JP2006021996A - Conjugated substance of substituted hydroxypyridine compound - Google Patents

Conjugated substance of substituted hydroxypyridine compound Download PDF

Info

Publication number
JP2006021996A
JP2006021996A JP2002195341A JP2002195341A JP2006021996A JP 2006021996 A JP2006021996 A JP 2006021996A JP 2002195341 A JP2002195341 A JP 2002195341A JP 2002195341 A JP2002195341 A JP 2002195341A JP 2006021996 A JP2006021996 A JP 2006021996A
Authority
JP
Japan
Prior art keywords
compound
physiologically acceptable
chlorophenoxy
acceptable salt
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195341A
Other languages
Japanese (ja)
Inventor
Yasuhiro Teranishi
康博 寺西
Toshiya Nakamura
俊哉 中村
Tomohiro Niko
智浩 児子
Naohiro Nishimura
直浩 西村
Kaori Kondo
かおり 近藤
Hiroshi Toda
洋志 戸田
Masafumi Mise
雅史 三瀬
Yasuyuki Mizuki
康之 水木
Satoshi Matsumoto
松本  聡
Mari Itou
眞里 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Pharma Co Ltd
Original Assignee
Sumitomo Dainippon Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Dainippon Pharma Co Ltd filed Critical Sumitomo Dainippon Pharma Co Ltd
Priority to JP2002195341A priority Critical patent/JP2006021996A/en
Priority to AU2003246252A priority patent/AU2003246252A1/en
Priority to PCT/JP2003/008462 priority patent/WO2004005259A1/en
Priority to TW092118415A priority patent/TW200404540A/en
Publication of JP2006021996A publication Critical patent/JP2006021996A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/02Heterocyclic radicals containing only nitrogen as ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/048Pyridine radicals

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conjugated substance of a new substituted hydroxypyridine compound having a type IV phosphodiesterase inhibitory activity, or its physiologically acceptable salts. <P>SOLUTION: This medicine of the type IV phosphodiesterase inhibitory agent contains the conjugated substance of a compound expressed by formula (I) or its physiologically acceptable salts as an active ingredient. The incorporated substance is a special conjugated substance having a pharmacological activity by itself and characterized by existing in a target tissue of its efficacy in a certain amount, also being distributed in a tissue associated with its adverse effect in an extremely small amount, supplying the unchanged substance continuously by being dissociated in the target tissue and having a high solubility. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、IV型ホスホジエステラーゼ(以下、PDEIVと記載することもある。)阻害作用を有する新規な置換ヒドロキシピリジン化合物の抱合体又はその生理的に許容される塩に関する。
【0002】
【従来の技術】
PDEIVは気管支平滑筋、好酸球をはじめとする炎症性細胞に広く分布し、サイクリックAMP(以下、cAMPと記載することもある。)の分解を触媒する酵素である。PDEIVを阻害することは、気管支平滑筋の収縮を抑制し、炎症性細胞の活性化を抑制することにつながることが広く認められている[Current Medicinal Chemistry; 2巻, 561-572頁(1995年)]。
【0003】
PDEIV阻害作用を有する代表的化合物としては例えば、下記式で示されるロリプラム(US4193926号公報)、RP-73401(WO9212961号公報)、SB-207499(WO9319749号公報)が挙げられる。
【0004】
【化3】

