JP2006019638A - Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device - Google Patents

Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device Download PDF

Info

Publication number
JP2006019638A
JP2006019638A JP2004198133A JP2004198133A JP2006019638A JP 2006019638 A JP2006019638 A JP 2006019638A JP 2004198133 A JP2004198133 A JP 2004198133A JP 2004198133 A JP2004198133 A JP 2004198133A JP 2006019638 A JP2006019638 A JP 2006019638A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting region
polarized
light emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004198133A
Other languages
Japanese (ja)
Inventor
Takahisa Konishi
貴久 小西
Atsushi Hino
敦司 日野
Seiji Umemoto
清司 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004198133A priority Critical patent/JP2006019638A/en
Publication of JP2006019638A publication Critical patent/JP2006019638A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization light emitter which emits light having a relatively high polarization degree, and thus can obtain a relatively high polarization degree without involving a large light energy loss such as light absorption of a light source as when a polarizing plate of a light absorption type is provided; a polarization organic EL element, a liquid crystal display device; and a method for manufacturing the polarization light emitter. <P>SOLUTION: In the polarization light emitter, a light emitting region 1 has a planar shape of an axis longer than the wavelength of emitted light and of an axis shorter than the wavelength, and light is emitted from the region 1. With respect to the light emitted from the region 1, the intensity of vibration light nearly parallel to the longer-axis direction of the region 1 is larger than the intensity of vibration light nearly parallel to the shorter-axis direction of the region 1. The polarization organic EL element, the liquid crystal display device, and the method for manufacturing the polarization light emitter are also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示装置等に使用できる新規な偏光発光体及びその製造方法、偏光発光体を用いた有機エレクトロルミネッセンス素子に関するものである。   The present invention relates to a novel polarized light emitter that can be used in a liquid crystal display device and the like, a method for producing the same, and an organic electroluminescent element using the polarized light emitter.

従来の透過型の液晶表示装置のなかには、例えば、偏光板を備えたものがある。このような偏光板を備えた透過型の液晶表示装置においてフルカラー表示を行うためには、例えば、白色光源の上に偏光板、液晶セル、カラーフィルター、偏光板を配列した構成がとられることがある。かかる偏光板としては、一般的にポリビニルアルコールのような複屈折の小さい高分子フィルムに、溶解又は吸着させた二色性物質の分子を一方向に引き伸ばして配向させたものが使用される。このような偏光板は、配向させた二色性物質に一方向の光を吸収させることで偏光を得る光吸収型のものである。   Some conventional transmissive liquid crystal display devices include a polarizing plate, for example. In order to perform full color display in a transmissive liquid crystal display device including such a polarizing plate, for example, a configuration in which a polarizing plate, a liquid crystal cell, a color filter, and a polarizing plate are arranged on a white light source may be taken. is there. As such a polarizing plate, generally used is a polymer film having a small birefringence, such as polyvinyl alcohol, in which molecules of a dichroic substance dissolved or adsorbed are stretched in one direction and oriented. Such a polarizing plate is of a light absorption type in which polarized light is obtained by absorbing light in one direction in an oriented dichroic substance.

近年、偏光を得る技術として、コレステリック液晶フィルムを用いて偏光を得る方法(特許文献1、2参照)、屈折率差を利用して偏光を得る方法(特許文献3参照)等が提案されている。
また、発光光として直接偏光した光を得る技術として、配向した蛍光物質が着色偏光を発光することを利用したデバイスにより偏光発光を得る方法(特許文献4参照)、高分子マトリックス中に蛍光色素を分散、延伸することによって蛍光物質を一軸配向させ偏光発光を得る方法(特許文献5参照)や、蛍光物質を液晶化合物中に添加し、液晶化合物の自発配向によって偏光発光を得る方法(非特許文献1参照)、或いは、液晶化合物自体に発光性を付与し偏光発光を得る方法(非特許文献2参照)なども提案されている。
In recent years, as a technique for obtaining polarized light, a method for obtaining polarized light using a cholesteric liquid crystal film (see Patent Documents 1 and 2), a method for obtaining polarized light using a difference in refractive index (see Patent Document 3), and the like have been proposed. .
In addition, as a technique for obtaining directly polarized light as emitted light, a method of obtaining polarized light emission by a device utilizing the fact that an oriented fluorescent material emits colored polarized light (see Patent Document 4), a fluorescent dye in a polymer matrix A method for obtaining polarized light emission by uniaxially orienting a fluorescent material by dispersing and stretching (see Patent Document 5), or a method for obtaining polarized light emission by adding a fluorescent material into a liquid crystal compound and spontaneously aligning the liquid crystal compound (Non-Patent Document) 1), or a method of imparting light emission to the liquid crystal compound itself to obtain polarized light emission (see Non-Patent Document 2).

しかしながら、前記の光吸収型の偏光板の場合、光源から入射した光のうち少なくとも50%、現実には55〜60%の光量の光が吸収され、大きな光エネルギーの損失を伴う。さらにカラー液晶表示装置の場合には、カラーフィルターによる光吸収も加わり、透過光量は10%以下に減少する。そして一般的に延伸によって作製された偏光板は、温度上昇とともにマトリックスポリマーの緩和が生じること、或いは、ヨウ素錯体などの二色性物質の分解から、二色性物質の配向も緩和し、結果として偏光特性の大幅な低下につながるという問題がある。
また、前記の液晶の自発配向を利用して偏光を得る方法では、液晶の配向自身が延伸による配向度よりも低いため、一般的に偏光度は低くなる。
However, in the case of the light absorption type polarizing plate, at least 50% of light incident from the light source, and in reality, 55 to 60% of light is absorbed, resulting in a large loss of light energy. Further, in the case of a color liquid crystal display device, light absorption by the color filter is also added, and the amount of transmitted light is reduced to 10% or less. And generally, the polarizing plate produced by stretching causes relaxation of the matrix polymer as the temperature rises, or from the decomposition of the dichroic substance such as iodine complex, and also relaxes the orientation of the dichroic substance. There is a problem that it leads to a significant decrease in polarization characteristics.
In the method of obtaining polarized light by utilizing the spontaneous alignment of the liquid crystal, the degree of polarization is generally low because the alignment of the liquid crystal itself is lower than the degree of alignment by stretching.

また、極微細構造を有機エレクトロルミネッセンス素子へ組みこんで異方発光を得た報告例がある(非特許文献3)。この報告では、誘電体であるフォトレジスト材料を透明電極(ITO電極)上に塗布してフォトレジスト材料の絶縁層を形成した後、位相シフトマスクを使用したフォトリソグラフィー法により400nmの極微細周期構造(200nm幅のライン・アンド・スペース)を形成し、図6に示すように、極微細周期構造のフォトレジスト材料j上に該フォトレジスト材料jを覆うように有機発光層kをスピンコート法によって製膜し、さらに金属電極mを蒸着することによってエレクトロルミネッセンス素子Xを作製している。この素子Xは、絶縁層であるフォトレジスト材料jの存在する領域においては、金属電極mと基板h上のITO電極i間に電流が流れないため有機発光層kが存在していても結果としてその部分では発光せず、フォトレジスト材料jの存在しない幅200nmの領域qからの発光が可能になるように設計されている。ところが、発光に異方性があるとされているものの十分な偏光は得られておらず、周期構造に対し偏光板を平行に配置した場合と、垂直に配置した場合の比(コントラスト)が不十分である。   In addition, there is a report example in which anisotropic light emission is obtained by incorporating an ultrafine structure into an organic electroluminescence element (Non-patent Document 3). In this report, a dielectric material photoresist material is coated on a transparent electrode (ITO electrode) to form an insulating layer of the photoresist material, and then a 400 nm ultrafine periodic structure is formed by photolithography using a phase shift mask. (Line and space with a width of 200 nm) is formed, and as shown in FIG. 6, an organic light emitting layer k is formed on the photoresist material j having a very fine periodic structure by spin coating so as to cover the photoresist material j. The electroluminescent element X is produced by forming a film and further depositing a metal electrode m. In the element X, in the region where the photoresist material j which is an insulating layer is present, no current flows between the metal electrode m and the ITO electrode i on the substrate h, so that the organic light emitting layer k exists as a result. It is designed to emit light from a region q having a width of 200 nm where no photoresist material j is present, and that portion does not emit light. However, although there is anisotropy in light emission, sufficient polarization has not been obtained, and the ratio (contrast) between the case where the polarizing plates are arranged parallel to the periodic structure and the case where they are arranged vertically is not good. It is enough.

特開平7−35925号公報JP-A-7-35925 特開平10−301097号公報Japanese Patent Laid-Open No. 10-301097 特開平10−125121号公報JP-A-10-125121 欧州特許出願公開第0889350号明細書European Patent Application No. 0899350 特開2001−174809号公報JP 2001-174809 A アプライド・フィジックス・レターズ、73巻、11号、1595頁、1998年Applied Physics Letters, Vol. 73, No. 11, p. 1595, 1998 アプライド・フィジックス・レターズ、74巻、10号、1400貢、1999年Applied Physics Letters, 74, 10, 1400 Mitsugu, 1999 アプライド・フィジックス・レターズ、74巻、9号、1206頁、1999年Applied Physics Letters, 74, 9, 1206, 1999

そこで、本発明は、発光光自体が比較的高い偏光度を有し、従って、光吸収型の偏光板を設ける場合のような光源の光の吸収といった大きな光エネルギーの損失を伴うことなく、比較的高い偏光度を得ることができる偏光発光体、偏光有機エレクトロルミネッセンス素子及び液晶表示装置並びに偏光発光体の製造方法を提供することを課題とする。   Therefore, the present invention has a comparatively high degree of polarization of the emitted light, and therefore, without significant loss of light energy such as absorption of light from the light source as in the case of providing a light absorption type polarizing plate. It is an object of the present invention to provide a polarized light emitter capable of obtaining a high degree of polarization, a polarized organic electroluminescence element, a liquid crystal display device, and a method for producing a polarized light emitter.

