JP2006021825A - Instant cooling type beverage dispenser - Google Patents

Instant cooling type beverage dispenser Download PDF

Info

Publication number
JP2006021825A
JP2006021825A JP2004228714A JP2004228714A JP2006021825A JP 2006021825 A JP2006021825 A JP 2006021825A JP 2004228714 A JP2004228714 A JP 2004228714A JP 2004228714 A JP2004228714 A JP 2004228714A JP 2006021825 A JP2006021825 A JP 2006021825A
Authority
JP
Japan
Prior art keywords
beverage
cooler
refrigerant
refrigerator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004228714A
Other languages
Japanese (ja)
Inventor
Shigeto Matsuo
栄人 松尾
Takuya Matsuo
拓也 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004228714A priority Critical patent/JP2006021825A/en
Publication of JP2006021825A publication Critical patent/JP2006021825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Dispensing Beverages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an instant cooling type beverage dispenser, employing a type wherein water is cooled with a low-temperature cooling medium generated by a refrigerator to cool a beverage with the spiral arrangement of a cooling medium cooling pipe and a beverage cooling pipe in a cooling water tank, causes various components remaining and accumulated in the beverage cooling pipeline to be sometimes deteriorated and decomposed to deteriorate smell and taste of the beverage, and prompts to consider various cleaning methods to prevent them, and that its perfect cleaning is difficult by any methods and needs a long time. <P>SOLUTION: This beverage dispenser is constituted so that it is formed by dividing it into a beverage cooling instrument main part for forming a beverage flow path and a plate-like lid, to make disassembling and assembling able to facilitate cleaning. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

飲料ディスペンサーに関する技術分野    Technical fields related to beverage dispensers

飲料用ディスペンサーは、主にビール、ジュース、コーラなどの飲料を冷却してカップやジョッキに注ぐために広く使用されている。冷却は、飲料の容器を冷却する樽冷却方式、冷凍機の冷媒で冷却した水で管内の飲料を冷却する瞬間冷却方式、コールドプレート上に氷を置いてコールドプレート内の管路内の飲料を冷却する氷冷却方式の3種を使って行われている。    Beverage dispensers are widely used to cool and pour beverages such as beer, juice and cola into cups and mugs. Cooling is a barrel cooling system that cools the beverage container, an instantaneous cooling system that cools the beverage in the pipe with water cooled by the refrigerant of the refrigerator, and ice placed on the cold plate to cool the beverage in the pipe in the cold plate This is done using three types of ice cooling methods.

飲料用ディスペンサーで冷却される飲料には、糖分、アルコール、澱粉質等の変質しやすい性質を持つ成分が含まれている。これらの成分が冷却用の管路や冷却器内に残留して変質するのを防止しないと腐敗や味の劣化が生じて、飲料の販売に支障をきたすことになる。    Beverages cooled by a beverage dispenser contain components that are easily altered, such as sugar, alcohol, and starch. If these components are not prevented from remaining in the cooling pipes or the cooler and denatured, they will be spoiled and taste will be deteriorated, which will hinder the sale of beverages.

従来の飲料ディスペンサーの中で樽冷却方式は、飲料冷却器を必要としないが、他の方式は、飲料冷却器が必要である。    Among the conventional beverage dispensers, the barrel cooling method does not require a beverage cooler, but other methods require a beverage cooler.

図21は、最も一般的に使用されている瞬間冷却式(短縮して瞬冷式)と呼ばれる飲料ディスペンサー(300)である。樽(210)内の飲料は、炭酸ガスボンベ(110)から供給される高圧の炭酸ガスで加圧されて、飲料供給管(230)を通って、ステンレスコイル(310)へ入って冷却室(330)内の水で冷却されて、コック(320)からジョッキなどに注がれる。冷却室(330)内の水は、圧縮機(350)、空冷コンデンサ(370)、ファン(360)で構成される冷凍機で冷却された低温の冷媒を冷却室内に設けられた冷媒冷却管(340)に流して冷却される。冷媒冷却管(340)及びステンレスコイル(310)と水との熱伝達を良くするために、水はモータ(380)で駆動されたスクリュー(390)で常に攪拌されている。このタイプは、業務用として最も良く使用されており、営業上は多くの飲料を注出できるというメリットがあるが、長くて細いステンレスコイル(310)内の洗浄には、多くの手間と長い時間が必要である。また、水を中間の冷却源として用いているために、比較的多量の水とそれを収めるタンクが必要で、飲料冷却以前に水を冷却しておく必要がある。更に、水の最低温度は0℃であり、飲料との温度差を大きくとることができないため、伝熱面積を大きく採る必要があり、飲料供給量に対する制御も難しい。
反面、冷却室(330)内の水、氷に冷熱蓄熱ができ、最低温度が0℃以下にはならないため、飲料の凍結による管路の閉塞などの問題は生じない。
FIG. 21 shows a beverage dispenser (300) called an instantaneous cooling type (shortened instantaneous cooling type) that is most commonly used. The beverage in the barrel (210) is pressurized with high-pressure carbon dioxide supplied from the carbon dioxide cylinder (110), passes through the beverage supply pipe (230), enters the stainless steel coil (310), and enters the cooling chamber (330). ) Is cooled with water in the inside and poured into a mug or the like from the cock (320). The water in the cooling chamber (330) is a refrigerant cooling pipe (cooling pipe provided in the cooling chamber) with a low-temperature refrigerant cooled by a refrigerator composed of a compressor (350), an air cooling condenser (370), and a fan (360). 340) and cooled. In order to improve heat transfer between the coolant cooling pipe (340) and the stainless steel coil (310) and water, the water is constantly stirred by a screw (390) driven by a motor (380). This type is most commonly used for business purposes and has the advantage that many beverages can be poured out in the business. However, it takes a lot of time and effort to clean the long and thin stainless steel coil (310). is required. Moreover, since water is used as an intermediate cooling source, a relatively large amount of water and a tank for storing the water are necessary, and it is necessary to cool the water before cooling the beverage. Furthermore, since the minimum temperature of water is 0 ° C. and a temperature difference from the beverage cannot be made large, it is necessary to take a large heat transfer area, and it is difficult to control the beverage supply amount.
On the other hand, water and ice in the cooling chamber (330) can be stored with cold heat, and the minimum temperature does not become 0 ° C. or lower.

図22に、バッグインボックスの混合タイプの飲料ディスペンサーで各バッグ内の飲料の混合比をカードで入力して制御するシステムと各構成要素やサブアッセンブリーを取り外し可能として操作性と保守性改善を狙った飲料ディスペンサーの特許例(US Patent Number 5797519)を示す。    Fig. 22 shows a system that controls the mixing ratio of beverages in each bag by using a card-in-box mixed-type beverage dispenser, and the components and sub-assemblies can be removed to improve operability and maintainability. An example of a beverage dispenser (US Patent Number 5797519) is shown.

図23に示す特開2002−19895は、冷却にプレート式熱交換器(5)を用いて、冷水で飲料を冷却するものである。冷水は、冷凍機(2)で作られ、冷却水タンク(3)内に貯めておき、冷却水送りポンプ(14)でプレート式熱交換器(5)内へと送り込まれる。プレートは非毒性の各種ろう付又は溶接結合されている。この考案は、基本的に瞬冷式と同じ構成であり、プレート熱交換器を採用した点に特徴がある。プレート熱交換器を採用したために、熱交換器の洗浄が更に困難となり、新たに冷却水タンクと冷却水送りポンプを設ける必要があり、構造が複雑で大きくなり、飲料ディスペンサーとして使用するメリットがない。    Japanese Patent Application Laid-Open No. 2002-1989 shown in FIG. 23 uses a plate heat exchanger (5) for cooling to cool a beverage with cold water. The cold water is made by the refrigerator (2), stored in the cooling water tank (3), and fed into the plate heat exchanger (5) by the cooling water feed pump (14). The plates are various non-toxic brazing or welded joints. This device has basically the same structure as that of the instantaneous cooling type, and is characterized in that a plate heat exchanger is adopted. Since the plate heat exchanger is adopted, it becomes more difficult to clean the heat exchanger, and it is necessary to newly provide a cooling water tank and a cooling water feed pump, the structure becomes complicated and large, and there is no merit to use as a beverage dispenser. .

従来の冷媒冷却管と飲料冷却管は、占有容積を小さくするためにらせん状や蛇管に成形され、冷却室内に固定されているので、取り外しが困難である。このため、管内の洗浄は、薬液やスポンジボールを使った特別の機材を使って、毎日行われている。洗浄を怠ると、管内に残留した飲料が腐敗したり、異臭を発し、飲料の香りや味を害する。    Conventional refrigerant cooling pipes and beverage cooling pipes are formed into a spiral shape or a serpentine tube to reduce the occupied volume, and are fixed in the cooling chamber, so that they are difficult to remove. For this reason, the inside of the tube is cleaned every day using special equipment using chemicals and sponge balls. If the washing is neglected, the beverage remaining in the pipe will rot or give off a strange odor, which harms the scent and taste of the beverage.

発明が解決しようとする課題Problems to be solved by the invention

従来の飲料ディスペンサーは、特表平11−808213、特開2002−284294、特開2003−200999、特開2003−97876、特開2001−335096、特開2004−106927に示されるように、冷媒で冷却室内の水を冷却するための冷媒冷却管、水で飲料を冷却するための飲料冷却管が設けられており、細くて長い飲料冷却管路内に残った飲料成分による汚れの除去は非常に困難であり、汚れの除去を容易にできる低価格の飲料冷却器の構造とその製造方法を与えることが望まれている。    A conventional beverage dispenser is made of a refrigerant as disclosed in JP-T-11-808213, JP-A No. 2002-284294, JP-A No. 2003-200999, JP-A No. 2003-97876, JP-A No. 2001-335096, and JP-A No. 2004-106927. A refrigerant cooling pipe for cooling the water in the cooling chamber and a beverage cooling pipe for cooling the beverage with water are provided, and the removal of dirt due to beverage components remaining in the thin and long beverage cooling pipe is very It is difficult to provide a low-cost beverage cooler structure that can easily remove dirt and a method for manufacturing the same.