Figure 2006021996
【0005】
また、WO00/20391号公報には下記式(A)で示される2,3−ジ置換ピリジン誘導体がPDEIV阻害作用を有することが記載されている。
【0006】
【化4】
Figure 2006021996
【0007】
(式中、Aは酸素原子,硫黄原子,CHR1又はNR2を意味し、R1及びR2は水素原子又は低級アルキル基を意味し、
1及びX2は同一又は異なって、水素原子,ハロゲン原子,ニトロ基,シアノ基,ヒドロキシ基,低級アルキル基,ヒドロキシ置換低級アルキル基,ハロゲノ低級アルキル基,低級アルコキシ基,シクロ低級アルコキシ基,ヒドロキシ置換低級アルコキシ基,ハロゲノ低級アルコキシ基,低級アルコキシ置換低級アルコキシ基,カルボキシル置換低級アルコキシ基,低級アルコキシカルボニル置換低級アルコキシ基,カルボキシル基,低級アルコキシカルボニル基,モノ若しくはジ低級アルキルアミノカルボニル基,低級アシル基,低級アシルオキシ基,アミノ基,低級アシルアミノ基,カルバモイル基,5−テトラゾリル基又は生体内でヒドロキシ基に変換しうる基を意味し、
1は水素原子又は低級アルキル基を意味し、
1及びZ2は同一又は異なって、水素原子,ハロゲン原子,シアノ基,ヒドロキシ基,低級アルキル基,ヒドロキシ置換低級アルキル基,ハロゲノ低級アルキル基,低級アルコキシ基,シクロ低級アルコキシ基,ヒドロキシ置換低級アルコキシ基,ハロゲノ低級アルコキシ基,低級アルコキシ置換低級アルコキシ基,カルボキシル置換低級アルコキシ基,低級アルコキシカルボニル置換低級アルコキシ基,カルボキシル基,低級アルコキシカルボニル基,モノ若しくはジ低級アルキルアミノカルボニル基,低級アシルオキシ基,アミノ基,モノ若しくはジ低級アルキルアミノ基,低級アシルアミノ基,カルバモイル基,低級アルコキシカルボニルアミノ基,低級アルキルスルホニルアミノ,カルバモイル基,5−テトラゾリル基又は生体内でヒドロキシ基に変換しうる基を意味し、
nは2〜4の整数を意味する)
【0008】
一方、一般的に、投与された薬物は消化管で吸収され、主として肝臓で薬物代謝酵素により抱合等の化学変化を受けて、尿中及び胆汁中に排泄される[Mulder, G.J. (1990年) Conjugation Reactions in Drug metabolism, London:Taylor and Francis.]。即ち、投与された薬物の抱合体は、薬効に寄与することなく排泄されると考えられている。
【0009】
【発明が解決しようとする課題及びその解決手段】
本発明者は、抱合体は一般に、薬効に寄与することなく排泄されると考えられているにもかかわらず、ある種の抱合体がそれ自体で薬理活性を有する特殊な抱合体化合物であることを見出し、本発明を完成するに至った。
【0010】
本発明は、下記式(I)で表される化合物の抱合体又はその生理的に許容される塩に関する。
【化5】
Figure 2006021996
【0011】
本明細書において、「式(I)で表される化合物の抱合体」とは式(I)で表される化合物にグルクロン酸残基又は硫酸残基が結合した化合物を意味し、具体的には式(I)で表される化合物の、ヒドロキシピリジン環におけるヒドロキシ基の水素原子がグルクロン酸残基で置換された化合物又は硫酸残基で置換された化合物、ヒドロキシピリジン環における窒素原子にグルクロン酸残基が結合した化合物を意味し、式(I)で表される化合物又は他の化合物を原料として、化学的に変換を行うことにより製造して得た化合物のみならず、式(I)で表される化合物が生体内で薬物代謝酵素により抱合されて生成した化合物も含む。
【0012】
また、本明細書において「グルクロン酸残基」とはグルクロン酸の1位炭素で結合した基を意味し、「硫酸残基」とは硫酸の硫黄原子で結合した基を意味する。
【0013】
生理的に許容される塩とは生理的に許容される酸付加塩、アルカリ金属塩、アルカリ土類金属塩又は有機塩基との塩を意味する。好ましくは、アルカリ金属塩、アルカリ土類金属塩又は有機塩基との塩である。具体的には、酸付加塩としては、例えば塩酸塩,臭化水素酸塩,ヨウ化水素酸塩,硫酸塩,リン酸塩等の無機酸塩及びシュウ酸塩,マレイン酸塩,フマル酸塩,マロン酸塩,乳酸塩,リンゴ酸塩,クエン酸塩,酒石酸塩,安息香酸塩,メタンスルホン酸塩,p−トルエンスルホン酸塩,グルコン酸塩等の有機酸塩が挙げられる。アルカリ金属塩としては、例えば、ナトリウム塩,カリウム塩等の無機アルカリ塩が挙げられ、アルカリ土類金属塩としては、例えば、カルシウム塩,マグネシウム塩が挙げられ、また、有機塩基との塩としては、例えば、アンモニア,メチルアミン,トリエチルアミン,トリブチルアミン,ジイソプロピルエチルアミン,N−メチルモルホリン,ジシクロヘキシルアミンとの塩が挙げられる。
【0014】
本明細書においては、式(I)で表される化合物の抱合体を、本発明の抱合体と記載することもある。また、下記式(I)で表される化合物の抱合体又はその生理的に許容される塩を、本発明の化合物と記載することもある。
【0015】
式(I)で表される化合物の抱合体又はその生理的に許容される塩は、水和物及び/又は溶媒和物の形で存在することもあるので、これらの水和物、溶媒和物もまた本発明の化合物に包含される。
【0016】
また、式(I)で表される化合物の抱合体の中には不斉炭素原子を有するものがあるが、これらの立体異性体及びそれらの混合物もまた本発明の化合物に包含される。
【0017】
好適な化合物は下記式(II)で表される化合物又はその生理的に許容される塩である。
【化6】
Figure 2006021996
(式中、Zはグルクロン酸残基又は硫酸残基を意味する)
【0018】
本発明の化合物の具体例としては、次の化合物又はその生理的に許容される塩が挙げられる。
硫酸水素4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル、
1−O−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル]−β−D−グルコピランウロン酸、
1−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−オキシド−1−ピリジニオ]−1−デオキシ−β−D−グルコピラン酸
【0019】
本発明の化合物は、式(I)で表される化合物又は他の化合物を原料として、化学的に変換をすることにより製造することができる。また、式(I)で表される化合物を生体内に投与した後、式(I)で表される化合物が生体内で薬物代謝酵素により抱合されることによっても生成される。
【0020】
式(I)で表される化合物は例えば、WO00/20391号公報の実施例31に記載の方法により、製造することができる。
【0021】
一般的に抱合体は、薬効に寄与することなく排泄されると考えられているので、式(I)で表される化合物の抱合体が、薬理活性を有していることは、予見し得ないことであったが、本発明者は式(I)で表される化合物の抱合体について薬理試験を行ったところ、それ自体で薬理活性を有する特殊な抱合体であることを見出した。
【0022】
さらに、式(I)で表される化合物を標識し、これを用いて薬物動態試験を実施して、式(I)で表される化合物とその抱合体の各種組織への分布を検討したところ、意外にも、PDEIV阻害薬の標的組織の一つである肺に、抱合体が持続的に相当量存在していることを究明した。一般に、排泄されやすい性質を有する抱合体が、標的組織に大量に分布し、しかも持続的に存在することは、本発明の化合物の特徴であり、この点においても本発明の化合物は特殊な抱合体である。
【0023】
また、本発明の化合物は脳への分布が極めて少量であることも究明した。従って、本発明の化合物は、PDEIV阻害剤に一般に広く認められている副作用である嘔吐誘発作用が極めて弱いという特徴も有している。この特徴はまた、式(I)で表される化合物を生体内に投与した場合に、式(I)で表される化合物が抱合体に速やかに変換されることにより、脳への分布が著しく抑制され、結果として、式(I)で表される化合物が、PDEIV阻害剤に一般に広く認められている副作用である、嘔吐誘発作用が極めて弱いという特徴を有することにつながると考える。
【0024】
本発明の化合物は薬効の標的組織に相当量存在し、かつ副作用に関与する組織には極めて少量しか分布しないという特徴を有しているので、本発明の化合物はターゲッティング医薬として利用できる。本発明の化合物からなる医薬は、標的組織に特徴的に分布して効率的に薬効を発現することができ、かつ副作用を回避することができる、優れたターゲッティング医薬である。
【0025】
さらに本発明の抱合体、例えば硫酸水素4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル(以下、硫酸抱合体と記載することもある。)は、標的組織においてそれ自身で薬効に寄与しているが、1−O−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル]−β−D−グルコピランウロン酸(以下、グルクロン酸抱合体と記載することもある。)は、標的組織の一つである肺において、式(I)で表される化合物へ脱抱合されて、式(I)で表される化合物(以下、未変化体と記載することもある。)の供給源となっていることを究明した。一般に、排泄されやすい性質を有する抱合体が、標的組織において脱抱合されて未変化体の供給源となることは、本発明の化合物の特徴であり、この点においても本発明の化合物は特殊な抱合体である。
【0026】
本発明の化合物は標的組織に分布し、標的組織において脱抱合されて未変化体を持続的に供給するという特徴を有しているので、本発明の化合物は薬理活性の持続時間が延長されるという効果があり、持続性医薬として利用できる。本発明の化合物からなる医薬は、優れた持続性医薬である。
【0027】
さらに本発明の化合物は、式(I)で表される化合物と比較して溶解度が高いという特徴を有しているので、例えば注射剤,デポ剤等の液体製剤、吸入剤等の経肺投与製剤、点鼻剤等の経鼻投与製剤の製造が容易であるという利点を有している。
【0028】
【薬理試験】
本発明の代表的化合物についての薬理試験結果および薬理作用について説明する。
【0029】
試験例1:PDEIVの阻害活性試験
モルモットPDEIV阻害活性の試験はモルモット腹腔より分離した好酸球を用いる方法(Souness, J.E.ら、Biochem. Pharmacol.42巻, 937頁(1991年))に基づいて実施した。すなわち、5x107個の細胞に10mLのホモゲナイジング・バッファー(組成:20mMトリス−塩酸バッファー(pH7.5),2mM塩化マグネシウム,1mMジチオスレイロール,5mMエチレンジアミン四酢酸・ジナトリウム,250mMシュクロース,20μMp−トシル−l−リジン−クロロメチルケトン,10μg/mLロイペプチン)を加え、遠心する。残渣に10mLのソルビライジング・バッファー(上記のホモゲナイジング・バッファーにデオキシコール酸ナトリウム(終濃度0.5%),塩化ナトリウム(終濃度100mM)を添加)を加え、再遠心する。上清をモルカットII(日本ミリポアリミテッド社製)を用いて限外濾過し、膜上の画分を10mLのホモゲナイジング・バッファーの添加により回収し、酵素標本とする。酵素に対する阻害活性は、基質であるcAMP(ナカライテスク社製)の上述酵素画分による加水分解率に対して、被験化合物を添加した際の抑制率を溶媒添加群と比較して算出することにより求めた。また被験化合物の濃度・作用曲線より、50%抑制濃度IC50を求めた。
【0030】
ヒトPDEIV阻害活性の試験は、健常者末梢血から、比重勾配遠心法とCD16マイクロビーズを用いたMACS(magnetic cell separation system) negative deletion 法により分離した好酸球を用いて、モルモット好酸球を用いる方法に準じて実施した。その結果を表1に示す。
【0031】
【表1】
Figure 2006021996
【0032】
表1から明らかなように、本発明の化合物は、モルモット好酸球およびヒト好酸球より分離精製したPDEIVに対し、強い阻害活性が認められた。
【0033】
試験例2: in vitro 抗原誘発気管支収縮抑制作用
ハートレイ(Hartley)系雄性モルモットを卵白アルブミン(シグマ社製)を腹腔内及び皮下投与することにより能動的に感作した。数週間後、気管を摘出し、常法に従い、ジグザグ標本を作製した。標本は37℃に保温したマグヌス管に1gの張力を負荷して懸垂し、FDピックアップおよびひずみ圧力アンプを介し、ペンレコーダーに接続した。標本は0.5-1時間の安定化の後、被験化合物を添加して、15分処置した。さらに抗原1x10-5g/Lを添加して収縮を惹起し、レコーダーに記録された収縮曲線より、初期値に対する収縮高をノギスで計測し、溶媒添加群に対する被験化合物添加群の抑制率を算定し、収縮抑制作用とした。その結果を表2に示す。
【0034】
【表2】
Figure 2006021996
【0035】
表2から明らかなように、本発明の化合物は、in vitroモルモット抗原誘発気道収縮に対し、強い抑制作用を示した。
【0036】
試験例3:炎症細胞内 cAMP 上昇作用
健常者末梢血より好酸球を分離し、106個の細胞浮遊液に被検化合物を添加し、2時間培養した。そこへ、イソプロテレノールを添加し(終濃度1μM)さらに5分培養した。トリクロロ酢酸(終濃度6%)により反応を終了させた後、エーテルによりトリクロロ酢酸を除去後、反応液中のcAMP量をEIA 法により測定した。被検化合物添加群のcAMP量を、溶媒添加群における細胞内cAMP量からの増加量として、上昇作用を表した。
【0037】
【表3】
Figure 2006021996
【0038】
表3から明らかなように、本発明の化合物は、ヒト好酸球においてcAMP量上昇作用を示した。
【0039】
試験例4:マウス抗原誘発気道炎症抑制作用
マウスに卵白アルブミンを2回腹腔内投与し感作した。最終感作一週間後に卵白アルブミンを点鼻する事により気道炎症を誘発した。抗原誘発3日後に気管支肺胞洗浄(BAL)を行い、洗浄液中の炎症細胞数を計測した。被検化合物は抗原誘発30分後、1日後、2日後の3回点鼻投与した。
【0040】
被験化合物の抑制率(%)は溶媒のみ投与の対照群のBAL中細胞数と比較して算出することにより求めた。その結果を表4に示す。
【0041】
【表4】
Figure 2006021996
【0042】
表4から明らかなように、本発明の化合物は、マウス抗原誘発気道炎症作用に対し、強い抑制作用を示した。
【0043】
以上の薬理試験から明らかなように、本発明の化合物は、強いPDEIV阻害活性を有し、かつ優れた気管支拡張作用、炎症細胞内cAMP上昇作用を示した。
【0044】
【薬物動態試験】
本発明の代表的化合物についての薬物動態試験結果およびその特徴について説明する。
【0045】
試験例5:モルモットにおける 14 C標識化合物経口投与後の血漿、肺、気管中濃度
【0046】
(1)動物実験
被験動物としては、卵白アルブミンで感作後、4〜5週間経過したハートレイ(Hartley)系雄性モルモット(SLC-Std、7〜8週齢)を用いた。式(I)で表される化合物の3−クロロフェノキシ基が結合している炭素原子を14Cで標識した化合物(以下、標識化合物と記載することもある。)の0.5%トラガント懸濁液を調製し、10 mg/7.69 MBq/kgの用量で、モルモットに経口投与した。投与後、0.5、2、4時間にエーテル麻酔下、心臓より全採血を行った後、肺、気管、脳を採取した。例数は各時点とも3匹とした。
【0047】
(2)生体試料の処理
血液は、遠心分離後、一定量の血漿を液シンバイアルに採取し、シンチレーションカクテル:クリアゾル−I(ナカライテスク社製)を加え、放射能測定に供した。組織は、湿重量を測定後、その約4〜5倍量の精製水を加えてグラスホモジナイザーを用いてホモジナイズした。その一定量を液シンバイアルに採取し、組織可溶化剤ソルエン-350(Packard Instrument社製)約1mLを添加した。可溶化後、シンチレーションカクテル:ハイオニックフロー(Packard Instrument社製)を加え、放射能測定に供した。残りの血漿及び肺、気管ホモジネートは凍結保存し、代謝物の分析に供した。
【0048】
(3)高速液体クロマトグラフィー(以下、HPLCと記載することもある。)による代謝物の分析
【0049】
(3−1)血漿の前処理
一定量の血漿(1〜4mL)に対し4倍容のメタノール・アセトニトリル(1:1)混液を加え、振とう機で5分間撹拌した後、4℃、3000 rpmで10分間遠心分離した。上清を回収後、沈殿に再度同量のメタノール・アセトニトリル(1:1)混液を加え、同様に振とう撹拌後、遠心分離した。この2回分の除蛋白上清を合わせて、減圧下で乾固した。これを少量の0.1%ギ酸に再溶解して、HPLC分析の試料とした。
【0050】
(3−2)組織の前処理
一定量の肺または気管ホモジネート(肺:2〜8mL、気管:1.5 mL)に対し4倍容のメタノールを加え、振とう機で5分間撹拌した後、4℃、3000rpmで10分間遠心分離した。上清を回収後、沈殿に再度同量のメタノールを加え、同様に振とう撹拌後、遠心分離した。この2回分の上清を合わせて、減圧下で濃縮した。この濃縮液に対し4倍容のメタノール・アセトニトリル(1:1)混液を加え、振とう後に遠心分離し、この上清を減圧下で濃縮した。さらにこの濃縮液に対し4倍容のアセトニトリルを加え、振とう後に遠心分離し、この上清を減圧下で乾固した。これを少量の0.1%ギ酸に再溶解して、HPLC分析の試料とした。
【0051】
(3−3)HPLC分析
HPLCポンプは600E(Waters社製)を、カラムはCAPCELLPAK C18 UG-120 5μm(資生堂製、内径4.6×250 mm)を40℃で使用した。移動相はA液に5mMヘプタフルオロ酪酸水溶液を、B液にアセトニトリルを用い、流速1mL/minで、A液/B液の割合を注入後0−20−25分で73/27−63/37−0/100とするグラジエントを用いた。
【0052】
検出にはUV検出器およびフロー型放射能検出器FLO-ONE βA-515 (Packard Instrument社製)を用いた。放射能検出器において液体シンチレーターとしてウルチマフローMを2mL/minで使用した。また、放射能検出器からの溶出液を、フラクションコレクター222XL(Gilson社製)を用いて注入時から0.5分毎に分画し、必要に応じて各画分の放射能を測定した。試料中放射能に占める各放射能成分の割合は、検出された各放射能成分のピーク面積(または放射能)の総和に対する当該成分のピーク面積(または放射能)の比より算出した。
【0053】
(4)放射能の測定
生体試料及びHPLC溶出液は液体シンチレーションカウンター Tri-Carb 2700TRまたは2200CA (Packard Instrument社製)で測定した。
【0054】
(5)データ処理
血漿、組織中放射能濃度は、放射能測定値を投与薬物の比放射能で除することにより、式(I)で表される化合物の当量濃度に換算した。血漿、組織中の未変化体及び抱合体の濃度は、それぞれの試料中放射能濃度にHPLC分析により得られた当該成分の試料中放射能に占める割合を乗じて算出し、式(I)で表される化合物の当量濃度で表示した。数値は原則として、3例の平均値±標準誤差で示した。その結果を表5に示す。
【0055】
(6)結果
【0056】
【表5】
Figure 2006021996
【0057】
表5から明らかなように、式(I)で表される化合物をモルモットに経口投与後、血漿、肺及び気管中では、硫酸抱合体及びグルクロン酸抱合体が未変化体より高い濃度で、投与後4時間においても持続して存在することが判明した。また、未変化体の肺中濃度は、血漿中濃度を大きく上回り、標的組織において抱合体から生成した未変化体が寄与しているものと考えられた。さらに、脳中放射能濃度は、血漿中放射能濃度の1/10〜1/20以下であり、脳へ移行しにくいことが明らかになった。
【0058】
試験例6:グルクロン酸抱合体の肺における脱抱合反応試験
【0059】
(1)in vitro反応
モルモット肺を3倍量のホモジナイズバッファー(組成:50mMトリス塩酸緩衝液(pH7.4)、154mM 塩化カリウム、2mM エチレンジアミン四酢酸・二カリウム)でホモジナイズ後、800gで10分間遠心し上清を肺ホモジネートとした。実施例2で得られる化合物の3−クロロフェノキシ基が結合している炭素原子を14Cで標識した化合物(終濃度1.25、2.5、5、10、20および30μM)を肺ホモジネート(終濃度1mg/mL)と50mM 酢酸ナトリウム緩衝液(pH5)中で37℃、10分間反応させた。反応液にアセトニトリル1.5mLを添加し反応停止後、3000rpmで10分間遠心分離した。上清を減圧下で乾固後、HPLCの移動相に溶解してHPLC分析の試料とした。
【0060】
(2)HPLC分析
HPLCポンプはHP1090(Agilent Technologies社製)を、カラムはCAPCELLPAK C18 UG-120 5μm(資生堂製、内径4.6×250 mm)を40℃で使用した。移動相はA液に10mMギ酸アンモニウムを、B液にアセトニトリルを用い、流速1mL/minで、A液/B液の割合を注入後0−25−25.5−26−30分で70/30−45/55−0/100−70/30−70/30とするグラジエントを用いた。検出にはフロー型放射能検出器FLO-ONE β A-515 (Packard Instrument社製)を用いた。検出された各放射能成分のピーク面積の総和に対する未変化体のピーク面積の比より、未変化体生成量を算出した。
【0061】
(3)データ処理
未変化体生成量より脱抱合速度を算出し、基質として用いた14C標識グルクロン酸抱合体濃度に対してプロットした。非線形最小二乗法によりMichaelis-Menten式にフィッティングを行ない脱抱合クリアランスを算出した。
【0062】
(4)結果
モルモット肺ホモジネートにおいてグルクロン酸抱合体は脱抱合され未変化体へ変換された。そのときの脱抱合クリアランスは0.0332 mL/min/mg proteinであった。
【0063】
以上の薬物動態試験から明らかなように、本発明の化合物は、薬効の標的組織に相当量存在し、かつ副作用に関与する組織には極めて少量しか分布しないという特徴を有し、さらに標的組織において脱抱合されて未変化体を持続的に供給するという特徴を有している。
【0064】
本発明の化合物はPDEIV阻害薬として使用する場合、経口投与、非経口投与あるいは直腸内投与のいずれでもよい。経肺投与、経口腔粘膜投与、経鼻腔粘膜投与でもよい。投与量としては、投与方法、患者の症状、患者の年齢、処置形式(予防又は治療)等により異なるが、通常0.01〜100mg/日、好ましくは0.1〜50mg/日である。経肺投与の場合は通常30μg〜3000μg/回、好ましくは100μg〜1000μg/回を1日に1〜2回である。
【0065】
本発明の化合物は通常、製剤用担体と混合して調整した製剤の形で投与される。製剤用担体としては、製剤分野において常用され、かつ本発明の化合物と反応しない物質が用いられる。具体的には、例えば乳糖,ブドウ糖,マンニット,デキストリン,デンプン,白糖,メタケイ酸アルミン酸マグネシウム,合成ケイ酸アルミニウム,結晶セルロース,カルボキシメチルセルロースナトリウム,ヒドロキシプロピルデンプン,カルボキシメチルセルロースカルシウム,イオン交換樹脂,メチルセルロース,ゼラチン,アラビアゴム,ヒドロキシプロピルセルロース,低置換度ヒドロキシプロピルセルロース,ヒドロキシプロピルメチルセルロース,ポリビニルピロリドン,ポリビニルアルコール,軽質無水ケイ酸,ステアリン酸マグネシウム,タルク,カルボキシビニルポリマー,酸化チタン,ソルビタン脂肪酸エステル,ラウリル硫酸ナトリウム,グリセリン,脂肪酸グリセリンエステル,精製ラノリン,グリセロゼラチン,ポリソルベート,マクロゴール,植物油,ロウ,非イオン界面活性剤,プロピレングリコール,水等が挙げられる。
【0066】
剤型としては、錠剤,カプセル剤,顆粒剤,散剤,シロップ剤,懸濁剤,坐剤,ゲル剤,注射剤,デポ剤,吸入剤、点鼻剤等が挙げられる。これらの製剤は常法に従って調製される。なお、液体製剤にあっては、用時、水又は他の適当な媒体に溶解又は懸濁する形であってもよい。また錠剤,顆粒剤は周知の方法でコーティングしてもよい。注射剤の場合には、本発明の化合物を水に溶解させて調製されるが、必要に応じて等張化剤に溶解させてもよく、またpH調節剤,緩衝剤や保存剤を添加してもよい。
【0067】
また、これらの製剤は、必要に応じて抗アレルギー剤,ステロイド剤,β2刺激薬,抗コリン薬等と併用することも可能である。
【0068】
【実施例】
以下に実施例,参考例および製剤例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。本発明の化合物は生体内で薬物代謝酵素により抱合されることによっても生成される。化合物は元素分析、水素核磁気共鳴吸収スペクトル(1H−NMR)等により同定された。
【0069】
1H−NMRの記載においては、簡略化のために下記の略号を使用した。
J :結合定数、
s :一重線、
d :二重線、
dd :二重の二重線、
ddd:二重の二重の二重線、
t :三重線、
dt :二重の三重線、
m :多重線。
【0070】
実施例1: 硫酸4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジルナトリウムの製造
【0071】
【化7】
Figure 2006021996
【0072】
WO00/20391号公報(実施例31)に記載の方法で得た4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジノール(10.0g、28.0mmol)と水酸化ナトリウム(2.24g、56.0mmol)を水(50mL)に溶解した後、三酸化硫黄トリメチルアミン錯体(7.79g、56.0mmol)を加えて50℃で3時間加熱撹拌した。氷冷下でエタノール(50mL)を加えた後、濃塩酸(4.7mL、56mmol)をゆっくり加え、析出した結晶を濾取し、水(20mL)、エタノール(20mL)で洗浄した後、減圧乾燥し、硫酸水素4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル(11.8g、27.0mmol)を無色結晶として得た。
