したように、本発明によれば、製鉄所等で発生する含油スケールから、油分を、熱分解させることなく、効率よく脱油することができる。   As described above, according to the present invention, oil can be efficiently deoiled from an oil-impregnated scale generated at a steel mill or the like without causing thermal decomposition.

このように、本発明によれば、製鉄所等で発生する含油スケールから、油分を、環境問題を起こすことなく、安全かつ効率よく脱油することができるし、また、含油スケールから油分を回収して、リサイクルすることができる。   As described above, according to the present invention, oil can be safely and efficiently deoiled from an oil-impregnated scale generated at a steel mill or the like without causing environmental problems, and the oil can be recovered from the oil-impregnated scale. And can be recycled.

したがって、本発明は、産業上かつ環境保護上の利用可能性の大きいものである。   Therefore, the present invention has great industrial and environmental protection applicability.

乾燥蒸気の蒸気飽和度と含油スケールの減量率の関係を示す図である。It is a figure which shows the relationship between the steam saturation of dry steam, and the weight loss rate of an oil-containing scale. 乾燥蒸気の過熱温度と含油スケールの減量率の関係を示す図である。It is a figure which shows the relationship between the superheat temperature of dry steam, and the weight loss rate of an oil-containing scale. 乾燥蒸気の存在下における脱油機構を模式的に示す図である。It is a figure which shows typically the deoiling mechanism in presence of dry steam. 乾燥蒸気の存在下でも、図3に示す脱油機構が機能しない脱油態様を示す図である。FIG. 4 is a diagram showing a deoiling mode in which the deoiling mechanism shown in FIG. 3 does not function even in the presence of dry steam. 乾燥蒸気の存在下でも、図3に示す脱油機構が機能しない別の脱油態様を示す図である。FIG. 4 is a diagram showing another deoiling mode in which the deoiling mechanism shown in FIG. 3 does not function even in the presence of dry steam. 乾燥蒸気の気流中における脱油機構を模式的に示す図である。It is a figure which shows typically the deoiling mechanism in the airflow of dry steam. 本発明の脱油装置の一態様を示す図である。It is a figure which shows the one aspect | mode of the deoiling apparatus of this invention. 脱油処理装置の一態様を示す図である。It is a figure which shows the one aspect | mode of a deoiling processing apparatus.

符号の説明Explanation of symbols

1 スケール表面
2 油粒子
3 水粒子
4 蒸気発生装置
5 蒸気過熱装置
6 脱油処理装置
7 蒸気冷却装置
8 油分離回収装置
9 スクリュー
10 フィルター
11 蒸気導入口
12 蒸気送給スクリュー軸
13 スケール装入口
14 スケール排出口
15 含油蒸気導出口
DESCRIPTION OF SYMBOLS 1 Scale surface 2 Oil particle 3 Water particle 4 Steam generator 5 Steam superheater 6 Deoiling processing device 7 Steam cooling device 8 Oil separation and recovery device 9 Screw 10 Filter 11 Steam inlet 12 Steam feed screw shaft 13 Scale inlet 14 Scale outlet 15 Oil-impregnated steam outlet

Claims (9)

油が熱分解する温度以下の温度に過熱した乾燥蒸気を含油スケールに接触させることを特徴とする含油スケールの脱油方法。   A method for deoiling an oil-impregnated scale, comprising bringing dry steam heated to a temperature below the temperature at which oil is thermally decomposed into contact with the oil-impregnated scale. 前記油が熱分解する温度以下の温度が220℃以下の温度であることを特徴とする請求項1に記載の含油スケールの脱油方法。   2. The oil-retaining scale deoiling method according to claim 1, wherein a temperature not higher than a temperature at which the oil is thermally decomposed is 220 ° C. or lower. 前記油が熱分解する温度以下の温度が100℃以上の温度であることを特徴とする請求項1又は2に記載の含油スケールの脱油方法。   The method of deoiling an oil-containing scale according to claim 1 or 2, wherein a temperature not higher than a temperature at which the oil is thermally decomposed is a temperature of 100 ° C or higher. 前記乾燥蒸気の蒸気飽和度が20〜80%であることを特徴とする請求項1〜3のいずれか1項に記載の含油スケールの脱油方法。   The method for deoiling an oil-containing scale according to any one of claims 1 to 3, wherein the dry steam has a vapor saturation of 20 to 80%. 前記含油スケールが含油量0.5%以上のスケールであることを特徴とする請求項1〜4のいずれか1項に記載の含油スケールの脱油方法。   The oil-impregnated scale according to any one of claims 1 to 4, wherein the oil-impregnated scale is a scale having an oil content of 0.5% or more. 前記乾燥蒸気の気流を含油スケールに接触させることを特徴とする請求項1〜5のいずれか1項に記載の含油スケールの脱油方法。   The method for deoiling an oil-containing scale according to any one of claims 1 to 5, wherein the air flow of the dry steam is brought into contact with the oil-containing scale. 油が熱分解する温度以下の温度に過熱した乾燥蒸気を含油スケールに接触させて脱油を行う脱油装置であって、少なくとも、
(a)乾燥蒸気を、油が熱分解する温度以下の温度に過熱する蒸気過熱装置、及び、
(b)上記蒸気過熱装置から過熱乾燥蒸気を導入して含油スケールに接触させ、脱油を行う脱油処理装置、
を備えることを特徴とする含油スケールの脱油装置。
A deoiling device that performs deoiling by bringing dry steam superheated to a temperature below the temperature at which oil is thermally decomposed into contact with an oil-containing scale,
(A) a steam superheater that superheats dry steam to a temperature below the temperature at which oil is thermally decomposed; and
(B) a deoiling treatment apparatus for deoiling by introducing superheated dry steam from the steam superheater and bringing it into contact with the oil-impregnated scale;
An oil-retaining scale deoiling device comprising:
請求項7に記載の含油スケールの脱油装置において、更に、
(c)脱油処理装置から導出する含油蒸気から油分を分離回収する油分離回収装置、
を備えることを特徴とする含油スケールの脱油装置。
The oil-retaining scale deoiling device according to claim 7, further comprising:
(C) an oil separation and recovery device that separates and recovers oil from the oil-containing steam derived from the deoiling treatment device;
An oil-retaining scale deoiling device comprising:
請求項7又は8に記載の含油スケールの脱油装置において、脱油処理装置に、含油スケールを連続的に送給、排出するとともに、蒸気過熱装置から過熱乾燥蒸気を連続的に導入、導出することを特徴とする含油スケールの脱油装置。   9. The oil-retaining scale deoiling device according to claim 7 or 8, wherein the oil-retaining scale is continuously fed to and discharged from the deoiling treatment device, and superheated dry steam is continuously introduced and led out from the steam superheating device. An oil-retaining scale deoiling device.
JP2004199245A 2004-07-06 2004-07-06 Oil-retaining scale deoiling method and deoiling apparatus Expired - Lifetime JP4317495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199245A JP4317495B2 (en) 2004-07-06 2004-07-06 Oil-retaining scale deoiling method and deoiling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199245A JP4317495B2 (en) 2004-07-06 2004-07-06 Oil-retaining scale deoiling method and deoiling apparatus

