JP2006021305A - Microstructure in which fine particle is selectively fixed in minute metal region on solid surface by using dna - Google Patents

Microstructure in which fine particle is selectively fixed in minute metal region on solid surface by using dna Download PDF

Info

Publication number
JP2006021305A
JP2006021305A JP2004203800A JP2004203800A JP2006021305A JP 2006021305 A JP2006021305 A JP 2006021305A JP 2004203800 A JP2004203800 A JP 2004203800A JP 2004203800 A JP2004203800 A JP 2004203800A JP 2006021305 A JP2006021305 A JP 2006021305A
Authority
JP
Japan
Prior art keywords
dna
microstructure
metal region
gold
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004203800A
Other languages
Japanese (ja)
Inventor
Yasushi Maeda
泰 前田
Minoru Tsubota
年 坪田
Tadahiro Fujitani
忠博 藤谷
Masato Odaka
正人 小高
Tomoko Okada
知子 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004203800A priority Critical patent/JP2006021305A/en
Publication of JP2006021305A publication Critical patent/JP2006021305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microstructure having a fine structure in a nanometer level. <P>SOLUTION: The microstructure has fine particles C selectively fixed in a minute metal region B on the surface of a solid A. The microstructure has a single strand DNA1 having a modification group chemically coupled to the metal region B and a single strand DNA2 having a modification group chemically coupled to the fine particles C, wherein the DNA1 and the DNA2 have complementary sequences. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体表面上の金属領域に微粒子を選択的に配置することにより、新規機能発現や特性向上が生じる触媒やセンサーなどに利用可能な工業材料に関する。   The present invention relates to an industrial material that can be used for a catalyst, a sensor, or the like that exhibits a new function or improves characteristics by selectively disposing fine particles in a metal region on a solid surface.

電子デバイスはもとより他の工業材料においても、その構造をナノメートルレベルで制御することが新規機能発現や特性向上のために重要な鍵となっている。代表的な微細加工技術には、フォトリソグラフィーがあげられる。しかしこれには、(1)制御可能なサイズが光の波長に制限される、(2)試料形状が板状のものに制限される、といった制約がある。
一方、分子の自己組織化を利用した構造作製技術も提案されている。最も成功している例は、アルカンチオール分子をリンカーとして用いる方法である。この方法では、微粒子を固体表面上に規則正しく配置することが可能である。しかしこれには、(1)本質的に粒子間の凝集が生じる、(2)異種元素の組み合わせなど複雑な構造に対応できない、といった問題点もある。
核酸分子はその内部に塩基配列情報を持つ分子であり、この配列情報を構造制御に用いることでより複雑な構造を作製することが提案されている。例えば、微粒子の間隔制御や核酸を鋳型とした粒子配列などが報告されている(非特許文献1、2)。また、ガラス基板上の金アイランドに金微粒子を配置したり、単鎖DNAを鋳型としてそこに2−3個の金微粒子を配列させたものが知られている(非特許文献2、3)。
Controlling the structure of electronic devices as well as other industrial materials at the nanometer level is an important key for developing new functions and improving properties. A typical fine processing technique includes photolithography. However, there are restrictions such as (1) the controllable size is limited to the wavelength of light, and (2) the sample shape is limited to a plate shape.
On the other hand, a structure fabrication technique using molecular self-assembly has also been proposed. The most successful example is the use of alkanethiol molecules as linkers. In this method, the fine particles can be regularly arranged on the solid surface. However, there are problems such as (1) aggregation between particles essentially occurring and (2) inability to deal with complicated structures such as combinations of different elements.
A nucleic acid molecule is a molecule having base sequence information therein, and it has been proposed to create a more complex structure by using this sequence information for structure control. For example, particle spacing control and particle arrangement using nucleic acid as a template have been reported (Non-Patent Documents 1 and 2). Also known are gold fine particles arranged on a gold island on a glass substrate, or a single-stranded DNA as a template and 2-3 gold fine particles arranged thereon (Non-Patent Documents 2 and 3).

