JP2006019226A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006019226A
JP2006019226A JP2004198374A JP2004198374A JP2006019226A JP 2006019226 A JP2006019226 A JP 2006019226A JP 2004198374 A JP2004198374 A JP 2004198374A JP 2004198374 A JP2004198374 A JP 2004198374A JP 2006019226 A JP2006019226 A JP 2006019226A
Authority
JP
Japan
Prior art keywords
fuel
combustion
exhaust gas
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198374A
Other languages
Japanese (ja)
Inventor
Keisen So
慶泉 蘇
Junji Masuda
淳二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Ballard Corp
Original Assignee
Ebara Ballard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Ballard Corp filed Critical Ebara Ballard Corp
Priority to JP2004198374A priority Critical patent/JP2006019226A/en
Publication of JP2006019226A publication Critical patent/JP2006019226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system in which, even in the case liquid fuel is used as fuel for combustion, non-burning liquid fuel due to delay of ignition is not discharged to the outside of the fuel cell system with high concentration or is not mixed in recovery water used in the fuel cell system. <P>SOLUTION: The fuel cell system is provided with a fuel processing device 10 that introduces and reforms raw material fuel m1 and produces fuel gas g rich in hydrogen and has a combustion section 11 that introduces and burns liquid combustion fuel m2 for combustion and generates heat necessary for reforming, an adsorption device 20 which is arranged at an exhaust gas leading-out passage 25 for leading out exhaust gas e from the combustion section 11 and is filled with an adsorbent 22 for adsorbing and desorbing the combustion fuel m2 included in the exhaust gas e, and a fuel cell 30 which introduces the fuel gas g and generates power. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池システムに関し、特に改質熱を得るために燃焼する燃料を液体の燃料としても着火遅れによる未燃の液体燃料が燃料電池システム外に高い濃度で排出されたり燃料電池システムで使用する回収水に混入したりすることがない燃料電池システムに関するものである。   The present invention relates to a fuel cell system, and in particular, even when a fuel that is burned to obtain reforming heat is used as a liquid fuel, unburned liquid fuel due to ignition delay is discharged out of the fuel cell system at a high concentration or used in the fuel cell system. The present invention relates to a fuel cell system that is not mixed with recovered water.

燃料電池は水素に富む燃料ガスと酸素を含む酸化剤ガスとの電気化学的反応により発電する装置であり、地球温暖化の原因となる二酸化炭素や窒素酸化物等の有害ガスの排出量を大幅に削減することができる装置として注目を集めている。燃料電池に供給する燃料ガスは、都市ガスや灯油等の原料燃料と改質用水等の改質剤とを燃料処理装置に導入し、原料燃料を水蒸気改質して生成される。このときの水蒸気改質反応は吸熱反応であるため改質熱を供給する必要があり、改質熱は燃料処理装置の燃焼部に燃焼用の燃料と空気とを供給し燃焼して得ている。改質熱を得るための燃焼用の燃料は、改質する原料燃料と同じであることが多い。   A fuel cell is a device that generates electricity by an electrochemical reaction between a hydrogen-rich fuel gas and an oxygen-containing oxidant gas, greatly increasing the emission of harmful gases such as carbon dioxide and nitrogen oxides that cause global warming. It has been attracting attention as a device that can be reduced. The fuel gas to be supplied to the fuel cell is generated by introducing a raw material fuel such as city gas or kerosene and a reforming agent such as reforming water into a fuel processing apparatus, and steam reforming the raw material fuel. Since the steam reforming reaction at this time is an endothermic reaction, it is necessary to supply reforming heat, and the reforming heat is obtained by supplying combustion fuel and air to the combustion section of the fuel processing apparatus and burning it. . The combustion fuel for obtaining the reforming heat is often the same as the raw material fuel to be reformed.

燃料電池や燃料処理装置を備える燃料電池システムは、燃料電池に供給する酸化剤ガスを加湿するための加湿用水や燃料処理装置に導入する改質用水としての水を必要とする。燃料電池システムで使用される水の一部は、燃料処理装置の燃焼部から排出される燃焼排ガスから分離回収した水が利用され、燃料電池システム外から持ちこむ水分量を削減している。   2. Description of the Related Art A fuel cell system including a fuel cell and a fuel processing device requires humidification water for humidifying an oxidant gas supplied to the fuel cell and water as reforming water introduced into the fuel processing device. A part of the water used in the fuel cell system uses water separated and recovered from the combustion exhaust gas discharged from the combustion section of the fuel processing device, thereby reducing the amount of water brought from outside the fuel cell system.

燃料処理装置の燃焼部に導入する燃焼燃料がガス燃料の場合、起動時においても不完全燃焼がほとんどなく、たとえ燃焼不良があり燃焼排ガスに含まれたとしても凝縮しないので燃料電池システムで利用される回収水に混入することがなく、また、燃料電池システム外に排出されても拡散されて環境汚染をもたらすには至らない(背景技術について、例えば特許文献1参照)。
特開2003−338304号公報(段落0042、図1〜3等)
When the combustion fuel to be introduced into the combustion section of the fuel processor is a gas fuel, there is almost no incomplete combustion even at start-up, and it is used in a fuel cell system because it does not condense even if it is defective and contained in the combustion exhaust gas. In addition, it is not mixed into the recovered water, and even if it is discharged out of the fuel cell system, it is not diffused and does not cause environmental pollution (refer to Patent Document 1, for example).
JP 2003-338304 A (paragraph 0042, FIGS. 1 to 3 etc.)

近年、原料燃料の多様化や経済性の観点から、安価な灯油等の液体の燃料を原料燃料として燃料ガスを生成する燃料処理装置を備えた燃料電池システムが開発されている。原料燃料として液体の燃料を用いる場合、燃焼用の燃料にも液体の燃料が用いられるのが一般的であり、原料燃料に液体の燃料を使用する燃料電池システムでは起動時に燃焼空気と液体の燃料とを燃焼部に導入し、液体の燃料を気化又は噴霧した上で点火して液体燃料を燃焼し燃料処理装置を予熱するのが一般的である。しかし、液体燃料を気化又は噴霧したものは点火時の着火遅れが避け難く、その場合未燃の燃料が蒸気又は霧状の形で燃焼排ガスに含まれて燃料電池システム外に排出されることとなる。   In recent years, from the viewpoint of diversification of raw material fuel and economical efficiency, a fuel cell system including a fuel processing device that generates fuel gas using cheap fuel such as kerosene as raw material fuel has been developed. When a liquid fuel is used as a raw material fuel, a liquid fuel is generally used as a fuel for combustion. In a fuel cell system using a liquid fuel as a raw material fuel, combustion air and liquid fuel are used at startup. Is generally vaporized or sprayed, and then ignited to burn the liquid fuel and preheat the fuel processing apparatus. However, the vaporized or sprayed liquid fuel is difficult to avoid the ignition delay at the time of ignition, in which case unburned fuel is contained in the combustion exhaust gas in the form of vapor or mist and discharged outside the fuel cell system. Become.

未燃の液体燃料がそのまま燃料電池システム外に排出されると臭気や油汚れ等で環境汚染をもたらすおそれがある。また、燃焼排ガスから熱や水を回収して利用する場合に、蒸気又は霧状の未燃の液体燃料が凝縮して回収水に混入すると原料燃料を改質するための改質用水や酸化剤ガスを加湿するための加湿用水に含まれることとなり、これにより燃料処理装置や燃料電池の性能を低下させてしまうことがある。   If unburned liquid fuel is discharged out of the fuel cell system as it is, there is a risk of causing environmental pollution due to odor, oil stains, and the like. Also, when recovering heat and water from combustion exhaust gas and using them, reforming water and oxidizer for reforming raw material fuel when steam or mist-like unburned liquid fuel condenses and mixes with the recovered water It will be contained in the humidifying water for humidifying the gas, which may reduce the performance of the fuel processor and the fuel cell.