本発明は、従来技術が有する前記問題に鑑みてなされたものである。
本発明者らは前記課題を解決すべく鋭意検討を行った結果、発光領域の励起によって発光する発光体においては、当該発光体の発光領域を、発光光の波長より長い長軸と発光光の波長より短い短軸とからなる平面形状とし、当該発光領域から発せられる光において、発光領域の長軸方向に対して略平行な方向の振動の光の強度が、発光領域の短軸方向に対して略平行な方向の振動の光の強度よりも大きくなるようにすることによって、比較的高い偏光度を有する偏光発光体が得られることを見出し、本発明を完成するに至った。
This invention is made | formed in view of the said problem which a prior art has.
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the light emitting region that emits light by excitation of the light emitting region has a long axis longer than the wavelength of the emitted light and the light emitted from the light emitting region. In the light emitted from the light emitting region, the intensity of vibration light in a direction substantially parallel to the major axis direction of the light emitting region is smaller than the minor axis direction of the light emitting region. It has been found that a polarized light emitter having a relatively high degree of polarization can be obtained by making the intensity greater than the intensity of vibration light in a substantially parallel direction, and the present invention has been completed.

さらに説明すると、前記のような偏光発光体は、発光領域が発光光の波長よりも長い長軸と発光光の波長よりも短い短軸からなる構造異方性を有しており、発光領域の短軸が発光光の波長よりも短いため、この発光領域を励起したときには、短軸方向に対して略平行な方向の光の振動が抑制されており、従って、その方向に振動する光が発生しなくなる一方、発光領域の長軸方向にのみ光が振動できるため、長軸方向に振動する光だけが放射され、結果として偏光を発する発光体、さらに言えば、比較的高い偏光度を有する偏光発光体となり得る。   More specifically, the polarized light emitter as described above has a structural anisotropy in which the light emitting region has a major axis longer than the wavelength of the emitted light and a minor axis shorter than the wavelength of the emitted light. Since the minor axis is shorter than the wavelength of the emitted light, when this light emitting region is excited, the vibration of light in a direction substantially parallel to the minor axis direction is suppressed, and thus light that vibrates in that direction is generated. On the other hand, since light can vibrate only in the long axis direction of the light emitting region, only light that vibrates in the long axis direction is emitted, and as a result, a light emitting body that emits polarized light, and more specifically, polarized light having a relatively high degree of polarization. Can be a light emitter.

本発明はかかる知見に基づくものであり、前記課題を解決するため、励起によって発光する1又は2以上の発光領域を含む発光体であって、前記発光領域は、前記発光による発光光の波長より長い長軸と該発光光の波長より短い短軸とからなる平面形状を有し、前記発光領域から発せられる光において、前記発光領域の長軸方向に対して略平行な方向の振動の光の強度が、前記発光領域の短軸方向に対して略平行な方向の振動の光の強度よりも大きいことを特徴とする偏光発光体を提供する。   The present invention is based on such knowledge, and in order to solve the above-described problem, the present invention is a light emitter including one or two or more light-emitting regions that emit light by excitation, and the light-emitting region is based on the wavelength of light emitted by the light emission. It has a planar shape consisting of a long major axis and a minor axis shorter than the wavelength of the emitted light, and in the light emitted from the light emitting region, vibration light in a direction substantially parallel to the major axis direction of the light emitting region. There is provided a polarized light emitter characterized in that the intensity is greater than the intensity of vibration light in a direction substantially parallel to the minor axis direction of the light emitting region.

本発明にいう「略平行」とは、平行である場合及び平行とみなして差し支えない場合の双方を含む概念である。   The term “substantially parallel” as used in the present invention is a concept that includes both a case where they are parallel and a case where they may be regarded as parallel.

本発明に係る偏光発光体では、前記発光領域が、前記発光による発光光の波長より長い長軸と該発光光の波長より短い短軸とからなる平面形状を有しており、前記発光領域の短軸が前記発光による発光光の波長よりも短いので、前記発光領域を励起したときに、前記発光領域の短軸方向に対して略平行な方向の光の振動が抑制され、従って、その方向に振動する光が発生しなくなる一方、前記発光領域の長軸方向にのみ光が振動できるため、前記発光領域の長軸方向に振動する光だけが放射される。かくして、前記発光領域から発せられる光において、前記発光領域の長軸方向に対して略平行な方向の振動の光の強度が、前記発光領域の短軸方向に対して略平行な方向の振動の光の強度よりも大きくなり、これにより、比較的高い偏光度を有することができる。   In the polarized light emitter according to the present invention, the light emitting region has a planar shape composed of a long axis longer than the wavelength of the emitted light by the light emission and a short axis shorter than the wavelength of the emitted light. Since the minor axis is shorter than the wavelength of the emitted light due to the light emission, when the light emitting region is excited, vibration of light in a direction substantially parallel to the minor axis direction of the light emitting region is suppressed, and accordingly However, since light can vibrate only in the long axis direction of the light emitting region, only light that vibrates in the long axis direction of the light emitting region is emitted. Thus, in the light emitted from the light emitting region, the intensity of vibration light in a direction substantially parallel to the major axis direction of the light emitting region is such that the intensity of vibration in a direction substantially parallel to the minor axis direction of the light emitting region. It can be greater than the intensity of light, thereby having a relatively high degree of polarization.

このように、本発明に係る偏光発光体によると、発光光自体が比較的高い偏光度を有し、従って、光吸収型の偏光板を設ける場合のような光源の光吸収といった大きな光エネルギーの損失を伴うことなく、比較的高い偏光度を得ることができる。   As described above, according to the polarized light emitter according to the present invention, the emitted light itself has a relatively high degree of polarization, and therefore, a large light energy such as light absorption of a light source as in the case of providing a light absorption type polarizing plate. A relatively high degree of polarization can be obtained without loss.

本発明に係る偏光発光体の具体的態様としては、前記発光領域を2以上含み、該発光領域は、長軸方向が互いに略平行になるように非発光領域で隔てられて配置されている態様を例示できる。この態様において、例えば、(a)前記発光領域と前記非発光領域とからなる周期構造を有する場合、(b)前記発光領域と前記非発光領域とが、ストライプ状に交互に配置されている場合、(c)前記の(a)及び(b)を組み合わせた場合等を挙げることができる。   As a specific aspect of the polarized light emitter according to the present invention, the light emitting area includes two or more of the light emitting areas, and the light emitting areas are arranged separated by a non-light emitting area so that the major axis directions thereof are substantially parallel to each other. Can be illustrated. In this aspect, for example, (a) when having a periodic structure composed of the light-emitting region and the non-light-emitting region, (b) when the light-emitting region and the non-light-emitting region are alternately arranged in a stripe shape (C) The case where the above (a) and (b) are combined can be exemplified.

本発明に係る偏光発光体において、前記発光領域の長軸の長さは、前記発光による発光光の波長よりも長ければ特に限定されないが、加工のし易さから該光波長の5倍以上の長さであることが好ましい。また、前記発光領域の短軸の長さとしては、前記発光による発光光の波長より短ければ特に限定されないが、かかる短軸の長さが偏光発光体の偏光度に直接的に影響を及ぼすため、好ましくは該光波長の0.8倍以下、より好ましくは0.4倍以下の長さを例示できる。   In the polarized light emitter according to the present invention, the length of the long axis of the light emitting region is not particularly limited as long as it is longer than the wavelength of light emitted by the light emission, but it is 5 times or more of the light wavelength for ease of processing. The length is preferred. Further, the length of the short axis of the light emitting region is not particularly limited as long as it is shorter than the wavelength of the emitted light by the light emission, but the length of the short axis directly affects the polarization degree of the polarized light emitter. The length is preferably 0.8 times or less, more preferably 0.4 times or less of the light wavelength.

また、前記発光領域の長軸方向に対し略平行な方向の振動の光の強度が、前記発光領域の短軸方向に対し略平行な方向の振動の光の強度の3倍以上であることが好ましい。   Further, the intensity of vibration light in a direction substantially parallel to the major axis direction of the light emitting area is at least three times the intensity of vibration light in a direction substantially parallel to the minor axis direction of the light emission area. preferable.

本発明に係る偏光発光体において、前記発光領域は、例えば、蛍光発光体からなっていてもよい。このように、前記発光領域が蛍光発光体からなっている偏光発光体では、前記蛍光発光体に所定の光が照射されることで、該蛍光発光体が蛍光発光することができる。   In the polarized light emitter according to the present invention, the light emitting region may be composed of, for example, a fluorescent light emitter. Thus, in the polarized light emitter in which the light emitting region is made of a fluorescent light emitter, the fluorescent light emitter can emit fluorescence by irradiating the fluorescent light emitter with predetermined light.

また本発明に係る偏光発光体は、基板(例えば、透明基板)を備え、前記発光領域が前記基板(例えば、透明基板)上に形成されていてもよい。   Moreover, the polarized light emitter according to the present invention may include a substrate (for example, a transparent substrate), and the light emitting region may be formed on the substrate (for example, a transparent substrate).

このように、基板(例えば、透明基板)を備え、前記発光領域が前記基板上に形成されている前記本発明に係る偏光発光体を製造するため、本発明は、例えば、次のような偏光発光体の製造方法も提供する。   Thus, in order to manufacture the polarized light emitter according to the present invention, which includes a substrate (for example, a transparent substrate) and the light emitting region is formed on the substrate, the present invention includes, for example, the following polarized light A method for manufacturing a light emitter is also provided.