飲料ディスペンサーの飲料冷却器の洗浄を容易にするために、▲1▼飲料冷却器の取り付け、取り外しを容易にする、▲2▼飲料冷却器の内部を開放して洗浄できるようにする。    In order to facilitate washing of the beverage cooler of the beverage dispenser, (1) easy to install and remove the beverage cooler, and (2) to open the beverage cooler for cleaning.

業務用の飲料ディスペンサーは、単位面積当りの賃料や建設費の高い場所に設置されるので設置面積の小さなものが望まれるので、米国特許5499744、6698229では、飲料ディスペンサーの小型化高冷却能力化の努力がなされているが、冷却水を蓄える冷却室の容積と重量が大きく、冷却室、即ち冷却水を無くすことが必要である。    Since commercial beverage dispensers are installed in places with high rents per unit area and high construction costs, a small installation area is desired. US Pat. Nos. 5,499,744 and 6,698,229 describe the miniaturization of beverage dispensers and the enhancement of cooling capacity. Efforts have been made, but the volume and weight of the cooling chamber for storing the cooling water is large, and it is necessary to eliminate the cooling chamber, that is, the cooling water.

飲料冷却のためには、予め大きな熱容量を持つ冷却室内の冷却水を冷却しておく必要があり、水の冷却に比較的長い時間と大きなエネルギー消費が必要である。注出量の小さな飲料ディスペンサーでも、水の温度を約0℃に冷却する必要があり、注出しない場合も冷却が継続され、冷却室内の水が氷になるまで冷凍機が動き続け、無駄なエネルギーを消費する。    In order to cool the beverage, it is necessary to cool the cooling water in the cooling chamber having a large heat capacity in advance, and the cooling of the water requires a relatively long time and large energy consumption. Even with a small amount of beverage dispenser, it is necessary to cool the temperature of the water to about 0 ° C. If it is not dispensed, the cooling continues and the refrigerator continues to run until the water in the cooling chamber becomes ice, which is useless. Consume energy.

課題を解決するための手段Means for solving the problem

従来の飲料冷却管と同じ役割を果たし、飲料冷却器を入口と出口部に深い溝を、溝間に浅い溝を有する冷却器主部と蓋で形成して飲料側の伝熱面を開放可能とする。    Plays the same role as a conventional beverage cooling pipe, and allows the beverage cooler to be formed with a deep groove at the inlet and outlet and a cooler main part with a shallow groove between the groove and a lid to open the heat transfer surface on the beverage side And

浅い溝と蓋で形成する数ミリ以下の薄い板状の流路に飲料を流すことにより、流路内部の流速を均一化し、熱伝達を促進する。    By flowing a beverage through a thin plate-like channel of several millimeters or less formed by a shallow groove and a lid, the flow velocity inside the channel is made uniform and heat transfer is promoted.

上記の飲料冷却器の少なくとも1面に、冷媒冷却管を埋め込んだ高熱伝導材の板状の冷媒冷却器、又は上記の飲料冷却器と同形状の冷媒冷却器の1面を密着させる。    A plate-like refrigerant cooler made of a high heat conductive material in which a refrigerant cooling pipe is embedded, or one surface of a refrigerant cooler having the same shape as the beverage cooler is brought into close contact with at least one surface of the beverage cooler.

飲料ディスペンサーを、冷凍機部、冷却器部に分け、冷凍機部に圧縮機、蒸発器、凝縮器、ファンモータを設置、冷却器部に冷媒冷却器と飲料冷却器を設置、飲料冷却器を開閉可能な扉に設置して、扉を開放することで冷媒冷却器の蓋の取り外し、冷媒冷却器主部を可能とする。    The beverage dispenser is divided into a refrigerator and a cooler. A compressor, an evaporator, a condenser, and a fan motor are installed in the refrigerator. A refrigerant cooler and a beverage cooler are installed in the cooler. It is installed on a door that can be opened and closed, and the lid of the refrigerant cooler can be removed and the main part of the refrigerant cooler can be opened by opening the door.

実施例1の瞬間冷却方式の飲料冷却器の全体構成断面図を図1に、使用時の飲料ディスペンサー外観図を図2左側に、飲料冷却器扉開放時の飲料ディスペンサー外観図を図3右側に示す。実施例1の瞬間冷却方式の飲料ディスペンサーは、冷凍機ボックス(1050)、冷却器ボックス(2000)、冷却器ボックス(2000)に取り付けられた飲料冷却器扉(3000)で構成される。冷凍機ボックス(1050)には、冷凍機(1000)を構成する圧縮機(1100)、凝縮器(1200)、ファン(1300)、モータ(1400)が、冷却器ボックス(2000)には、冷媒冷却器(2100)が、飲料冷却器扉(3000)には、飲料冷却器(3100)が収められている。圧縮機(1100)で圧縮された冷媒は、凝縮器(1200)で冷却凝縮され、膨張弁(1500)で膨張して低温ガスとなり、冷媒冷却器(2100)に送られて飲料冷却器(3100)を冷却して、圧縮機(1100)へ戻る。凝縮器(1200)はモータ(1400)で駆動されるファン(1300)で送られる空気で冷却される。冷媒冷却器(2100)は、冷却器ボックス(2000)にはめ込まれ、冷却器ボックス(2000)は、冷凍器ボックス(1050)に取り付けられている。飲料冷却器(3100)は、飲料冷却器扉(3000)にはめ込まれ、飲料入口管(3500)から送り込まれた飲料を飲料出口管(3700)からタップ(4000)へと送られる。冷媒冷却器(2100)は、断熱材(2200)で、飲料冷却器(3100)は、断熱材(3400)で断熱される。    FIG. 1 is a cross-sectional view of the overall configuration of the instant cooling type beverage cooler of Example 1, FIG. 2 is a beverage dispenser external view when in use, and FIG. 3 is a beverage dispenser external view when the beverage cooler door is opened. Show. The instant cooling type beverage dispenser of Example 1 is composed of a refrigerator box (1050), a cooler box (2000), and a beverage cooler door (3000) attached to the cooler box (2000). The refrigerator box (1050) includes a compressor (1100), a condenser (1200), a fan (1300), and a motor (1400) constituting the refrigerator (1000), and a refrigerant box (2000) includes a refrigerant. The drink cooler (3100) is stored in the drink cooler door (3000). The refrigerant compressed by the compressor (1100) is cooled and condensed by the condenser (1200), expanded by the expansion valve (1500) to become a low-temperature gas, and sent to the refrigerant cooler (2100) to be a beverage cooler (3100). ) Is returned to the compressor (1100). The condenser (1200) is cooled by air sent by a fan (1300) driven by a motor (1400). The refrigerant cooler (2100) is fitted in the cooler box (2000), and the cooler box (2000) is attached to the freezer box (1050). The beverage cooler (3100) is fitted into the beverage cooler door (3000), and the beverage fed from the beverage inlet pipe (3500) is fed from the beverage outlet pipe (3700) to the tap (4000). The refrigerant cooler (2100) is insulated by a heat insulating material (2200), and the beverage cooler (3100) is insulated by a heat insulating material (3400).

図2(a)に示すように、飲料ディスペンサーは、飲料冷却器扉(3000)は閉じた状態で使用され、タップ取付けネジ(3010)が設けられている。図2(b)は、飲料冷却器扉(3000)が開いた状況を示しており、飲料冷却器扉(3000)と冷却器ボックス(2000)の相対する面には、飲料冷却器(3100)と冷媒冷却器(2100)の相互に密着する冷却面を見ることができる。    As shown in FIG. 2 (a), the beverage dispenser is used with the beverage cooler door (3000) closed, and is provided with a tap mounting screw (3010). FIG. 2 (b) shows a state in which the beverage cooler door (3000) is opened, and the beverage cooler (3100) is placed on the opposite surface of the beverage cooler door (3000) and the cooler box (2000). And the cooling surface of the refrigerant cooler (2100) in close contact with each other.

図3に実施例2の構成断面図を示す。実施例2は、冷媒冷却器(2100)の両面に飲料冷却器(3000)と(3350)を密着させて接続管(3600)で直列接続したものである。飲料は飲料入口管(3500)から入り、冷媒冷却器(2100)の左側面に密着した飲料冷却器(3150)で冷却され、接続管(3600)を通って冷媒冷却器(2100)の右側面に密着した飲料冷却器(3100)で冷却されて飲料出口管(3700)で接続されたタップ(4000)からジョッキやカップへ注がれる。飲料冷却器(3150)は、飲料冷却扉(3050)に取り付けられ、断熱材(3450)で断熱されている。    FIG. 3 shows a sectional view of the configuration of the second embodiment. In Example 2, the beverage coolers (3000) and (3350) are brought into close contact with both surfaces of the refrigerant cooler (2100) and connected in series with a connection pipe (3600). The beverage enters from the beverage inlet pipe (3500), is cooled by the beverage cooler (3150) in close contact with the left side surface of the refrigerant cooler (2100), passes through the connection pipe (3600), and the right side surface of the refrigerant cooler (2100). It is poured into a mug or cup from a tap (4000) that is cooled by a beverage cooler (3100) in close contact with the beverage and connected by a beverage outlet pipe (3700). The beverage cooler (3150) is attached to the beverage cooling door (3050) and is thermally insulated by a heat insulating material (3450).