本発明は上述の課題に鑑み、燃焼用の燃料に液体の燃料を用いる場合であっても着火遅れによる未燃の液体燃料が燃料電池システム外に高い濃度で排出されたり燃料電池システムで使用する回収水に混入したりすることがない燃料電池システムを提供することを目的とする。   In view of the above-described problems, the present invention uses unburned liquid fuel due to ignition delay at a high concentration outside the fuel cell system or is used in the fuel cell system even when liquid fuel is used as the fuel for combustion. It is an object of the present invention to provide a fuel cell system that is not mixed with recovered water.

上記の目的を達成するために、請求項1に記載の発明に係る燃料電池システムは、例えば図1に示すように、原料燃料m1を導入し改質して水素に富む燃料ガスgを生成する燃料処理装置10であって、燃焼する液体の燃焼燃料m2を導入し燃焼して改質に必要な熱を発生する燃焼部11を有する燃料処理装置10と;燃焼部11から排ガスeを導出する排ガス導出流路25に配置され、排ガスeに含まれる燃焼燃料m2を吸着する吸着剤22が充填された吸着装置20と;燃料ガスgを導入し発電する燃料電池30とを備える。   In order to achieve the above object, a fuel cell system according to the first aspect of the present invention, as shown in FIG. 1, for example, introduces and reforms a raw material fuel m1 to generate a fuel gas g rich in hydrogen. A fuel processing apparatus 10 having a combustion section 11 that introduces combustion liquid m2 as a combustion liquid and combusts to generate heat necessary for reforming; exhaust gas e is derived from the combustion section 11 An adsorbing device 20 that is disposed in the exhaust gas outlet passage 25 and is filled with an adsorbent 22 that adsorbs the combustion fuel m2 contained in the exhaust gas e; and a fuel cell 30 that introduces the fuel gas g and generates electric power.

このように構成すると、排ガスに含まれる燃焼燃料を吸着する吸着剤が充填された吸着装置を備えるので、高い濃度の未燃の燃焼燃料が系外に排出されたり燃料電池システムで利用される水の中に混入することがない。吸着剤は、典型的には、吸着し脱着するものが好ましい。ここで、「脱着」とは、一般的に、「とりつけたりはずしたりすること」を意味するが、本明細書では、「ついているものをはずすこと」の意味で用いる。   If comprised in this way, since it is equipped with the adsorption | suction apparatus with which the adsorbent which adsorb | sucks the combustion fuel contained in waste gas is provided, the high concentration unburned combustion fuel is discharged | emitted out of a system, or the water utilized by a fuel cell system It will not be mixed in. The adsorbent is typically preferably adsorbed and desorbed. Here, “desorption” generally means “attaching / removing”, but in this specification, it means “removing what is attached”.

また、請求項2に記載の発明に係る燃料電池システムは、例えば図1に示すように、請求項1に記載の燃料電池システム1において、吸着剤22は活性炭である。   Further, in the fuel cell system according to the second aspect of the present invention, for example, as shown in FIG. 1, in the fuel cell system 1 according to the first aspect, the adsorbent 22 is activated carbon.

このように構成すると、吸着剤は活性炭であるので、その物理吸着特性により、排ガスの温度が低いときは燃焼燃料を吸着し、排ガスの温度が高くなると燃焼燃料を脱着して自己再生をするため、長期間にわたり交換することなく燃焼燃料が系外に高い濃度で排出されたり燃料電池システムで利用される水の中に混入することがない。   In this configuration, the adsorbent is activated carbon, and therefore, due to its physical adsorption characteristics, the combustion fuel is adsorbed when the temperature of the exhaust gas is low, and the combustion fuel is desorbed and self-regenerates when the temperature of the exhaust gas becomes high. The combustion fuel is not discharged out of the system at a high concentration without being exchanged over a long period of time, and is not mixed into the water used in the fuel cell system.

本発明によれば、排ガスに含まれる燃焼燃料を吸着し脱着する吸着剤が充填された吸着装置を備えるので、未燃の燃焼燃料が系外に高い濃度で排出されたり燃料電池システムで利用される水の中に混入することがない燃料電池システムを提供することができる。   According to the present invention, since the adsorption device filled with the adsorbent that adsorbs and desorbs the combustion fuel contained in the exhaust gas is provided, the unburned combustion fuel is discharged out of the system at a high concentration or used in the fuel cell system. It is possible to provide a fuel cell system that is not mixed in the water.

以下、図面を参照して、本発明の実施の形態について説明する。
最初に、図1を参照して本発明の実施の形態に係る燃料電池システム1の構成について説明する。図1は、本発明の実施の形態に係る燃料電池システム1を説明するブロック図である。燃料電池システム1は、液体の燃焼燃料m2を燃焼し改質熱を得て導入した原料燃料m1を改質して水素に富む燃料ガスgを生成する燃料処理装置10と、燃焼燃料m2を燃焼した後の排ガスeを通過させる吸着装置としての活性炭充填塔20と、燃料ガスgと酸化剤ガスa1とを導入して発電する燃料電池30と、排ガスeと燃料電池から排出されるカソードオフガスqとの混合ガスである混合排ガスhから水分wを分離し回収する気水分離器40と、混合排ガスhから回収した水分wを浄化する水処理装置51、52と、燃料電池30に導入する空気a1を加湿する気液接触塔60とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
First, the configuration of the fuel cell system 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram illustrating a fuel cell system 1 according to an embodiment of the present invention. The fuel cell system 1 includes a fuel processing device 10 that reforms a raw material fuel m1 that is introduced by burning a liquid combustion fuel m2 and obtaining reformed heat, and generates a fuel gas g rich in hydrogen, and combusts the combustion fuel m2. Activated carbon packed tower 20 as an adsorbing device that allows the exhaust gas e to pass through, a fuel cell 30 that generates power by introducing the fuel gas g and the oxidant gas a1, a cathode offgas q that is exhausted from the exhaust gas e and the fuel cell An air / water separator 40 that separates and collects water w from the mixed exhaust gas h, which is a mixed gas, water treatment devices 51 and 52 that purify the water w collected from the mixed exhaust gas h, and air that is introduced into the fuel cell 30 a gas-liquid contact tower 60 for humidifying a1.