また、 生体外(ex-situ)で作製された金属ナノ粒子を用いて核酸を効率的に金属化すること(特許文献1)、1.2 オリゴヌクレオチドを付着させたナノ粒子とその使用方法(特許文献2)、1.3リンカ−分子、複合体作製方法及び複合体、並びに微細ワイヤ作製方法及び微細ワイヤ(特許文献3)、1.4 合成DNA格子を利用したナノ粒子成層構造(特許文献4)、1.5 オリゴヌクレオチドが付着したナノ粒子および該粒子の利用法(特許文献5)、核酸金属化方法、金属微粒子核酸複合体、微細ワイヤ作製方法及び微細ワイヤ(特許文献6)、ナノワイヤ・クロスバー構造体の製造方法、及びその方法で製造した構造体の用途(特許文献7)、DNAを利用した自己組織化ナノデバイス構造およびその製造方法(特許文献8)、オリゴヌクレオチドが付着しているナノ粒子およびその利用法(特許文献9)、マイクロエレクトロニック構成要素およびDNAを含む電子的ネットワーク(特許文献10)、化学的にアセンブリされたナノ−スケールデバイス(特許文献11)、ナノメートル精度での構造の制御が可能な新規な微細構造物(特許文献12)などが知られている。   Also, efficient metallization of nucleic acids using ex-situ produced metal nanoparticles (Patent Document 1), 1.2 Nanoparticles with oligonucleotides attached and methods of use thereof (Patent Documents) 2), 1.3 linker molecule, composite preparation method and composite, fine wire preparation method and fine wire (Patent Document 3), 1.4 Nanoparticle layered structure using synthetic DNA lattice (Patent Document 4), 1.5 oligonucleotide Nanoparticle to which metal is attached and method of using the particle (Patent Document 5), nucleic acid metallization method, metal fine particle nucleic acid complex, fine wire preparation method and fine wire (Patent Document 6), and manufacturing method of nanowire / crossbar structure , And use of the structure produced by the method (Patent Document 7), self-assembled nanodevice structure using DNA and method for producing the same (Patent Document 8), oligonucleotide Nanoparticles to which a magnetic field is attached and use thereof (Patent Document 9), an electronic network including a microelectronic component and DNA (Patent Document 10), a chemically assembled nano-scale device (Patent Document 11) A novel fine structure (Patent Document 12) capable of controlling the structure with nanometer accuracy is known.

"A DNA-based method for rationally assembling nanoparticlesinto macroscopic materials": C.A. Mirkin et al, Nature 382 (1996) 607."A DNA-based method for rationally assembling nanoparticles into macroscopic materials": C.A.Mirkin et al, Nature 382 (1996) 607. "Organization of 'nanocrystal molecules' using DNA": A.PAlivisatos et. al, Nature 382 (1996) 609."Organization of 'nanocrystal molecules' using DNA": A. PAlivisatos et. Al, Nature 382 (1996) 609. "Detection of DNA hybridization by gold nanoparticle enhancedtransmission surface plasmon resonance spectroscopy.": E. Hutter et. al,J. Phys. Chem. B 107 (2003) 6497."Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy.": E. Hutter et. Al, J. Phys. Chem. B 107 (2003) 6497. 特開2003-133541号公報JP 2003-133541 A 特表2004-501340号公報Special table 2004-501340 gazette 特開2003-26643号公報JP 2003-26643 A 特開2000-190300号公報JP 2000-190300 A 特表2000-516460号公報Special Table 2000-516460 特開2002-371094号公報JP 2002-371094 特開2004−82326号公報JP 2004-82326 A 特開2003−37313号公報JP 2003-37313 A 特表2003−503699号公報Special table 2003-503699 gazette 特表2001−510922号公報JP-T-2001-510922 特表2002−515265号公報JP 2002-515265 A 特開平7−215991号公報JP 7-215991 A