図4(a)に、実施例2の飲料ディスペンサーの使用時の外観を示す。冷却器ボックス(2000)の上部両側に飲料冷却扉(3000)と(3050)が、図4(b)に示すように横方向に開閉可能な形で取り付けられている。図4右側に、実施例2の飲料ディスペンサーの飲料冷却扉(3000)と(3050)を開放時の外観を示す。冷却器ボックス(2000)に両面が露出する形で取り付けられた冷媒冷却器(2100)と飲料冷却器(3100)及び(3150)は、飲料冷却扉(3000)と(3050)を閉じたときに密着するような位置に設置されている。    The external appearance at the time of use of the drink dispenser of Example 2 is shown to Fig.4 (a). Beverage cooling doors (3000) and (3050) are attached to both sides of the upper portion of the cooler box (2000) in a form that can be opened and closed in the lateral direction as shown in FIG. 4 (b). The right side of FIG. 4 shows the appearance when the beverage cooling doors (3000) and (3050) of the beverage dispenser of Example 2 are opened. The refrigerant cooler (2100) and the beverage coolers (3100) and (3150) attached to the cooler box (2000) in such a manner that both sides are exposed, when the beverage cooling doors (3000) and (3050) are closed. It is installed at a position where it comes into close contact.

図5に、実施例3の飲料ディスペンサーの構成断面図を示す。実施例2の構成に冷媒冷却器(2150)と冷凍機(1900)を加えたものである。冷媒冷却器(2100)には、図5に図示した冷凍機(1000)からの冷媒を用いる。冷媒冷却器(2150)には、図5に図示されていない冷凍機(1900)から冷媒入口管(1550)を通して導かれる冷媒を用いて、冷媒出口管(1650)で戻される。冷凍機(1900)は、冷凍機(1000)の奥に設置されている。制御装置(1700)は、飲料冷却器(3100)と(3150)出口の温度T1とT2を指標として、冷凍機(1000)、(1900)の能力を調整する。飲料冷却器(3100)出口の温度T1が飲料として最適の温度、例えば4℃を上回る場合、冷凍機(1900)の能力を飲料冷却器(3150)出口温度T2が凍結規定温度(飲料が凍結を開始する恐れのある計測位置の温度)までを目標値として上げるように制御する。この制御でもT1が最適温度に至らない場合は、冷凍機(1000)の能力を上げるように制御する。    In FIG. 5, the structure sectional drawing of the drink dispenser of Example 3 is shown. A refrigerant cooler (2150) and a refrigerator (1900) are added to the configuration of the second embodiment. The refrigerant from the refrigerator (1000) illustrated in FIG. 5 is used for the refrigerant cooler (2100). The refrigerant cooler (2150) is returned by the refrigerant outlet pipe (1650) using the refrigerant guided from the refrigerator (1900) (not shown in FIG. 5) through the refrigerant inlet pipe (1550). The refrigerator (1900) is installed in the back of the refrigerator (1000). The control device (1700) adjusts the capacities of the refrigerators (1000) and (1900) using the temperatures T1 and T2 at the outlets of the beverage cooler (3100) and (3150) as indices. When the temperature T1 at the outlet of the beverage cooler (3100) exceeds the optimum temperature for the beverage, for example, 4 ° C., the capacity of the refrigerator (1900) is set to the specified freezing temperature (the beverage is frozen). (Temperature at the measurement position that may start) If T1 does not reach the optimum temperature even in this control, control is performed to increase the capacity of the refrigerator (1000).

図6に、実施例3の飲料ディスペンサーの飲料冷却器扉(3000)、(3050)を開いた状態の外観を示す。両方の飲料冷却器扉(3000)、(3050)を閉じたときには、飲料冷却器扉(3000)に組み込まれた飲料冷却器(3100)は、冷媒冷却器(2100)と、飲料冷却器扉(3050)に組み込まれた飲料冷却器(3150)は、冷媒冷却器(2150)とが密着するように配置されている。    In FIG. 6, the external appearance of the state which opened the drink cooler door (3000) of the drink dispenser of Example 3 (3050) is shown. When both beverage cooler doors (3000), (3050) are closed, the beverage cooler (3100) incorporated in the beverage cooler door (3000) is composed of a refrigerant cooler (2100) and a beverage cooler door ( The beverage cooler (3150) incorporated in 3050) is disposed so as to be in close contact with the refrigerant cooler (2150).

図7(a)に、実施例4の飲料ディスペンサーの外観を、図7(b)飲料冷却器扉(3000)を開いた状態の外観をに示す。実施例4は、実施例1の飲料冷却器(3100)を、飲料冷却器(3100)と(3150)の2個に増やして2種の飲料抽出用のタップ取付けネジ(3010)、(3020)を設けたものである。    FIG. 7A shows the appearance of the beverage dispenser of Example 4, and FIG. 7B shows the appearance of the beverage cooler door (3000) opened. In Example 4, the beverage cooler (3100) of Example 1 is increased to two beverage coolers (3100) and (3150), and two types of beverage extraction tap mounting screws (3010) and (3020) are used. Is provided.

図8(a)に、実施例5の飲料ディスペンサーの外観を、図8(b)に飲料冷却器扉(3000)を開いた状態の外観を示す。実施例5は、実施例4の冷媒冷却器(2100)を、冷媒冷却器(2100)と(2150)の2個に増やして、実施例4と同様に2種の飲料抽出用のタップ取付けネジ(3010)、(3020)を設けたものである。    FIG. 8A shows the appearance of the beverage dispenser of Example 5, and FIG. 8B shows the appearance of the beverage cooler door (3000) opened. In Example 5, the refrigerant cooler (2100) of Example 4 is increased to two refrigerant coolers (2100) and (2150), and tap attachment screws for extracting two types of beverages as in Example 4 are used. (3010) and (3020) are provided.

実施例4と実施例5では、冷媒冷却器(2100)、(2150)、飲料冷却器(3100)、(3150)を横並びに配置したが、上下に配置しても良い。また、実施例4と実施例5から、冷媒冷却器と飲料冷却器を複数配置することもできることは容易に推測できる。    In Example 4 and Example 5, the refrigerant coolers (2100) and (2150) and the beverage coolers (3100) and (3150) are arranged side by side, but they may be arranged vertically. Further, from Example 4 and Example 5, it can be easily estimated that a plurality of refrigerant coolers and beverage coolers can be arranged.

図9(a)に、実施例6の飲料ディスペンサーの外観を、図9(b)に飲料冷却器扉(3000)を開いた状態の外観を示す。実施例6は、冷凍機ボックス(1050)の上に冷却器ボックス(2000)を、その上に飲料冷却器扉(3000)を配置したもので、飲料冷却器扉(3000)を閉めると冷媒冷却器(2100)と飲料冷却器(3100)、(3150)の面が密着する配置となっている。    FIG. 9A shows the appearance of the beverage dispenser of Example 6, and FIG. 9B shows the appearance of the beverage cooler door (3000) opened. In Example 6, the cooler box (2000) is disposed on the refrigerator box (1050), and the beverage cooler door (3000) is disposed thereon. When the beverage cooler door (3000) is closed, refrigerant cooling is performed. The surface of the container (2100) and the beverage coolers (3100) and (3150) are in close contact with each other.

図10に、実施例7の飲料ディスペンサーの飲料冷却器扉(3000)を開いた状態の外観を示す。実施例7は、冷凍機ボックス(1050)の側面に冷却器ボックス(2000)を、その外側に飲料冷却器扉(3000)を配置したもので、飲料冷却器扉(3000)を閉めると冷媒冷却器(2100)と飲料冷却器(3100)、(3150)の面が密着する配置となっている。    In FIG. 10, the external appearance of the state which opened the drink cooler door (3000) of the drink dispenser of Example 7 is shown. In Example 7, the cooler box (2000) is disposed on the side surface of the refrigerator box (1050), and the beverage cooler door (3000) is disposed on the outside thereof. When the beverage cooler door (3000) is closed, the refrigerant is cooled. The surface of the container (2100) and the beverage coolers (3100) and (3150) are in close contact with each other.

前記の飲料ディスペンサーを構成する冷媒冷却器と飲料冷却器の詳細について以下に示す。
図11(a)に飲料冷却器扉(3000)と飲料冷却器(3100)の組立状態の図を、(b)にA−A断面を、(c)に飲料冷却器扉(3000)から飲料冷却器(3100)を抜き取った断面図を、(d)に飲料冷却器(3100)を示す。飲料冷却器扉(3000)は、金属やプラスチックの板状材で断熱材(3400)を内包した構造であり、飲料冷却器(3100)は成型された窪み(3410)にはめ込まれる。飲料冷却器(3100)に作用する飲料の圧力による変形は、飲料冷却扉(3000)を構成する部材や断熱材(3400)で抑制される。
Details of the refrigerant cooler and beverage cooler constituting the beverage dispenser will be described below.
Fig. 11 (a) shows an assembled state of the beverage cooler door (3000) and the beverage cooler (3100), (b) shows the AA cross section, (c) shows the beverage from the beverage cooler door (3000). The drink cooler (3100) is shown in FIG. The beverage cooler door (3000) has a structure in which a heat insulating material (3400) is included with a metal or plastic plate-like material, and the beverage cooler (3100) is fitted into the molded depression (3410). Deformation due to the pressure of the beverage acting on the beverage cooler (3100) is suppressed by the members constituting the beverage cooling door (3000) and the heat insulating material (3400).