燃料処理装置10は、GTL(Gas to Liquid)や灯油等の液体の原料燃料m1と改質用水sとを導入し、水蒸気改質反応により水素に富む燃料ガスgを生成する装置である。なお、水素に富む燃料ガスとは、水素を40%以上、特に70%程度含む燃料ガスである。燃料処理装置10は改質触媒充填層を有しており、水素に富む改質ガスを生成し、改質ガスから一酸化炭素を低減して燃料ガスgを生成するように構成されている。燃料処理装置10は、導入した液体の原料燃料m1を気化する気化器を有している。原料燃料m1を改質する水蒸気改質反応は吸熱反応であるため、燃料処理装置10は改質に必要な改質熱を得るための燃焼部11を有している。燃焼部11はバーナーを有し、起動時は燃焼燃料m2と空気a2とを導入し燃焼して改質熱を得るように構成されている。また、燃料電池30が運転されると、燃料電池30から導出された電気化学的反応に使用されなかった水素を含むアノードオフガスpを燃焼部11に導入し燃焼して改質熱を得るように構成されている。燃料処理装置10は、原料燃料m1を導入する原料燃料導入口と、改質用水sを導入する改質剤導入口と、生成した燃料ガスgを導出する燃料ガス導出口を有している。燃料ガス導出口は燃料電池30の燃料極31と接続されており、燃料ガスgを燃料極31へ供給することができるように構成されている。また、燃焼部11は、アノードオフガスpを導入するアノードオフガス導入口と、燃焼燃料m2を導入する燃焼燃料導入口と、燃焼した排ガスeを導出する排ガス導出口を有している。アノードオフガス導入口は燃料電池30の燃料極31と、排ガス導出口は活性炭充填塔20と接続されている。なお、「接続される」とは、流路等によって接続される場合を含む。   The fuel processing apparatus 10 is an apparatus that introduces liquid raw material fuel m1 such as GTL (Gas to Liquid) or kerosene and reforming water s, and generates a fuel gas g rich in hydrogen by a steam reforming reaction. The fuel gas rich in hydrogen is a fuel gas containing 40% or more, particularly about 70% of hydrogen. The fuel processing apparatus 10 has a reforming catalyst packed bed, and is configured to generate a reformed gas rich in hydrogen and to generate a fuel gas g by reducing carbon monoxide from the reformed gas. The fuel processing apparatus 10 includes a vaporizer that vaporizes the introduced liquid raw material fuel m1. Since the steam reforming reaction for reforming the raw material fuel m1 is an endothermic reaction, the fuel processing apparatus 10 has a combustion section 11 for obtaining reforming heat necessary for reforming. The combustion unit 11 has a burner, and is configured to introduce combustion fuel m2 and air a2 and combust it to obtain reforming heat during startup. Further, when the fuel cell 30 is operated, the anode off-gas p containing hydrogen that has not been used for the electrochemical reaction derived from the fuel cell 30 is introduced into the combustion section 11 and burned to obtain reforming heat. It is configured. The fuel processing apparatus 10 has a raw material fuel inlet for introducing the raw material fuel m1, a reformer inlet for introducing the reforming water s, and a fuel gas outlet for deriving the generated fuel gas g. The fuel gas outlet is connected to the fuel electrode 31 of the fuel cell 30 so that the fuel gas g can be supplied to the fuel electrode 31. Further, the combustion unit 11 has an anode off-gas inlet for introducing the anode off-gas p, a combustion fuel inlet for introducing the combustion fuel m2, and an exhaust gas outlet for deriving the burned exhaust gas e. The anode off-gas inlet is connected to the fuel electrode 31 of the fuel cell 30, and the exhaust gas outlet is connected to the activated carbon packed tower 20. Note that “connected” includes the case of being connected by a flow path or the like.

燃料ガスgに改質される原料燃料m1と改質熱を得るために燃焼する燃焼燃料m2とは同じ燃料mが分流して導入される。なお、原料燃料m1と燃焼燃料m2とは必ず同じ燃料でなければならないというわけではないが、本発明では少なくとも燃焼燃料m2は液体の燃料である。   The same fuel m as the raw fuel m1 reformed into the fuel gas g and the combustion fuel m2 combusted to obtain reforming heat are branched and introduced. The raw fuel m1 and the combustion fuel m2 do not necessarily have to be the same fuel, but in the present invention, at least the combustion fuel m2 is a liquid fuel.

活性炭充填塔20は、燃料処理装置10の燃焼部11からの排ガスeを上部から導入し、排ガスeに含まれる未燃の燃焼燃料を吸着し、未燃の燃焼燃料が吸着された後の排ガスeを下部から排出するように構成されている。活性炭充填塔20は、充填塔21の内部に吸着剤としての活性炭シート22が充填されている。充填塔21は、耐熱性及び耐食性の観点からステンレス鋼製であることが好ましい。充填塔21の形状は、排ガスeを均一に流す観点から円筒形状であることが好ましいが、これに限らず四角柱やその他の形状であってもよい。また、充填塔21は保温材等で保温されていることが好ましい。   The activated carbon packed tower 20 introduces the exhaust gas e from the combustion unit 11 of the fuel processing apparatus 10 from above, adsorbs the unburned combustion fuel contained in the exhaust gas e, and the exhaust gas after the unburned combustion fuel is adsorbed. e is discharged from the lower part. The activated carbon packed tower 20 is filled with an activated carbon sheet 22 as an adsorbent inside the packed tower 21. The packed tower 21 is preferably made of stainless steel from the viewpoint of heat resistance and corrosion resistance. The shape of the packed tower 21 is preferably a cylindrical shape from the viewpoint of flowing the exhaust gas e uniformly, but is not limited thereto, and may be a quadrangular prism or other shapes. Moreover, it is preferable that the packed tower 21 is heat-retained with a heat insulating material or the like.

活性炭シート22は、繊維活性炭をシート状に加工して作られている。充填塔21に充填する活性炭は、シート状以外の、例えば粒状、未加工の繊維状であってもよい。ただし、吸着速度の観点から大きな幾何学表面積を有する、繊維活性炭をシート状に加工して作られた活性炭シートが好適である。ここで、「シート状」は繊維活性炭の織布若しくは不織布又はフェルト状のものも含む。活性炭シート22は、100℃以下の温度で吸着し150℃以上の温度で脱着する特性を有するものが好ましく、例えば燃焼燃料m2が灯油の場合は吸着の対象となる未燃の燃料成分が炭素数10〜16程度の炭化水素であるので、このような炭化水素に対して上記のような吸着脱着特性を有する活性炭シートであることが好ましい。さらに、活性炭シート22は、プリーツ状に加工して、又は複数枚を重ねて充填塔21に充填されることが好ましい。   The activated carbon sheet 22 is made by processing fiber activated carbon into a sheet shape. The activated carbon to be packed in the packed tower 21 may be, for example, granular or raw fiber other than the sheet shape. However, an activated carbon sheet made by processing fiber activated carbon into a sheet shape having a large geometric surface area from the viewpoint of adsorption speed is preferable. Here, the “sheet shape” includes a woven or non-woven fabric or a felt shape of fiber activated carbon. The activated carbon sheet 22 preferably has a property of adsorbing at a temperature of 100 ° C. or less and desorbing at a temperature of 150 ° C. or more. For example, when the combustion fuel m2 is kerosene, the unburned fuel component to be adsorbed is the number of carbons. Since it is about 10-16 hydrocarbons, it is preferable that it is an activated carbon sheet which has the above adsorption / desorption characteristics with respect to such hydrocarbons. Furthermore, the activated carbon sheet 22 is preferably packed into the packed tower 21 by processing into a pleated shape or by stacking a plurality of sheets.

充填塔21に対する活性炭シート22の充填量は、空塔速度が5000h−1以上50000h−1以下であることが好ましい。さらに、充填塔21の小型化の観点から下限は10000h−1以上であることがより好ましく、吸着性能向上の観点から上限は20000h−1以下であることがより好ましい。このように構成すると、必要な吸着性能を確保しつつ充填塔21の大きさを最小限に留めることができる。なお、ここでいう「空塔速度」とは、充填塔を通過する排ガス流量(m/h)を充填塔の容積(m)で除した値で定義する。その物理的意味は、充填塔21の容積分の排ガスeを単位時間あたり何回処理できるかということである。 Loading of the activated carbon sheets 22 against the packed tower 21 is preferably superficial velocity is less than or equal to 5000h -1 or 50000h -1. Furthermore, the lower limit is more preferably 10,000 h −1 or more from the viewpoint of downsizing the packed tower 21, and the upper limit is more preferably 20000 h −1 or less from the viewpoint of improving adsorption performance. If comprised in this way, the magnitude | size of the packed tower 21 can be kept to the minimum, ensuring required adsorption | suction performance. Here, the “empty column speed” is defined as a value obtained by dividing the exhaust gas flow rate (m 3 / h) passing through the packed tower by the volume (m 3 ) of the packed tower. The physical meaning is how many times the exhaust gas e for the volume of the packed tower 21 can be treated per unit time.

燃料処理装置10の燃焼部11と活性炭充填塔20とは排ガス流路25で接続されており、排ガス流路25内は排ガスeが流れる。なお、活性炭充填塔20が配設される位置は気水分離器40の上流であればよいが、燃料処理装置10に極力近いことが好ましい。   The combustion unit 11 of the fuel processing apparatus 10 and the activated carbon packed tower 20 are connected by an exhaust gas passage 25, and the exhaust gas e flows through the exhaust gas passage 25. The position where the activated carbon packed tower 20 is disposed may be upstream of the steam separator 40, but is preferably as close as possible to the fuel processing apparatus 10.