すなわち、本発明は、基板(例えば、透明基板)上に、光及び/又は電解によって励起して発光する発光領域を含む発光性材料層を全面的に形成する形成工程と、前記形成工程に次いで前記発光領域が前記発光による発光光の波長より長い長軸と前記発光による発光光の波長より短い短軸とからなる形状となるように、前記発光性材料層の所定の不要部分を除去する除去工程とを含む偏光発光体の製造方法を提供する。   That is, the present invention includes a forming step of forming a light emitting material layer including a light emitting region that emits light by being excited by light and / or electrolysis on a substrate (for example, a transparent substrate), and subsequent to the forming step. Removal that removes a predetermined unnecessary portion of the luminescent material layer so that the light emitting region has a long axis longer than the wavelength of light emitted by the light emission and a short axis shorter than the wavelength of light emitted by the light emission. And a method for producing a polarized light emitter including the steps.

この偏光発光体の製造方法では、基板(例えば、透明基板)上に、光及び/又は電解によって励起して発光する発光領域を含む発光性材料層を全面的に形成し、次いで前記発光領域が前記発光による発光光の波長より長い長軸と前記発光による発光光の波長より短い短軸とからなる形状となるように、前記発光性材料層の所定の不要部分を除去する。かくして、基板(例えば、透明基板)を備え、励起によって発光する1又は2以上の発光領域であって前記発光による発光光の波長より長い長軸と該発光光の波長より短い短軸とからなる平面形状を有している発光領域が前記基板上に形成されている前記本発明に係る偏光発光体を製造することができる。   In this method of manufacturing a polarized light emitter, a light emitting material layer including a light emitting region that emits light by being excited by light and / or electrolysis is entirely formed on a substrate (for example, a transparent substrate). A predetermined unnecessary portion of the luminescent material layer is removed so as to have a shape composed of a long axis longer than the wavelength of light emitted by the light emission and a short axis shorter than the wavelength of light emitted by the light emission. Thus, the substrate is provided with a substrate (for example, a transparent substrate), and is composed of one or two or more light emitting regions that emit light by excitation, and have a long axis that is longer than the wavelength of light emitted by the light emission and a short axis that is shorter than the wavelength of the emitted light. The polarized light emitter according to the present invention in which a light emitting region having a planar shape is formed on the substrate can be manufactured.

このように、本発明に係る偏光発光体の製造方法によると、前記発光領域が前記基板(例えば、透明基板)上に形成されている前記本発明に係る偏光発光体を製造できるので、発光光自体が比較的高い偏光度を有し、従って、光吸収型の偏光板を設ける場合のような光源の光吸収といった大きな光エネルギーの損失を伴うことなく、比較的高い偏光度を得ることができる偏光発光体を提供することができる。   As described above, according to the method for manufacturing a polarized light emitter according to the present invention, the polarized light emitter according to the present invention in which the light emitting region is formed on the substrate (for example, a transparent substrate) can be manufactured. As such, it has a relatively high degree of polarization, and therefore a relatively high degree of polarization can be obtained without a large loss of light energy such as light absorption of a light source as in the case of providing a light absorption type polarizing plate. A polarized light emitter can be provided.

本発明に係る偏光発光体の製造方法において、前記除去工程では、光干渉を用いたレーザーアブレーション法で前記発光性材料層の前記所定不要部分を除去してもよいし、フォトリソグラフィー法で前記発光性材料層の前記所定不要部分を除去してもよい。   In the method for manufacturing a polarized light emitter according to the present invention, in the removing step, the predetermined unnecessary portion of the light emitting material layer may be removed by a laser ablation method using optical interference, or the light emission may be performed by a photolithography method. The predetermined unnecessary portion of the conductive material layer may be removed.

さらに本発明は、前記本発明に係る偏光発光体を含み、前記発光領域が有機エレクトロルミネッセンス発光領域である偏光有機エレクトロルミネッセンス素子、及び前記本発明に係る偏光有機エレクトロルミネッセンス素子を備え、該偏光有機エレクトロルミネッセンス素子を偏光バックライトとして使用する液晶表示装置も提供する。   Furthermore, the present invention comprises a polarized organic electroluminescent device comprising the polarized light emitter according to the present invention, wherein the light emitting region is an organic electroluminescent light emitting region, and the polarized organic electroluminescent device according to the present invention, A liquid crystal display device using an electroluminescence element as a polarization backlight is also provided.

このエレクトロルミネッセンス素子及び液晶表示装置によると、いずれにしても前記本発明に係る偏光発光体を有するので、発光光自体が比較的高い偏光度を有し、従って、光吸収型の偏光板を設ける場合のような光源の光吸収といった大きな光エネルギーの損失を伴うことなく比較的高い偏光度を得ることができる。   According to the electroluminescence element and the liquid crystal display device, in any case, since the polarized light emitter according to the present invention is included, the emitted light itself has a relatively high degree of polarization, and therefore, a light absorption type polarizing plate is provided. A relatively high degree of polarization can be obtained without a large loss of light energy such as light absorption of the light source.

以上説明したように、本発明によれば、励起によって発光する1又は2以上の発光領域が前記発光による発光光の波長よりも長い長軸と、該発光光の波長よりも短い短軸とからなる平面形状を有し、この発光領域を励起することにより、発光光自体が比較的高い偏光度を有し、従って、光吸収型の偏光板を設ける場合のような光源の光吸収といった大きな光エネルギーの損失を伴うことなく比較的高い偏光度を得ることができる偏光発光体、偏光有機エレクトロルミネッセンス素子及び液晶表示装置並びに偏光発光体の製造方法を提供することができる。   As described above, according to the present invention, one or more light-emitting regions that emit light by excitation have a long axis that is longer than the wavelength of light emitted by the light emission, and a short axis that is shorter than the wavelength of the emitted light. By exciting this light emitting region, the emitted light itself has a relatively high degree of polarization, and therefore, a large amount of light such as light absorption by a light source as in the case of providing a light absorption type polarizing plate. It is possible to provide a polarized light emitter capable of obtaining a relatively high degree of polarization without energy loss, a polarized organic electroluminescence element, a liquid crystal display device, and a method for manufacturing a polarized light emitter.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は本発明に係る偏光発光体の一例であって励起によって発光する発光領域1と非発光領域2とが交互に配置された偏光発光体Aの概略平面図である。
図1に示す偏光発光体Aにおいて、発光領域1は、当該領域1の励起によって発光する発光光の波長よりも長い長軸と該発光光の波長よりも短い短軸とからなる平面形状を有している。このような形状とすることによってこの平面形状の発光領域1から発せられる光は、発光領域1の長軸方向に対して略平行な方向の振動の光の強度が、発光領域1の短軸方向に対して略平行な方向の振動の光の強度よりも大きい偏光発光となり得る。さらに説明すると、発光領域1が発光光の波長よりも長い長軸と発光光の波長よりも短い短軸とからなる形状を有し、発光領域1の短軸が発光光の波長よりも短いことから、この発光領域1を励起したときに、発光領域1の長軸方向に略平行な方向への光の振動は可能であるが、発光領域1の短軸方向に略平行な方向の光の振動が抑制されるため、結果として長軸方向と略平行な方向に振動する光の発生量が大きい偏光を発する発光体となり得る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view of a polarized light emitter A which is an example of a polarized light emitter according to the present invention and in which light emitting regions 1 and non-light emitting regions 2 emitting light by excitation are alternately arranged.
In the polarized light emitter A shown in FIG. 1, the light emitting region 1 has a planar shape composed of a long axis longer than the wavelength of the emitted light emitted by excitation of the region 1 and a short axis shorter than the wavelength of the emitted light. is doing. With such a shape, the light emitted from the light emitting region 1 having the planar shape has the intensity of vibration light in a direction substantially parallel to the major axis direction of the light emitting region 1, and the minor axis direction of the light emitting region 1. The polarized light emission can be larger than the intensity of the vibration light in a direction substantially parallel to the light. More specifically, the light emitting region 1 has a shape having a long axis longer than the wavelength of the emitted light and a short axis shorter than the wavelength of the emitted light, and the minor axis of the light emitting region 1 is shorter than the wavelength of the emitted light. Thus, when the light emitting region 1 is excited, the light can vibrate in a direction substantially parallel to the long axis direction of the light emitting region 1, but light in a direction substantially parallel to the short axis direction of the light emitting region 1 can be obtained. Since vibration is suppressed, a light emitting body that emits polarized light with a large amount of light that vibrates in a direction substantially parallel to the major axis direction can be obtained.

このように、図1に示す偏光発光体Aによると、発光光自体が比較的高い偏光度を有し、従って、光吸収型の偏光板を設ける場合のような光源の光吸収といった大きな光エネルギーの損失を伴うことなく、比較的高い偏光度を得ることができる。   As described above, according to the polarized light emitter A shown in FIG. 1, the emitted light itself has a relatively high degree of polarization, and accordingly, a large light energy such as light absorption of the light source as in the case of providing a light absorption type polarizing plate. A relatively high degree of polarization can be obtained without any loss.

発光領域1の長軸方向の長さaは、本例では発光光の波長よりも長ければ特に限定されないが、加工のしやすさから該光波長の5倍以上の長さであることが好ましい。また発光領域1の短軸方向の長さbは、本例では発光光の波長より短ければ特に限定されないが、かかる短軸の長さが偏光発光体の偏光度に直接的に影響を及ぼすため、好ましくは該光波長の0.8倍以下、さらに好ましくは0.4倍以下の長さである。   The length a in the major axis direction of the light emitting region 1 is not particularly limited as long as it is longer than the wavelength of the emitted light in this example, but it is preferably 5 times or longer than the light wavelength for ease of processing. . The length b in the minor axis direction of the light emitting region 1 is not particularly limited as long as it is shorter than the wavelength of the emitted light in this example, but the length of the minor axis directly affects the degree of polarization of the polarized light emitter. The length is preferably 0.8 times or less, more preferably 0.4 times or less of the light wavelength.