図12に、飲料冷却器(3100)の詳細図を示す。図12(a)に飲料冷却器主部(3100A)の側面図、(b)に正面図、(c)にA−A断面図を蓋(3180)と組み合わせたものを示す。飲料冷却器主部(3100A)は、板状の部材に溝状の飲料入口流路(3130)、冷却部底板(3140)、溝状の飲料出口流路(3155)を設けたもので、飲料は入口(3110)から入り、飲料入口流路(3130)で分配されて冷却部底板(3140)と蓋(3180)で形成される薄板状の隙間を流れて冷却され、飲料出口流路(3155)に集められて出口(3120)から出る。また、薄板構造の場合、広い平面に高い面圧が作用すると面の変形が生じるので面に凹凸を持たせて強度を保持して面の変形を抑制しても良い。
小型のビール用ディスペンサーの電力消費量200W(ニットク、ホームページデータ)からCOPを3と仮定すると600Wの冷熱を飲料冷却器(3100)に供給している。このときの飲料流量Qは、温度差を22℃、ビールの比熱を1kcal/kg℃とすると熱量の関係からQ=0.6kW×860(kcal/kWhr)/22℃/1(kcal/kg℃)×1(kリットル/kg)=23.5リットル/時間=0.39リットル/分となる。熱伝達率を等温平板に沿う層流と乱流で流速を1m/sと仮定して求めると約18000〜60000W/m・K(日本機械学会・伝熱工学資料より)となり、温度差を5℃とすると熱流束は3600〜12000W/mとなる。上記の熱量を伝熱できる面積Aは、A=600/(3600〜12000)=0.05〜0.167(m)であり、巾20〜40cm、奥行き25〜40cmの伝熱面積が必要となる。
流量0.39リットル/分を巾20cmで流速1m/秒となる流路の高さHは、H=0.39(リットル/分)/1000(m/リットル)/60(秒1分)/1(m/秒)/0.02(m)=0.000325m=0.325mmとなる。流速を小さくすると、流速の1/1.5〜1/2乗で熱伝達率が低下するので伝熱面積も熱伝達率に比例して大きくとる必要があるが、流路面積は流速に逆比例して大きく取る必要があるので、流路高さは高くなる。
飲料ディスペンサーの電力消費量が異なる場合、伝熱面積と飲料の流量は電力消費量に比例するので、流路の高さは電力消費量の1/2乗に比例すると考えられる。一般に使用されている飲料ディスペンサーの電力消費量は200〜1000W、業務用の大きなもので2000kWであるので、流路の高さは上記の計算の約3倍、1mm程度と推定され、種々の設計条件の変化を考えても高々5mmと考えられる。
FIG. 12 shows a detailed view of the beverage cooler (3100). FIG. 12 (a) shows a side view of the beverage cooler main part (3100A), FIG. 12 (b) shows a front view, and FIG. 12 (c) shows an AA cross-sectional view combined with a lid (3180). The beverage cooler main part (3100A) is a plate-like member provided with a groove-shaped beverage inlet channel (3130), a cooling unit bottom plate (3140), and a groove-shaped beverage outlet channel (3155). Enters from the inlet (3110), is distributed in the beverage inlet flow path (3130), flows through a thin plate-shaped gap formed by the cooling part bottom plate (3140) and the lid (3180), and is cooled, and the beverage outlet flow path (3155) ) And exit from the exit (3120). In the case of a thin plate structure, when a high surface pressure acts on a wide plane, the surface is deformed. Therefore, the surface may be uneven to maintain the strength and suppress the surface deformation.
Assuming that the COP is 3 from the power consumption 200 W (Knitku, homepage data) of a small beer dispenser, 600 W of cold heat is supplied to the beverage cooler (3100). The beverage flow rate Q at this time is 22 ° C. and the specific heat of beer is 1 kcal / kg ° C. From the relationship of heat quantity, Q = 0.6 kW × 860 (kcal / kWhr) / 22 ° C./1 (kcal / kg ° C.) ) × 1 (k liter / kg) = 23.5 liter / hour = 0.39 liter / minute. When the heat transfer coefficient is calculated by assuming laminar flow and turbulent flow along an isothermal flat plate and assuming a flow velocity of 1 m / s, it is about 18000 to 60000 W / m 2 · K (from the Japan Society of Mechanical Engineers and heat transfer engineering data). If it is 5 degreeC, a heat flux will be 3600-12000 W / m < 2 >. The area A capable of transferring the above heat amount is A = 600 / (3600-12000) = 0.05-0.167 (m 2 ), and a heat transfer area with a width of 20-40 cm and a depth of 25-40 cm is required. It becomes.
The height H of the flow path at a flow rate of 0.39 liters / minute and a width of 20 cm and a flow velocity of 1 m / second is H = 0.39 (liters / minute) / 1000 (m 3 / liter) / 60 (seconds 1 minute). / 1 (m / sec) /0.02 (m) = 0.000325 m = 0.325 mm. If the flow rate is reduced, the heat transfer coefficient decreases at the power of 1 / 1.5-1 / 2, so the heat transfer area must be increased in proportion to the heat transfer coefficient. Since it is necessary to increase proportionally, the flow path height increases.
When the power consumption of the beverage dispenser is different, the heat transfer area and the flow rate of the beverage are proportional to the power consumption, so the height of the flow path is considered to be proportional to the 1/2 power of the power consumption. Since the power consumption of the beverage dispenser that is generally used is 200-1000W, the large one for business use is 2000kW, the height of the flow path is estimated to be about 3 times the above calculation, about 1mm, various designs Considering the change of conditions, it is considered to be 5 mm at the most.

実施例8は、飲料冷却器(3100)に冷熱蓄熱機能を持たせたもので、製作方法として機械加工が容易なものであり、少量生産に適している。図13に、飲料冷却器(3100)の詳細図を示す。図13(a)に飲料冷却器主部(3100A)の側面図、(b)に正面図、(c)にA−A断面図を蓋(3180)と組み合わせたものを示す。飲料冷却器主部(3100A)は、厚板状の部材に溝状の飲料入口流路(3130)、冷却部底板(3140)、溝状の飲料出口流路(3155)を設けたもので、飲料は入口(3110)から入り、飲料入口流路(3130)で分配されて冷却部底板(3140)と蓋(3180)で形成される薄板状の隙間を流れて冷却され、飲料出口流路(3155)に集められて出口(3120)から出る。本明細では、生産性を重視して、上記の蓋(3180)は、形状がもっとも単純な平板にしているが、図13(d)に示すように、蓋(3180)にも飲料冷却器主部(3100A)と同様の加工をしたものを用いても良く、なんら本考案の主旨が変わるものではない。    In Example 8, the beverage cooler (3100) is provided with a cold heat storage function, and is easy to machine as a manufacturing method and is suitable for small-scale production. FIG. 13 shows a detailed view of the beverage cooler (3100). Fig. 13 (a) shows a side view of the beverage cooler main part (3100A), Fig. 13 (b) shows a front view, and Fig. 13 (c) shows a combination of the AA sectional view and the lid (3180). The beverage cooler main part (3100A) is a thick plate-like member provided with a grooved beverage inlet channel (3130), a cooling unit bottom plate (3140), and a grooved beverage outlet channel (3155). The beverage enters from the inlet (3110), is distributed by the beverage inlet flow path (3130), flows through a thin plate-shaped gap formed by the cooling unit bottom plate (3140) and the lid (3180), and is cooled to the beverage outlet flow path ( 3155) and exit from exit (3120). In the present specification, the lid (3180) is a flat plate having the simplest shape with emphasis on productivity. However, as shown in FIG. What processed the same as a part (3100A) may be used, and the main point of this invention does not change at all.

実施例9は、従来の中間冷媒の水の代わりに高熱伝導で高比熱材料を冷熱蓄熱材として用いたものである。図14(a)に、図13に示した厚板状の飲料冷却器(3100)の冷媒冷却器(2100)に密着する面の反対面に高熱伝導で高比熱の材料で作られた蓄熱部材(2190)を密着させた構成を、(b)に冷媒冷却器(2100)に蓄熱部材(2190)を密着させた構成を、(c)に冷媒冷却器(2100)と飲料冷却器(3100)の間に蓄熱部材(2190)を密着させた構成を示す。図14(a)、(b)、(c)の構成では、いずれも飲料冷却器(3100)の蓋(3180)は、蓄熱材(2190)或いは冷媒冷却器(2100)と密着しており、内圧などによる変形は相互に抑制されており、いずれのものも剛性の低い中心部の変形が起こるが、この変形は密着性を高める働きをする。    In Example 9, a high heat conductivity and high specific heat material is used as a cold heat storage material instead of the conventional intermediate coolant water. FIG. 14 (a) shows a heat storage member made of a material having high heat conductivity and high specific heat on the opposite surface of the thick plate-like beverage cooler (3100) shown in FIG. 13 which is in close contact with the refrigerant cooler (2100). The configuration in which (2190) is closely attached, the configuration in which the heat storage member (2190) is closely attached to the refrigerant cooler (2100) in (b), and the refrigerant cooler (2100) and beverage cooler (3100) in (c). The structure which closely_contact | adhered the heat storage member (2190) between these is shown. 14 (a), (b), and (c), the lid (3180) of the beverage cooler (3100) is in close contact with the heat storage material (2190) or the refrigerant cooler (2100). Deformation due to internal pressure or the like is mutually suppressed, and in both cases, deformation of the central portion having low rigidity occurs, and this deformation serves to improve adhesion.

実施例10は、図15に示すように冷媒冷却器(2100)、(2150)として、蛇行管(2192)を銅などの高熱伝導材に埋め込んだ矩形状の冷媒熱交換器(2100)も用いたものである。蛇行管(2192)の入口、出口は矩形の一面に管の直径の5倍以内の距離にある。    In Example 10, as shown in FIG. 15, a rectangular refrigerant heat exchanger (2100) in which a meandering pipe (2192) is embedded in a high thermal conductive material such as copper is also used as the refrigerant coolers (2100) and (2150). It was. The inlet and outlet of the meandering tube (2192) are within a distance of 5 times the diameter of the tube on one side of the rectangle.

実施例11は、図16に示すように、螺旋管(2193)を銅などの高熱伝導材に埋め込んだ矩形状の冷媒冷却器(2100)、(2150)を用いたものである。螺旋管(2193)の入口、出口は矩形の一面に管の直径の5倍以内の距離にある。    In Example 11, as shown in FIG. 16, rectangular refrigerant coolers (2100) and (2150) in which a spiral tube (2193) is embedded in a high heat conductive material such as copper are used. The inlet and outlet of the spiral tube (2193) are at a distance within 5 times the diameter of the tube on one side of the rectangle.

