JP2006019383A5 - - Google Patents

Download PDF

Info

Publication number
JP2006019383A5
JP2006019383A5 JP2004193735A JP2004193735A JP2006019383A5 JP 2006019383 A5 JP2006019383 A5 JP 2006019383A5 JP 2004193735 A JP2004193735 A JP 2004193735A JP 2004193735 A JP2004193735 A JP 2004193735A JP 2006019383 A5 JP2006019383 A5 JP 2006019383A5
Authority
JP
Japan
Prior art keywords
layer
forming
magnetic field
magnetization
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004193735A
Other languages
Japanese (ja)
Other versions
JP2006019383A (en
JP4692805B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004193735A priority Critical patent/JP4692805B2/en
Priority claimed from JP2004193735A external-priority patent/JP4692805B2/en
Priority to US11/157,915 priority patent/US20060002031A1/en
Publication of JP2006019383A publication Critical patent/JP2006019383A/en
Publication of JP2006019383A5 publication Critical patent/JP2006019383A5/ja
Application granted granted Critical
Publication of JP4692805B2 publication Critical patent/JP4692805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (21)

一定方向に固着された磁化方向を有する固着層と、
外部磁界に応じて磁化方向が変化し、かつ、この外部磁界が零のときに前記磁化方向が
前記固着層の磁化方向と平行となる自由層と、
前記固着層と前記自由層との間に挟まれた中間層と
を含む積層体を備え、
前記中間層は、前記固着層と前記自由層との相互間に生じる前記固着層の磁化方向にお
ける交換バイアス磁界が正となる厚みを有するように構成されている
ことを特徴とする磁気検出素子。
A pinned layer having a magnetization direction fixed in a certain direction;
A free layer in which the magnetization direction changes according to an external magnetic field, and when the external magnetic field is zero, the magnetization direction is parallel to the magnetization direction of the pinned layer;
A laminate including: an intermediate layer sandwiched between the fixed layer and the free layer;
The magnetic detecting element, wherein the intermediate layer has a thickness such that an exchange bias magnetic field in the magnetization direction of the pinned layer generated between the pinned layer and the free layer is positive.
前記中間層は、2.1nm以上2.5nm以下の厚みを有するように構成されている
ことを特徴とする請求項1に記載の磁気検出素子。
The magnetic detection element according to claim 1, wherein the intermediate layer has a thickness of 2.1 nm to 2.5 nm.
一定方向に固着された磁化方向を有する固着層と、
外部磁界に応じて磁化方向が変化し、かつ、この外部磁界が零のときに前記磁化方向が
前記固着層の磁化方向と反平行となる自由層と、
前記固着層と前記自由層との間に挟まれた中間層と
を含む積層体を備え、
前記中間層は、前記固着層と前記自由層との相互間に生じる前記固着層の磁化方向にお
ける交換バイアス磁界が負となる厚みを有するように構成されている
ことを特徴とする磁気検出素子。
A pinned layer having a magnetization direction fixed in a certain direction;
A free layer whose magnetization direction changes according to an external magnetic field, and when the external magnetic field is zero, the magnetization direction is antiparallel to the magnetization direction of the pinned layer;
A laminate including: an intermediate layer sandwiched between the fixed layer and the free layer;
The magnetic detection element, wherein the intermediate layer is configured to have a thickness such that an exchange bias magnetic field in the magnetization direction of the pinned layer generated between the pinned layer and the free layer is negative.
前記中間層は、1.9nm以上2.0nm以下の厚みを有するように構成されている
ことを特徴とする請求項に記載の磁気検出素子。
The magnetic detection element according to claim 3 , wherein the intermediate layer is configured to have a thickness of 1.9 nm to 2.0 nm.
前記中間層は銅により構成されている
ことを特徴とする請求項1から請求項4のいずれか1項に記載の磁気検出素子。
The magnetic detection element according to any one of claims 1 to 4, wherein the intermediate layer is made of copper.
前記自由層は、前記固着層の磁化方向と平行な磁化容易軸を有する
ことを特徴とする請求項1から請求項5のいずれか1項に記載の磁気検出素子。
The magnetic detection element according to any one of claims 1 to 5, wherein the free layer has an easy axis of magnetization parallel to the magnetization direction of the pinned layer.
さらに、前記積層体に対し、前記固着層の磁化方向と直交する方向にバイアス磁界を印
加するバイアス印加手段を有する
ことを特徴とする請求項1から請求項6のいずれか1項に記載の磁気検出素子。