【0073】
これを水(300mL)とメタノール(100mL)に懸濁させ、炭酸水素ナトリウム(4.5g、54mmol)を加えて室温で20時間撹拌した後、減圧濃縮した。残渣を水(150mL)に溶解し、アセトニトリル(300mL)を加え、不溶物を濾過した後、減圧濃縮した。更にアセトニトリル(200mL)を加えて減圧濃縮した後、アセトン(300mL)を加え、不溶物を濾過した後、減圧濃縮した。残渣をエタノール(10mL)及びジイソプロピルエーテル(10mL)に溶解して濾過した後、エタノール(10mL)及びジイソプロピルエーテル(30mL)を加え、析出した結晶を濾取した。これをエタノール(17mL)に溶解し、ジイソプロピルエーテル(17mL)を加えて再結晶し、標記化合物(8.10g)を無色結晶として得た。融点185−191℃
【0074】
参考例1:2,3,4−トリ−O−アセチル−D−グルコピラン酸メチルの製造
【0075】
【化8】
Figure 2006021996
【0076】
1−ブロモ−2,3,4−トリ−O−アセチル−α−D−グルコピランウロン酸メチル(20.0g、50.4mmol)をアセトン(125mL)に溶解し、炭酸銀(15.3g、55.4mmol)及び水(0.9mL、50mmol)を加え、室温で16時間撹拌し、セライト濾過した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム/酢酸エチルで溶出、精製した後、ジイソプロピルエーテルより再結晶して標記化合物(13.8g)を無色結晶として得た。融点94−98℃
【0077】
実施例2:1−O−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル]−β−D−グルコピランウロン酸ナトリウムの製造
【0078】
【化9】
Figure 2006021996
【0079】
WO00/20391号公報(実施例31)に記載の方法で得た4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジノール(12.2g、34.2mmol)と参考例1で得た2,3,4−トリ−O−アセチル−D−グルコピラン酸メチル(11.4g、34.1mmol)とトリフェニルホスフィン(17.9g、68.2mmol)をテトラヒドロフラン(120mL)に溶解し、氷冷下でジイソプロピルアゾジカルボキシラート(6.9g、34.2mmol)を滴下した後、室温で24時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルクロマトグラフィーに付し、クロロホルム/酢酸エチルで溶出、精製し、2,3,4−トリ−O−アセチル−1−O−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル]−β−D−グルコピランウロン酸メチル(10.3g、15.3mmol)を油状物として得た。
【0080】
これをアセトン(255mL)に溶解し、1規定水酸化ナトリウム水溶液(99.5mL)を加え、室温で2時間撹拌した。析出した結晶を濾取し、アセトン(100mL)で洗浄した後、水/エタノールより再結晶し、標記化合物の1水和物(3.17g)を無色結晶として得た。融点234−238℃
【0081】
参考例2:1−O−ジエトキシホスフィノ−α−D−グルコピランウロン酸メチルの製造
【0082】
【化10】
Figure 2006021996
【0083】
参考例1で得た2,3,4−トリ−O−アセチル−D−グルコピランウロン酸メチル(2.00g、5.98mmol)を塩化メチレン(10mL)に溶解し、アルゴンガス気流下、-78℃で、ジイソプロピルエチルアミン(0.93g、7.20mmol)、続いてクロロ亜りん酸ジエチル(1.03g、6.58mmol)の塩化メチレン溶液(3mL)を10分間で滴下し、更に30分間撹拌した後、飽和炭酸水素ナトリウム水溶液(10mL)を加えて反応を終了した。反応溶液を減圧濃縮し、水(10mL)を加えた後、酢酸エチル(35mLx2)で抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル/n−ヘキサンで溶出、精製して標記化合物(1.83g)を無色油状物として得た。
【0084】
1H-NMR(200MHz, CDCl3, δppm) : 1.27(dt, 3H, J=1Hz, 7Hz), 1.28(dt, 3H, J=1Hz, 7Hz), 2.03(s, 3H), 2.04(s, 3H), 2.05(s, 3H), 3.74(s, 3H), 3.83-4.03(m, 4H), 4.53(dd, 1H, J=10Hz, 1Hz), 4.95(dd, 1H, J=10Hz, 4Hz), 5.20(dd, 1H, J=10Hz, 10Hz), 5.56(t, 1H, J=10Hz), 5.75(dd, 1H, J=8Hz, 4Hz)
【0085】
参考例3:1−O−(ジエトキシ−N−フェニル−ホスフォルイミドイル)−α−D−グルコピランウロン酸メチルの製造
【0086】
【化11】
Figure 2006021996
参考例2で得た1−O−ジエトキシホスフィノ−α−D−グルコピランウロン酸メチル(500mg、1.10mmol)をトルエン(1.2mL)に溶解し、Org. Synth., Coll. Vol. 3, p.710-711記載の方法に準じて合成したフェニルアジド(144mg、1.21mmol)のトルエン溶液(1.2mL)を加え、45〜50℃で2時間撹拌した。反応液を減圧濃縮して標記化合物(680mg)を微黄色油状物として得た。
【0087】
1H-NMR(200MHz, CDCl3, δppm) : 1.26-1.42(m, 6H), 1.97(s, 3H), 2.03(s, 6H), 3.74(s, 3H), 4.05-4.29(m, 4H), 4.51(d, 1H, J=10Hz), 4.96-5.06(m, 1H), 5.23(t, 1H, J=10Hz), 5.56(t, 1H, J=10Hz), 6.04-6.12(m, 1H), 6.72-6.87(m, 3H), 7.06-7.17(m, 2H)
【0088】
実施例3:1−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−オキシド−1−ピリジニオ]−1−デオキシ−β−D−グルコピラン酸ナトリウムの製造
【0089】
【化12】
Figure 2006021996
【0090】
WO00/20391号公報(実施例31)に記載の方法で得た4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジノール(100mg、0.28mmol)と参考例3で得た1−O−(ジエトキシ−N−フェニル−ホスフォルイミドイル)−α−D−グルコピランウロン酸メチル(306mg、0.56mmol)とモレキュラーシーブス4A(400mg)にプロピオニトリル(5mL)を加え、氷冷下でトリフルオロメタンスルホン酸トリメチルシリル(249mg、1.1mmol)を加えた後、室温で3日間撹拌した。反応液を濾過し、減圧濃縮した後、残渣を酢酸エチル(20mL)に溶解し、飽和炭酸水素ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム/メタノールで溶出、精製して、2,3,4−トリ−O−アセチル−1−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−オキシド−1−ピリジニオ]−1−デオキシ−β−D−グルコピラン酸メチル(26.3mg、0.039mmol)を淡褐色油状物として得た。
これをアセトン(0.66mL)に溶解し、氷冷下、1規定水酸化ナトリウム水溶液(0.25mL)を加えて2時間撹拌後、アセトン(1.34mL)を加えて3時間撹拌した。析出した油状物を分離し、アセトンを加えて粉末化させた後、濾取した。これをSep-Pak Vac 35cc C18-10g(Waters社製)に付し、メタノールで溶出、精製して、標記化合物(18.5mg)を無色粉末として得た。
【0091】
1H-NMR(400MHz, CDCl3, δppm) : 1.96-2.04(m, 2H), 2.56-2.62(m, 2H), 3.20-3.44(m, 5H), 4.04-4.10(m, 2H), 5.09(d, 1H, J=9Hz), 5.20(s, 1H), 5.52(s, 1H), 7.06(ddd, 1H, J=8Hz, 2Hz, 1Hz), 7.13-7.16(m, 2H), 7.21(t, 1H, J=2Hz), 7.22-7.25(m, 2H), 7.33(dd, 1H, J=6Hz, 2Hz), 7.412(t, 1H, J=8Hz), 7.54(dd, 1H, J=8Hz, 2Hz), 7.69(dd, 1H, J=5Hz, 2Hz)
【0092】
製剤例1:(吸入剤の製法)
常法に従って、薬物を溶媒に溶解して噴射剤とともに充填してMDI(定量噴霧式吸入剤)を調製した。
【0093】
硫酸4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジルナトリウム(実施例1の化合物)(100mg)、
ソルビタントリオレエート(界面活性剤)(20mg)、
1,1,1,2−テトラフルオロエタン(噴射剤)(8.58g)、
合計(8.70g)
【0094】
製剤例2:(注射剤の製法)
常法に従って、下記成分を溶解し、0.22μmのメンブランフィルターでろ過後、アンプルに充填して注射剤を調製した。
【0095】
硫酸4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジルナトリウム(実施例1の化合物)(1mg)、
ブドウ糖(等張化剤)(100mg)、
注射用蒸留水(適量)、
全量(2ml)
【0096】
製剤例3:(注射剤の製法)
常法に従って、下記成分を溶解し、0.22μmのメンブランフィルターでろ過後、アンプルに充填して注射剤を調製した。
【0097】
硫酸4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジルナトリウム(実施例1の化合物)(10mg)、
塩化ナトリウム(等張化剤)(250mg)、
注射用蒸留水(適量)、
全量(5mL)
【0098】
製剤例4:(凍結乾燥注射剤の製法)
常法に従って、下記成分を溶解し、0.22μmのメンブランフィルターでろ過後、バイアルに充填して凍結乾燥して凍結乾燥注射剤を調製した。
【0099】
硫酸4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジルナトリウム(実施例1の化合物)(10mg)、
マンニトール(250mg)、
注射用蒸留水(適量)、
全量(5mL)
【0100】
製剤例5:(デポ剤の製法)
常法に従って、下記処方で、マイクロスフェア調製時に薬物含量が2〜20%となるようにポリ乳酸に取り込ませて、1ヶ月投与型デポ剤を調製した。
【0101】
硫酸4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジルナトリウム(実施例1の化合物)(100mg)、
ポリ乳酸(500mg)
【0102】
【発明の効果】
本発明の化合物は、強いPDEIV阻害作用を有し、かつ優れた気管支拡張作用を示すので、PDEIV阻害薬として広くアレルギー性炎症疾患や組織炎症疾患等に対する治療薬および予防薬として有用である。特に喘息をはじめとする気道閉塞性の肺疾患の治療薬および予防薬として有用である。本発明の化合物は薬効の標的組織に相当量存在し、かつ副作用に関与する組織には極めて少量しか分布しないという特徴を有しているので、ターゲッティング医薬として利用できる。本発明の化合物は標的組織に分布し、標的組織において脱抱合されて未変化体を持続的に供給するという特徴を有しているので、本発明の化合物は薬理活性の持続時間が延長されるという効果があり、持続性医薬として利用できる。さらに本発明の化合物は、溶解度が高いという特徴を有しているので、例えば注射剤,デポ剤等の液体製剤、吸入剤等の経肺投与製剤、点鼻剤等の経鼻投与製剤の製造が容易であるという利点を有している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conjugate of a novel substituted hydroxypyridine compound having a type IV phosphodiesterase (hereinafter sometimes referred to as PDEIV) inhibitory activity or a physiologically acceptable salt thereof.
[0002]
[Prior art]
PDEIV is an enzyme that is widely distributed in inflammatory cells including bronchial smooth muscle and eosinophils and catalyzes the degradation of cyclic AMP (hereinafter sometimes referred to as cAMP). It is widely recognized that inhibition of PDEIV leads to suppression of bronchial smooth muscle contraction and suppression of inflammatory cell activation [Current Medicinal Chemistry; 2, 561-572 (1995) ]].
[0003]
Representative compounds having a PDEIV inhibitory action include, for example, rolipram (US4193926), RP-73401 (WO9212961) and SB-207499 (WO9319749) represented by the following formula.
[0004]
[Chemical Formula 3]
Figure 2006021996
[0005]
WO 00/20391 describes that a 2,3-disubstituted pyridine derivative represented by the following formula (A) has a PDEIV inhibitory action.
[0006]
[Formula 4]
Figure 2006021996
[0007]
(In the formula, A is an oxygen atom, a sulfur atom, CHR1Or NR2Means R1And R2Means a hydrogen atom or a lower alkyl group;
X1And X2Are the same or different, hydrogen atom, halogen atom, nitro group, cyano group, hydroxy group, lower alkyl group, hydroxy substituted lower alkyl group, halogeno lower alkyl group, lower alkoxy group, cyclo lower alkoxy group, hydroxy substituted lower alkoxy group , Halogeno lower alkoxy group, lower alkoxy substituted lower alkoxy group, carboxyl substituted lower alkoxy group, lower alkoxycarbonyl substituted lower alkoxy group, carboxyl group, lower alkoxycarbonyl group, mono- or di-lower alkylaminocarbonyl group, lower acyl group, lower acyloxy A group, an amino group, a lower acylamino group, a carbamoyl group, a 5-tetrazolyl group or a group that can be converted into a hydroxy group in vivo;
Y1Means a hydrogen atom or a lower alkyl group;
Z1And Z2Are the same or different, hydrogen atom, halogen atom, cyano group, hydroxy group, lower alkyl group, hydroxy substituted lower alkyl group, halogeno lower alkyl group, lower alkoxy group, cyclo lower alkoxy group, hydroxy substituted lower alkoxy group, halogeno lower Alkoxy group, lower alkoxy substituted lower alkoxy group, carboxyl substituted lower alkoxy group, lower alkoxycarbonyl substituted lower alkoxy group, carboxyl group, lower alkoxycarbonyl group, mono- or di-lower alkylaminocarbonyl group, lower acyloxy group, amino group, mono or Di-lower alkylamino group, lower acylamino group, carbamoyl group, lower alkoxycarbonylamino group, lower alkylsulfonylamino, carbamoyl group, 5-tetrazolyl group or hydroxy in vivo Means can be converted into groups,
n means an integer of 2 to 4)
[0008]
On the other hand, in general, the administered drug is absorbed in the gastrointestinal tract, undergoes chemical changes such as conjugation mainly by drug metabolizing enzymes in the liver, and is excreted in urine and bile [Mulder, GJ (1990) Conjugation Reactions in Drug metabolism, London: Taylor and Francis.]. That is, it is considered that the conjugate of the administered drug is excreted without contributing to drug efficacy.
[0009]
[Problem to be Solved by the Invention and Solution]
The inventor believes that certain conjugates are special conjugate compounds that themselves have pharmacological activity, even though the conjugates are generally thought to be excreted without contributing to drug efficacy. As a result, the present invention has been completed.
[0010]
The present invention relates to a conjugate of a compound represented by the following formula (I) or a physiologically acceptable salt thereof.
[Chemical formula 5]
Figure 2006021996
[0011]
In the present specification, the “conjugate of the compound represented by the formula (I)” means a compound in which a glucuronic acid residue or a sulfuric acid residue is bonded to the compound represented by the formula (I), specifically Is a compound represented by formula (I), a compound in which the hydrogen atom of the hydroxy group in the hydroxypyridine ring is substituted with a glucuronic acid residue or a compound in which the hydrogen atom is substituted with a sulfuric acid residue, or a glucuronic acid on the nitrogen atom in the hydroxypyridine ring This means a compound to which a residue is bonded, and includes not only a compound obtained by chemical conversion using a compound represented by formula (I) or another compound as a raw material, but also a compound represented by formula (I) Also included are compounds produced by conjugating the compounds represented by drug metabolizing enzymes in vivo.
[0012]
In the present specification, “glucuronic acid residue” means a group bonded at the 1-position carbon of glucuronic acid, and “sulfuric acid residue” means a group bonded at a sulfur atom of sulfuric acid.
[0013]
A physiologically acceptable salt means a physiologically acceptable acid addition salt, alkali metal salt, alkaline earth metal salt or organic base salt. Preferred are alkali metal salts, alkaline earth metal salts, and salts with organic bases. Specific examples of the acid addition salt include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate and phosphate, and oxalate, maleate and fumarate. , Organic acid salts such as malonate, lactate, malate, citrate, tartrate, benzoate, methanesulfonate, p-toluenesulfonate, and gluconate. Examples of the alkali metal salt include inorganic alkali salts such as sodium salt and potassium salt. Examples of the alkaline earth metal salt include calcium salt and magnesium salt, and examples of the salt with an organic base include Examples thereof include salts with ammonia, methylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylmorpholine, and dicyclohexylamine.
[0014]
In the present specification, the conjugate of the compound represented by the formula (I) may be described as the conjugate of the present invention. In addition, a conjugate of a compound represented by the following formula (I) or a physiologically acceptable salt thereof may be described as a compound of the present invention.
[0015]