ナノメートルレベルの微細構造を作製する技術としては、(1)フォトリソグラフィーに代表される物理的手法と(2)DNA以外の分子を利用する化学的手法とがある。それぞれの手法の問題点は以下の通り。
(1)物理的手法
1.制御可能なサイズが光の波長に制限される。
2.試料形状が板状のものに制限される。
(2)化学的手法(DNA以外)
1.本質的に粒子間の凝集が生じる
2.異種元素の組み合わせなど複雑な構造に対応できない。
本発明ではDNAを用いることで、上記の問題点を解消する。これにより、単結晶表面だけでなく、粒子状物質などの表面にも複雑な構造を設計することが可能となる。
Techniques for producing nanometer-scale microstructures include (1) a physical method represented by photolithography and (2) a chemical method using molecules other than DNA. The problems of each method are as follows.
(1) Physical method
1. The controllable size is limited to the wavelength of light.
2. The sample shape is limited to a plate shape.
(2) Chemical methods (other than DNA)
1. Inherently aggregation between particles occurs
2. It cannot handle complex structures such as combinations of different elements.
In the present invention, the above-described problems are solved by using DNA. Thereby, it becomes possible to design a complicated structure not only on the surface of the single crystal but also on the surface of the particulate matter.

上記目的を達成するために本発明は、DNAの相補的反応を利用する(図1参照)。固体A表面に作製された微小金属領域BをDNA1で修飾する。次に微粒子CをDNA1と相補的な配列を持つDNA2で修飾する。DNA1及び2の5'末端は金属領域Bや微粒子Cと化学的に結合する置換基(例えばチオール基)で修飾しておく。その後、DNA1とDNA2をハイブリッドさせることにより、微粒子Cを微小金属領域Bに結合させる。固体Aは任意の形状でかまわないが、DNA分子や置換基と非特異的に結合しない物質でなければならない。
すなわち、本発明は、固体A表面上の微小金属領域Bに、選択的に固定化された微粒子Cを有する微小構造体であって、金属領域Bに化学的に結合する修飾基を持つ単鎖DNA1と微粒子Cに化学的に結合する修飾基を持つ単鎖DNA2を持ち、かつ、DNA1がDNA2と相補的配列を有することを特徴とする微小構造体である。
また、本発明においては、固体Aが炭素材であり、微小金属領域B及び微粒子Cの素材を貴金属とすることができる。
さらに、本発明においては、炭素材がグラファイトであり、微小金属領域Bの素材が金であり、微粒子Cの素材を金とすることができる。
In order to achieve the above object, the present invention utilizes a complementary reaction of DNA (see FIG. 1). The minute metal region B produced on the surface of the solid A is modified with DNA1. Next, the microparticle C is modified with DNA2 having a sequence complementary to DNA1. The 5 ′ ends of DNA 1 and 2 are modified with a substituent (for example, a thiol group) that chemically binds to metal region B and fine particle C. Thereafter, the microparticles C are bound to the fine metal region B by hybridizing DNA1 and DNA2. Solid A may have any shape, but it must be a substance that does not bind non-specifically to DNA molecules or substituents.
That is, the present invention is a microstructure having fine particles C selectively immobilized on a fine metal region B on the surface of a solid A, and a single chain having a modifying group that chemically binds to the metal region B It is a microstructure characterized by having single-stranded DNA 2 having a modifying group that chemically binds to DNA 1 and fine particles C, and DNA 1 has a complementary sequence to DNA 2.
In the present invention, the solid A is a carbon material, and the material of the fine metal region B and the fine particles C can be a noble metal.
Furthermore, in the present invention, the carbon material is graphite, the material of the minute metal region B is gold, and the material of the fine particles C can be gold.

本発明により、任意形状の固体表面上の微小金属領域にのみ微粒子を選択的に固定化することが可能となる。制御可能なスケールは微小金属領域、微粒子及びDNAのサイズによって決まる。これらを独立して作製した場合のサイズスケールはナノメートルレベルであることから、本発明ではナノメートルレベルで構造制御が可能である。本発明は、ナノメートルレベルの構造制御によって新規機能発現や特性向上が生じる触媒やセンサーなどに利用可能な工業材に適用することができる。
According to the present invention, it is possible to selectively immobilize fine particles only in a minute metal region on a solid surface having an arbitrary shape. The controllable scale depends on the size of the micrometal region, microparticles and DNA. Since the size scale when these are produced independently is at the nanometer level, in the present invention, the structure can be controlled at the nanometer level. INDUSTRIAL APPLICABILITY The present invention can be applied to industrial materials that can be used for catalysts, sensors, and the like that exhibit new functions and improve characteristics by nanometer-level structure control.