The magnetism according to any one of claims 1 to 6, further comprising bias applying means for applying a bias magnetic field to the stacked body in a direction orthogonal to the magnetization direction of the pinned layer. Detection element.
前記バイアス印加手段は、永久磁石または前記固着層の磁化方向に延びるバイアス電流
ラインのうちのいずれか一方である
ことを特徴とする請求項7に記載の磁気検出素子。
The magnetic detection element according to claim 7, wherein the bias applying unit is one of a permanent magnet or a bias current line extending in a magnetization direction of the pinned layer.
外部磁界に応じて磁化方向が変化する第1の強磁性層と、中間層と、前記第1の強磁性
層よりも大きな保磁力を有する第2の強磁性層とを順に形成することにより積層体を形成
する積層工程と、
前記第1および第2の強磁性層の磁化方向が互いに平行となるように規則化を行う規則
化工程とを含み、
前記第1および第2の強磁性層の相互間に生じる前記第2の強磁性層の磁化方向におけ
る交換バイアス磁界が正を示すこととなる厚みを有するように前記中間層を形成し、
前記規則化工程によって、前記外部磁界が零である初期状態における前記第1および第
2の強磁性層の磁化方向の設定を完了する
ことを特徴とする磁気検出素子の形成方法。
Lamination is performed by sequentially forming a first ferromagnetic layer whose magnetization direction changes according to an external magnetic field, an intermediate layer, and a second ferromagnetic layer having a coercive force larger than that of the first ferromagnetic layer. A laminating process for forming a body;
A regularization step of performing regularization so that the magnetization directions of the first and second ferromagnetic layers are parallel to each other,
Forming the intermediate layer so that an exchange bias magnetic field in the magnetization direction of the second ferromagnetic layer generated between the first and second ferromagnetic layers has a thickness that is positive;
The method of forming a magnetic detecting element, wherein the setting of the magnetization directions of the first and second ferromagnetic layers in the initial state where the external magnetic field is zero is completed by the ordering step.
2.1nm以上2.5nm以下の厚みを有するように前記中間層を形成する
ことを特徴とする請求項9に記載の磁気検出素子の形成方法。
The method for forming a magnetic detection element according to claim 9, wherein the intermediate layer is formed to have a thickness of 2.1 nm to 2.5 nm.
磁化容易軸を有するように前記第1の強磁性層を形成すると共に、
前記第1および第2の強磁性層の磁化方向が前記磁化容易軸と平行となるように規則化
を行う
ことを特徴とする請求項9または請求項10に記載の磁気検出素子の形成方法。
Forming the first ferromagnetic layer to have an easy axis of magnetization;
The method of forming a magnetic sensing element according to claim 9 or 10, wherein the ordering is performed so that the magnetization directions of the first and second ferromagnetic layers are parallel to the easy axis of magnetization.
一定方向の磁界を印加しながら前記第1の強磁性層を形成することにより、前記磁化容
易軸の方向を設定する
ことを特徴とする請求項11に記載の磁気検出素子の形成方法。
The method of forming a magnetic sensing element according to claim 11, wherein the direction of the easy axis is set by forming the first ferromagnetic layer while applying a magnetic field in a certain direction.
前記磁化容易軸の方向と同一方向に磁界を印加しつつアニール処理を施すことにより規
則化を行う
ことを特徴とする請求項11または請求項12に記載の磁気検出素子の形成方法。
Method of forming a magnetic sensing element according to claim 11 or claim 1 2, characterized in that the ordering by annealing while applying a magnetic field in the same direction of the magnetization easy axis.
1.6kA/m以上160kA/m以下の磁界を印加しつつ、250℃以上400℃以
下の温度でアニール処理を施す
ことを特徴とする請求項13に記載の磁気検出素子の形成方法。
The method for forming a magnetic sensing element according to claim 13, wherein annealing is performed at a temperature of 250 ° C. to 400 ° C. while applying a magnetic field of 1.6 kA / m to 160 kA / m.
外部磁界に応じて磁化方向が変化する第1の強磁性層と、中間層と、前記第1の強磁性
層よりも大きな保磁力を有する第2の強磁性層とを順に形成することにより積層体を形成
する積層工程と、
前記第1および第2の強磁性層の磁化方向が互いに反平行となるように規則化を行う規
則化工程とを含み、
前記第1および第2の強磁性層の相互間に生じる前記第2の強磁性層の磁化方向におけ
る交換バイアス磁界が負を示すこととなる厚みを有するように前記中間層を形成し、
前記規則化工程によって、前記外部磁界が零である初期状態における前記第1および第
2の強磁性層の磁化方向の設定を完了する
ことを特徴とする磁気検出素子の形成方法。