Since the conjugate of the compound represented by the formula (I) or a physiologically acceptable salt thereof may exist in the form of hydrate and / or solvate, these hydrate, solvate Are also encompassed by the compounds of the present invention.
[0016]
Further, some of the conjugates of the compound represented by the formula (I) have an asymmetric carbon atom, and these stereoisomers and mixtures thereof are also included in the compound of the present invention.
[0017]
A suitable compound is a compound represented by the following formula (II) or a physiologically acceptable salt thereof.
[Chemical 6]
Figure 2006021996
(In the formula, Z means a glucuronic acid residue or a sulfuric acid residue)
[0018]
Specific examples of the compound of the present invention include the following compounds or physiologically acceptable salts thereof.
Hydrogen sulfate 4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl,
1-O- [4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl] -β-D-glucopyranuronic acid,
1- [4- [3- [2- (3-Chlorophenoxy) -3-pyridyloxy] propyl] -3-oxide-1-pyridinio] -1-deoxy-β-D-glucopyranic acid
[0019]
The compound of the present invention can be produced by chemically converting the compound represented by formula (I) or another compound as a raw material. In addition, the compound represented by the formula (I) is also produced by administering the compound represented by the formula (I) in vivo and then conjugating the compound represented by the formula (I) with a drug-metabolizing enzyme in vivo.
[0020]
The compound represented by the formula (I) can be produced, for example, by the method described in Example 31 of WO00 / 20391.
[0021]
Since it is generally considered that the conjugate is excreted without contributing to the drug efficacy, it can be foreseen that the conjugate of the compound represented by the formula (I) has pharmacological activity. However, the present inventor conducted a pharmacological test on the conjugate of the compound represented by the formula (I) and found that it was a special conjugate having pharmacological activity by itself.
[0022]
Furthermore, the compound represented by the formula (I) was labeled, and a pharmacokinetic test was performed using this, and the distribution of the compound represented by the formula (I) and its conjugate to various tissues was examined. Surprisingly, the present inventors have determined that a substantial amount of the conjugate is persistently present in the lung, which is one of the target tissues of PDEIV inhibitors. In general, it is a feature of the compound of the present invention that a conjugate having the property of being easily excreted is distributed in a large amount in the target tissue and is persistently present. It is a coalescence.
[0023]
It has also been found that the compound of the present invention has a very small distribution to the brain. Therefore, the compound of the present invention also has a feature that the emesis-inducing action, which is a side effect generally recognized as a PDEIV inhibitor, is extremely weak. This feature is also that when the compound represented by the formula (I) is administered in vivo, the compound represented by the formula (I) is rapidly converted into a conjugate, so that the distribution to the brain is remarkable. As a result, it is considered that the compound represented by the formula (I) has a characteristic that the emesis-inducing action is extremely weak, which is a side effect generally recognized in PDEIV inhibitors.
[0024]
Since the compound of the present invention is present in a considerable amount in a target tissue having a medicinal effect and is distributed only in a very small amount in a tissue involved in side effects, the compound of the present invention can be used as a targeting drug. The medicament comprising the compound of the present invention is an excellent targeting medicament that can be characteristically distributed in the target tissue and efficiently express its medicinal effects, and can avoid side effects.
[0025]
Furthermore, the conjugate of the present invention, for example, 4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] hydrogensulfate (hereinafter sometimes referred to as a sulfate conjugate). Contributes to drug efficacy by itself in the target tissue, but 1-O- [4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl] -β -D-glucopyranuronic acid (hereinafter sometimes referred to as glucuronic acid conjugate) is deconjugated to the compound represented by formula (I) in the lung, which is one of the target tissues, It has been determined that it is a supply source of the compound represented by (I) (hereinafter sometimes referred to as unchanged). In general, it is a feature of the compound of the present invention that the conjugate having the property of being easily excreted is deconjugated in the target tissue and becomes a source of the unchanged product. Also in this respect, the compound of the present invention has a special feature. It is a conjugate.
[0026]
Since the compound of the present invention is distributed in the target tissue and is deconjugated in the target tissue and has a characteristic of continuously supplying the unchanged form, the compound of the present invention has a prolonged duration of pharmacological activity. It can be used as a long-acting medicine. A medicament comprising the compound of the present invention is an excellent long-acting medicament.
[0027]
Furthermore, since the compound of the present invention is characterized by having higher solubility than the compound represented by the formula (I), for example, liquid preparations such as injections and depots, and pulmonary administration such as inhalants It has the advantage that it is easy to produce nasal preparations such as preparations and nasal drops.
[0028]
[Pharmacological test]
The pharmacological test results and pharmacological effects of the representative compounds of the present invention will be described.
[0029]
Test Example 1: PDEIV inhibitory activity test
The test of guinea pig PDEIV inhibitory activity was carried out based on a method using eosinophils isolated from the abdominal cavity of the guinea pig (Souness, J.E. et al., Biochem. Pharmacol. 42, 937 (1991)). Ie 5x10710 mL of homogenizing buffer (composition: 20 mM Tris-HCl buffer (pH 7.5), 2 mM magnesium chloride, 1 mM dithiothreiol, 5 mM ethylenediaminetetraacetic acid / disodium, 250 mM sucrose, 20 μM p-tosyl- l-lysine-chloromethylketone, 10 μg / mL leupeptin) is added and centrifuged. Add 10 mL of sorbizing buffer (adding sodium deoxycholate (final concentration 0.5%) and sodium chloride (final concentration 100 mM) to the above homogenizing buffer) to the residue and re-centrifuge. The supernatant is ultrafiltered using Molecat II (manufactured by Nihon Millipore Limited), and the fraction on the membrane is recovered by adding 10 mL of homogenizing buffer to obtain an enzyme sample. The inhibitory activity against the enzyme is calculated by calculating the inhibition rate when the test compound is added compared to the solvent addition group with respect to the hydrolysis rate of the above-described enzyme fraction of cAMP (manufactured by Nacalai Tesque) as a substrate. Asked. Also, from the concentration and action curve of the test compound, the 50% inhibitory concentration IC50Asked.
[0030]
Human PDEIV inhibitory activity was determined by using eosinophils isolated from healthy peripheral blood by specific gravity gradient centrifugation and MACS (magnetic cell separation system) negative deletion method using CD16 microbeads. It carried out according to the method used. The results are shown in Table 1.
[0031]
[Table 1]
Figure 2006021996
[0032]
As is apparent from Table 1, the compounds of the present invention showed a strong inhibitory activity against PDEIV separated and purified from guinea pig eosinophils and human eosinophils.
[0033]
Test example 2: in vitro Antigen-induced bronchoconstriction inhibitory action
Hartley male guinea pigs were actively sensitized by intraperitoneal and subcutaneous administration of ovalbumin (Sigma). Several weeks later, the trachea was removed and a zigzag specimen was prepared according to a conventional method. The specimen was suspended by applying a 1g tension to a Magnus tube kept at 37 ° C, and connected to a pen recorder via an FD pickup and a strain pressure amplifier. Samples were treated for 15 minutes after addition of test compound after 0.5-1 hour stabilization. In addition antigen 1x10-FiveShrinkage is induced by adding g / L. From the shrinkage curve recorded on the recorder, the shrinkage height relative to the initial value is measured with calipers, and the inhibition rate of the test compound addition group relative to the solvent addition group is calculated, and the shrinkage inhibition action is calculated. It was. The results are shown in Table 2.
[0034]
[Table 2]
Figure 2006021996
[0035]
As is clear from Table 2, the compound of the present invention exhibited a strong inhibitory action on in vitro guinea pig antigen-induced airway contraction.
[0036]
Test Example 3: Inflamed cells cAMP Ascending action
Isolate eosinophils from peripheral blood of healthy subjects6A test compound was added to each cell suspension and cultured for 2 hours. To this, isoproterenol was added (final concentration 1 μM) and further cultured for 5 minutes. After the reaction was terminated with trichloroacetic acid (final concentration 6%), trichloroacetic acid was removed with ether, and the amount of cAMP in the reaction solution was measured by the EIA method. The increase effect was expressed as the amount of cAMP in the test compound addition group increased from the amount of intracellular cAMP in the solvent addition group.
[0037]
[Table 3]
Figure 2006021996
[0038]
As is apparent from Table 3, the compound of the present invention showed an effect of increasing the amount of cAMP in human eosinophils.
[0039]
Test Example 4: Inhibition of mouse antigen-induced airway inflammation
Mice were sensitized by administering ovalbumin twice intraperitoneally. One week after the final sensitization, airway inflammation was induced by instilling ovalbumin. Three days after antigen induction, bronchoalveolar lavage (BAL) was performed, and the number of inflammatory cells in the lavage fluid was counted. The test compound was administered nasally three times, 30 minutes after antigen induction, 1 day later, and 2 days later.
[0040]
The inhibition rate (%) of the test compound was calculated by comparing with the number of cells in BAL of the control group to which only the solvent was administered. The results are shown in Table 4.
[0041]
[Table 4]
Figure 2006021996
[0042]
As is clear from Table 4, the compound of the present invention exhibited a strong inhibitory action against the mouse antigen-induced airway inflammation action.
[0043]
As is apparent from the above pharmacological tests, the compound of the present invention had a strong PDEIV inhibitory activity, and showed an excellent bronchodilating action and an inflammatory intracellular cAMP raising action.
[0044]
[Pharmacokinetic study]
The pharmacokinetic test results and characteristics of representative compounds of the present invention will be described.
[0045]
Test Example 5: In guinea pigs 14 Plasma, lung, and tracheal concentrations after oral administration of C-labeled compound
[0046]
(1) Animal experiments