実施例12は、図17に示すように、図13に示す飲料冷却器(3100)、(3150)と同形状のものを冷媒冷却器(2100)、(2150)に用いたものである。図17(a)に冷媒冷却器主部(2100A)の側面図、(b)に正面図、(c)にA−A断面図を蓋(2180)と組み合わせたものを示す。冷媒冷却器主部(2100A)は、薄板状の部材に溝状の冷媒入口流路(2130)、冷却部底板(2140)、溝状の冷媒出口流路(2155)を設けたもので、冷媒は入口(2110)から入り、冷媒入口流路(2130)で分配されて冷部底板(2140)と蓋(2180)で形成される薄板状の隙間を流れて冷却され、冷媒出口流路(2155)に集められて出口(2120)から出る。また、薄板構造の場合、広い平面に高い面圧が作用すると面の変形が生じるので面に凹凸を持たせて強度を保持して面の変形を抑制しても良い。    In Example 12, as shown in FIG. 17, the same shape as the beverage coolers (3100) and (3150) shown in FIG. 13 was used for the refrigerant coolers (2100) and (2150). FIG. 17A is a side view of the refrigerant cooler main part (2100A), FIG. 17B is a front view, and FIG. 17C is a cross-sectional view taken along the line AA with a lid 2180. The refrigerant cooler main part (2100A) is a thin plate-like member provided with a groove-like refrigerant inlet channel (2130), a cooling part bottom plate (2140), and a groove-like refrigerant outlet channel (2155). Enters the inlet (2110), is distributed in the refrigerant inlet channel (2130), and flows through a thin plate-like gap formed by the cold part bottom plate (2140) and the lid (2180) to be cooled, and the refrigerant outlet channel (2155). ) And exit from the exit (2120). In the case of a thin plate structure, when a high surface pressure acts on a wide plane, the surface is deformed. Therefore, the surface may be uneven to maintain the strength and suppress the surface deformation.

実施例13は、図18に示すように、図13に示す飲料冷却器(3100)、(3150)と同形状のものを冷媒冷却器(2100)、(2150)に用いたものである。図18(a)に冷媒冷却器主部(2100A)の側面図、(b)に正面図、(c)にA−A断面図を蓋(2180)と組み合わせたものを示す。冷媒冷却器主部(2100A)は、薄板状の部材に溝状の冷媒入口流路(2130)、冷却部底板(2140)、溝状の冷媒出口流路(2155)を設けたもので、冷媒は入口(2110)から入り、冷媒入口流路(2130)で分配されて冷部底板(2140)と蓋(2180)で形成される薄板状の隙間を流れて冷却され、冷媒出口流路(2155)に集められて出口(2120)から出る。本明細では、生産性を重視して、上記の蓋(3180)は、形状がもっとも単純な平板にしているが、図18(d)に示すように、蓋(3180)にも飲料冷却器主部(3100A)と同様の加工をしたものを用いても良く、なんら本考案の主旨が変わるものではない。    As shown in FIG. 18, Example 13 uses the same shape as the drink coolers (3100) and (3150) shown in FIG. 13 for the refrigerant coolers (2100) and (2150). FIG. 18A is a side view of the main part of the refrigerant cooler (2100A), FIG. 18B is a front view, and FIG. 18C is a combination of the AA cross-sectional view and the lid (2180). The refrigerant cooler main part (2100A) is a thin plate-like member provided with a groove-like refrigerant inlet channel (2130), a cooling part bottom plate (2140), and a groove-like refrigerant outlet channel (2155). Enters the inlet (2110), is distributed in the refrigerant inlet channel (2130), and flows through a thin plate-like gap formed by the cold part bottom plate (2140) and the lid (2180) to be cooled, and the refrigerant outlet channel (2155). ) And exit from the exit (2120). In the present specification, in consideration of productivity, the lid (3180) is a flat plate having the simplest shape. However, as shown in FIG. What processed the same as a part (3100A) may be used, and the main point of this invention does not change at all.

図19に、保冷剤容器(5500)の詳細図と保冷剤容器(5500)を設けた実施例14の構成を示す。保冷剤容器(5500)の縦置型を図19(a)と(b)に、横置型を(c)に示す。保冷剤(5510)は、特開H7−255768、2003−129040、2003−306071、2004−2829、2004−91650に示されるように、水に凍結温度を低下させるためのグリコールやグリセリンなどを混合したものであり、保冷剤(5510)の温度変化や凍結による容積変化に対応する空隙(5530)やバネ機構を有する容積拡大機構(5520)を設けたものである。図19(a)、(b)のような縦置型は、保冷剤(5510)の液面は上部にあるので空隙(5530)を設けることで保冷剤(5510)の容積変化に対応可能である。横置型は、液面が保冷剤容器(5500)の上部壁面から離れるときに空間が生じると、熱伝達が悪くなるので、液面が上部壁面に常に接して、容積変化が生じるときは、容積拡大機構(5520)で吸収する構造を採用している。容積拡大機構(5520)は、構成される壁面自身が圧力変化に応じて拡大縮小するものや内部にシリンダーとバネ支持されたピストンのような構成である。    FIG. 19 shows a detailed view of the cryogen container (5500) and the configuration of Example 14 provided with the cryogen container (5500). FIGS. 19A and 19B show the vertical type of the cryogen container (5500), and FIG. 19C shows the horizontal type. As shown in Japanese Patent Application Laid-Open Nos. H7-255768, 2003-129040, 2003-306071, 2004-2829, and 2004-91650, the cryogen (5510) is mixed with glycol or glycerin for lowering the freezing temperature in water. A volume expansion mechanism (5520) having a gap (5530) and a spring mechanism corresponding to a temperature change of the cold-retaining agent (5510) and a volume change due to freezing is provided. In the vertical type as shown in FIGS. 19 (a) and 19 (b), the liquid surface of the cooling agent (5510) is at the top, and therefore it is possible to cope with the volume change of the cooling agent (5510) by providing a gap (5530). . In the horizontal type, if a space is generated when the liquid level is separated from the upper wall surface of the cryogen container (5500), heat transfer is deteriorated. Therefore, when the liquid level is always in contact with the upper wall surface and the volume changes, The structure which absorbs with an expansion mechanism (5520) is employ | adopted. The volume expansion mechanism (5520) is configured such that a wall surface to be configured itself expands or contracts according to a pressure change, or a piston that is supported by a cylinder and a spring inside.

図20に、保冷剤容器(5500)、冷媒冷却器(2100)、飲料冷却器(3100)の配置の例を示す。    In FIG. 20, the example of arrangement | positioning of a cryogen container (5500), a refrigerant | coolant cooler (2100), and a drink cooler (3100) is shown.

発明の効果The invention's effect

実施例1は、図1に示すように、冷凍機ボックス(1050)の側面に薄い冷却器ボックス(2000)を、冷却器ボックス(1050)の側面で冷凍機ボックス(2000)上部に位置する場所に飲料冷却器(3100)を備えており、冷却水を蓄える冷却室が不要なため、従来の飲料ディスペンサー、特表平11−808213、特開2002−284294、特開2003−200999、特開2003−97876、特開2001−335096、特開2004−106927に比べてコンパクトで、設置面積も小さい。    In the first embodiment, as shown in FIG. 1, a thin cooler box (2000) is placed on the side of the refrigerator box (1050), and the refrigerator box (2000) is located on the side of the refrigerator box (1050). Are equipped with a beverage cooler (3100) and do not require a cooling chamber for storing cooling water, so a conventional beverage dispenser, JP-T-11-808213, JP-A-2002-284294, JP-A-2003-200999, JP-A-2003 -97876, Japanese Patent Application Laid-Open No. 2001-335096, and Japanese Patent Application Laid-Open No. 2004-106927 are more compact and have a smaller installation area.

また、図2に示すように飲料冷却器扉(3000)を開放して、図12に示す蓋(3180)をはずすことにより、飲料冷却器(3100)を開放して洗浄ができる。飲料には、糖分やアルコール、タンパク、澱粉質、カルシウムなどの種々の成分が含まれ、水や洗浄液などを流路に通しただけでは、除去できないが、開放して洗浄することで、容易に洗浄可能となる。他の全ての実施例についても同様の効果がある。    Further, as shown in FIG. 2, the beverage cooler door (3000) is opened, and the lid (3180) shown in FIG. Beverages contain various components such as sugar, alcohol, protein, starch, calcium, and cannot be removed by simply passing water or washing liquid through the flow path, but it is easy to open and wash. It can be cleaned. All other embodiments have similar effects.

実施例2は、冷媒冷却器(2100)の両面に飲料冷却器(3100)、(3150)を備えたもので冷却面積を大きくとることができ、コンパクトで冷却能力のおきな飲料ディスペンサーを提供できる。また、冷媒冷却器(2100)の外表面の大半を飲料冷却器(3100)、(3150)でカバーするために冷熱損失を少なくできる。
図4に示すように、両方の飲料冷却器(3100)と(3150)を開放できるので、洗浄を容易に行うことができる。
The second embodiment is provided with the beverage coolers (3100) and (3150) on both sides of the refrigerant cooler (2100), can provide a large cooling area, and can provide a beverage dispenser with a compact and high cooling capacity. . Further, since most of the outer surface of the refrigerant cooler (2100) is covered with the beverage coolers (3100) and (3150), the heat loss can be reduced.
As shown in FIG. 4, since both the beverage coolers (3100) and (3150) can be opened, cleaning can be easily performed.