Lamination is performed by sequentially forming a first ferromagnetic layer whose magnetization direction changes according to an external magnetic field, an intermediate layer, and a second ferromagnetic layer having a coercive force larger than that of the first ferromagnetic layer. A laminating process for forming a body;
A regularization step of performing regularization so that the magnetization directions of the first and second ferromagnetic layers are antiparallel to each other,
Forming the intermediate layer so that the exchange bias magnetic field in the magnetization direction of the second ferromagnetic layer generated between the first and second ferromagnetic layers has a thickness that is negative;
The method of forming a magnetic detecting element, wherein the setting of the magnetization directions of the first and second ferromagnetic layers in the initial state where the external magnetic field is zero is completed by the ordering step.
1.9nm以上2.0nm以下の厚みを有するように前記中間層を形成する
ことを特徴とする請求項15に記載の磁気検出素子の形成方法。
The method for forming a magnetic sensing element according to claim 15, wherein the intermediate layer is formed so as to have a thickness of 1.9 nm to 2.0 nm.
磁化容易軸を有するように前記第1の強磁性層を形成すると共に、
前記第2の強磁性層の磁化方向が前記磁化容易軸と平行となり、前記第1の強磁性層の
磁化方向が前記磁化容易軸と反平行となるように規則化を行う
ことを特徴とする請求項15または請求項16に記載の磁気検出素子の形成方法。
Forming the first ferromagnetic layer to have an easy axis of magnetization;
Ordering is performed so that the magnetization direction of the second ferromagnetic layer is parallel to the easy axis and the magnetization direction of the first ferromagnetic layer is antiparallel to the easy axis. A method for forming a magnetic sensing element according to claim 15 or 16.
一定方向の磁界を印加しながら前記第1の強磁性層を形成することにより、前記磁化容
易軸の方向を設定する
ことを特徴とする請求項17に記載の磁気検出素子の形成方法。
The method of forming a magnetic sensing element according to claim 17, wherein the direction of the easy axis is set by forming the first ferromagnetic layer while applying a magnetic field in a certain direction.
前記規則化工程において、
前記磁化容易軸の方向と同一方向に磁界を印加しつつアニール処理を施す第1工程と、
前記磁化容易軸の方向と反対方向に磁界を印加しつつアニール処理を施す第2工程と、
前記磁化容易軸の方向と同一方向に磁界を印加しつつアニール処理を施す第3工程と
を順におこなうことにより規則化をおこなう
ことを特徴とする請求項17または請求項18に記載の磁気検出素子の形成方法。
In the regularization step,
A first step of applying an annealing process while applying a magnetic field in the same direction as the direction of the easy axis;
A second step of applying an annealing process while applying a magnetic field in a direction opposite to the direction of the easy axis;
Magnetic detection according to claim 17 or claim 1 8, characterized in that performing the ordering by performing a third step of applying the annealing treatment in order while applying a magnetic field in the same direction of the magnetization easy axis Element formation method.
前記第1から第3工程では、1.6kA/m以上160kA/m以下の磁界を印加しつ
つ、250℃以上400℃以下の温度でアニール処理を施す
ことを特徴とする請求項19に記載の磁気検出素子の形成方法。
The annealing process is performed at a temperature of 250 ° C or higher and 400 ° C or lower while applying a magnetic field of 1.6 kA / m or higher and 160 kA / m or lower in the first to third steps. Method for forming a magnetic sensing element.
銅を用いて前記中間層を形成する
ことを特徴とする請求項9から請求項20のいずれか1項に記載の磁気検出素子の形成
方法。
The method for forming a magnetic sensing element according to any one of claims 9 to 20, wherein the intermediate layer is formed using copper.
JP2004193735A 2004-06-30 2004-06-30 Magnetic sensing element and method for forming the same Active JP4692805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004193735A JP4692805B2 (en) 2004-06-30 2004-06-30 Magnetic sensing element and method for forming the same
US11/157,915 US20060002031A1 (en) 2004-06-30 2005-06-22 Magnetic sensing device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193735A JP4692805B2 (en) 2004-06-30 2004-06-30 Magnetic sensing element and method for forming the same