As test animals, Hartley male guinea pigs (SLC-Std, 7-8 weeks old) that had passed 4-5 weeks after sensitization with ovalbumin were used. The carbon atom to which the 3-chlorophenoxy group of the compound represented by formula (I) is bonded.14A 0.5% tragacanth suspension of a compound labeled with C (hereinafter sometimes referred to as a labeled compound) was prepared and orally administered to guinea pigs at a dose of 10 mg / 7.69 MBq / kg. After administration, whole blood was collected from the heart under ether anesthesia at 0.5, 2, and 4 hours, and then the lung, trachea, and brain were collected. The number of cases was 3 at each time point.
[0047]
(2) Treatment of biological samples
After centrifuging the blood, a certain amount of plasma was collected in a liquid sine vial, scintillation cocktail: Clearsol-I (manufactured by Nacalai Tesque) was added, and the sample was subjected to radioactivity measurement. After measuring the wet weight, the tissue was homogenized using a glass homogenizer after adding about 4 to 5 times the amount of purified water. An aliquot was collected in a liquid sine vial, and about 1 mL of tissue solubilizer Solene-350 (Packard Instrument) was added. After solubilization, scintillation cocktail: Hyonic Flow (manufactured by Packard Instrument) was added and subjected to radioactivity measurement. The remaining plasma and lung and tracheal homogenates were stored frozen and subjected to metabolite analysis.
[0048]
(3) Analysis of metabolites by high performance liquid chromatography (hereinafter sometimes referred to as HPLC)
[0049]
(3-1) Plasma pretreatment
A 4-fold volume of methanol / acetonitrile (1: 1) mixture was added to a fixed amount of plasma (1 to 4 mL), stirred for 5 minutes on a shaker, and then centrifuged at 4 ° C. and 3000 rpm for 10 minutes. After recovering the supernatant, the same amount of methanol / acetonitrile (1: 1) mixture was added to the precipitate again, and the mixture was similarly shaken and centrifuged. The two deproteinized supernatants were combined and dried under reduced pressure. This was redissolved in a small amount of 0.1% formic acid and used as a sample for HPLC analysis.
[0050]
(3-2) Organization pretreatment
Four volumes of methanol was added to a fixed amount of lung or tracheal homogenate (lung: 2-8 mL, trachea: 1.5 mL), stirred for 5 minutes with a shaker, and then centrifuged at 4 ° C. and 3000 rpm for 10 minutes. After collecting the supernatant, the same amount of methanol was again added to the precipitate, and the mixture was similarly shaken and centrifuged. The two supernatants were combined and concentrated under reduced pressure. A 4-fold volume of methanol / acetonitrile (1: 1) mixture was added to the concentrated solution, and the mixture was shaken and centrifuged. The supernatant was concentrated under reduced pressure. Further, 4-fold volume of acetonitrile was added to the concentrated solution, and after shaking, the mixture was centrifuged. The supernatant was dried under reduced pressure. This was redissolved in a small amount of 0.1% formic acid and used as a sample for HPLC analysis.
[0051]
(3-3) HPLC analysis
The HPLC pump was 600E (Waters), and the column was CAPCELLPAK C18 UG-120 5 μm (Shiseido, inner diameter 4.6 × 250 mm) at 40 ° C. The mobile phase was 5 mM heptafluorobutyric acid aqueous solution for liquid A, acetonitrile was used for liquid B, the flow rate was 1 mL / min, and the ratio of liquid A / liquid B was injected at 0-20-25 minutes, 73 / 27-63 / 37. A gradient of −0/100 was used.
[0052]
A UV detector and a flow-type radioactivity detector FLO-ONE βA-515 (manufactured by Packard Instrument) were used for detection. Ultimaflow M was used at 2 mL / min as a liquid scintillator in the radioactivity detector. Further, the eluate from the radioactivity detector was fractionated every 0.5 minutes from the time of injection using a fraction collector 222XL (manufactured by Gilson), and the radioactivity of each fraction was measured as necessary. The ratio of each radioactivity component to the radioactivity in the sample was calculated from the ratio of the peak area (or radioactivity) of the component to the total peak area (or radioactivity) of each radioactivity component detected.
[0053]
(4) Radioactivity measurement
The biological sample and the HPLC eluate were measured with a liquid scintillation counter Tri-Carb 2700TR or 2200CA (manufactured by Packard Instrument).
[0054]
(5) Data processing
The radioactivity concentration in plasma and tissue was converted to the equivalent concentration of the compound represented by formula (I) by dividing the measured radioactivity by the specific radioactivity of the administered drug. The concentration of unchanged substance and conjugate in plasma and tissue was calculated by multiplying the radioactivity concentration in each sample by the ratio of the component to the radioactivity in the sample obtained by HPLC analysis, and using the formula (I) Expressed as the equivalent concentration of the compound represented. As a rule, the numerical values are shown as the average value ± standard error of three cases. The results are shown in Table 5.
[0055]
(6) Results
[0056]
[Table 5]
Figure 2006021996
[0057]
As is clear from Table 5, after oral administration of the compound represented by formula (I) to guinea pigs, in plasma, lung and trachea, the sulfate conjugate and glucuronide conjugate were administered at a higher concentration than the unchanged product. It was found to be persistent even after 4 hours. In addition, it was considered that the lung concentration of the unchanged substance greatly exceeded the plasma concentration, and the unchanged substance generated from the conjugate in the target tissue contributed. Furthermore, the radioactivity concentration in the brain was 1/10 to 1/20 or less of the plasma radioactivity concentration, and it became clear that it was difficult to move to the brain.
[0058]
Test Example 6: Glucuronic acid conjugate deconjugation test in the lung
[0059]
(1) In vitro reaction
Guinea pig lungs are homogenized with 3 volumes of homogenization buffer (composition: 50 mM Tris-HCl buffer (pH 7.4), 154 mM potassium chloride, 2 mM ethylenediaminetetraacetic acid / dipotassium), centrifuged at 800 g for 10 minutes, and the supernatant homogenized with lungs It was. The carbon atom to which the 3-chlorophenoxy group of the compound obtained in Example 2 is bonded14Compounds labeled with C (final concentrations 1.25, 2.5, 5, 10, 20 and 30 μM) were reacted with lung homogenate (final concentration 1 mg / mL) in 50 mM sodium acetate buffer (pH 5) at 37 ° C. for 10 minutes. After the reaction was stopped by adding 1.5 mL of acetonitrile to the reaction solution, the mixture was centrifuged at 3000 rpm for 10 minutes. The supernatant was dried under reduced pressure and then dissolved in an HPLC mobile phase to prepare a sample for HPLC analysis.
[0060]
(2) HPLC analysis
The HPLC pump used was HP1090 (Agilent Technologies) and the column was CAPCELLPAK C18 UG-120 5 μm (Shiseido, inner diameter 4.6 × 250 mm) at 40 ° C. The mobile phase was 10 mM ammonium formate in liquid A, acetonitrile in liquid B, and a flow rate of 1 mL / min. After injecting the ratio of liquid A / liquid B, it was 70 / 30-45 in 0-25-25.5-26-30 minutes. A gradient of / 55-0 / 100-70 / 30-70 / 30 was used. For detection, a flow-type radioactivity detector FLO-ONE β A-515 (manufactured by Packard Instrument) was used. The unchanged substance production amount was calculated from the ratio of the peak area of the unchanged substance to the total peak area of each detected radioactivity component.
[0061]
(3) Data processing
The deconjugation rate was calculated from the amount of unchanged product produced and used as a substrate14Plotted against C-labeled glucuronic acid conjugate concentration. The deconjugation clearance was calculated by fitting to the Michaelis-Menten equation by the non-linear least square method.
[0062]
(4) Results
In the guinea pig lung homogenate, the glucuronic acid conjugate was deconjugated and converted to the unchanged form. The deconjugation clearance at that time was 0.0332 mL / min / mg protein.
[0063]
As is apparent from the above pharmacokinetic studies, the compound of the present invention is present in a considerable amount in a target tissue having a medicinal effect, and has a feature that it is distributed in a very small amount in a tissue involved in a side effect. It has a feature that it is deconjugated and supplies the unchanged substance continuously.
[0064]
When used as a PDEIV inhibitor, the compound of the present invention may be administered orally, parenterally or rectally. Transpulmonary administration, oral mucosal administration, or nasal mucosal administration may be used. The dose varies depending on the administration method, patient symptoms, patient age, treatment mode (prevention or therapy), etc., but is usually 0.01 to 100 mg / day, preferably 0.1 to 50 mg / day. In the case of pulmonary administration, the dose is usually 30 μg to 3000 μg / dose, preferably 100 μg to 1000 μg / dose once or twice a day.
[0065]
The compound of the present invention is usually administered in the form of a preparation prepared by mixing with a pharmaceutical carrier. As a pharmaceutical carrier, a substance which is commonly used in the pharmaceutical field and does not react with the compound of the present invention is used. Specifically, for example, lactose, glucose, mannitol, dextrin, starch, sucrose, magnesium aluminate metasilicate, synthetic aluminum silicate, crystalline cellulose, sodium carboxymethylcellulose, hydroxypropyl starch, carboxymethylcellulose calcium, ion exchange resin, methylcellulose , Gelatin, gum arabic, hydroxypropylcellulose, low-substituted hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, light anhydrous silicic acid, magnesium stearate, talc, carboxyvinyl polymer, titanium oxide, sorbitan fatty acid ester, lauryl Sodium sulfate, glycerin, fatty acid glycerin ester, purified lanolin, glycerogelatin Polysorbate, macrogol, vegetable oils, waxes, nonionic surfactants, propylene glycol, water and the like.
[0066]
Examples of the dosage form include tablets, capsules, granules, powders, syrups, suspensions, suppositories, gels, injections, depots, inhalants, nasal drops and the like. These preparations are prepared according to a conventional method. In the case of a liquid preparation, it may be dissolved or suspended in water or other appropriate medium at the time of use. Tablets and granules may be coated by a known method. In the case of injection, it is prepared by dissolving the compound of the present invention in water, but it may be dissolved in an isotonic agent if necessary, and a pH adjusting agent, buffering agent or preservative may be added. May be.
[0067]
In addition, these preparations may contain antiallergic agents, steroids, β2It can be used in combination with stimulants and anticholinergic drugs.
[0068]
【Example】
EXAMPLES The present invention will be described more specifically with reference to examples, reference examples and formulation examples below, but the present invention is not limited to these examples. The compounds of the present invention are also produced by conjugation with drug metabolizing enzymes in vivo. Compounds are analyzed by elemental analysis, hydrogen nuclear magnetic resonance absorption spectrum (1H-NMR) and the like.
[0069]
1In the description of 1 H-NMR, the following abbreviations were used for simplification.
J: coupling constant,
s: single line,
d: double line,
dd: double double line,
ddd: double double double line,
t: Triple line,
dt: double triple line,
m: multiple line.
[0070]
Example 1Preparation of sulfuric acid 4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl sodium
[0071]
[Chemical 7]