燃料電池30は固体高分子型燃料電池であり、水素に富む燃料ガスgと酸素を含有する酸化剤ガスa1とを導入し電気化学的反応により発電して熱を発生するように構成されている。燃料電池30は燃料ガスgを導入する燃料極31と酸化剤ガスa1を導入する空気極32とを備えており、さらに発電に伴って発生した熱を除去する冷却水cを導入する冷却部33を備えている。燃料極31は、燃料ガスgを導入する燃料ガス導入口と反応に使用されなかった水素を含むアノードオフガスpを排出するアノードオフガス排出口とを有している。空気極32は、酸化剤ガスa1を導入する酸化剤ガス導入口と反応に使用されなかった酸素を含むカソードオフガスqを排出するカソードオフガス排出口とを有している。冷却部33は、温度が低い冷却水cを導入する冷却水導入口と燃料電池30から受熱して温度が上昇した冷却水cを導出する冷却水導出口とを有している。燃料極31の燃料ガス導入口は燃料処理装置10の燃料ガス導出口と接続され、アノードオフガス排出口は燃焼部11のアノードオフガス導入口と接続されている。空気極32のカソードオフガス排出口は流路35と接続されている。流路35は排ガス流路25と接続され、流路45として気水分離器40に導かれている。   The fuel cell 30 is a solid polymer fuel cell, and is configured to generate heat by introducing a fuel gas g rich in hydrogen and an oxidant gas a1 containing oxygen and generating an electrochemical reaction. . The fuel cell 30 includes a fuel electrode 31 that introduces a fuel gas g and an air electrode 32 that introduces an oxidant gas a1, and a cooling unit 33 that introduces cooling water c that removes heat generated by power generation. It has. The fuel electrode 31 has a fuel gas inlet for introducing the fuel gas g and an anode offgas outlet for discharging the anode offgas p containing hydrogen that has not been used in the reaction. The air electrode 32 has an oxidant gas inlet for introducing the oxidant gas a1 and a cathode offgas outlet for discharging the cathode offgas q containing oxygen that has not been used in the reaction. The cooling unit 33 has a cooling water inlet for introducing cooling water c having a low temperature and a cooling water outlet for receiving cooling water c that has received heat from the fuel cell 30 and has increased in temperature. The fuel gas inlet of the fuel electrode 31 is connected to the fuel gas outlet of the fuel processing apparatus 10, and the anode offgas outlet is connected to the anode offgas inlet of the combustion unit 11. The cathode offgas discharge port of the air electrode 32 is connected to the flow path 35. The flow path 35 is connected to the exhaust gas flow path 25 and led to the steam separator 40 as a flow path 45.

気水分離器40は、排ガスeとカソードオフガスqとの混合排ガスhから水分を凝縮させて分離回収するように構成されている。気水分離器40は分離された回収水wを導出する回収水導出口を有し、回収水導出口には気液接触塔60につながる流路44が接続されている。   The steam separator 40 is configured to condense moisture from the mixed exhaust gas h of the exhaust gas e and the cathode off gas q to separate and recover. The steam separator 40 has a recovered water outlet for extracting the separated recovered water w, and a flow path 44 connected to the gas-liquid contact tower 60 is connected to the recovered water outlet.

流路44は補給水導入口を有している。補給水は、気液接触塔60下部に貯留される水を所定の水位に保つために必要に応じて導入され、典型的には水道水である。回収水wは導入された補給水と共に気液接触塔60下部に貯留された後、流路54を通ってポンプ53にて圧送され、流路14及び水処理装置51を介して燃料処理装置10に送られ、流路64及び水処理装置52を介して気液接触塔60に送られる。   The channel 44 has a makeup water inlet. The makeup water is introduced as necessary to keep the water stored in the lower part of the gas-liquid contact tower 60 at a predetermined water level, and is typically tap water. The recovered water w is stored in the lower part of the gas-liquid contact tower 60 together with the introduced makeup water, and then pumped by the pump 53 through the flow path 54, and the fuel processing apparatus 10 through the flow path 14 and the water treatment apparatus 51. To the gas-liquid contact tower 60 via the flow path 64 and the water treatment device 52.

水処理装置51は、燃料処理装置10に導入する改質用水sを浄化する装置である。水処理装置51は流路14に配設され、典型的にはイオン交換樹脂を備えており、改質用水sを純水に精製するように構成されている。水処理装置52は、燃料電池30に導入する酸化剤ガスa1を加湿する加湿用水kを浄化する装置である。水処理装置52は流路64に配設され、典型的には陰イオン交換樹脂を備えており、加湿用水kを常にアルカリ性に保って酸化剤ガスa1に含まれるNOx、SOx等の酸性ガスの汚染物質が効果的に除去されるように構成されている。   The water treatment device 51 is a device that purifies the reforming water s introduced into the fuel treatment device 10. The water treatment device 51 is disposed in the flow path 14 and typically includes an ion exchange resin, and is configured to purify the reforming water s into pure water. The water treatment device 52 is a device that purifies the humidifying water k that humidifies the oxidant gas a <b> 1 introduced into the fuel cell 30. The water treatment device 52 is disposed in the flow path 64 and typically includes an anion exchange resin. The water treatment device 52 is provided with an acidic gas such as NOx and SOx contained in the oxidant gas a1 while keeping the humidifying water k always alkaline. Constructed to effectively remove contaminants.

気液接触塔60は、燃料電池30に導入される酸化剤ガスa1を加湿し、酸性ガスの汚染物質を除去するように構成されている。気液接触塔60は、上部に加湿用水kを導入する加湿用水導入口が、下部に酸化剤ガスa1を導入する酸化剤ガス導入口が設けられており、酸化剤ガス導入口から導入された酸化剤ガスa1と加湿用水導入口から導入され散布された加湿用水kとが向流接触して酸化剤ガスa1が加湿されるように構成されている。また、気液接触塔60の頂部には加湿された酸化剤ガスa1が燃料電池30に向けて導出される酸化剤ガス導出口が、下部には回収水wを導入する回収水導入口が、底部には散布され酸化剤ガスa1に乗らなかった加湿用水kを含む回収水wを導出する回収水導出口が設けられている。回収水導出口は流路54と接続されており、気液接触塔60から導出された回収水wはポンプ53により水処理装置51、52に圧送される。   The gas-liquid contact tower 60 is configured to humidify the oxidant gas a1 introduced into the fuel cell 30 and remove the pollutants of the acid gas. The gas-liquid contact tower 60 is provided with a humidifying water introduction port for introducing the humidifying water k in the upper portion and an oxidant gas introduction port for introducing the oxidant gas a1 in the lower portion, and is introduced from the oxidant gas introduction port. The oxidizing gas a1 and the humidifying water k introduced and sprayed from the humidifying water inlet are counter-contacted to humidify the oxidizing gas a1. In addition, an oxidant gas outlet from which the humidified oxidant gas a1 is led out toward the fuel cell 30 is provided at the top of the gas-liquid contact tower 60, and a recovered water inlet from which the recovered water w is introduced at the lower part. The bottom is provided with a recovered water outlet for deriving recovered water w containing humidifying water k that has been sprayed and has not been put on the oxidant gas a1. The recovered water outlet is connected to the flow path 54, and the recovered water w derived from the gas-liquid contact tower 60 is pumped by the pump 53 to the water treatment devices 51 and 52.