図1に示す偏光発光体Aにおいては、発光領域1の長軸及び短軸の長さa,bを調整して発光領域1の長軸方向に対し略平行な方向の振動の光の強度が、短軸方向に対し略平行な方向の振動の光の強度の3倍以上となるようにすることが好ましい。   In the polarized light emitter A shown in FIG. 1, the intensity of vibration light in a direction substantially parallel to the major axis direction of the light emitting region 1 is adjusted by adjusting the lengths a and b of the light emitting region 1. It is preferable that the intensity of vibration light in a direction substantially parallel to the minor axis direction is three times or more.

この偏光発光体Aにおいては、前記平面形状を有する発光領域1が、1又は2つ以上、本例では複数含み、それらの発光領域1は、長軸方向が互いに略平行になるように非発光領域で隔てられて配置されている。この発光領域1は、発光領域全体としては不連続的な構造物である。好ましくは、発光領域1と非発光領域2とが周期構造を有するように配置されていることが好ましい。当該周期構造は、例えば、図1に示すように、発光領域1と非発光領域2とが、ストライプ状に交互に配置されることによって形成される。なお、発光領域1の短軸長bと非発光領域2の短軸長cの合計に対する発光領域の短軸長bの比率は、特に限定されない。本例では、発光領域1の短軸長bは0.12μm程度、非発光領域2の短軸長cは0.38μm程度であり、発光領域1の短軸長bの比率は24%程度である。   In this polarized light emitter A, the light emitting region 1 having the planar shape includes one or more, in this example, a plurality of light emitting regions 1, and these light emitting regions 1 are non-light emitting so that the major axis directions thereof are substantially parallel to each other. They are separated by a region. The light emitting region 1 is a discontinuous structure as a whole of the light emitting region. Preferably, the light emitting region 1 and the non-light emitting region 2 are arranged so as to have a periodic structure. For example, as shown in FIG. 1, the periodic structure is formed by alternately arranging light emitting regions 1 and non-light emitting regions 2 in a stripe shape. The ratio of the short axis length b of the light emitting region to the sum of the short axis length b of the light emitting region 1 and the short axis length c of the non-light emitting region 2 is not particularly limited. In this example, the minor axis length b of the light emitting region 1 is about 0.12 μm, the minor axis length c of the non-light emitting region 2 is about 0.38 μm, and the ratio of the minor axis length b of the light emitting region 1 is about 24%. is there.

図1に示す偏光発光体Aにおいて、複数の発光領域1は、互いに非発光領域2によって隔てられて配置された構造を有するように、換言すれば発光領域全体としては不連続的な構造物となるように、例えば、次のように形成することができる。すなわち、発光領域を含む発光性材料を基板に全面的に設けることで発光性材料層を形成した後、基板上に残す発光性材料層に含まれる発光領域が所望の形状となるように、発光性材料層において所定の不要部分の発光性材料を除去する。この除去の方法としては、例えば、光干渉を用いたレーザーアブレーション法で発光性材料を除去する方法や、フォトリソグラフィー法で発光性材料を除去する方法などを挙げることができる。   In the polarized light emitter A shown in FIG. 1, the plurality of light emitting regions 1 are structured so as to be separated from each other by the non-light emitting regions 2, in other words, the light emitting regions as a whole are discontinuous structures. For example, it can be formed as follows. That is, after forming a light emitting material layer by providing a light emitting material including a light emitting region over the entire surface, light emission is performed so that the light emitting region included in the light emitting material layer remaining on the substrate has a desired shape. A predetermined unnecessary portion of the luminescent material is removed from the luminescent material layer. Examples of the removal method include a method of removing the luminescent material by a laser ablation method using optical interference, a method of removing the luminescent material by a photolithography method, and the like.

ここで、本発明についてさら説明すると、本発明に係る偏光発光体は、前記発光領域を2以上含む場合、該発光領域が、既述したように、長軸方向が互いに略平行になるように非発光領域で隔てられて配置されているような形状を有する他は、光又は電界によって励起して発光する従来公知の発光体と同様の構成を有することができ、従って、前記発光領域としては、例えば、従来公知の、光によって励起して発光する発光性物質や、電解によって励起して発光する積層構造体からなるもの例示できる。   Here, the present invention will be further described. When the polarized light emitter according to the present invention includes two or more light emitting regions, the light emitting regions are arranged so that the major axis directions thereof are substantially parallel to each other as described above. Except for having a shape that is separated by a non-light emitting region, it can have the same configuration as a conventionally known light emitter that emits light when excited by light or an electric field. For example, a conventionally known luminescent substance that emits light when excited by light or a laminated structure that emits light when excited by electrolysis can be exemplified.

前記の発光性物質としては、例えば、紫外光から可視光の波長域のうちいずれかの波長域の光によって励起され、可視光波長領域(例えば、中心波長390nm〜700nm)のうちいずれかの波長域の光を発する低分子及び高分子の発光性物質を挙げることができ、公知の発光性物質を広く使用することができる。   The luminescent substance is excited by light in any one of the wavelength ranges from ultraviolet light to visible light, for example, and any wavelength in the visible light wavelength region (for example, center wavelength 390 nm to 700 nm). Examples thereof include low-molecular and high-molecular light-emitting substances that emit light in the region, and known light-emitting substances can be widely used.

前記の低分子の発光性物質としては、例えば、テルフェニル、クアテルフェニル、ポリフェニル、1,7H−ベンズイミダゾ[2,1−a]ベンズ[de]イソキノリン−7−オン(BBQ)などのオリゴフェニレン類、2−(4−ビフェニルイル)−5−フェニル−1,3,4−オキサジアゾール(PBD)、1,4,−ビス(5−フェニルオキサゾール−2−イル)ベンゼン(POPOP)などのオキサゾール及びオキサジアゾール誘導体、7−ヒドロキシクマリン、7−ヒドロキシ−4−メチルクマリン(4−MC)、7−ジエチルアミノ−4−メチルクマリン(DAMC)、クマリン120などのクマリン誘導体、キノリノール誘導体、フタロシアニン誘導体、フルオレン及びその誘導体、アントラセン及びその誘導体、ローダミン6G、ローダミン110などのキサンテン系(ピロニン系、ローダミン系、フロレセイン系)色素、クレシルバイオレット、オキサジン1などのオキサジン系色素、トランス-4,4’−ジフェニルスチルベンなどのスチルベン系色素、シアニン系色素、ポリアセチレン系化合物、フェニレンビニレン系化合物、フェニレンエチニレン系化合物、五員環及び六員環複素環化合物、などを挙げることができる。これらの化合物は単独あるいは混合して使用することができる。また高濃度条件では濃度消光が起きるため、前記の低分子の発光性物質をコアとしたデンドリマーとし、それをマトリックスポリマーへ分散させてもよい。ポリマーマトリックス材料としては、例えば、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、セルロースアセテートブチレート、セルロースプロピオネート、ポリビニルクロライド、ポリエチレンテレフタレート、ポリα-ナフタレンメタクリレート、ポリビニルナフタレン、ポリn−ブチルメタクリレート、ポリシクロヘキシルメタクリレート、ポリ(4−メチルペンテン)、エポキシ、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリアリレート、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリアクリロニトリル、ポリエチレン、ポリシクロペンタジエンの水添物及び共重合体、ポリシクロヘキサジエンの水添物及び共重合体、スチレン・無水マレイン酸共重合体、スチレン・アクリロニトリル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体ベンゾシクロブタン共重合体などを挙げることができる。またこれらポリマーの誘導体も使用することができる。   Examples of the low-molecular light-emitting substance include terphenyl, quaterphenyl, polyphenyl, 1,7H-benzimidazo [2,1-a] benz [de] isoquinolin-7-one (BBQ), and the like. Oligophenylenes, 2- (4-biphenylyl) -5-phenyl-1,3,4-oxadiazole (PBD), 1,4, bis (5-phenyloxazol-2-yl) benzene (POPOP) Such as oxazole and oxadiazole derivatives, 7-hydroxycoumarin, 7-hydroxy-4-methylcoumarin (4-MC), 7-diethylamino-4-methylcoumarin (DAMC), coumarin derivatives such as coumarin 120, quinolinol derivatives, Phthalocyanine derivatives, fluorene and its derivatives, anthracene and its derivatives, rhodamine G, xanthene (pyronine, rhodamine, and fluorescein) dyes such as rhodamine 110, oxazine dyes such as cresyl violet and oxazine 1, stilbene dyes such as trans-4,4′-diphenylstilbene, and cyanine dyes And polyacetylene compounds, phenylene vinylene compounds, phenylene ethynylene compounds, five-membered and six-membered heterocyclic compounds, and the like. These compounds can be used alone or in combination. Further, since concentration quenching occurs under high concentration conditions, a dendrimer having the above low-molecular light-emitting substance as a core may be dispersed in a matrix polymer. Examples of polymer matrix materials include polymethyl methacrylate, polyacrylate, polycarbonate, polyvinyl alcohol, polyvinyl pyrrolidone, hydroxyethyl cellulose, cellulose acetate butyrate, cellulose propionate, polyvinyl chloride, polyethylene terephthalate, poly α-naphthalene methacrylate, polyvinyl naphthalene. , Poly n-butyl methacrylate, polycyclohexyl methacrylate, poly (4-methylpentene), epoxy, polysulfone, polyethersulfone, polyetherketone, polyarylate, polyimide, polyetherimide, polyethersulfone, polyacrylonitrile, polyethylene, poly Hydrogenated and copolymerized cyclopentadiene, polycyclohexadiene Hydrogenated products and copolymers, styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer, and the like tetrafluoroethylene-hexafluoropropylene copolymer benzocyclobutane copolymer. In addition, derivatives of these polymers can also be used.