実施例3は、図5に示すように、2台の冷凍機(1000)と(1900)、2個の冷媒冷却器(2100)と(2150)、2個の飲料冷却器(3100)と(3150)を備えたもので、制御装置により2台の冷凍機(1000)と(1900)の能力を個別に調整して、高い温度の飲料ディスペンサー入口で冷媒の温度を下げて急速に冷却、低温となった飲料を2番目の冷凍機(1000)で適温に調整することで小型でも高い冷凍能力を発揮する。例えば、実施例3で二つの飲料冷却器(3100)と(3150)の伝熱面積は、片側で飲料が凍結するほど余裕が取られてはいないので、温度が30℃の飲料を冷却する場合、飲料冷却器(3150)と密着する冷媒冷却器(2150)の冷媒温度をマイナス10℃に設定したとしても凍結しないが冷却能力は高くなり、より多くの適温の飲料を供給できる。また、飲料冷却器(3100)と(3150)の低温側の温度は、冷媒冷却器(2100)と(2150)の温度に追随するので、飲料冷却器(3100)出口で飲料が凍結しないように制御することで、飲料需要の変化に応じた応答が得られる。一方、従来の飲料ディスペンサーで飲料と冷媒の温度差を大きくとっても中間の水が凍結して飲料との温度差は変わらないために飲料を急速に冷却することはできない。更に、熱容量の大きな冷却室内の多量の水を介して飲料を冷却する従来に方式は急速な冷却能力の制御は不可能である。    In Example 3, as shown in FIG. 5, two refrigerators (1000) and (1900), two refrigerant coolers (2100) and (2150), two beverage coolers (3100) and ( 3150), the capacity of the two refrigerators (1000) and (1900) is individually adjusted by the control device, and the temperature of the refrigerant is lowered at the high temperature beverage dispenser inlet to rapidly cool and cool By adjusting the beverage to an appropriate temperature with the second freezer (1000), high refrigeration capacity is exhibited even in a small size. For example, since the heat transfer area of the two beverage coolers (3100) and (3150) in Example 3 is not enough to allow the beverage to freeze on one side, the beverage having a temperature of 30 ° C. is cooled. Even if the refrigerant temperature of the refrigerant cooler (2150) in close contact with the beverage cooler (3150) is set to minus 10 ° C., the cooling capacity is increased but the cooling capacity is increased, and a more appropriate temperature beverage can be supplied. Moreover, since the temperature of the low temperature side of the beverage coolers (3100) and (3150) follows the temperature of the refrigerant coolers (2100) and (2150), the beverage should not be frozen at the outlet of the beverage cooler (3100). By controlling, a response corresponding to a change in beverage demand can be obtained. On the other hand, even if the temperature difference between the beverage and the refrigerant is greatly increased with a conventional beverage dispenser, the intermediate water is frozen and the temperature difference with the beverage does not change, so the beverage cannot be rapidly cooled. Furthermore, the conventional method of cooling a beverage through a large amount of water in a cooling chamber having a large heat capacity cannot rapidly control the cooling capacity.

実施例4と5は、実施例1から3の効果を生かしつつ、冷媒冷却器(2100)と(2150)、飲料冷却器(3100)と(3150)を1個と2個、2個と2個の組み合わせで2種の飲料を注出することができる。    In the fourth and fifth embodiments, the refrigerant coolers (2100) and (2150), the beverage coolers (3100) and (3150), one and two, two and two, while taking advantage of the effects of the first to third embodiments. Two kinds of beverages can be poured out in combination.

実施例6は、冷媒冷却器(2100)と飲料冷却器(3100)と(3150)を冷凍機ボックス(1050)の上部に配置したものでコンパクトになる。また、実施例1から5とは飲料冷却器扉(3000)の開き方向と場所が異なるため、使用場所や使用形態によって使いやすいものとなる。    The sixth embodiment is compact because the refrigerant cooler (2100), the beverage coolers (3100), and (3150) are arranged in the upper part of the refrigerator box (1050). Moreover, since the opening direction and place of a drink cooler door (3000) differ from Examples 1-5, it becomes easy to use depending on a use place and a use form.

実施例7は、冷媒冷却器(2100)、(2150)と飲料冷却器(3100)、(3150)を冷凍機ボックス(1050)の側面に配置したものでコンパクトになる。また、実施例1から6とは飲料冷却器扉(3000)の開き方向と場所が異なるため、使用場所や使用形態によって使いやすいものとなる。    In Example 7, the refrigerant coolers (2100) and (2150) and the beverage coolers (3100) and (3150) are arranged on the side surface of the refrigerator box (1050), and the size becomes compact. Moreover, since the opening direction and location of the beverage cooler door (3000) are different from those of Examples 1 to 6, it is easy to use depending on the place of use and the form of use.

実施例8は、飲料冷却器(3100)に冷熱蓄熱機能を持たせたもので、製作方法として機械加工が容易なものであり、少量生産に適している。飲料冷却器(3100)をステンレスで製作した場合、比熱約0.1kcal/kg/℃、比重7.8kg/リットルであり、同じ容積と温度差の場合、水の8割程度の冷熱蓄熱ができる。    In Example 8, the beverage cooler (3100) is provided with a cold heat storage function, and is easy to machine as a manufacturing method and is suitable for small-scale production. When the beverage cooler (3100) is made of stainless steel, the specific heat is about 0.1 kcal / kg / ° C. and the specific gravity is 7.8 kg / liter. If the volume and temperature difference are the same, about 80% of water can be stored. .

実施例9は、従来の中間冷媒の水の代わりに高熱伝導で高比熱材料を冷熱蓄熱材として用いたものであり、銅やアルミニュームなどを蓄熱材料として用いると同一容積当りの冷熱蓄熱量が大きく、熱伝導率が大きいため、冷熱蓄熱を即座に活用でき、飲料温度の制御が迅速で容易であり、エネルギー消費の抑制が可能となる。従来の方法で水を凍結させると80kcal/kgの冷熱蓄熱が可能であるが、熱伝導率が小さいため、冷凍機の冷熱の水への熱伝達が悪くするために、飲料温度の制御が悪い。図14(a)、(b)、(c)の構成では、いずれも飲料冷却器(3100)の蓋(3180)は、蓄熱材(2190)或いは冷媒冷却器(2100)と密着しており、内圧などによる変形は相互に抑制されている。いずれのものも剛性の低い中心部にわずかな変形が起こることが考えられるが、この変形は密着性を高める働きをする。    Example 9 uses a high heat conduction and high specific heat material as a cold heat storage material instead of the conventional intermediate refrigerant water, and when using copper or aluminum as the heat storage material, the amount of cold heat storage per volume is the same. Because it is large and has high thermal conductivity, cold heat storage can be used immediately, beverage temperature control is quick and easy, and energy consumption can be suppressed. When water is frozen by a conventional method, a cold heat storage of 80 kcal / kg is possible, but because the heat conductivity is small, the heat transfer to the cold water of the refrigerator is poor, so the beverage temperature is poorly controlled . 14 (a), (b), and (c), the lid (3180) of the beverage cooler (3100) is in close contact with the heat storage material (2190) or the refrigerant cooler (2100). Deformation due to internal pressure or the like is mutually suppressed. In any case, it is considered that a slight deformation occurs in the central portion having low rigidity, but this deformation works to enhance the adhesion.

実施例10は、図15に示すように冷媒冷却器(2100)、(2150)として、蛇行管(2192)を銅などの高熱伝導材に埋め込んだ矩形状の冷媒熱交換器(2100)も用いたものであり、平面状に高密度に冷媒冷却管を配列可能であり、小型で大熱量の熱伝達が可能である。    In Example 10, as shown in FIG. 15, a rectangular refrigerant heat exchanger (2100) in which a meandering pipe (2192) is embedded in a high thermal conductive material such as copper is also used as the refrigerant coolers (2100) and (2150). The refrigerant cooling pipes can be arranged in a plane at a high density, and the heat transfer can be performed in a small size and with a large amount of heat.

実施例11は、図16に示すように、螺旋管(2193)を銅などの高熱伝導材に埋め込んだ矩形状の冷媒冷却器(2100)、(2150)を用いたものであり、実施例10と同様に、平面状に高密度に冷媒冷却管を配列可能であり、小型で大熱量の熱伝達が可能である。また、冷媒管の曲げ加工は直径の一般的に5倍以下の半径曲げが容易であり、螺旋管(2193)を実施例11のように配列することにより、生産性が高まり、入口及び出口が同一側面に配置できるので、配管のアレンジや小型化に有効である。    As shown in FIG. 16, Example 11 uses rectangular refrigerant coolers (2100) and (2150) in which a helical tube (2193) is embedded in a high heat conductive material such as copper. In the same manner as above, the refrigerant cooling pipes can be arranged in a plane at high density, and the heat transfer with a small size and a large amount of heat is possible. In addition, the bending of the refrigerant pipe is easy to bend a radius that is generally not more than 5 times the diameter. By arranging the helical pipes (2193) as in Example 11, the productivity is increased, and the inlet and outlet are arranged. Since it can be arranged on the same side, it is effective for arrangement and miniaturization of piping.

実施例12は、図17に示すように、図13に示す飲料冷却器(3100)、(3150)と同形状のものを冷媒冷却器(2100)、(2150)に用いたものであり、薄板状の部材に溝状の冷媒入口流路(2130)、冷却部底板(2140)、溝状の冷媒出口流路(2155)を設けたもので、薄板板金などの加工法で低コストの製作が可能で、量産性に優れている。    In Example 12, as shown in FIG. 17, the same shape as the beverage coolers (3100) and (3150) shown in FIG. 13 was used for the refrigerant coolers (2100) and (2150). Is provided with a groove-shaped refrigerant inlet channel (2130), a cooling part bottom plate (2140), and a groove-shaped refrigerant outlet channel (2155), and can be manufactured at low cost by a processing method such as sheet metal. It is possible and has excellent mass productivity.