Figure 2006021996
[0072]
4- [3- [2- [2- (3-Chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridinol (10.0 g, 28.0 mmol) obtained by the method described in WO 00/20391 (Example 31) And sodium hydroxide (2.24 g, 56.0 mmol) were dissolved in water (50 mL), sulfur trioxide trimethylamine complex (7.79 g, 56.0 mmol) was added, and the mixture was stirred with heating at 50 ° C. for 3 hr. After adding ethanol (50 mL) under ice-cooling, concentrated hydrochloric acid (4.7 mL, 56 mmol) was slowly added, and the precipitated crystals were collected by filtration, washed with water (20 mL) and ethanol (20 mL), and then dried under reduced pressure. Hydrogen sulfate 4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl (11.8 g, 27.0 mmol) was obtained as colorless crystals.
[0073]
This was suspended in water (300 mL) and methanol (100 mL), sodium hydrogen carbonate (4.5 g, 54 mmol) was added, and the mixture was stirred at room temperature for 20 hr, and concentrated under reduced pressure. The residue was dissolved in water (150 mL), acetonitrile (300 mL) was added, insoluble material was filtered, and the filtrate was concentrated under reduced pressure. Acetonitrile (200 mL) was further added and the mixture was concentrated under reduced pressure. Acetone (300 mL) was added, the insoluble material was filtered, and the filtrate was concentrated under reduced pressure. The residue was dissolved in ethanol (10 mL) and diisopropyl ether (10 mL), filtered, ethanol (10 mL) and diisopropyl ether (30 mL) were added, and the precipitated crystals were collected by filtration. This was dissolved in ethanol (17 mL), diisopropyl ether (17 mL) was added and recrystallized to obtain the title compound (8.10 g) as colorless crystals. Melting point 185-191 ° C
[0074]
Reference example 1: Production of methyl 2,3,4-tri-O-acetyl-D-glucopyranate
[0075]
[Chemical 8]
Figure 2006021996
[0076]
1-Bromo-2,3,4-tri-O-acetyl-α-D-glucopyranuronic acid methyl ester (20.0 g, 50.4 mmol) is dissolved in acetone (125 mL) and silver carbonate (15.3 g, 55.4 mmol) And water (0.9 mL, 50 mmol) were added, and the mixture was stirred at room temperature for 16 hours, filtered through celite, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography, eluted and purified with chloroform / ethyl acetate, and then recrystallized from diisopropyl ether to obtain the title compound (13.8 g) as colorless crystals. Melting point 94-98 ° C
[0077]
Example 2: Preparation of 1-O- [4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl] -β-D-glucopyranuronic acid sodium salt
[0078]
[Chemical 9]
Figure 2006021996
[0079]
4- [3- [2- [2- (3-Chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridinol (12.2 g, 34.2 mmol) obtained by the method described in WO 00/20391 (Example 31) And 2,3,4-tri-O-acetyl-D-glucopyranate methyl (11.4 g, 34.1 mmol) and triphenylphosphine (17.9 g, 68.2 mmol) obtained in Reference Example 1 were dissolved in tetrahydrofuran (120 mL). Diisopropyl azodicarboxylate (6.9 g, 34.2 mmol) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 24 hours. The reaction mixture was concentrated under reduced pressure, and the residue was subjected to silica gel chromatography, eluted with chloroform / ethyl acetate, purified, and 2,3,4-tri-O-acetyl-1-O- [4- [3- [2 -(3-Chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl] -β-D-glucopyranuronic acid methyl ester (10.3 g, 15.3 mmol) was obtained as an oil.
[0080]
This was dissolved in acetone (255 mL), 1N aqueous sodium hydroxide solution (99.5 mL) was added, and the mixture was stirred at room temperature for 2 hr. The precipitated crystals were collected by filtration, washed with acetone (100 mL), and recrystallized from water / ethanol to give the title compound monohydrate (3.17 g) as colorless crystals. Melting point 234-238 ° C
[0081]
Reference example 2: Production of methyl 1-O-diethoxyphosphino-α-D-glucopyranuronic acid
[0082]
Embedded image
Figure 2006021996
[0083]
Methyl 2,3,4-tri-O-acetyl-D-glucopyranuronic acid (2.00 g, 5.98 mmol) obtained in Reference Example 1 was dissolved in methylene chloride (10 mL), and -78 ° C under an argon gas stream. Then, diisopropylethylamine (0.93 g, 7.20 mmol), and then a solution of diethyl chlorophosphite (1.03 g, 6.58 mmol) in methylene chloride (3 mL) were added dropwise over 10 minutes, followed by further stirring for 30 minutes, and then saturated bicarbonate. Aqueous sodium solution (10 mL) was added to terminate the reaction. The reaction solution was concentrated under reduced pressure, water (10 mL) was added, and the mixture was extracted with ethyl acetate (35 mL × 2), washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography, eluted with ethyl acetate / n-hexane and purified to give the title compound (1.83 g) as a colorless oil.
[0084]
1H-NMR (200MHz, CDClThree, δppm): 1.27 (dt, 3H, J = 1Hz, 7Hz), 1.28 (dt, 3H, J = 1Hz, 7Hz), 2.03 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H) , 3.74 (s, 3H), 3.83-4.03 (m, 4H), 4.53 (dd, 1H, J = 10Hz, 1Hz), 4.95 (dd, 1H, J = 10Hz, 4Hz), 5.20 (dd, 1H, J = 10Hz, 10Hz), 5.56 (t, 1H, J = 10Hz), 5.75 (dd, 1H, J = 8Hz, 4Hz)
[0085]
Reference example 3: Production of methyl 1-O- (diethoxy-N-phenyl-phosforimidoyl) -α-D-glucopyranuronic acid
[0086]
Embedded image
Figure 2006021996
Methyl 1-O-diethoxyphosphino-α-D-glucopyranuronic acid (500 mg, 1.10 mmol) obtained in Reference Example 2 was dissolved in toluene (1.2 mL), and Org. Synth., Coll. Vol. 3 , p.710-711, and a toluene solution (1.2 mL) of phenyl azide (144 mg, 1.21 mmol) synthesized was added, and the mixture was stirred at 45-50 ° C. for 2 hours. The reaction mixture was concentrated under reduced pressure to give the title compound (680 mg) as a pale yellow oil.
[0087]
1H-NMR (200MHz, CDClThree, δppm): 1.26-1.42 (m, 6H), 1.97 (s, 3H), 2.03 (s, 6H), 3.74 (s, 3H), 4.05-4.29 (m, 4H), 4.51 (d, 1H, J = 10Hz), 4.96-5.06 (m, 1H), 5.23 (t, 1H, J = 10Hz), 5.56 (t, 1H, J = 10Hz), 6.04-6.12 (m, 1H), 6.72-6.87 (m, 3H), 7.06-7.17 (m, 2H)
[0088]
Example 3Preparation of sodium 1- [4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-oxide-1-pyridinio] -1-deoxy-β-D-glucopyranate
[0089]
Embedded image
Figure 2006021996
[0090]
4- [3- [2- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridinol (100 mg, 0.28 mmol) obtained by the method described in WO 00/20391 (Example 31) 1-O- (diethoxy-N-phenyl-phosformimidoyl) -α-D-glucopyranuronic acid methyl (306 mg, 0.56 mmol) obtained in Reference Example 3 and molecular sieves 4A (400 mg) were added to propionitrile ( 5 mL) was added, trimethylsilyl trifluoromethanesulfonate (249 mg, 1.1 mmol) was added under ice cooling, and the mixture was stirred at room temperature for 3 days. The reaction mixture was filtered and concentrated under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), washed with saturated aqueous sodium hydrogen carbonate solution, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography, eluted with chloroform / methanol, purified, and 2,3,4-tri-O-acetyl-1- [4- [3- [2- (3-chlorophenoxy)- Methyl 3-pyridyloxy] propyl] -3-oxide-1-pyridinio] -1-deoxy-β-D-glucopyranate (26.3 mg, 0.039 mmol) was obtained as a light brown oil.
This was dissolved in acetone (0.66 mL), 1N aqueous sodium hydroxide solution (0.25 mL) was added under ice cooling, the mixture was stirred for 2 hours, acetone (1.34 mL) was added, and the mixture was stirred for 3 hours. The precipitated oil was separated and powdered by adding acetone, and then collected by filtration. This was subjected to Sep-Pak Vac 35cc C18-10g (manufactured by Waters), eluted with methanol and purified to obtain the title compound (18.5 mg) as a colorless powder.
[0091]
1H-NMR (400MHz, CDClThree, δppm): 1.96-2.04 (m, 2H), 2.56-2.62 (m, 2H), 3.20-3.44 (m, 5H), 4.04-4.10 (m, 2H), 5.09 (d, 1H, J = 9Hz) , 5.20 (s, 1H), 5.52 (s, 1H), 7.06 (ddd, 1H, J = 8Hz, 2Hz, 1Hz), 7.13-7.16 (m, 2H), 7.21 (t, 1H, J = 2Hz), 7.22-7.25 (m, 2H), 7.33 (dd, 1H, J = 6Hz, 2Hz), 7.412 (t, 1H, J = 8Hz), 7.54 (dd, 1H, J = 8Hz, 2Hz), 7.69 (dd, (1H, J = 5Hz, 2Hz)
[0092]
Formulation Example 1: (Manufacturing method of inhalant)
According to a conventional method, the drug was dissolved in a solvent and filled with a propellant to prepare MDI (quantitative spray inhaler).
[0093]
4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] sulfuric acid sulfate (compound of Example 1) (100 mg),
Sorbitan trioleate (surfactant) (20 mg),
1,1,1,2-tetrafluoroethane (propellant) (8.58 g),
Total (8.70g)
[0094]
Formulation Example 2: (Injection preparation method)
According to a conventional method, the following components were dissolved, filtered through a 0.22 μm membrane filter, and then filled into an ampule to prepare an injection.
[0095]
4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] sulfuric acid sulfate (compound of Example 1) (1 mg),
Glucose (isotonic agent) (100 mg),
Distilled water for injection (appropriate amount),
Total volume (2ml)
[0096]
Formulation Example 3: (Injection preparation method)
According to a conventional method, the following components were dissolved, filtered through a 0.22 μm membrane filter, and then filled into an ampule to prepare an injection.
[0097]
4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] sulfuric acid sulfate (compound of Example 1) (10 mg),
Sodium chloride (isotonic agent) (250 mg),
Distilled water for injection (appropriate amount),
Total volume (5 mL)
[0098]
Formulation Example 4: (Production method of freeze-dried injection)
According to a conventional method, the following components were dissolved, filtered through a 0.22 μm membrane filter, filled into a vial, and lyophilized to prepare a lyophilized injection.
[0099]
4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] sulfuric acid sulfate (compound of Example 1) (10 mg),
Mannitol (250 mg),
Distilled water for injection (appropriate amount),
Total volume (5 mL)
[0100]
Formulation Example 5: (Depot preparation method)
According to a conventional method, a 1-month administration type depot was prepared by incorporating into polylactic acid so that the drug content was 2 to 20% at the time of microsphere preparation, according to the following formulation.
[0101]
4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] sulfuric acid sulfate (compound of Example 1) (100 mg),
Polylactic acid (500mg)
[0102]
【The invention's effect】
Since the compound of the present invention has a strong PDEIV inhibitory action and an excellent bronchodilator action, it is widely useful as a PDEIV inhibitor and a therapeutic and prophylactic agent for allergic inflammatory diseases and tissue inflammatory diseases. It is particularly useful as a therapeutic and prophylactic agent for airway obstructive pulmonary diseases including asthma. The compound of the present invention has a feature that it is present in a considerable amount in a target tissue having a medicinal effect and is distributed only in a very small amount in a tissue involved in a side effect, and thus can be used as a targeting medicine. Since the compound of the present invention is distributed in the target tissue and is deconjugated in the target tissue and has a characteristic of continuously supplying the unchanged form, the compound of the present invention has a prolonged duration of pharmacological activity. It can be used as a long-acting medicine. Furthermore, since the compound of the present invention has a feature of high solubility, for example, liquid preparations such as injections and depots, pulmonary administration preparations such as inhalants, and nasal administration preparations such as nasal preparations. Has the advantage of being easy.