また、前記の高分子の発光性物質としては、例えば、ポリパラフェニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリビニルカルバゾール誘導体、ポリフルオレン誘導体、ポリフェニレンビニレン誘導体などを挙げることができる。具体的には、例えば、ポリ(2−メトキシ−5−(2’−エチルへキシルオキシ)−1,4−フェニレンビニレン)(MEH−PPV)を挙げることができる。   Examples of the high-molecular light-emitting substance include polyparaphenylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinylcarbazole derivatives, polyfluorene derivatives, polyphenylene vinylene derivatives, and the like. it can. Specifically, for example, poly (2-methoxy-5- (2'-ethylhexyloxy) -1,4-phenylene vinylene) (MEH-PPV) can be mentioned.

また、前記の電解によって励起し発光する積層構造体としては、例えば、公知のエレクトロルミネッセンス(以下、EL(Electro Luminescence)ともいう。)積層構造体を挙げることができる。当該EL積層構造体は、無機及び有機EL積層構造体のいずれであってもよく、好ましくは有機EL積層構造体である。EL積層構造体の具体的な構成としては、例えば、陽極(正孔注入電極)/正孔輸送層/発光層/電子注入層/陰極(電子注入電極)からなるもの、陽極/正孔輸送層/発光層/陰極からなるもの、陽極/発光層/陰極からなるもの、さらに正孔注入層を含むものなど、種々の構成を選択でき、特に限定はない。   Examples of the laminated structure that is excited by electrolysis and emits light include known electroluminescence (hereinafter also referred to as EL (Electro Luminescence)) laminated structures. The EL laminated structure may be either an inorganic or organic EL laminated structure, and is preferably an organic EL laminated structure. Specific configurations of the EL laminated structure include, for example, an anode (hole injection electrode) / hole transport layer / light emitting layer / electron injection layer / cathode (electron injection electrode), anode / hole transport layer Various configurations can be selected, such as those consisting of / light-emitting layer / cathode, anode / light-emitting layer / cathode, and those containing a hole injection layer, and there is no particular limitation.

前記のEL積層構造体を構成する陽極、陰極、正孔注入層、電子注入層及び発光層などの材料は、いずれも従来公知のものを用いることができる。前記陽極材料としては、例えば、Au(金)等の金属や、CuI(ヨウ化銅)、ITO(インジウム錫酸化物)(In(インジウム))、SnO2(酸化第二錫)、ZnO(酸化亜鉛)等の透明導電性材料などを挙げることができ、また前記陰極としては、例えば、マグネシウムと銀をおよそ10:1の原子比で共蒸着したものや、カルシウム電極、リチウムを微量ドープしたアルミニウム電極など、陰極の低仕事関数化による電子注入効率向上の観点から応用されているものを適用可能であるが、特に限定されるものではない。 Conventionally known materials can be used for the materials such as the anode, cathode, hole injection layer, electron injection layer, and light emitting layer constituting the EL laminated structure. Examples of the anode material include metals such as Au (gold), CuI (copper iodide), ITO (indium tin oxide) (In (indium)), SnO 2 (stannic oxide), and ZnO (oxidation). Examples of the cathode include co-evaporated magnesium and silver at an atomic ratio of about 10: 1, a calcium electrode, and aluminum doped with a small amount of lithium. An electrode or the like applied from the viewpoint of improving the electron injection efficiency by reducing the work function of the cathode can be applied, but is not particularly limited.

前記の正孔注入層の材料(正孔輸送材料)としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系化合物、アニリン系共重合体、チオフェンオリゴマー等の特定の導電性高分子オリゴマー等を挙げることができる。具体的には、例えば、ポリビニルカルバゾール、2,5−ビス(4’−ジエチルアミノフェニル)−1,3,4−オキサジアゾール及びN,N−ジフェニル−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD)並びにポリエチレンジオキシチオフェン及びポリスチレンスルホン酸(PEDOT/PSS)などを挙げることができる。   Examples of the material for the hole injection layer (hole transport material) include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino acids. Specific conductive polymer oligomers such as substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilane compounds, aniline copolymers, thiophene oligomers, etc. . Specifically, for example, polyvinylcarbazole, 2,5-bis (4′-diethylaminophenyl) -1,3,4-oxadiazole and N, N-diphenyl- (3-methylphenyl) -1,1 ′ -Biphenyl-4,4'-diamine (TPD) and polyethylenedioxythiophene and polystyrene sulfonic acid (PEDOT / PSS) can be mentioned.

前記の電子注入層の材料(電子注入材料)としては、ニトロ置換フルオレノン誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、8−キノリノール誘導体、その他特定の電子伝達性化合物等を挙げることができる。具体的には、例えば、トリス(8−ヒドロキシキノリネート)アルミニウム、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−オキサジアゾール及び2,4,7−トリニトロ−9−フルオレノンなどを挙げることができる。   Examples of the material for the electron injection layer (electron injection material) include nitro-substituted fluorenone derivatives, anthraquinodimethane derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide, Examples include fluorenylidenemethane derivatives, anthraquinodimethane derivatives, anthrone derivatives, oxadiazole derivatives, 8-quinolinol derivatives, and other specific electron transfer compounds. Specifically, for example, tris (8-hydroxyquinolinate) aluminum, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-oxadiazole and 2 4,7-trinitro-9-fluorenone and the like.

前記の発光層、例えば、有機発光層を形成する発光材料の具体例としては、前記の低分子及び高分子の発光性物質などの公知の材料が使用可能である。前記発光層は、有機発光材料のみよって形成してもよいし、この他、有機発光材料と正孔輸送材料及び/又は電子注入材料との混合物等により形成してもよい。   As specific examples of the light-emitting material for forming the light-emitting layer, for example, the organic light-emitting layer, known materials such as the low-molecular and high-molecular light-emitting substances can be used. The light emitting layer may be formed of only an organic light emitting material, or may be formed of a mixture of an organic light emitting material and a hole transport material and / or an electron injection material.

本発明に係る偏光発光体を有する好ましいものとしては、前記したようなEL積層構造体からなる発光領域を含む偏光発光体を有する偏光発光EL素子を例示できる。
本発明の偏光発光体は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)などの偏光光を用いる画像表示部を備えた画像表示装置のバックライトとして用いることができる。このとき、発光構造の向く方向を予め前記画像表示部の偏光入射方向と一致させることで偏光板レスでの表示を実現することができる。また、本発明の偏光発光体は、前記画像表示部に偏光板を介して、この偏光板の光透過軸と前記発光領域の長軸との方向を一致させて設置してもよい。この場合、主に別ユニットで組み立てられるバックライトの角度誤差を解消できるとともに、本発明の偏光発光体による偏光発光の方向を偏光板の光透過軸と一致させることで偏光板での光吸収を最小にでき、比較的明るい表示を実現することができる。
A preferable example of having the polarized light emitter according to the present invention is a polarized light emitting EL element having a polarized light emitter including a light emitting region composed of an EL laminated structure as described above.
The polarized light emitter of the present invention can be used as a backlight of an image display device including an image display unit that uses polarized light such as a liquid crystal display (LCD). At this time, a polarizing plate-less display can be realized by matching the direction in which the light emitting structure is directed in advance with the polarization incident direction of the image display unit. Further, the polarized light emitter of the present invention may be installed in the image display unit through a polarizing plate so that the light transmission axis of the polarizing plate and the major axis of the light emitting region coincide with each other. In this case, the angle error of the backlight assembled mainly in a separate unit can be eliminated, and light absorption by the polarizing plate can be achieved by matching the direction of polarized light emission by the polarized light emitter of the present invention with the light transmission axis of the polarizing plate. It can be minimized and a relatively bright display can be realized.

以下に実施例及び比較例を挙げて本発明を説明するが、本発明はこれらによって限定されるものではない。なお、実施例1及び比較例1で作成された偏光発光体の一例の一部の概略断面図をそれぞれ図3(A)及び図3(B)に示し、また、実施例2、比較例2−1及び2−2で作成されたEL素子の一例の一部の概略断面図をそれぞれ図4(A)から図4(C)に示す。さらに、実施例3及び比較例3で作成された液晶表示装置の一例の一部の概略断面図を図5に示す。   Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto. 3A and 3B are partial schematic cross-sectional views of examples of the polarized light emitters prepared in Example 1 and Comparative Example 1, respectively. In addition, Example 2 and Comparative Example 2 are shown. FIGS. 4A to 4C are schematic cross-sectional views of a part of an example of the EL element created in -1 and 2-2, respectively. Further, FIG. 5 shows a schematic sectional view of a part of an example of the liquid crystal display device prepared in Example 3 and Comparative Example 3.

(実施例1)
発光性高分子であるポリ(2−メトキシ−5−(2’−エチルへキシロキシ)−1,4−フェニレンビニレン)(MEH−PPV)の0.6重量%テトラクロロエタン(TCE)溶液を、ガラス基板の一方の面上に、2000回転/分の回転数で20秒間スピンコートし、100℃の乾燥機で10分間乾燥させて、150nmの厚さの発光性高分子薄膜を形成した。
Example 1
A 0.6% by weight tetrachloroethane (TCE) solution of poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylene vinylene) (MEH-PPV), which is a light-emitting polymer, was added to glass. On one surface of the substrate, spin coating was performed for 20 seconds at a rotation speed of 2000 rotations / minute, and drying was performed for 10 minutes with a dryer at 100 ° C. to form a light-emitting polymer thin film having a thickness of 150 nm.