実施例13は、図18に示すように、図13に示す飲料冷却器(3100)、(3150)と同形状のものを冷媒冷却器(2100)、(2150)に用いたものであり、厚板状の部材に溝状の冷媒入口流路(2130)、冷却部底板(2140)、溝状の冷媒出口流路(2155)を設けたもので、機械加工などによる多品種少量生産に好適であり、余肉部分が冷熱蓄熱機能を有する。    In Example 13, as shown in FIG. 18, the same shape as the beverage coolers (3100) and (3150) shown in FIG. 13 was used for the refrigerant coolers (2100) and (2150). A plate-like member is provided with a groove-like refrigerant inlet channel (2130), a cooling part bottom plate (2140), and a groove-like refrigerant outlet channel (2155), which is suitable for small-lot production of various products by machining. Yes, the surplus part has a cold heat storage function.

実施例14は、保冷剤容器(5500)内に保冷剤を収めて、冷熱蓄熱を行うもので、高熱伝導で高比熱の材料で作られた蓄熱部材(2190)に比べて、相変化による蓄熱熱量分大きく、液体状態から固体状態に変化する凍結温度での冷熱吸収量が大きいため、冷媒冷却器(2100)の温度を低くしても保冷剤容器(5500)で冷熱を吸収するために、飲料の凍結に至る時間を緩和する働きがあり、飲料ディスペンサーの制御が容易になる。また、飲料の凍結に至るときの冷媒冷却器(2100)や保冷剤容器(5500)の温度は、飲料ディスペンサーの構造によって異なるので、成分調整により凍結温度の異なる保冷剤を用いることにより、飲料ディスペンサーの設計自由度が増大する。図20(a)では、保冷剤容器(5500)には、飲料に過度な冷熱が加わり凍結温度に近づくと保冷剤容器(5500)に冷熱が吸収されて凍結を遅らせる働きをし、飲料流量が増大して冷媒冷却器(2100)からの冷熱が不足すると、保冷剤容器(5500)からの冷熱で飲料を冷却する働きがある。図20(b)では、保冷剤容器(5500)には、所定の凍結温度までは冷媒冷却器(2100)の冷熱を吸収し、飲料流量が多くなり冷媒冷却器(2100)の温度が低下すると冷媒冷却器(2100)に冷熱を供給して飲料冷却能力を補助する働きがある。図20(c)では、保冷剤容器(5500)には、冷媒冷却器(2100)から受けた冷熱を貯蔵して飲料冷却器(3100)に伝えて飲料を冷却する働きがある。更に、実施例14は、実施例9と同様に飲料供給量の変動に対して、一定の時間安定した温度で飲料を供給することができる。    In Example 14, the cold storage agent is stored in the cold storage agent container (5500) to perform cold heat storage, and heat storage by phase change is performed as compared with the heat storage member (2190) made of a material having high heat conductivity and high specific heat. Since the amount of heat absorption is large and the amount of cold absorption at the freezing temperature that changes from the liquid state to the solid state is large, in order to absorb the cold heat in the cold insulation container (5500) even if the temperature of the refrigerant cooler (2100) is lowered, It serves to alleviate the time until the beverage is frozen, and the beverage dispenser can be easily controlled. Moreover, since the temperature of the refrigerant cooler (2100) and the cryogen container (5500) when the beverage is frozen varies depending on the structure of the beverage dispenser, a beverage dispenser can be obtained by using a cryogen having a different freezing temperature by adjusting the components. Design freedom increases. In FIG. 20 (a), the cold-reservoir container (5500) acts to delay the freezing by absorbing the cold in the cold-reservoir container (5500) when excessive cold heat is applied to the beverage and approaches the freezing temperature. When it increases and the cold heat from the refrigerant cooler (2100) is insufficient, there is a function of cooling the beverage with the cold heat from the cold insulation container (5500). In FIG. 20B, the cold storage container (5500) absorbs the cold heat of the refrigerant cooler (2100) up to a predetermined freezing temperature, and the beverage flow rate increases and the temperature of the refrigerant cooler (2100) decreases. It has the function of supplying cold heat to the refrigerant cooler (2100) to assist the beverage cooling capacity. In FIG. 20 (c), the cold storage container (5500) has a function of storing cold heat received from the refrigerant cooler (2100) and transmitting it to the beverage cooler (3100) to cool the beverage. Furthermore, in Example 14, as in Example 9, it is possible to supply a beverage at a temperature that is stable for a certain period of time with respect to fluctuations in the beverage supply amount.

実施例1の飲料ディスペンサーの断面図Sectional drawing of the beverage dispenser of Example 1 実施例1の飲料ディスペンサーの外観と飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 1 and appearance when beverage cooling door is opened 実施例2の飲料ディスペンサーの断面図Sectional drawing of the beverage dispenser of Example 2 実施例2の飲料ディスペンサーの外観と飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 2 and appearance when beverage cooling door is opened 実施例3の飲料ディスペンサーの断面図Sectional drawing of the beverage dispenser of Example 3 実施例3の飲料ディスペンサーの飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 3 when beverage cooling door is opened 実施例4の飲料ディスペンサーの外観と飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 4 and appearance when beverage cooling door is opened 実施例5の飲料ディスペンサーの外観と飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 5 and appearance when beverage cooling door is opened 実施例6の飲料ディスペンサーの外観と飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 6 and appearance when beverage cooling door is opened 実施例7の飲料ディスペンサーの飲料冷却扉開放時の外観Appearance of beverage dispenser of Example 7 when beverage cooling door is opened 実施例1から7に使用する飲料冷却器扉と飲料冷却器の構成Beverage cooler door and beverage cooler configuration used in Examples 1-7 実施例1から7に使用する飲料冷却器の詳細図Detailed view of beverage cooler used in Examples 1 to 7 実施例8の厚板型飲料冷却器の詳細図Detailed view of thick plate type beverage cooler of Example 8 実施例9の蓄熱材付加方式の構成説明図Configuration explanatory diagram of heat storage material addition method of Example 9 実施例10の蛇行管理込み型冷媒冷却器Serpentine management type refrigerant cooler of Example 10 実施例11の螺旋管理込み型冷媒冷却器Example 11 Refrigerant Cooler with Built-in Spiral Management 実施例12の薄板冷媒冷却器の詳細図Detailed view of thin plate refrigerant cooler of Example 12 実施例13の厚板冷媒冷却器の詳細図Detailed view of thick plate refrigerant cooler of Example 13 実施例14の保冷剤容器の詳細図Detailed view of the cryogen container of Example 14 実施例14の保冷剤容器の配置例Example of arrangement of cryogen container in Example 14 従来の瞬間冷却方式の飲料ディスペンサーの例Example of conventional instant cooling beverage dispenser 従来の瞬間冷却方式の飲料ディスペンサーの例Example of conventional instant cooling beverage dispenser 従来のプレート熱交換器型瞬間冷却方式の飲料ディスペンサーの例Example of a conventional plate heat exchanger type instant cooling type beverage dispenser

符号の説明Explanation of symbols

(2)冷凍機 (350)圧縮機
(3)冷却水タンク (360)ファン
(5)プレート式熱交換器 (370)凝縮器
(14)冷却水送りポンプ (380)モータ
(110)炭酸ガスボンベ (390)攪拌翼
(120)減圧弁 (1000)、(1900)冷凍機
(130)ガス管 (1050)冷凍機ボックス
(210)樽 (1100)圧縮機
(220)ヘッド (1200)凝縮器
(230)供給管 (1300)ファン
(300)ディスペンサー (1400)モータ
(310)飲料冷却管 (1500)、(1550)膨張弁
(320)タップ (1600)、(1650)冷媒戻管
(330)水 (2000)冷却器ボックス
(340)冷媒冷却管 (2100)、(2150)冷媒冷却器
(2100A)冷媒冷却器主部 (5520)液面
(2110)入口
(2120)出口
(2130)冷媒入口流路
(2140)冷却部底板
(2155)冷媒出口流路
(2160)冷却部外縁
(2170)冷却部外板
(2190)蓄熱材
(2191)冷媒冷却器基材
(2192)蛇行管
(2193)螺旋管
(2200)断熱材
(3000)、(3050)飲料冷却器扉
(3010)、(3020)タップ取付けネジ
(3100)、(3150)飲料冷却器
(3100A)飲料冷却器主部
(3110)入口
(3120)出口
(3130)飲料入口流路
(3140)冷却部底板
(3155)飲料出口流路
(3160)冷却部外縁
(3170)冷却部外板
(3180)蓋
(3200)、(3250)飲料入口
(3300)飲料出口
(3400)、(3450)断熱材
(3500)飲料入口管
(3600)接続間
(3700)飲料出口管
(4000)タップ
(5500)保冷剤容器
(5510)容積拡大機構
(2) Refrigerator (350) Compressor (3) Cooling water tank (360) Fan (5) Plate heat exchanger (370) Condenser (14) Cooling water feed pump (380) Motor (110) Carbon dioxide cylinder ( 390) Stirring blade (120) Pressure reducing valve (1000), (1900) Refrigerator (130) Gas pipe (1050) Refrigerator box (210) Barrel (1100) Compressor (220) Head (1200) Condenser (230) Supply pipe (1300) Fan (300) Dispenser (1400) Motor (310) Beverage cooling pipe (1500), (1550) Expansion valve (320) Tap (1600), (1650) Refrigerant return pipe (330) Water (2000) Cooler box (340) Refrigerant cooling pipe (2100), (2150) Refrigerant cooler (2100A) Refrigerant cooler main part (5520) Liquid level (2 110) Inlet (2120) Outlet (2130) Refrigerant inlet channel (2140) Cooling unit bottom plate (2155) Refrigerant outlet channel (2160) Cooling unit outer edge (2170) Cooling unit outer plate (2190) Heat storage material (2191) Refrigerant cooling Base material (2192) Serpentine tube (2193) Spiral tube (2200) Insulation (3000), (3050) Beverage cooler door (3010), (3020) Tap mounting screw (3100), (3150) Beverage cooler ( 3100A) Beverage cooler main part (3110) inlet (3120) outlet (3130) beverage inlet flow path (3140) cooling part bottom plate (3155) beverage outlet flow path (3160) cooling part outer edge (3170) cooling part outer plate (3180) ) Lid (3200), (3250) Beverage inlet (3300) Beverage outlet (3400), (3450) Insulation (3500) Beverage inlet pipe (3600) During (3700) beverage outlet tube (4000) Tap (5500) cold container (5510) volume increasing mechanism