本発明において、固体Aは、炭素材、金属酸化物、窒化物、硫化物、等の無機固体などどのような材料でも良いが、炭素材が良く、より好ましくはグラファイトがよい。
微小金属領域B及び微粒子Cの素材としては、酸化されにくいものが良く、貴金属が好ましい。より好ましくは、金、白金、パラヂウム、銀等を用いることが出来る。
また、本発明においては、金属領域への選択的な固定化のためには、次のような条件が必要であることがわかっている。
1.金属領域B及び微粒子CがDNAで修飾できること。
2.固体AがDNA及びその修飾基と結合しないこと。
3.DNA1の濃度を必要以上に濃くしないこと。
また、DNA2の濃度を上げていくと金微粒子の凝集が見られたことから、
4.DNA2の濃度を必要以上に濃くしないこと
も必要であることがわかっている。
目的を達成するために最適な条件は次の通りである。
1.固体A:単鎖DNAと非特異的に結合しないこと。形状は任意。
2.金属領域B:単鎖DNAと非特異的に結合しないこと。一般にDNAは金属表面には吸着しにくいので、ほとんどの金属が適用可能であると考えられる。
3.微粒子C:単鎖DNAと非特異的に結合しないこと。コロイド溶液として安定に存在すること。
4.DNA1の修飾基:固体Aには結合せず、金属領域Bにのみ結合すること。
5.DNA2の修飾基:微粒子Cと結合すること。固体Aとの結合は考慮しなくても良い。
6.DNA1、DNA2の長さ:室温でハイブリダイゼーションすること。必要以上に長くしないこと(非特異的結合が生じやすくなるため)。恐らく、10-50塩基程度が適当と思われる。
7.DNA1、DNA2の濃度:DNA自体及び微粒子Cの凝集が生じないこと。金属領域Bおよび微粒子Cを十分に修飾できること。
In the present invention, the solid A may be any material such as a carbon material, an inorganic solid such as a metal oxide, nitride, sulfide, etc., but is preferably a carbon material, more preferably graphite.
As materials for the fine metal region B and the fine particles C, those which are difficult to be oxidized are good, and noble metals are preferable. More preferably, gold, platinum, palladium, silver or the like can be used.
Further, in the present invention, it has been found that the following conditions are necessary for selective fixation to the metal region.
1. Metal region B and fine particles C can be modified with DNA.
2. Solid A should not bind to DNA and its modifying groups.
3. Do not increase the concentration of DNA1 more than necessary.
In addition, as the concentration of DNA2 was increased, agglomeration of gold fine particles was observed,
4). It has been found that it is necessary not to increase the concentration of DNA2 more than necessary.
The optimum conditions for achieving the objective are as follows.
1. Solid A: Do not bind non-specifically to single-stranded DNA. The shape is arbitrary.
2. Metal region B: Must not bind non-specifically to single-stranded DNA. In general, DNA hardly adsorbs to the metal surface, so most metals are considered applicable.
3. Microparticle C: Must not bind non-specifically to single-stranded DNA. Stable as a colloidal solution.
4). DNA1 modifier: binds only to metal region B, not solid A.
5. DNA2 modifier: binds to microparticle C. Bonding with solid A may not be considered.
6). DNA1, DNA2 length: hybridization at room temperature. Do not make it longer than necessary (since nonspecific binding is likely to occur). Perhaps 10-50 bases is appropriate.
7). Concentration of DNA1 and DNA2: No aggregation of DNA itself and fine particle C should occur. Metal region B and fine particles C can be sufficiently modified.