Claims (9)

下記式(I)で表される化合物の抱合体又はその生理的に許容される塩。
Figure 2006021996
A conjugate of a compound represented by the following formula (I) or a physiologically acceptable salt thereof.
Figure 2006021996
下記式(II)で表される化合物又はその生理的に許容される塩。
Figure 2006021996
(式中、Zはグルクロン酸残基又は硫酸残基を意味する)
A compound represented by the following formula (II) or a physiologically acceptable salt thereof.
Figure 2006021996
(In the formula, Z means a glucuronic acid residue or a sulfuric acid residue)
硫酸水素4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル、
1−O−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル]−β−D−グルコピランウロン酸及び
1−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−オキシド−1−ピリジニオ]−1−デオキシ−β−D−グルコピラン酸の群から選ばれるいずれか1つの化合物又はその生理的に許容される塩。
Hydrogen sulfate 4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl,
1-O- [4- [3- [2- (3-Chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl] -β-D-glucopyranuronic acid and 1- [4- [3- Any one compound selected from the group of [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-oxide-1-pyridinio] -1-deoxy-β-D-glucopyranic acid or its physiology Acceptable salt.
硫酸水素4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル又はその生理的に許容される塩。  Hydrogen sulfate 4- [3- [2- (3-chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl or a physiologically acceptable salt thereof. 1−O−[4−[3−[2−(3−クロロフェノキシ)−3−ピリジルオキシ]プロピル]−3−ピリジル]−β−D−グルコピランウロン酸又はその生理的に許容される塩。  1-O- [4- [3- [2- (3-Chlorophenoxy) -3-pyridyloxy] propyl] -3-pyridyl] -β-D-glucopyranuronic acid or a physiologically acceptable salt thereof . 請求項1〜5のいずれか一項に記載の化合物又はその生理的に許容される塩を有効成分とするIV型ホスホジエステラーゼ阻害薬である医薬。  The pharmaceutical which is a type IV phosphodiesterase inhibitor which uses the compound as described in any one of Claims 1-5, or its physiologically acceptable salt as an active ingredient. 請求項1〜5のいずれか一項に記載の化合物又はその生理的に許容される塩を含有する医薬組成物。  A pharmaceutical composition comprising the compound according to any one of claims 1 to 5 or a physiologically acceptable salt thereof. 請求項1〜5のいずれか一項に記載の化合物又はその生理的に許容される塩からなるターゲッティング医薬。  A targeting medicament comprising the compound according to any one of claims 1 to 5 or a physiologically acceptable salt thereof. 請求項1〜5のいずれか一項に記載の化合物又はその生理的に許容される塩からなる持続性医薬。  A long-acting pharmaceutical comprising the compound according to any one of claims 1 to 5 or a physiologically acceptable salt thereof.
JP2002195341A 2002-07-04 2002-07-04 Conjugated substance of substituted hydroxypyridine compound Pending JP2006021996A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002195341A JP2006021996A (en) 2002-07-04 2002-07-04 Conjugated substance of substituted hydroxypyridine compound
AU2003246252A AU2003246252A1 (en) 2002-07-04 2003-07-03 Drug delivery system of substituted hydroxypyridine compound and conjugate of hydroxypyridine compound
PCT/JP2003/008462 WO2004005259A1 (en) 2002-07-04 2003-07-03 Drug delivery system of substituted hydroxypyridine compound and conjugate of hydroxypyridine compound
TW092118415A TW200404540A (en) 2002-07-04 2003-07-04 Drug delivery system of substituted hydropyridine compound, and conjugate of substituted hydroxypyridine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195341A JP2006021996A (en) 2002-07-04 2002-07-04 Conjugated substance of substituted hydroxypyridine compound