Publications (2)

Publication Number Publication Date
JP2006022346A true JP2006022346A (en) 2006-01-26
JP4317495B2 JP4317495B2 (en) 2009-08-19

Family

ID=35795835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199245A Expired - Lifetime JP4317495B2 (en) 2004-07-06 2004-07-06 Oil-retaining scale deoiling method and deoiling apparatus

Country Status (1)

Country Link
JP (1) JP4317495B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012326A (en) * 2009-07-06 2011-01-20 Morikawa Sangyo Kk Method for cleaning and drying machining chip and method for reusing casting material with the use of treated machining chip
JP6072335B1 (en) * 2016-06-10 2017-02-01 環境エネルギー株式会社 Metal scrap processing equipment
JP6133485B1 (en) * 2016-11-22 2017-05-24 環境エネルギー株式会社 Metal scrap processing equipment
WO2017213159A1 (en) * 2016-06-10 2017-12-14 環境エネルギー株式会社 Scrap metal processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012326A (en) * 2009-07-06 2011-01-20 Morikawa Sangyo Kk Method for cleaning and drying machining chip and method for reusing casting material with the use of treated machining chip
JP6072335B1 (en) * 2016-06-10 2017-02-01 環境エネルギー株式会社 Metal scrap processing equipment
WO2017213159A1 (en) * 2016-06-10 2017-12-14 環境エネルギー株式会社 Scrap metal processing device
JP6133485B1 (en) * 2016-11-22 2017-05-24 環境エネルギー株式会社 Metal scrap processing equipment

Also Published As

Publication number Publication date
JP4317495B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4199758B2 (en) Degreasing and recycling equipment for mixed and mixed waste
US3997359A (en) Reclamation of components from grinding swarf
US3865629A (en) Reclamation of components from grinding swarf
JP3742097B1 (en) Waste disposal method including waste plastics and organic waste and waste recycling system
JP4317495B2 (en) Oil-retaining scale deoiling method and deoiling apparatus
JP2007268424A (en) Separation method of pcb-contaminated material
US7531046B2 (en) Process for de-oiling steelmaking sludges and wastewater streams
RU2569133C2 (en) Method for deoiling magnetoactive solid wastes
JP6447323B2 (en) How to recycle roll waste
JP6225926B2 (en) Method for treating oil-containing dust sludge and method for producing steelmaking raw material
JP2008178791A (en) Method of and apparatus for treating waste fluorescent tube
JP2007301416A (en) Treatment method for pcb waste and its treatment facility
JP6267091B2 (en) Waste treatment furnace operating method and waste oil or recycled oil treatment apparatus
Ma In-process separation of mill scale from oil at steel hot rolling mills
JP2000051657A (en) Treatment of residual substance and smoky gas
JP2017020073A (en) Method for producing iron source raw material using oil-containing dust sludge, and processing method for oil-containing dust sludge
EP4172291B1 (en) Treatment of mill scale containing hydrocarbons
US4268414A (en) Method for removing and treating waste catalyst
US20120097615A1 (en) Method and Apparatus for De-Oiling Magnetic Solid Waste
JP2022126337A (en) Method for recovering powder
RU2521165C2 (en) Removal of oil from oiled iron/steel chips and scale of rolling process slimes
JP2011178971A (en) Method for removing malodorous component in oil
Fu et al. Separation processes for recovering alloy steels from grinding sludge: supercritical carbon dioxide extraction and aqueous cleaning
JP2005230623A (en) Method for pretreating fly ash
JP3100746B2 (en) Effective utilization method of nickel-oiled waste catalyst and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R151 Written notification of patent or utility model registration

Ref document number: 4317495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350