Claims (11)

冷凍機を有する瞬間冷却方式の飲料ディスペンサーにおいて、飲料流路を形成する飲料冷却器主部と蓋に分割して形成した飲料冷却器と冷媒管を高熱伝導材で包含する形の冷媒冷却器を密着させたことを特徴とする飲料ディスペンサー。    An instant cooling type beverage dispenser having a refrigerator, comprising a beverage cooler formed by dividing a beverage cooler main part forming a beverage channel and a lid, and a refrigerant cooler including a refrigerant pipe with a high heat conductive material Beverage dispenser characterized by close contact. 請求項1において、飲料冷却流路の面積の少なくとも50%を飲料冷却器主部と蓋の間の平均隙間が5mm以下の狭隘流路で形成されることを特徴とする飲料ディスペンサー。    2. The beverage dispenser according to claim 1, wherein at least 50% of the area of the beverage cooling channel is formed by a narrow channel having an average gap between the beverage cooler main part and the lid of 5 mm or less. 請求項1、2において、飲料冷却器が四角等の多角形状を呈することを特徴とする飲料ディスペンサー。    The beverage dispenser according to claim 1 or 2, wherein the beverage cooler has a polygonal shape such as a square. 請求項1、3において、ほぼ一定の厚みの金属板を成形して製作した少なくとも2箇所の窪みを持ち、窪みの一部に入口と出口の孔周辺部に平面を有して、外周部に平面を有する飲料冷却器主部と少なくとも1箇所の窪みを有する蓋又は平板状の蓋で構成された飲料冷却器を有することを特徴とする飲料ディスペンサー。    In Claims 1 and 3, it has at least two recesses formed by molding a metal plate having a substantially constant thickness, and has a flat surface around the hole of the inlet and the outlet in a part of the recess, and on the outer periphery. A beverage dispenser comprising a beverage cooler comprising a beverage cooler main portion having a flat surface and a lid having at least one depression or a flat lid. 請求項1から5において、冷媒冷却器、飲料冷却器、高熱伝導で高比熱の材料で形成された蓄熱材がいずれかの側面に密着していることを特徴とする飲料ディスペンサー。    6. The beverage dispenser according to claim 1, wherein the refrigerant cooler, the beverage cooler, and the heat storage material formed of a material having high heat conductivity and high specific heat are in close contact with any one of the side surfaces. 請求項1から5において、冷媒冷却器、飲料冷却器、所定の温度で融解する蓄熱剤を収めた蓄熱容器がいずれかの側面に密着していることを特徴とする飲料ディスペンサー。    6. A beverage dispenser according to claim 1, wherein a refrigerant cooler, a beverage cooler, and a heat storage container containing a heat storage agent that melts at a predetermined temperature are in intimate contact with either side. 請求項1から6において、冷媒冷却器、蓄熱材、蓄熱容器の少なくも1つの開放面に樽容器を設けたことを特徴とする飲料ディスペンサー。    7. The beverage dispenser according to claim 1, wherein a barrel container is provided on at least one open surface of the refrigerant cooler, the heat storage material, and the heat storage container. 冷凍機を有する飲料ディスペンサーにおいて、冷却器ボックスと冷却器ボックスの側面に設置した冷却器扉の一方に冷媒冷却器を他方に飲料冷却器を備えて冷却器扉が開閉し、閉めたときに冷媒冷却器と飲料冷却器の相対する面が密着することを特徴とする飲料ディスペンサー。    In a beverage dispenser having a refrigerator, a refrigerant cooler is provided on one side of the cooler box and a cooler door installed on the side of the cooler box, and a beverage cooler is provided on the other side. A beverage dispenser characterized in that the opposing surfaces of the cooler and the beverage cooler are in close contact. 冷凍機を有する飲料ディスペンサーにおいて、冷凍機を内蔵する冷凍機ボックスの側面に固定した冷却器ボックスの冷凍機ボックスの上面より高い位置に開閉可能な冷却器扉を備え、冷却器ボックスと開閉可能な冷却器扉の一方に飲料冷却器を、他方に冷媒冷却器を備え、冷却器扉を閉じたときに冷媒冷却器と飲料冷却器の相対する面が密着することを特徴とする飲料ディスペンサー。    A beverage dispenser having a refrigerator has a cooler door that can be opened and closed at a position higher than the upper surface of the refrigerator box of the refrigerator box fixed to the side of the refrigerator box containing the refrigerator, and can be opened and closed with the refrigerator box. A beverage dispenser comprising a beverage cooler on one side of a cooler door and a refrigerant cooler on the other, wherein the opposing surfaces of the refrigerant cooler and the beverage cooler are in close contact when the cooler door is closed. 冷凍機を有する飲料ディスペンサーにおいて、冷凍機を内蔵する冷凍機ボックスの上面に設置した冷却器ボックスの上面に開閉可能な冷却器扉を備え、冷却器ボックスと冷却器扉の一方に飲料冷却器を、他方に冷媒冷却器を備え、冷却器扉を閉じたときに冷媒冷却器と飲料冷却器の相対する面が密着することを特徴とする飲料ディスペンサー。    A beverage dispenser having a refrigerator has an openable / closable cooler door on the upper surface of the refrigerator box installed on the upper surface of the refrigerator box containing the refrigerator, and the beverage cooler is provided on one of the cooler box and the cooler door. The beverage dispenser is provided with a refrigerant cooler on the other side, and the opposing surfaces of the refrigerant cooler and the beverage cooler are in close contact when the cooler door is closed. 冷凍機を有する飲料ディスペンサーにおいて、冷凍機を内蔵する冷凍機ボックスの側面に設置した冷却器ボックスの側面に開閉可能な冷却器扉を備え、冷却器ボックスと冷却器扉の一方に飲料冷却器を、他方に冷媒冷却器を備え、冷却器扉を閉じたときに冷媒冷却器と飲料冷却器の相対する面が密着することを特徴とする飲料ディスペンサー。    A beverage dispenser having a refrigerator has a cooler door that can be opened and closed on a side surface of a refrigerator box installed on a side surface of a refrigerator box containing the refrigerator, and a beverage cooler is provided on one of the cooler box and the cooler door. The beverage dispenser is provided with a refrigerant cooler on the other side, and the opposing surfaces of the refrigerant cooler and the beverage cooler are in close contact when the cooler door is closed.
JP2004228714A 2004-07-07 2004-07-07 Instant cooling type beverage dispenser Pending JP2006021825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228714A JP2006021825A (en) 2004-07-07 2004-07-07 Instant cooling type beverage dispenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228714A JP2006021825A (en) 2004-07-07 2004-07-07 Instant cooling type beverage dispenser

Publications (1)

Publication Number Publication Date
JP2006021825A true JP2006021825A (en) 2006-01-26

Family

ID=35795387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228714A Pending JP2006021825A (en) 2004-07-07 2004-07-07 Instant cooling type beverage dispenser

Country Status (1)

Country Link
JP (1) JP2006021825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249159A (en) * 2007-03-29 2008-10-16 Yamaha Corp Beverage quick cooler
CN103332642A (en) * 2013-07-18 2013-10-02 宁波双林工业品制造有限公司 Distribution pipe assembly and valve
JP2015129002A (en) * 2014-01-07 2015-07-16 興和株式会社 Drinking water supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249159A (en) * 2007-03-29 2008-10-16 Yamaha Corp Beverage quick cooler
JP4497171B2 (en) * 2007-03-29 2010-07-07 ヤマハ株式会社 Beverage quick cooler
CN103332642A (en) * 2013-07-18 2013-10-02 宁波双林工业品制造有限公司 Distribution pipe assembly and valve
JP2015129002A (en) * 2014-01-07 2015-07-16 興和株式会社 Drinking water supply device

Similar Documents

Publication Publication Date Title
US20060150637A1 (en) Alcohol beverage dispensing apparatus
US5564601A (en) Beverage dispensing machine with improved liquid chiller
RU2503899C2 (en) Drink cooling device, refrigerator with such device and drink cooling method
NL2001610C2 (en) Tapping device and cooling device with two heat exchangers and method for forming a tapping or cooling device.
US7237390B1 (en) Compact portable beverage cooling system
CA2585464A1 (en) Apparatus for cooling food
MX2010012644A (en) Countermount, tapping apparatus and method for regulating the temperature of beverage.
US4036621A (en) Beverage dispensers
CA2482264A1 (en) Method and apparatus for chilling draught beverages
CA2489487A1 (en) Portable apparatus for chilling draught beverages
JP2006021825A (en) Instant cooling type beverage dispenser
CN100557341C (en) The thermoelectric-cooled that is used for refrigerator display case
KR101365876B1 (en) Wine cooling device
JP2006021824A (en) Instant cooling type beverage dispenser
JP2006027724A (en) Drink dispenser
CA2359355C (en) A carbon dioxide precooling system for a carbonator
WO2013025110A2 (en) Cooling device
JP6643302B2 (en) Beverage dispenser
RU2367857C1 (en) Method of drinking water cooling for automated beverage tapping machine and device and drinking water cooling
US20090173099A1 (en) Universal Glycol Cooler
CN2474967Y (en) Quick freezer
CN210463752U (en) Quick cooling machine
JP2006001642A (en) Beverage dispenser
KR200383686Y1 (en) Moving Cooler
RU77671U1 (en) DRINKING WATER COOLING PLANT FOR AUTOMATIC DRINKED BEVERAGE SPILL