Publications (1)

Publication Number Publication Date
JP2006021996A true JP2006021996A (en) 2006-01-26

Family

ID=30112333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195341A Pending JP2006021996A (en) 2002-07-04 2002-07-04 Conjugated substance of substituted hydroxypyridine compound

Country Status (4)

Country Link
JP (1) JP2006021996A (en)
AU (1) AU2003246252A1 (en)
TW (1) TW200404540A (en)
WO (1) WO2004005259A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9202464D0 (en) * 1992-02-05 1992-03-18 Danbiosyst Uk Composition for nasal administration
RU2235095C2 (en) * 1998-10-06 2004-08-27 Дайниппон Фармасьютикал Ко., Лтд. Disubstituted derivative of pyridine, methods for its preparing, pharmaceutical composition containing thereof and intermediate product for its preparing

Also Published As

Publication number Publication date
WO2004005259A1 (en) 2004-01-15
TW200404540A (en) 2004-04-01
AU2003246252A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
US9701631B2 (en) TIP60 inhibitors
CN110088105B (en) Small molecule inhibitors of JAK family kinases
RU2468797C2 (en) Method and composition for treatment of inflammatory disorders
CN101616925B (en) Tricyclic compounds and their use as glucocorticoid receptor modulators
TW200811142A (en) Pyrimidinyl sulfonamide compounds which inhibit leukocyte adhesion mediated by VLA-4
CN109069410A (en) For treating the IDH1 inhibitor of hematologic malignancies and solid tumor
EP3233809B1 (en) Formulations of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methycyclohexylamino)-pyrimidine-5-carboxamide
MX2008003882A (en) Capsule formulation of pirfenidone and pharmaceutically acceptable excipients.
TW200817343A (en) Method of enhancing mucosal hydration and mucosal clearance by treatment with sodium channel blockers and osmolytes
TW201542211A (en) Methods of treating and preventing endothelial dysfunction using BARDOXOLONE METHYL or analogs thereof
US11065350B2 (en) HSP90-targeted inflammation and infection imaging and therapy
KR102136017B1 (en) Ovepitant for the treatment of chronic cough
US9907795B2 (en) Method of treatment of chronic cough administering orvepitant in combination with other therapeutic agents
EP3458448B1 (en) Fasn inhibitors for use in treating non-alcoholic steatohepatitis
CA2962866A1 (en) Treatments of autoimmune diseases with substrates for the queuine-insertase complex
US20160303150A1 (en) Deuterated trehalose formulations and uses thereof
EA034528B1 (en) Method for treating hiv-related disorders
JP2006021996A (en) Conjugated substance of substituted hydroxypyridine compound
US20230414519A1 (en) Rapidly infusing compositions with methotrexate and treatment methods
KR20230005855A (en) Compositions and methods for preventing and/or treating mitochondrial diseases, including Friedreich&#39;s ataxia
WO2021047525A1 (en) Salt of benzothiopyrone compound, and preparation method therefor and application thereof
US20120059020A1 (en) Prophylactic or therapeutic agent for pulmonary fibrosis
WO2005032540A1 (en) Remedy for respiratory diseases comprising n-(benzoyl)amino acid derivative as the active ingredient
TW202122086A (en) Use of a neutrophil elastase inhibitor in lung disease
WO2011159920A1 (en) [5,6]-dihydro-2h-pyran-2-one derivatives