Publications (3)

Publication Number Publication Date
JP2006019383A JP2006019383A (en) 2006-01-19
JP2006019383A5 true JP2006019383A5 (en) 2007-03-29
JP4692805B2 JP4692805B2 (en) 2011-06-01

Family

ID=35513617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193735A Active JP4692805B2 (en) 2004-06-30 2004-06-30 Magnetic sensing element and method for forming the same

Country Status (2)

Country Link
US (1) US20060002031A1 (en)
JP (1) JP4692805B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433820B2 (en) * 2004-02-20 2010-03-17 Tdk株式会社 Magnetic detection element, method of forming the same, magnetic sensor, and ammeter
JP4224483B2 (en) * 2005-10-14 2009-02-12 Tdk株式会社 Current sensor
JP2007218700A (en) 2006-02-15 2007-08-30 Tdk Corp Magnetometric sensor and current sensor
JP4810275B2 (en) * 2006-03-30 2011-11-09 アルプス電気株式会社 Magnetic switch
JP4361077B2 (en) 2006-10-31 2009-11-11 Tdk株式会社 Magnetic sensor and manufacturing method thereof
JP2009016401A (en) * 2007-06-29 2009-01-22 Toshiba Corp Magnetoresistance effect element, current perpendicular to plane magnetic head, and magnetic disk drive
US8281394B2 (en) * 2007-08-31 2012-10-02 Symantec Corporation Phishing notification service
JP2009162499A (en) * 2007-12-28 2009-07-23 Alps Electric Co Ltd Magnetometric sensor
JP2009192429A (en) 2008-02-15 2009-08-27 Tdk Corp Magnetic sensor and magnetic field strength measurement method
JP4985522B2 (en) 2008-03-28 2012-07-25 Tdk株式会社 Magnetic field measuring method and magnetic sensor
JP2011047930A (en) * 2009-07-31 2011-03-10 Tdk Corp Magnetoresistance effect element and sensor
JP5195845B2 (en) * 2010-08-23 2013-05-15 Tdk株式会社 Magnetic sensor and magnetic field strength measuring method
CN102148327A (en) * 2010-12-31 2011-08-10 钱正洪 Minor hysteresis spin valve magnetic resistor
US8829901B2 (en) * 2011-11-04 2014-09-09 Honeywell International Inc. Method of using a magnetoresistive sensor in second harmonic detection mode for sensing weak magnetic fields
TWI479171B (en) * 2013-11-29 2015-04-01 Ching Ray Chang Magnetic field sensing device and method
EP2966453B1 (en) * 2014-07-11 2018-10-31 Crocus Technology MLU based accelerometer using a magnetic tunnel junction
US9872115B2 (en) * 2015-09-14 2018-01-16 Cochlear Limited Retention magnet system for medical device
KR101890561B1 (en) * 2016-02-03 2018-08-22 고려대학교 세종산학협력단 Apparatus and method for measuring magnetic field using spin-hall effect
JP6900936B2 (en) * 2018-06-08 2021-07-14 Tdk株式会社 Magnetic detector
US11131727B2 (en) * 2019-03-11 2021-09-28 Tdk Corporation Magnetic sensor device
US11630168B2 (en) * 2021-02-03 2023-04-18 Allegro Microsystems, Llc Linear sensor with dual spin valve element having reference layers with magnetization directions different from an external magnetic field direction
WO2024034169A1 (en) * 2022-08-09 2024-02-15 アルプスアルパイン株式会社 Magnetic sensor and magnetic measurement method