この薄膜に図2に示すような回折格子型のマスクMを介して、波長248nmのKrFエキシマーレーザーの縮小投影アブレーション加工により発光性高分子薄膜を部分的に除去して、図3(A)に示すように、マスクの周期構造の30分の1の周期構造を有するストライプ状の構造物4を形成した。回折格子型のマスクMは、15μmのピッチPmの周期構造を有しており、ガラス基板3上の発光性高分子薄膜41からなる周期構造は(15μm/30=)0.5μmのピッチPであることを電子顕微鏡観察にて確認した。周期構造における発光性高分子薄膜41が存在する領域(発光領域)の幅bは0.12μm、発光性高分子を除去した領域(非発光領域)の幅cは0.38μmであり、当該構造物4の発光領域の幅bは発光波長(極大波長585nm)よりも小さい値であった。   The thin luminescent polymer thin film is partially removed by reduction projection ablation processing of KrF excimer laser with a wavelength of 248 nm through a diffraction grating type mask M as shown in FIG. As shown, a striped structure 4 having a periodic structure that is 1/30 of the periodic structure of the mask was formed. The diffraction grating type mask M has a periodic structure with a pitch Pm of 15 μm, and the periodic structure composed of the light-emitting polymer thin film 41 on the glass substrate 3 has a pitch P of (15 μm / 30 =) 0.5 μm. It was confirmed by electron microscope observation. In the periodic structure, the width b of the region where the light-emitting polymer thin film 41 exists (light-emitting region) is 0.12 μm, and the width c of the region where the light-emitting polymer is removed (non-light-emitting region) is 0.38 μm. The width b of the light emitting region of the object 4 was smaller than the light emission wavelength (maximum wavelength 585 nm).

この構造物4のガラス基板3の他方の面から紫外線Lを照射しMEH−PPVを励起して蛍光発光させ、その蛍光L1を偏光板を介して目視によって観察を行った。偏光板の光透過軸を、ストライプ構造の長軸に対して、平行に配置して観察すると蛍光L1が確認でき、垂直に配置すると蛍光L1が確認できなかった。この結果から、この構造物4からの発光光L1は偏光であり、得られた構造物4を含む発光体10は偏光発光体であることが確認できた。   Ultraviolet light L was irradiated from the other surface of the glass substrate 3 of the structure 4 to excite the MEH-PPV to emit fluorescence, and the fluorescence L1 was visually observed through a polarizing plate. When the light transmission axis of the polarizing plate was arranged parallel to the long axis of the stripe structure and observed, fluorescence L1 could be confirmed, and when arranged vertically, fluorescence L1 could not be confirmed. From this result, it was confirmed that the emitted light L1 from the structure 4 is polarized light, and the light emitter 10 including the obtained structure 4 is a polarized light emitter.

(比較例1)
図2に示すような60μmのピッチPm’の周期構造を有する回折格子型のマスクM’を使用した以外は実施例1と同様に行い、図3(B)に示すように、ガラス基板3の一方の面上に、周期構造が(60μm/30=)2μmのピッチP’であり、発光性高分子薄膜41が存在する領域(発光領域)の幅b’が1μm、発光性高分子薄膜41が存在しない領域(非発光領域)の幅c’が1μmのストライプ状の周期構造を有する構造物4’を作製した。当該構造物4’の発光領域の幅b’は発光波長(極大波長585nm)よりも大きい値であった。
(Comparative Example 1)
2 except that a diffraction grating type mask M ′ having a periodic structure with a pitch Pm ′ of 60 μm as shown in FIG. 2 is used. As shown in FIG. On one surface, the periodic structure has a pitch P ′ of (60 μm / 30 =) 2 μm, the width (b ′) of the region where the light-emitting polymer thin film 41 exists (light-emitting region) is 1 μm, and the light-emitting polymer thin film 41 A structure 4 ′ having a stripe-like periodic structure in which the width c ′ of the region where no light is present (non-light emitting region) is 1 μm was produced. The width b ′ of the light emitting region of the structure 4 ′ was a value larger than the light emission wavelength (maximum wavelength 585 nm).

この構造物4’のガラス基板3の他方の面から紫外線Lを照射しMEH−PPVを励起し、その蛍光L1’を偏光板を介して目視によって観察を行った。偏光板の光透過軸をストライプ構造の長軸に対して平行にしても垂直にしても、蛍光L1’が観察できた。この結果から、この構造体4’からの発光光L1’は偏光ではないことが確認された。   Ultraviolet light L was irradiated from the other surface of the glass substrate 3 of this structure 4 'to excite MEH-PPV, and the fluorescence L1' was visually observed through a polarizing plate. The fluorescence L1 'could be observed whether the light transmission axis of the polarizing plate was parallel or perpendicular to the long axis of the stripe structure. From this result, it was confirmed that the emitted light L1 'from the structure 4' was not polarized.

(実施例2)
ガラス基板上に正孔注入電極として100nmの厚さのITO膜を蒸着により形成し、その上にポリエチレンジオキシチオフェン及びポリスチレンスルホン酸(PEDOT/PSS)の水分散液を用いスピンコート法によって正孔注入層として20nmのPEDOT/PSS薄膜を形成した。PEDOT/PSSの水分散液は1重量部のPEDOTに対して、2.5重量部のPSSを混合しており、その混合物を1.5%の濃度で水に分散したものである。その上に、0.45重量%MEH−PPV/TCE溶液を用いスピンコート法によって80nmの厚さのMEH−PPV層を形成した。このMEH−PPV層の上に電子注入電極として30nmの膜厚のカルシウム層を形成し、さらにカルシウム層の上に、カルシウムの劣化を抑制するためのアルミニウムを200nmの膜厚で真空蒸着法にて形成してEL素子を作製した。このEL素子に、実施例1と同様の回折格子型のマスクM(図2参照)を介して、波長248nmのKrFエキシマーレーザーの縮小投影アブレーション加工により、図4(A)に示すように、マスクMの周期構造の30分の1の周期構造のストライプ状の構造物5を有するEL素子20を形成した。アブレーション加工でレーザー光が照射された部分において、アルミニウム層55、電子注入電極54、MEH−PPV層53、正孔注入層52及びITO膜51のうち、少なくとも電子注入電極54とMEH−PPV層53の所定不要部分を除去した。回折格子型のマスクMには15μmのピッチPmの周期構造を有しており、EL素子20上に形成された周期構造は(15μm/30=)0.5μmのピッチPで、実施例1と同様、発光領域の幅bは0.12μmであった。この発光領域の幅bは発光波長(極大波長585nm)よりも小さい値であった。このEL素子20に7Vの直流電圧を印加するとオレンジ色の電界発光L2が目視によって確認できた。偏光板の光透過軸をストライプ構造の長軸と平行に配置し、偏光板を介して、この発光L2を観察すると、発光L2が偏光板を透過してくることが確認できた。一方、偏光板の光透過軸をストライプ構造の長軸と垂直に配置し、偏光板を介して、この発光L2を観察すると、発光L2が偏光板を透過してこないことが確認できた。以上の結果から、このEL素子20からの発光L2は偏光になっていることが確認できた。
(Example 2)
An ITO film having a thickness of 100 nm is formed on a glass substrate as a hole injection electrode by vapor deposition, and holes are formed thereon by spin coating using an aqueous dispersion of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT / PSS). A 20 nm PEDOT / PSS thin film was formed as an injection layer. The aqueous dispersion of PEDOT / PSS is obtained by mixing 2.5 parts by weight of PSS with 1 part by weight of PEDOT and dispersing the mixture in water at a concentration of 1.5%. On top of that, an MEH-PPV layer having a thickness of 80 nm was formed by spin coating using a 0.45 wt% MEH-PPV / TCE solution. A 30 nm-thickness calcium layer is formed on the MEH-PPV layer as an electron injection electrode, and aluminum for suppressing the deterioration of calcium is further formed on the calcium layer by a vacuum deposition method with a thickness of 200 nm. Thus, an EL element was produced. As shown in FIG. 4A, this EL element is subjected to reduction projection ablation processing of a KrF excimer laser having a wavelength of 248 nm through the diffraction grating type mask M (see FIG. 2) similar to that in Example 1, as shown in FIG. The EL element 20 having the stripe-like structure 5 having a periodic structure 1/30 of the periodic structure of M was formed. At least the electron injection electrode 54 and the MEH-PPV layer 53 among the aluminum layer 55, the electron injection electrode 54, the MEH-PPV layer 53, the hole injection layer 52, and the ITO film 51 in the portion irradiated with the laser beam by the ablation process. The predetermined unnecessary part of was removed. The diffraction grating mask M has a periodic structure with a pitch Pm of 15 μm, and the periodic structure formed on the EL element 20 has a pitch P of (15 μm / 30 =) 0.5 μm. Similarly, the width b of the light emitting region was 0.12 μm. The width b of this light emitting region was a value smaller than the light emission wavelength (maximum wavelength 585 nm). When a DC voltage of 7 V was applied to the EL element 20, orange electroluminescence L2 could be confirmed visually. When the light transmission axis of the polarizing plate was arranged parallel to the long axis of the stripe structure and this light emission L2 was observed through the polarizing plate, it was confirmed that the light emission L2 was transmitted through the polarizing plate. On the other hand, when the light transmission axis of the polarizing plate was arranged perpendicular to the long axis of the stripe structure and this light emission L2 was observed through the polarizing plate, it was confirmed that the light emission L2 did not pass through the polarizing plate. From the above results, it was confirmed that the light emission L2 from the EL element 20 was polarized.