続いて図1を参照して本発明の実施の形態に係る燃料電池システム1の作用について説明する。
燃料電池システム1の起動時は、燃料処理装置10の燃焼部11に燃焼燃料m2と空気a2とが導入され、バーナーにより燃焼燃料m2が燃焼し燃料処理装置10が予熱される。燃焼燃料m2が燃焼した後の排ガスeは、排ガス導出流路25から活性炭充填塔20に向けて導出される。起動時の排ガスeにはバーナー点火時の着火遅れにより燃焼せずに残った気化又は噴霧した液体燃料m2が含まれている。このときの排ガスeの温度は100℃以下の場合がほとんどであり、燃焼部11から排出される排ガスeの温度としては比較的低い。
Next, the operation of the fuel cell system 1 according to the embodiment of the present invention will be described with reference to FIG.
When the fuel cell system 1 is started, the combustion fuel m2 and the air a2 are introduced into the combustion unit 11 of the fuel processing apparatus 10, and the combustion fuel m2 is combusted by the burner to preheat the fuel processing apparatus 10. The exhaust gas e after combustion of the combustion fuel m2 is led out from the exhaust gas outlet passage 25 toward the activated carbon packed tower 20. The exhaust gas e at the time of start-up includes the vaporized or sprayed liquid fuel m2 remaining without being burned due to the ignition delay at the time of ignition of the burner. The temperature of the exhaust gas e at this time is almost 100 ° C. or less, and the temperature of the exhaust gas e discharged from the combustion unit 11 is relatively low.

燃焼部11から排出された未燃の燃焼燃料m2を含んだ排ガスeは活性炭充填塔20に導入される。活性炭充填塔20に導入された排ガスeは、充填塔21の内部に充填されている活性炭シート22と接触する。このときの排ガスeは常温以上100℃以下と比較的低い温度なので、排ガスe中の未燃の燃焼燃料m2は低い温度域で大きい吸着容量を示す活性炭シート22に吸着される。このように活性炭シート22に未燃の燃焼燃料m2が吸着された排ガスeが活性炭充填塔20から導出される。したがって、活性炭充填塔20から導出された排ガスeは、未燃の燃焼燃料m2の濃度が十分に低下している。   The exhaust gas e containing unburned combustion fuel m2 discharged from the combustion unit 11 is introduced into the activated carbon packed tower 20. The exhaust gas e introduced into the activated carbon packed tower 20 comes into contact with the activated carbon sheet 22 filled in the packed tower 21. Since the exhaust gas e at this time is a relatively low temperature of normal temperature to 100 ° C., the unburned combustion fuel m2 in the exhaust gas e is adsorbed by the activated carbon sheet 22 having a large adsorption capacity in a low temperature range. Thus, the exhaust gas e in which the unburned combustion fuel m2 is adsorbed on the activated carbon sheet 22 is led out from the activated carbon packed tower 20. Therefore, in the exhaust gas e led out from the activated carbon packed tower 20, the concentration of the unburned combustion fuel m2 is sufficiently lowered.

燃焼燃料の着火後は排ガスeの温度が徐々に上昇していく。排ガスeの温度が上昇すると未燃の燃焼燃料m2に対する活性炭シート22の吸着能力が低下する。しかし、このとき排ガスe中に未燃の燃焼燃料m2は実質的に存在していない。   After ignition of the combustion fuel, the temperature of the exhaust gas e gradually increases. When the temperature of the exhaust gas e rises, the adsorption capacity of the activated carbon sheet 22 for the unburned combustion fuel m2 decreases. However, at this time, the unburned combustion fuel m2 is not substantially present in the exhaust gas e.

燃料処理装置10の予熱が完了したら、燃料処理装置10に原料燃料m1と改質用水sとが導入される。燃料処理装置10に導入された原料燃料m1は気化された後改質触媒充填層に導かれ、改質用水sは水蒸気にされた後改質触媒充填層に導かれる。改質触媒充填層に導かれた原料燃料m1と改質剤sとは、燃焼部11からの改質熱を得て水蒸気改質反応が行なわれ、水素に富む改質ガスが生成される。生成された改質ガスは一酸化炭素を含んでいるため、改質ガスはさらに一酸化炭素低減反応が行なわれて一酸化炭素が低減された水素に富む燃料ガスgが生成される。   When the preheating of the fuel processing apparatus 10 is completed, the raw material fuel m1 and the reforming water s are introduced into the fuel processing apparatus 10. The raw material fuel m1 introduced into the fuel processing apparatus 10 is vaporized and then guided to the reforming catalyst packed bed, and the reforming water s is converted to steam and then guided to the reforming catalyst packed bed. The raw material fuel m1 and the reformer s guided to the reforming catalyst packed bed obtain reforming heat from the combustion unit 11 and undergo a steam reforming reaction to generate a reformed gas rich in hydrogen. Since the produced reformed gas contains carbon monoxide, the reformed gas is further subjected to a carbon monoxide reduction reaction to produce a hydrogen-rich fuel gas g with reduced carbon monoxide.

生成された燃料ガスgは燃料電池30の燃料極31に導入される。空気極32には気液接触塔60で加湿された酸化剤ガスa1が導入される。燃料電池30は、燃料極31に導入された燃料ガスg中の水素と空気極32に導入された酸化剤ガスa中の酸素との電気化学的反応により発電し水と熱を発生する。電気化学的反応に使用されなかった燃料ガスgはアノードオフガスpとして燃料極31から排出される。電気化学的反応に使用されなかった酸化剤ガスa1はカソードオフガスqとして空気極32から排出される。アノードオフガスpは水素を30〜40%程度含んでおり、燃料処理装置10の燃焼部11に導かれ、燃焼されて改質熱を得るために用いられる。カソードオフガスqは燃焼部11から排出される排ガスeと合流し、気水分離器40で水分wが分離回収された後に燃料電池システム1外へ排出される。一方、燃料電池30で発電された電力は、電灯や電気機器等の電力負荷にて消費される。   The generated fuel gas g is introduced into the fuel electrode 31 of the fuel cell 30. An oxidant gas a1 humidified by the gas-liquid contact tower 60 is introduced into the air electrode 32. The fuel cell 30 generates water and heat by generating electricity by an electrochemical reaction between hydrogen in the fuel gas g introduced into the fuel electrode 31 and oxygen in the oxidant gas a introduced into the air electrode 32. The fuel gas g that has not been used for the electrochemical reaction is discharged from the fuel electrode 31 as the anode off gas p. The oxidant gas a1 that has not been used for the electrochemical reaction is discharged from the air electrode 32 as the cathode offgas q. The anode off gas p contains about 30 to 40% of hydrogen, and is led to the combustion unit 11 of the fuel processing apparatus 10 to be burned and used for obtaining reforming heat. The cathode offgas q joins with the exhaust gas e discharged from the combustion unit 11, and after the water w is separated and collected by the steam separator 40, the cathode offgas q is discharged outside the fuel cell system 1. On the other hand, the electric power generated by the fuel cell 30 is consumed by a power load such as an electric lamp or an electric device.

発電に伴い発熱した燃料電池30は、冷却部33に冷却水cが導入されて冷却される。冷却水cは不図示の冷却水ポンプにより循環し、燃料電池30のセルの固体高分子膜保護等のために燃料電池30は適正温度に保たれる。   The fuel cell 30 that has generated heat due to power generation is cooled by introducing the cooling water c into the cooling unit 33. The cooling water c is circulated by a cooling water pump (not shown), and the fuel cell 30 is maintained at an appropriate temperature in order to protect the solid polymer film of the cells of the fuel cell 30.