本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(作成した微小構造体)
図1に示すように、高配向性グラファイト単結晶上に直径100nm程度の金の微小アイランドを形成し、そこに直径10nmの金微粒子を選択的に固定化した。用いたDNAは30塩基の単鎖DNAであった。微小構造体の各構成は、次のとおりである。
固体A :高配向性グラファイト単結晶
金属領域B :金アイランド(直径10〜100nm程度)
微粒子C :金微粒子(直径10nm)
DNA1、DNA2 :30塩基、5'末端チオール化
(上記微小構造体の製造方法)
製造手順は次の通りである。
1.真空蒸着により高配向性グラファイト上に金アイランドを蒸着する。
2.金アイランドをDNA1で修飾する。
(1)上記基板をDNA1水溶液に浸す。
(2)DNA1濃度は0,100, 5000nmol/l。
(3)一晩反応させる。
(4)基板を溶液から取り出し、水洗する。
3.金微粒子をDNA2で修飾する。
(1)金コロイド溶液(直径:10nm、濃度:9.5nmol/l)。
(2)上記溶液にDNA2を加える。
(3)DNA2濃度は100nmol/l。
(4)一晩反応させる。
(5)未反応DNA2を取り除く。
4.金微粒子を金アイランドに固定する。
(1)DNA2で修飾した金コロイド溶液にDNA1修飾処理を行った基板を浸す。
(2)リン酸、NaClを加え、pH及び塩濃度を調整する。
(3)DNA1とDNA2をハイブリッドさせる。
(4)約1時間反応させる。
(5)基板を取り出し、エタノールで洗浄する。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Created microstructure)
As shown in FIG. 1, gold fine islands with a diameter of about 100 nm were formed on a highly oriented graphite single crystal, and gold fine particles with a diameter of 10 nm were selectively immobilized thereon. The DNA used was a 30-base single-stranded DNA. Each structure of the microstructure is as follows.
Solid A: Highly oriented graphite single crystal Metal region B: Gold island (diameter of about 10-100 nm)
Fine particle C: Gold fine particle (diameter 10 nm)
DNA1, DNA2: 30 bases, 5'-terminal thiolation (method for producing the above microstructure)
The manufacturing procedure is as follows.
1. Gold islands are deposited on highly oriented graphite by vacuum deposition.
2. Gold island is modified with DNA1.
(1) The substrate is immersed in an aqueous DNA1 solution.
(2) The DNA1 concentration is 0,100, 5000 nmol / l.
(3) React overnight.
(4) Remove the substrate from the solution and wash with water.
3. Gold fine particles are modified with DNA2.
(1) Gold colloid solution (diameter: 10 nm, concentration: 9.5 nmol / l).
(2) Add DNA2 to the above solution.
(3) DNA2 concentration is 100 nmol / l.
(4) React overnight.
(5) Remove unreacted DNA2.
4). Fix the gold particles to the gold island.
(1) A substrate subjected to DNA1 modification treatment is immersed in a gold colloid solution modified with DNA2.
(2) Add phosphoric acid and NaCl to adjust pH and salt concentration.
(3) Hybridize DNA1 and DNA2.
(4) React for about 1 hour.
(5) The substrate is taken out and washed with ethanol.