(比較例2−1)
ストライプ構造の形成方法として図2に示すような60μmのピッチPm’の周期構造を有する回折格子型のマスクM’を使用した以外は実施例2と同様の方法にて、図4(B)に示すように、ストライプ状の構造物5’を有するEL素子を作製した。回折格子型のマスクM’には60μmのピッチPm’の周期構造を有しており、MEH−PPV薄膜上に形成された周期構造は(60μm/30=)2μmのピッチP’で、比較例1と同様、発光領域の幅b’は1μmであった。この発光領域の幅b’は発光波長(極大波長585nm)よりも大きい値であった。このストライプ状の構造物5’を有するEL素子20’に7Vの直流電圧を印加するとオレンジ色の電界発光L2’が目視によって確認できた。偏光板の光透過軸をストライプ構造の長軸と平行に配置しても、垂直に配置しても、偏光板を介した発光L2’が確認できた。このことからこのEL素子20’からの発光L2’は偏光になっていないことが確認できた。
(Comparative Example 2-1)
The method of forming the stripe structure is the same as in Example 2 except that a diffraction grating mask M ′ having a periodic structure with a pitch Pm ′ of 60 μm as shown in FIG. As shown, an EL device having a stripe-shaped structure 5 ′ was produced. The diffraction grating mask M ′ has a periodic structure with a pitch Pm ′ of 60 μm, and the periodic structure formed on the MEH-PPV thin film has a pitch P ′ of (60 μm / 30 =) 2 μm. Similar to 1, the width b ′ of the light emitting region was 1 μm. The width b ′ of this light emitting region was larger than the light emission wavelength (maximum wavelength 585 nm). When a DC voltage of 7 V was applied to the EL element 20 ′ having the stripe-shaped structure 5 ′, orange electroluminescence L2 ′ could be visually confirmed. Even when the light transmission axis of the polarizing plate was arranged parallel to or perpendicular to the long axis of the stripe structure, light emission L2 ′ via the polarizing plate could be confirmed. From this, it was confirmed that the light emission L2 ′ from the EL element 20 ′ was not polarized.

(比較例2−2)
実施例2において作製したアブレーション加工前のEL素子に、実施例2(すなわち実施例1)と同様の回折格子型のマスクMを介して、波長248nmのKrFエキシマーレーザーの縮小投影アプレーション加工により、図4(C)に示すように、マスクMの周期構造の30分の1の周期構造を有するストライプ状の構造物5”を形成した。その際のアプレーション加工は、MEH−PPV層53の層厚の約半分を除去するハーフエッチングを行い、ストライプ状の構造物5”を有するEL素子20”とした。回折格子型のマスクMは15μmのピッチPmの周期構造を有しており、MEH−PPV層53上に形成された周期構造は(15μm/30=)0.5μmのピッチPであった。このストライプ状の構造物5”を有するEL素子20”に7Vの直流電圧を印加するとオレンジ色の電界発光L2”が目視によって確認できた。偏光板の光透過軸をストライプ構造の長軸と平行に配置しても、垂直に配置しても、偏光板を介した発光L2”が確認できた。この発光L2”は偏光板の光透過軸をストライプ構造の長軸と平行に配置した方が、若干明るかったが、コントラストは不十分であった。この例のEL素子において、発光領域は、MEH−PPV層53に存在する。ここで作製した構造物5は、ハーフエッチングによってMEH−PPV層53の約半分しか除去されておらず、残りの約半分が連続して存在するために、発光領域が実質的に連続して存在しているものと思われる。
(Comparative Example 2-2)
The EL element before ablation processed in Example 2 is subjected to reduction projection application processing of a KrF excimer laser having a wavelength of 248 nm through the same diffraction grating type mask M as in Example 2 (that is, Example 1). As shown in FIG. 4C, a stripe-shaped structure 5 ″ having a periodic structure that is 1/30 of the periodic structure of the mask M was formed. In this case, the application process was performed on the MEH-PPV layer 53. Half-etching to remove about half of the layer thickness was performed to obtain an EL element 20 ″ having a stripe-shaped structure 5 ″. The diffraction grating type mask M has a periodic structure with a pitch Pm of 15 μm, and the MEH The periodic structure formed on the -PPV layer 53 had a pitch P of (15 μm / 30 =) 0.5 μm. The EL element 20 having this stripe-shaped structure 5 ″ Electroluminescent L2 "orange a current of 7V to could be confirmed visually. Whether or not the light transmission axis of the polarizing plate is arranged parallel or perpendicular to the long axis of the stripe structure, light emission L2 ″ through the polarizing plate was confirmed. This light emission L2 ″ was transmitted through the polarizing plate. It was slightly brighter to place the axis parallel to the long axis of the stripe structure, but the contrast was insufficient. In the EL element of this example, the light emitting region exists in the MEH-PPV layer 53. In the structure 5 produced here, only about half of the MEH-PPV layer 53 is removed by half etching, and the remaining half is continuously present, so that the light emitting region is substantially continuously present. It seems to have done.

(実施例3)
ガラス基板11a,11b上に100nmの厚さのITO透明電極12を形成し、この基板を一対使用し、その電極12側の表面にスピンコート法でポリビニルアルコール溶液を塗布・乾燥させた後、ラビング処理を行ってラビング膜13を作成した。ポリビニルアルコール水溶液の濃度は5%で、ラビング膜の膜厚は500nmであった。なお、予め一方の透明基板11aの透明電極12は、エッチングによって分割されている。その後、ラビング方向が直交するように前記一対の基板11a,11bを、透明電極12を対向させるように配置して、該一対の基板11a,11b間にギャップ調整材14を配し、液晶注入口を残して周囲をエポキシ樹脂15にてシールした後、前記液晶注入口から液晶16「ZLI−4792」(メルク社製)を注入して該液晶注入口を閉じ、TN型反射型液晶セル17を作成した(図5参照)。その両側に偏光板18「NPF EGW1225DU」(日東電工株式会社製)を貼りつけ、ノーマリーホワイトの液晶パネル30を作成した。この液晶パネル30のバックライトとして、実施例2の偏光EL素子20をストライプ構造の長軸と、液晶パネル30に貼りつけたバックライト側の偏光板18の光透過軸を合わせて配置し液晶表示装置40を作製した。EL素子20の発光強度200cd/m2になるようにEL素子20に電圧を印加し、液晶パネル30越しに輝度を測定すると、180cd/m2の輝度であった。
Example 3
An ITO transparent electrode 12 having a thickness of 100 nm is formed on the glass substrates 11a and 11b, a pair of the substrates is used, and a polyvinyl alcohol solution is applied and dried on the surface on the electrode 12 side by spin coating, followed by rubbing. The rubbing film | membrane 13 was created by processing. The concentration of the polyvinyl alcohol aqueous solution was 5%, and the thickness of the rubbing film was 500 nm. The transparent electrode 12 of one transparent substrate 11a is divided in advance by etching. Thereafter, the pair of substrates 11a and 11b are arranged so that the rubbing directions are orthogonal to each other so that the transparent electrode 12 is opposed to each other, and a gap adjusting material 14 is disposed between the pair of substrates 11a and 11b. After sealing the periphery with epoxy resin 15, liquid crystal 16 "ZLI-4792" (manufactured by Merck) is injected from the liquid crystal injection port to close the liquid crystal injection port. It was created (see FIG. 5). A polarizing plate 18 “NPF EGW1225DU” (manufactured by Nitto Denko Co., Ltd.) was pasted on both sides to prepare a normally white liquid crystal panel 30. As the backlight of the liquid crystal panel 30, the polarization EL element 20 of the second embodiment is arranged so that the long axis of the stripe structure and the light transmission axis of the polarizing plate 18 on the backlight side attached to the liquid crystal panel 30 are aligned. A device 40 was produced. Applying a voltage to the EL element 20 so that luminous intensity 200 cd / m 2 of the EL device 20, when measuring the brightness on the liquid crystal panel 30 over was luminance of 180 cd / m 2.

(比較例3)
液晶パネル30のバックライトとして比較例2−1で作成したEL素子20’を使用した以外は、実施例3と同様の方法で液晶表示装置40’を作製した。EL素子20’の発光強度を200cd/m2になるようにEL素子20’に電圧を印加し、液晶パネル30越しに輝度を測定すると80cd/m2の輝度であった。
(Comparative Example 3)
A liquid crystal display device 40 ′ was produced in the same manner as in Example 3 except that the EL element 20 ′ produced in Comparative Example 2-1 was used as the backlight of the liquid crystal panel 30. EL device 20 applies a voltage to 'the luminous intensity of the EL element 20 so as to 200 cd / m 2', were luminance of 80 cd / m 2 when measured brightness to the liquid crystal panel 30 over.

本発明に係る偏光発光体の一例であって励起によって発光する発光領域と非発光領域とが交互に配置された偏光発光体を概略的に示す平面図である。It is an example of the polarized light emitter according to the present invention, and is a plan view schematically showing a polarized light emitter in which light emitting regions and non-light emitting regions that emit light by excitation are alternately arranged. 実施例及び比較例で用いた回折格子型のマスクの一例を概略的に示す平面図である。It is a top view which shows roughly an example of the diffraction grating type mask used by the Example and the comparative example. 図(A)は実施例1で作成された偏光発光体の一例の一部を概略的に示す断面図であり、図(B)は比較例1で作成された偏光発光体の一例の一部を概略的に示す断面図である。FIG. (A) is a cross-sectional view schematically showing a part of an example of the polarized light emitter produced in Example 1, and FIG. (B) is a part of an example of the polarized light emitter produced in Comparative Example 1. FIG. 図(A)は実施例2で作成されたEL素子の一例の一部を概略的に示す断面図であり、図(B)は比較例2−1で作成されたEL素子の一例の一部を概略的に示す断面図であり、また、図(C)は比較例2−2で作成されたEL素子の一例の一部を概略的に示す断面図である。FIG. (A) is a cross-sectional view schematically showing a part of an example of an EL element produced in Example 2, and FIG. (B) is a part of an example of an EL element produced in Comparative Example 2-1. FIG. 4C is a cross-sectional view schematically showing a part of an example of the EL element produced in Comparative Example 2-2. 実施例3及び比較例3で作成された液晶表示装置の一例の一部を概略的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a part of an example of a liquid crystal display device created in Example 3 and Comparative Example 3. 極微細構造を組みこんで異方発光を得る従来の有機エレクトロルミネッセンス素子を説明するための図である。It is a figure for demonstrating the conventional organic electroluminescent element which incorporates a very fine structure and obtains anisotropic light emission.