燃料極31から排出されたアノードオフガスpが燃料処理装置10の燃焼部11に導入されると燃焼燃料m2の燃焼部11への供給が停止され、燃焼燃料m2に代わってアノードオフガスpが燃焼して水蒸気改質反応に必要な改質熱が得られる。アノードオフガスpが燃焼した後の排ガスeは、排ガス導出流路25から活性炭充填塔20に向けて導出される。このとき燃料処理装置10は定常運転になっている。定常運転時の排ガスeの温度は、着火時の100℃以下から徐々に上昇して150℃以上に達している。排ガスeの温度が150℃以上に達すると、一度活性炭シート22に吸着された未燃の燃焼燃料m2が徐々に脱着する。しかし、未燃の燃焼燃料m2が脱着しても排ガスe中の未燃の燃焼燃料m2の濃度が相対的に低く、冷却されても未燃の燃焼燃料m2が結露する飽和濃度以下であるため、未燃の燃焼燃料m2が燃料電池システム1で改質用水sや加湿用水kとして使用される回収水wに混入することがない。なお、厳密にいえば、徐々に脱着した未燃の燃焼燃料m2が排ガスeに含まれて燃料電池システム1外に排出されることとなるが、このときに燃料電池システム1外に排出される燃焼燃料m2は極めて微量であるので環境汚染にほとんど影響を与えない。一方で燃焼燃料m2が脱着した活性炭シート22は再生され、長期間にわたり交換することなく使用できることとなる。   When the anode off-gas p discharged from the fuel electrode 31 is introduced into the combustion unit 11 of the fuel processing device 10, the supply of the combustion fuel m2 to the combustion unit 11 is stopped, and the anode off-gas p burns instead of the combustion fuel m2. Thus, the heat of reforming necessary for the steam reforming reaction can be obtained. The exhaust gas e after the anode off gas p is combusted is led out from the exhaust gas outlet passage 25 toward the activated carbon packed tower 20. At this time, the fuel processor 10 is in a steady operation. The temperature of the exhaust gas e during steady operation gradually increases from 100 ° C. or lower during ignition to 150 ° C. or higher. When the temperature of the exhaust gas e reaches 150 ° C. or higher, the unburned combustion fuel m2 once adsorbed on the activated carbon sheet 22 is gradually desorbed. However, even if the unburned combustion fuel m2 is desorbed, the concentration of the unburned combustion fuel m2 in the exhaust gas e is relatively low, and even if it is cooled, it is below the saturation concentration at which the unburned combustion fuel m2 is condensed. The unburned combustion fuel m2 is not mixed into the recovered water w used as the reforming water s or the humidifying water k in the fuel cell system 1. Strictly speaking, unburned combustion fuel m2 that is gradually desorbed is included in the exhaust gas e and discharged outside the fuel cell system 1. At this time, it is discharged outside the fuel cell system 1. Since the combustion fuel m2 is extremely small, it hardly affects environmental pollution. On the other hand, the activated carbon sheet 22 from which the combustion fuel m2 is desorbed is regenerated and can be used without being exchanged over a long period of time.

ここで、図2を参照して、本発明の実施の形態に係る燃料電池システム1の起動時から定常運転に至るまでの活性炭充填塔20出口における排ガスe中の燃焼燃料m2の濃度の経時変化を説明する。なお図2中、C1は活性炭充填塔20出口における排ガスe中の未燃の燃焼燃料m2成分の最高濃度を、C2は排ガスe中の未燃の燃焼燃料m2成分が結露する飽和濃度を、C3は活性炭充填塔20出口における脱着による排ガスe中の未燃の燃焼燃料m2の最高濃度を示している。また、T1は着火時の活性炭充填塔20入口における排ガスeの温度を、T2は脱着が始まる時の活性炭充填塔20入口における排ガスeの温度を、T3は定常運転時の活性炭充填塔20入口における排ガスeの温度を示している。   Here, with reference to FIG. 2, a change with time of the concentration of the combustion fuel m2 in the exhaust gas e at the outlet of the activated carbon packed tower 20 from the start of the fuel cell system 1 according to the embodiment of the present invention to the steady operation. Will be explained. In FIG. 2, C1 is the highest concentration of the unburned combustion fuel m2 component in the exhaust gas e at the outlet of the activated carbon packed tower 20, C2 is the saturation concentration at which the unburned combustion fuel m2 component in the exhaust gas e is condensed, and C3 Indicates the maximum concentration of unburned combustion fuel m2 in the exhaust gas e by desorption at the outlet of the activated carbon packed tower 20. T1 is the temperature of the exhaust gas e at the inlet of the activated carbon packed tower 20 at the time of ignition, T2 is the temperature of the exhaust gas e at the inlet of the activated carbon packed tower 20 when desorption starts, and T3 is the temperature at the inlet of the activated carbon packed tower 20 at the time of steady operation. The temperature of the exhaust gas e is shown.

燃料電池システム1の起動時は、排ガスe中の未燃の燃焼燃料m2成分の濃度は実質ゼロに近く、排ガスeの温度もT1と比較的低い。燃料処理装置10の燃焼部11内に導入する燃焼燃料m2が増加しバーナーを点火すると、燃焼燃料m2の着火遅れに伴い排ガスe中の燃焼燃料m2の濃度がC1まで上昇する。最高濃度C1は排ガスe中の未燃の燃焼燃料m2成分が結露する飽和濃度C2よりも十分に低いので未燃の燃焼燃料m2成分が結露することはない。   When the fuel cell system 1 is started, the concentration of the unburned combustion fuel m2 component in the exhaust gas e is substantially zero, and the temperature of the exhaust gas e is relatively low at T1. When the combustion fuel m2 introduced into the combustion unit 11 of the fuel processor 10 increases and the burner is ignited, the concentration of the combustion fuel m2 in the exhaust gas e rises to C1 with the ignition delay of the combustion fuel m2. Since the maximum concentration C1 is sufficiently lower than the saturation concentration C2 at which the unburned combustion fuel m2 component in the exhaust gas e is condensed, the unburned combustion fuel m2 component is not condensed.

さらに時間が経過し、活性炭シート22から未燃の燃焼燃料m2の脱着が始まる温度T2まで排ガスeの温度が上昇すると、排ガスe中の未燃の燃焼燃料m2の濃度が上昇し始める。排ガスeの温度上昇に伴って徐々に排ガスe中の未燃の燃焼燃料m2の濃度が上昇していくと、脱着による排ガスe中の未燃の燃焼燃料m2の最高濃度C3に至る。排ガスe中の未燃の燃焼燃料m2の濃度がC3に達した後は未脱着の燃焼燃料m2がもはや残り少ないので排ガスe中の未燃の燃焼燃料m2の濃度が徐々に低下していき、排ガスeの温度が定常運転時の温度であるT3に達した後しばらくすると、排ガスe中の未燃の燃焼燃料m2の濃度が実質ゼロに低下し、以降安定的に推移する。   As time elapses and the temperature of the exhaust gas e rises to a temperature T2 at which desorption of the unburned combustion fuel m2 starts from the activated carbon sheet 22, the concentration of the unburned combustion fuel m2 in the exhaust gas e starts to rise. When the concentration of the unburned combustion fuel m2 in the exhaust gas e gradually increases as the temperature of the exhaust gas e rises, the maximum concentration C3 of the unburned combustion fuel m2 in the exhaust gas e due to desorption is reached. After the concentration of the unburned combustion fuel m2 in the exhaust gas e reaches C3, the remaining amount of undesorbed combustion fuel m2 is still small, so the concentration of the unburned combustion fuel m2 in the exhaust gas e gradually decreases, and the exhaust gas After a while after the temperature of e reaches T3, which is the temperature during steady operation, the concentration of the unburned combustion fuel m2 in the exhaust gas e decreases to substantially zero and thereafter changes stably.