(作製した構造を原子間力顕微鏡により観察)
実施例1で作成した微小構造体について、原子間力顕微鏡により、その構造を調べた。
基板は高配向性グラファイト、金微粒子の直径は10nm。金微粒子は金アイランドのみに選択的に固定化されている。金アイランドを、濃度100nmol/lのDNA1で修飾した時に、金微粒子が金アイランドのみに選択的に固定化された(図2)。
一方、DNA1修飾過程以外の条件は図2と同じで実施し、0nmol/l(つまり、DNA1で修飾しない)の条件で実施した場合は、金微粒子は、ほとんど観察されなかった(図3)。
また、DNA1修飾過程以外の条件は図2と同じで実施し、5000nmol/lの条件で実施した場合は、グラファイト基板上にDNAのメッシュ構造が観察される(図4右上の挿入図参照)。金微粒子は金アイランドだけでなくDNAメッシュ構造上にも観察される。5000nmol/lの時は高配向性グラファイト上にDNA1がメッシュ状に吸着しており、金微粒子はこのメッシュ構造上にも固定化された(図4)。
(Observe the prepared structure with an atomic force microscope)
The microstructure of the microstructure produced in Example 1 was examined with an atomic force microscope.
The substrate is highly oriented graphite and the diameter of gold fine particles is 10nm. Gold fine particles are selectively immobilized only on gold islands. When the gold island was modified with DNA1 at a concentration of 100 nmol / l, the gold fine particles were selectively immobilized only on the gold island (FIG. 2).
On the other hand, conditions other than the DNA1 modification process were carried out in the same manner as in FIG. 2, and almost no gold fine particles were observed when carried out under the conditions of 0 nmol / l (that is, not modified with DNA1) (FIG. 3).
The conditions other than the DNA1 modification process are the same as in FIG. 2. When the conditions are 5000 nmol / l, a DNA mesh structure is observed on the graphite substrate (see the inset at the upper right of FIG. 4). Gold fine particles are observed not only on gold islands but also on DNA mesh structures. At 5000 nmol / l, DNA1 was adsorbed in a mesh shape on highly oriented graphite, and gold fine particles were also immobilized on this mesh structure (FIG. 4).

本発明によって、固体表面上の微小金属領域に微粒子を選択的に配置することが可能となる。従って、異種物質同士の配置が機能に重要な役割を果たす材料の作製に有効である。このとき、対象となる固体の形状は板状に制限されないので適用範囲は広い。例えば、近年の触媒開発においては、担持する材料(一般に金属材料)の構造や配置をナノメートルレベルで制御することが必要となりつつある。しかし、一般に触媒の担体としては粉末が用いられるためフォトリソグラフィーのような方法を適用することは出来ない。また、従来の化学的な方法ではナノメートルレベルでの構造制御は困難である。本発明では、こうした材料においてもナノメートルレベルでの構造設計を可能とする。
According to the present invention, it is possible to selectively arrange fine particles in a minute metal region on a solid surface. Therefore, the arrangement of different substances is effective in producing a material that plays an important role in function. At this time, since the shape of the target solid is not limited to a plate shape, the applicable range is wide. For example, in recent catalyst development, it is becoming necessary to control the structure and arrangement of the material to be supported (generally a metal material) at the nanometer level. However, since a powder is generally used as a catalyst carrier, a method such as photolithography cannot be applied. In addition, it is difficult to control the structure at the nanometer level by conventional chemical methods. In the present invention, it is possible to design a structure at the nanometer level even for such a material.

本発明の微小構造体のモデル図。The model figure of the microstructure of the present invention. 金アイランド上に固定化した金微粒子の原子間力顕微鏡像。Atomic force microscope image of gold fine particles immobilized on a gold island. 金アイランドをDNA1で修飾しない場合の原子間力顕微鏡像。Atomic force microscope image when gold island is not modified with DNA1. 金アイランドを5000nmol/lのDNA1で修飾した場合の原子間力顕微鏡像。Atomic force microscope image of gold island modified with 5000 nmol / l DNA1.

Claims (3)