符号の説明Explanation of symbols

1 発光領域
2 非発光領域
3 基板
20 偏光有機EL素子
40 液晶表示装置
41,53 発光性材料層
A 偏光発光体
a 発光領域1の長軸の長さ
b 発光領域1の短軸の長さ
DESCRIPTION OF SYMBOLS 1 Light emission area | region 2 Non-light emission area | region 3 Substrate 20 Polarization organic EL element 40 Liquid crystal display device 41, 53 Light-emitting material layer A Polarization light-emitting body a The length of the major axis b of the light emission area 1

Claims (12)

励起によって発光する1又は2以上の発光領域を含む発光体であって、
前記発光領域は、前記発光による発光光の波長より長い長軸と該発光光の波長より短い短軸とからなる平面形状を有し、
前記発光領域から発せられる光において、前記発光領域の長軸方向に対して略平行な方向の振動の光の強度が、前記発光領域の短軸方向に対して略平行な方向の振動の光の強度よりも大きいことを特徴とする偏光発光体。
A light emitter comprising one or more light emitting regions that emit light upon excitation,
The light emitting region has a planar shape composed of a long axis longer than the wavelength of light emitted by the light emission and a short axis shorter than the wavelength of the emitted light,
In the light emitted from the light emitting region, the intensity of the vibration light in a direction substantially parallel to the major axis direction of the light emitting region is the intensity of the vibration light in a direction substantially parallel to the minor axis direction of the light emitting region. A polarized light emitter characterized by being larger than intensity.
前記発光領域を2以上含み、該発光領域は、長軸方向が互いに略平行になるように非発光領域で隔てられて配置されている請求項1記載の偏光発光体。 2. The polarized light emitter according to claim 1, wherein the light emitting region includes two or more light emitting regions, and the light emitting regions are arranged separated by a non-light emitting region so that the major axis directions thereof are substantially parallel to each other. 前記発光領域と前記非発光領域とからなる周期構造を有する請求項2記載の偏光発光体。 The polarized light emitter according to claim 2, having a periodic structure composed of the light emitting region and the non-light emitting region. 前記発光領域と前記非発光領域とが、ストライプ状に交互に配置されている請求項2又は3記載の偏光発光体。 The polarized light emitter according to claim 2 or 3, wherein the light emitting regions and the non-light emitting regions are alternately arranged in a stripe shape. 前記発光領域の長軸の長さが前記発光による発光光の波長の5倍以上の長さであり、かつ前記発光領域の短軸の長さが前記発光による発光光の波長の0.8倍以下の長さである請求項1から4のいずれかに記載の偏光発光体。 The length of the major axis of the light emitting region is at least five times the wavelength of the emitted light by the light emission, and the length of the minor axis of the light emitting region is 0.8 times the wavelength of the emitted light by the light emission. The polarized light emitter according to any one of claims 1 to 4, which has the following length. 前記発光領域の長軸方向に対し略平行な方向の振動の光の強度が、前記発光領域の短軸方向に対し略平行な方向の振動の光の強度の3倍以上である請求項1から5のいずれかに記載の偏光発光体。 The intensity of vibration light in a direction substantially parallel to the major axis direction of the light emitting region is at least three times the intensity of vibration light in a direction substantially parallel to the minor axis direction of the light emission region. The polarized light emitter according to any one of 5. 前記発光領域は、蛍光発光体からなる請求項1から6のいずれかに記載の偏光発光体。 The polarized light emitter according to any one of claims 1 to 6, wherein the light emitting region comprises a fluorescent light emitter. 基板を備え、前記発光領域が前記基板上に形成されている請求項1から7のいずれかに記載の偏光発光体。 The polarized light emitter according to any one of claims 1 to 7, further comprising a substrate, wherein the light emitting region is formed on the substrate. 請求項8に記載の偏光発光体を製造する偏光発光体の製造方法であって、
基板上に、光及び/又は電解によって励起して発光する発光領域を含む発光性材料層を全面的に形成する形成工程と、
前記形成工程に次いで前記発光領域が前記発光による発光光の波長より長い長軸と前記発光による発光光の波長より短い短軸とからなる形状となるように、前記発光性材料層の所定の不要部分を除去する除去工程と
を含むことを特徴とする偏光発光体の製造方法。
A method for manufacturing a polarized light emitter for producing the polarized light emitter according to claim 8, comprising:
Forming a light emitting material layer including a light emitting region that emits light by being excited by light and / or electrolysis on a substrate; and
Following the forming step, the light emitting material layer has a predetermined unnecessary shape so that the light emitting region has a shape having a long axis longer than the wavelength of light emitted by the light emission and a short axis shorter than the wavelength of light emitted by the light emission. And a removing step of removing the portion. A method for producing a polarized light emitter.
前記除去工程では、光干渉を用いたレーザーアブレーション法で前記発光性材料層の前記所定不要部分を除去する請求項9記載の偏光発光体の製造方法。 The method for manufacturing a polarized light emitter according to claim 9, wherein in the removing step, the predetermined unnecessary portion of the light emitting material layer is removed by a laser ablation method using optical interference. 請求項1から8のいずれかに記載の偏光発光体を含み、前記発光領域が有機エレクトロルミネッセンス発光領域であることを特徴とする偏光有機エレクトロルミネッセンス素子。 A polarized organic electroluminescent device comprising the polarized light emitter according to claim 1, wherein the light emitting region is an organic electroluminescent light emitting region. 請求項11記載の偏光有機エレクトロルミネッセンス素子を備え、該偏光有機エレクトロルミネッセンス素子を偏光バックライトとして使用することを特徴とする液晶表示装置。
A liquid crystal display device comprising the polarizing organic electroluminescence element according to claim 11, wherein the polarizing organic electroluminescence element is used as a polarizing backlight.
JP2004198133A 2004-07-05 2004-07-05 Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device Withdrawn JP2006019638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198133A JP2006019638A (en) 2004-07-05 2004-07-05 Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198133A JP2006019638A (en) 2004-07-05 2004-07-05 Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2006019638A true JP2006019638A (en) 2006-01-19

Family

ID=35793590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198133A Withdrawn JP2006019638A (en) 2004-07-05 2004-07-05 Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2006019638A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529144A (en) * 2006-03-03 2009-08-13 カン ヴィー コーク Transparent screen displaying images that can only be seen from one direction
JP2009237011A (en) * 2008-03-26 2009-10-15 Epson Imaging Devices Corp Liquid crystal device and electronic apparatus
WO2014069217A1 (en) * 2012-11-02 2014-05-08 シャープ株式会社 Polarizing element, method for producing polarizing element, liquid crystal display device, and method for manufacturing liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529144A (en) * 2006-03-03 2009-08-13 カン ヴィー コーク Transparent screen displaying images that can only be seen from one direction
JP2009237011A (en) * 2008-03-26 2009-10-15 Epson Imaging Devices Corp Liquid crystal device and electronic apparatus
WO2014069217A1 (en) * 2012-11-02 2014-05-08 シャープ株式会社 Polarizing element, method for producing polarizing element, liquid crystal display device, and method for manufacturing liquid crystal display device

Similar Documents

Publication Publication Date Title
US7012365B2 (en) Light-emitting device and light-emitting display with a polarization separator between an emissive layer and a phase plate
TWI297253B (en)
JP5599740B2 (en) Polarizing plate and organic light emitting device having the same
US7781961B2 (en) Top emitting, electroluminescent component with frequency conversion centres
JP2003140561A (en) Optoelectronic device and its manufacturing method and electronic equipment
JP2011060604A (en) Organic electroluminescence device and display device
JP2692671B2 (en) Resonator type organic thin film EL device
JP2002215067A5 (en)
TW201039684A (en) Color conversion film and multicolor emission organic EL device including color conversion film
JP2008108439A (en) Electroluminescent element and electroluminescent panel
KR20040062401A (en) Planar light source and display device using the same
JP2017500715A (en) Photoactive birefringent material in OLED
JP2005190768A (en) Lighting apparatus
JP2005528760A (en) Electroluminescent device
JP2005100946A (en) Organic el device, manufacturing method of the same, and electronic apparatus
JP2008108706A (en) Display device
TW200903798A (en) Organic EL device
JP2002216962A (en) Color conversion filter substrate, and color conversion color display having color conversion filter substrate
WO2013039027A1 (en) Display apparatus, electronic device, and illumination apparatus
JP6227697B2 (en) Organic electroluminescent device and display device
JP2010287562A (en) Display device
JP2009170138A (en) Manufacturing method of display device, composition for display device manufacture, and display device
JP2006019638A (en) Polarization light emitter, method for manufacturing same, polarization organic electroluminescence element, and liquid crystal display device
JP2005317440A (en) Organic electroluminescent element, its manufacturing method and electronic apparatus
JP2004311186A (en) Organic electroluminescent element, polarization surface light source using electroluminescent element, and display device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002