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663684A (en) * 1984-01-27 1987-05-05 Hitachi, Ltd. Magnetic transducer using magnetoresistance effect
US5206590A (en) * 1990-12-11 1993-04-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
US5159513A (en) * 1991-02-08 1992-10-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
FR2685489B1 (en) * 1991-12-23 1994-08-05 Thomson Csf LOW MAGNETIC FIELD SENSOR WITH MAGNETORESISTIVE EFFECT.
US5549978A (en) * 1992-10-30 1996-08-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element
MY108956A (en) * 1992-11-12 1996-11-30 Quantum Peripherals Colorado Inc Magnetoresistive device and method having improved barkhausen noise suppression
KR100225179B1 (en) * 1992-11-30 1999-10-15 니시무로 타이죠 Thin film magnetic head and magnetoresistive head
JPH0766033A (en) * 1993-08-30 1995-03-10 Mitsubishi Electric Corp Magnetoresistance element, and magnetic thin film memory and magnetoresistance sensor using the magnetoresistance element
DE19543564A1 (en) * 1994-11-22 1996-05-23 Bosch Gmbh Robert Non-contact rotary angle determn. appts for rotating element
US5835003A (en) * 1995-09-29 1998-11-10 Hewlett-Packard Company Colossal magnetoresistance sensor
US5929636A (en) * 1996-05-02 1999-07-27 Integrated Magnetoelectronics All-metal giant magnetoresistive solid-state component
US5945904A (en) * 1996-09-06 1999-08-31 Ford Motor Company Giant magnetoresistors with high sensitivity and reduced hysteresis and thin layers
US5768069A (en) * 1996-11-27 1998-06-16 International Business Machines Corporation Self-biased dual spin valve sensor
US6090498A (en) * 1996-12-27 2000-07-18 Tdk Corporation Magnetoresistance effect element and magnetoresistance device
US6025979A (en) * 1997-09-04 2000-02-15 Oki Electric Industry Co., Ltd. Magnetoresistive sensor and head with alternating magnetic bias field
JP3075253B2 (en) * 1998-03-31 2000-08-14 日本電気株式会社 Spin valve type magnetic sensing element, magnetic head using the same, and magnetic disk drive
US6175476B1 (en) * 1998-08-18 2001-01-16 Read-Rite Corporation Synthetic spin-valve device having high resistivity anti parallel coupling layer
US6436526B1 (en) * 1999-06-17 2002-08-20 Matsushita Electric Industrial Co., Ltd. Magneto-resistance effect element, magneto-resistance effect memory cell, MRAM and method for performing information write to or read from the magneto-resistance effect memory cell
JP2001006130A (en) * 1999-06-24 2001-01-12 Tdk Corp Tunneling magneto-resistance effect type head
JP2001056908A (en) * 1999-08-11 2001-02-27 Nec Corp Magneto-resistance effect element, magneto-resistance effect head, magneto-resistance detecting system and magnetic storage system
US6166948A (en) * 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
JP3891540B2 (en) * 1999-10-25 2007-03-14 キヤノン株式会社 Magnetoresistive memory, method for recording / reproducing information recorded in magnetoresistive memory, and MRAM
US20020015268A1 (en) * 2000-03-24 2002-02-07 Sining Mao Spin valve head using high-coercivity hard bias layer
US6714389B1 (en) * 2000-11-01 2004-03-30 Seagate Technology Llc Digital magnetoresistive sensor with bias
US6809900B2 (en) * 2001-01-25 2004-10-26 Seagate Technology Llc Write head with magnetization controlled by spin-polarized electron current
JP4198900B2 (en) * 2001-07-19 2008-12-17 アルプス電気株式会社 Exchange coupling film and magnetic sensing element using the exchange coupling film
JP4462790B2 (en) * 2001-09-04 2010-05-12 ソニー株式会社 Magnetic memory
US6597049B1 (en) * 2002-04-25 2003-07-22 Hewlett-Packard Development Company, L.P. Conductor structure for a magnetic memory
US6947264B2 (en) * 2002-12-06 2005-09-20 International Business Machines Corporation Self-pinned in-stack bias structure for magnetoresistive read heads
US7020009B2 (en) * 2003-05-14 2006-03-28 Macronix International Co., Ltd. Bistable magnetic device using soft magnetic intermediary material
JP4433820B2 (en) * 2004-02-20 2010-03-17 Tdk株式会社 Magnetic detection element, method of forming the same, magnetic sensor, and ammeter

Similar Documents

Publication Publication Date Title
JP2006019383A5 (en)
JP6972221B2 (en) Magnetoresistive sensor
Meng et al. Annealing effects on CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy
US10468590B2 (en) High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
CN103563000B (en) Voltage-controlled magnetic anisotropy (VCMA) switch and electromagnetic storage (MERAM)
JP2012533189A5 (en)
JP2012133864A5 (en)
US9537087B2 (en) Magnetoresistance sensor with perpendicular anisotropy
JP2018522404A5 (en)
WO2005082061A3 (en) Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
JP2009002911A5 (en)
KR102166500B1 (en) Method and system for providing rare earth magnetic junctions usable in spin transfer torque magnetic random access memory applications
US9466786B2 (en) Magnetic electronic device and manufacturing method thereof
JP2014517516A5 (en)
JP2013089967A5 (en)
WO2008155996A1 (en) Tunnel magnetoresistive thin film and magnetic multilayer formation apparatus
CN103593497B (en) Computing multi-magnet based devices and methods for solution of optimization problems
US20190137578A1 (en) Magnetic sensor
JP2011129930A5 (en)
JPWO2018139276A1 (en) Method for manufacturing tunnel magnetoresistive element
EP2987189B1 (en) Seed layer for perpendicular magnetic anisotropy (pma) thin film
JP2018073913A5 (en)
CN105280809B (en) A kind of magnetic tunnel-junction and preparation method thereof
JP2005019990A5 (en)
JP2013062017A5 (en)