固体A表面上の微小金属領域Bに、選択的に固定化された微粒子Cを有する微小構造体であって、金属領域Bに化学的に結合する修飾基を持つ単鎖DNA1と微粒子Cに化学的に結合する修飾基を持つ単鎖DNA2を持ち、かつ、DNA1がDNA2と相補的配列を有することを特徴とする微小構造体。   A microstructure with finely divided fine particles C on the fine metal region B on the surface of the solid A. A microstructure having a single-stranded DNA2 having a modifying group that binds to DNA2 and DNA1 has a complementary sequence to DNA2. 固体Aが炭素材であり、微小金属領域B及び微粒子Cの素材が貴金属である請求項1に記載した微小構造体。   The microstructure according to claim 1, wherein the solid A is a carbon material, and the material of the fine metal region B and the fine particles C is a noble metal. 炭素材がグラファイトであり、微小金属領域Bの素材が金であり、微粒子Cの素材が金である請求項2に記載した微小構造体。
The microstructure according to claim 2, wherein the carbon material is graphite, the material of the minute metal region B is gold, and the material of the fine particles C is gold.
JP2004203800A 2004-07-09 2004-07-09 Microstructure in which fine particle is selectively fixed in minute metal region on solid surface by using dna Pending JP2006021305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203800A JP2006021305A (en) 2004-07-09 2004-07-09 Microstructure in which fine particle is selectively fixed in minute metal region on solid surface by using dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203800A JP2006021305A (en) 2004-07-09 2004-07-09 Microstructure in which fine particle is selectively fixed in minute metal region on solid surface by using dna

Publications (1)

Publication Number Publication Date
JP2006021305A true JP2006021305A (en) 2006-01-26

Family

ID=35794947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203800A Pending JP2006021305A (en) 2004-07-09 2004-07-09 Microstructure in which fine particle is selectively fixed in minute metal region on solid surface by using dna

Country Status (1)

Country Link
JP (1) JP2006021305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119366A (en) * 2007-11-15 2009-06-04 National Institute Of Advanced Industrial & Technology Application of fine structure controlling method using nucleic acid to fine particle carrying catalyst
JP2018149615A (en) * 2017-03-10 2018-09-27 国立大学法人名古屋大学 Superlattice structure, and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119366A (en) * 2007-11-15 2009-06-04 National Institute Of Advanced Industrial & Technology Application of fine structure controlling method using nucleic acid to fine particle carrying catalyst
JP2018149615A (en) * 2017-03-10 2018-09-27 国立大学法人名古屋大学 Superlattice structure, and method of producing the same

Similar Documents

Publication Publication Date Title
Jones et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures
Pearson et al. DNA origami metallized site specifically to form electrically conductive nanowires
Katz et al. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications
Aizawa et al. Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces
Patolsky et al. Au‐nanoparticle nanowires based on DNA and polylysine templates
Basnar et al. Dip‐pen‐nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces
Das et al. “Rinse, Repeat”: an efficient and reusable SERS and catalytic platform fabricated by controlled deposition of silver nanoparticles on cellulose paper
Julin et al. DNA nanostructure-directed assembly of metal nanoparticle superlattices
JP4557285B2 (en) Method of patterning organic material or a combination of organic and inorganic materials
Gu et al. Cobalt metallization of DNA: toward magnetic nanowires
Sarkar et al. Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel/gold nanostructures for enhanced catalytic activity and SERS responsive functional material
De Fazio et al. Light-induced reversible DNA ligation of gold nanoparticle superlattices
Uprety et al. Site-specific metallization of multiple metals on a single DNA origami template
Ma et al. Biotemplated nanostructures: directed assembly of electronic and optical materials using nanoscale complementarity
Briggs et al. Reductant and sequence effects on the morphology and catalytic activity of peptide-capped Au nanoparticles
He et al. DNA-templated fabrication of two-dimensional metallic nanostructures by thermal evaporation coating
Myers et al. Size-selective nanoparticle assembly on substrates by DNA density patterning
Xu et al. A highly sensitive, selective, and reproducible SERS sensor for detection of trace metalloids in the environment
Mirkin A DNA-based methodology for preparing nanocluster circuits, arrays, and diagnostic materials
Liu et al. Fabrication of DNA-templated Te and Bi2Te3 nanowires by galvanic displacement
Pu et al. Nucleotide-based assemblies for green synthesis of silver nanoparticles with controlled localized surface plasmon resonances and their applications
Douberly et al. Fabrication of protein tubules: Immobilization of proteins on peptide tubules
Sposito et al. Application of nanotechnology in biosensors for enhancing pathogen detection
Gu et al. DNA-templated fabrication of nickel nanocluster chains
Xie et al. DNA nanotechnology-enabled fabrication of metal nanomorphology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02