なお、比較例として、図3を参照して、従来の、排ガス導出流路25に活性炭充填塔20を備えていない燃料電池システムにおける燃焼部11出口における排ガスe中の燃焼燃料m2の濃度の経時変化を説明する。図3中、C4は着火遅れによる排ガスe中の未燃の燃焼燃料m2成分の最高濃度を、C2は排ガスe中の未燃の燃焼燃料m2成分が結露する飽和濃度を示している。燃料電池システムの起動時は、排ガスe中の燃焼燃料m2成分の濃度が実質ゼロだが、燃料処理装置10の燃焼部11内に燃焼燃料m2が導入されバーナーを点火すると、燃焼燃料m2の着火遅れに伴い排ガスe中の燃焼燃料m2の濃度がC4まで上昇する。最高濃度C4は排ガスe中の燃焼燃料m2成分が結露する飽和濃度C2よりもかなり高く、従来の燃料電池システムにおいて燃焼燃料m2に液体の燃料を使用した場合は未燃の燃焼燃料m2の成分が結露し回収水に混入することは避け難い。   As a comparative example, referring to FIG. 3, the concentration of the combustion fuel m2 in the exhaust gas e at the outlet of the combustion unit 11 in the conventional fuel cell system in which the exhaust gas outlet passage 25 is not provided with the activated carbon packed tower 20 is determined. Explain the change. In FIG. 3, C4 represents the highest concentration of the unburned combustion fuel m2 component in the exhaust gas e due to the ignition delay, and C2 represents the saturation concentration at which the unburned combustion fuel m2 component in the exhaust gas e is condensed. When the fuel cell system is started, the concentration of the combustion fuel m2 component in the exhaust gas e is substantially zero. However, when the combustion fuel m2 is introduced into the combustion unit 11 of the fuel processing apparatus 10 and the burner is ignited, the ignition delay of the combustion fuel m2 is delayed. Accordingly, the concentration of the combustion fuel m2 in the exhaust gas e rises to C4. The maximum concentration C4 is considerably higher than the saturated concentration C2 at which the component of the combustion fuel m2 in the exhaust gas e is condensed, and when a liquid fuel is used as the combustion fuel m2 in the conventional fuel cell system, the component of the unburned combustion fuel m2 is It is difficult to avoid condensation and mixing with the recovered water.

ここから再び本発明の実施の形態における燃料電池システム1の作用の説明に戻る。活性炭充填塔20から導出された排ガスeは、燃料電池30の空気極32から排出されたカソードオフガスqと合流し混合排ガスhとなって流路45を流れ、気水分離器40に導かれる。気水分離器40に導入された混合排ガスhは冷却されて水分wが分離回収される。水分wが回収された混合排ガスhは燃料電池システム1外へ排出される。気水分離器40に導入された混合排ガスhは、燃料電池システム1の起動時はカソードオフガスqの発生がないため実質的には排ガスeそのものであり、このときの排ガスeは温度が比較的低い(100℃以下)ため、燃焼燃料m2への着火遅れによる未燃の燃焼燃料m2の成分は活性炭シート22に吸着され濃度が十分に低下しており、気水分離器40に導入され冷却されても燃焼燃料m2成分の濃度が結露する飽和濃度以下なので、未燃の燃焼燃料m2が回収水wに混入することがない。また、燃料電池システム1が定常運転に近づくにつれ混合排ガスh中に活性炭シート22から脱着した未燃の燃焼燃料m2が含まれることとなるが、混合排ガスh中の未燃の燃焼燃料m2の濃度が相対的に低く、冷却されても未燃の燃焼燃料m2が結露する飽和濃度以下であるため、未燃の燃焼燃料m2が回収水wに混入することがない。   From here, it returns to description of the effect | action of the fuel cell system 1 in embodiment of this invention again. The exhaust gas e led out from the activated carbon packed tower 20 merges with the cathode offgas q discharged from the air electrode 32 of the fuel cell 30 to become a mixed exhaust gas h, flows through the flow path 45, and is led to the steam / water separator 40. The mixed exhaust gas h introduced into the steam separator 40 is cooled and the water w is separated and recovered. The mixed exhaust gas h from which the moisture w has been recovered is discharged out of the fuel cell system 1. The mixed exhaust gas h introduced into the steam separator 40 is substantially exhaust gas e itself because no cathode off-gas q is generated when the fuel cell system 1 is started. At this time, the exhaust gas e has a relatively high temperature. Since the temperature is low (100 ° C. or lower), the unburned combustion fuel m2 component due to the ignition delay to the combustion fuel m2 is adsorbed by the activated carbon sheet 22 and the concentration is sufficiently lowered, and is introduced into the steam separator 40 and cooled. However, since the concentration of the combustion fuel m2 component is equal to or lower than the saturation concentration at which condensation occurs, the unburned combustion fuel m2 is not mixed into the recovered water w. Further, as the fuel cell system 1 approaches a steady operation, the unburned combustion fuel m2 desorbed from the activated carbon sheet 22 is included in the mixed exhaust gas h, but the concentration of the unburned combustion fuel m2 in the mixed exhaust gas h. Is lower than the saturation concentration at which the unburned combustion fuel m2 is condensed even if it is cooled, so that the unburned combustion fuel m2 is not mixed into the recovered water w.

気水分離器40で分離回収された回収水wは流路44を通り途中必要に応じて補給水が補充されて一旦気液接触塔60下部の貯水部に導入され酸化剤ガスa1に乗らなかった加湿用水kと混合された後、流路54を通って水処理装置51、52に導入される。水処理装置51に導入された回収水wは純水に精製されて改質用水sとして燃料処理装置10に導入さる。水処理装置52に導入された回収水wはアルカリ性に維持されて加湿用水kとして気液接触塔60に導入される。   The recovered water w separated and recovered by the steam separator 40 passes through the flow path 44, is supplemented with supplementary water as needed, and is once introduced into the water storage section at the lower part of the gas-liquid contact tower 60 and does not get on the oxidant gas a1. After being mixed with the humidifying water k, the water is introduced into the water treatment devices 51 and 52 through the flow path 54. The recovered water w introduced into the water treatment device 51 is purified into pure water and introduced into the fuel treatment device 10 as reforming water s. The recovered water w introduced into the water treatment device 52 is maintained alkaline and is introduced into the gas-liquid contact tower 60 as humidifying water k.

気液接触塔60に導入された加湿用水kは、気液接触塔60の上部から散布され、下部から導入された酸化剤ガスa1を加湿する。加湿用水kの一部は酸化剤ガスa1に乗って燃料電池30の燃料極32に送られる。酸化剤ガスa1に乗らなかった加湿用水kは、気液接触塔60の下部に一旦溜められた後回収水wと混合され、流路54を通って水処理装置51、52の上流側に導かれて気水分離器40からの回収水wと混合し、再び水処理装置51、52にて浄化されて、改質用水s及び加湿用水kに利用される。   The humidifying water k introduced into the gas-liquid contact tower 60 is sprayed from the upper part of the gas-liquid contact tower 60 and humidifies the oxidant gas a1 introduced from the lower part. Part of the humidifying water k is sent to the fuel electrode 32 of the fuel cell 30 on the oxidant gas a1. The humidifying water k not on the oxidant gas a1 is once stored in the lower part of the gas-liquid contact tower 60 and then mixed with the recovered water w, and is introduced to the upstream side of the water treatment devices 51 and 52 through the flow path 54. Then, it is mixed with the recovered water w from the steam separator 40, purified again by the water treatment devices 51 and 52, and used as the reforming water s and the humidifying water k.

以上のように、本発明者らは原料燃料(燃焼燃料)として安価な液体の燃料を用いた燃料電池システムを実用化すべく鋭意研究を行なった結果、炭化水素のような非極性気体分子に対し比較的低い温度(例えば100℃程度以下)において大きな吸着能力を示し、温度が高くなるに従いその吸着能力が低下するという活性炭の物理吸着特性と、燃焼部11からの排ガスeの温度が点火時(すなわち着火遅れによる未燃の液体燃料m2の発生時)には100℃以下と比較的低く、着火後徐々に温度が高くなって定常運転時には150℃以上に達するという燃料電池システム1の起動特性とに着眼し、両特性のマッチングに関して試行を重ねて、本発明を完成させるに至ったのである。   As described above, the present inventors conducted intensive research to put into practical use a fuel cell system that uses an inexpensive liquid fuel as a raw material fuel (combustion fuel). The physical adsorption characteristics of activated carbon exhibiting a large adsorption capability at a relatively low temperature (for example, about 100 ° C. or less), and the adsorption capability decreases as the temperature increases, and the temperature of the exhaust gas e from the combustion unit 11 is determined during ignition ( That is, when the unburned liquid fuel m2 is generated due to the ignition delay, it is relatively low at 100 ° C. or lower, and gradually rises in temperature after ignition and reaches 150 ° C. or higher in steady operation. In view of the above, the present invention was completed through repeated trials on matching of both characteristics.

以上の説明では、吸着剤22は活性炭であることとして説明したが、ゼオライト、シリカゲル、活性アルミナなど、未燃の燃焼燃料m2を100℃以下の温度で吸着し、150℃以上の温度で脱着をする特性を持つ材料であってもよい。   In the above description, the adsorbent 22 is described as activated carbon, but unburned combustion fuel m2 such as zeolite, silica gel, activated alumina, etc. is adsorbed at a temperature of 100 ° C. or lower and desorbed at a temperature of 150 ° C. or higher. The material which has the characteristic to do may be sufficient.

以上のように、本実施の形態に係る燃料電池システム1は、液体の燃焼燃料m2の点火時に着火遅れがあっても未燃の燃焼燃料m2が回収水wに、換言すれば燃料処理装置10に導入する改質用水sや酸化剤ガスa1を加湿する加湿用水kに混入することがないので、DSS運転(1日に1回以上の起動停止を行なう運転方式)のように頻繁な起動停止を行なう液体燃料の燃料電池システムであっても安定的に運転することができる。また、未燃の液体燃料が高い濃度で燃料電池システム1外に排出されることが抑制され、環境汚染問題も大幅に改善することができる。   As described above, in the fuel cell system 1 according to the present embodiment, even if there is an ignition delay when the liquid combustion fuel m2 is ignited, the unburned combustion fuel m2 is the recovered water w, in other words, the fuel processing device 10. Since the reforming water s and the oxidant gas a1 introduced into the water are not mixed into the humidifying water k, frequent start and stop such as in DSS operation (operation system in which start / stop is performed at least once a day). Even a liquid fuel fuel cell system that performs the above operation can be stably operated. In addition, it is possible to suppress unburned liquid fuel from being discharged out of the fuel cell system 1 at a high concentration, and it is possible to greatly improve the environmental pollution problem.

本発明の実施の形態に係る燃料電池システムを説明するブロック図である。1 is a block diagram illustrating a fuel cell system according to an embodiment of the present invention. 本発明の実施の形態に係る燃料電池システムの起動時から定常運転に至るまでの活性炭充填塔出口における排ガス中の燃焼燃料の濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the density | concentration of the combustion fuel in the exhaust gas in the activated carbon packed tower exit from the time of starting of the fuel cell system which concerns on embodiment of this invention to a steady operation. 従来の燃料電池システムの起動時から定常運転に至るまでの燃焼部出口における排ガス中の燃焼燃料の濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the density | concentration of the combustion fuel in exhaust gas in the combustion part exit from the time of starting of the conventional fuel cell system to a steady operation.

符号の説明Explanation of symbols

1 燃料電池システム
10 燃料処理装置
11 燃焼部
20 吸着装置
22 吸着剤
25 排ガス導出流路
30 燃料電池
e 排ガス
g 燃料ガス
m1 原料燃料
m2 燃焼燃料
DESCRIPTION OF SYMBOLS 1 Fuel cell system 10 Fuel processing apparatus 11 Combustion part 20 Adsorber 22 Adsorbent 25 Exhaust gas extraction flow path 30 Fuel cell e Exhaust gas g Fuel gas m1 Raw material fuel m2 Combustion fuel

Claims (2)

原料燃料を導入し改質して水素に富む燃料ガスを生成する燃料処理装置であって、燃焼する液体の燃焼燃料を導入し燃焼して該改質に必要な熱を発生する燃焼部を有する燃料処理装置と;
前記燃焼部から排ガスを導出する排ガス導出流路に配置され、該排ガスに含まれる燃焼燃料を吸着する吸着剤が充填された吸着装置と;
前記燃料ガスを導入し発電する燃料電池とを備える;
燃料電池システム。
A fuel processing apparatus that introduces a raw material fuel and reforms to produce a fuel gas rich in hydrogen, and has a combustion section that introduces and burns a liquid combustion fuel to burn and generates heat necessary for the reforming A fuel processor;
An adsorption device that is disposed in an exhaust gas outlet passage that extracts exhaust gas from the combustion section and is filled with an adsorbent that adsorbs combustion fuel contained in the exhaust gas;
A fuel cell that introduces the fuel gas and generates electric power;
Fuel cell system.
前記吸着剤は活性炭である;
請求項1に記載の燃料電池システム。

The adsorbent is activated carbon;
The fuel cell system according to claim 1.

JP2004198374A 2004-07-05 2004-07-05 Fuel cell system Pending JP2006019226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198374A JP2006019226A (en) 2004-07-05 2004-07-05 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198374A JP2006019226A (en) 2004-07-05 2004-07-05 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006019226A true JP2006019226A (en) 2006-01-19

Family

ID=35793291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198374A Pending JP2006019226A (en) 2004-07-05 2004-07-05 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2006019226A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053209A (en) * 2006-07-26 2008-03-06 Kyocera Corp Fuel cell device
JP2009070692A (en) * 2007-09-13 2009-04-02 Nippon Oil Corp Fuel cell system
JP2009224065A (en) * 2008-03-13 2009-10-01 Fuji Electric Holdings Co Ltd Starting method of fuel cell power generation device, and fuel cell power generation device
JP2009238589A (en) * 2008-03-27 2009-10-15 Fuji Electric Holdings Co Ltd Fuel cell power generating system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625820U (en) * 1985-06-25 1987-01-14
JPS6210223U (en) * 1985-07-04 1987-01-22
JPH03138411A (en) * 1989-10-24 1991-06-12 Nichias Corp Exhaust purifier of methanol engine
JP2001017835A (en) * 1999-07-09 2001-01-23 Nissan Motor Co Ltd Method for cleaning exhaust gas of fuel cell system and exhaust gas cleaning device
JP2003317767A (en) * 2002-04-25 2003-11-07 Nissan Motor Co Ltd Fuel cell system
JP2004006111A (en) * 2002-05-31 2004-01-08 Toshiba International Fuel Cells Corp Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625820U (en) * 1985-06-25 1987-01-14
JPS6210223U (en) * 1985-07-04 1987-01-22
JPH03138411A (en) * 1989-10-24 1991-06-12 Nichias Corp Exhaust purifier of methanol engine
JP2001017835A (en) * 1999-07-09 2001-01-23 Nissan Motor Co Ltd Method for cleaning exhaust gas of fuel cell system and exhaust gas cleaning device
JP2003317767A (en) * 2002-04-25 2003-11-07 Nissan Motor Co Ltd Fuel cell system
JP2004006111A (en) * 2002-05-31 2004-01-08 Toshiba International Fuel Cells Corp Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053209A (en) * 2006-07-26 2008-03-06 Kyocera Corp Fuel cell device
JP2009070692A (en) * 2007-09-13 2009-04-02 Nippon Oil Corp Fuel cell system
JP2009224065A (en) * 2008-03-13 2009-10-01 Fuji Electric Holdings Co Ltd Starting method of fuel cell power generation device, and fuel cell power generation device
JP2009238589A (en) * 2008-03-27 2009-10-15 Fuji Electric Holdings Co Ltd Fuel cell power generating system

Similar Documents

Publication Publication Date Title
JP2006525626A (en) Fuel cell system utilizing recirculation of anode exhaust gas
US20040247985A1 (en) Fuel cell
JP4096690B2 (en) Fuel cell system and hydrogen gas supply device
JP3809646B2 (en) Fuel cell device
JP2011146175A (en) Fuel cell system
JP4504614B2 (en) Fuel cell power generation system
JPH11169661A (en) Carbon dioxide recovering device
JP2003257457A (en) Fuel cell power generation system
WO2010079561A1 (en) Fuel cell system
JPH08138703A (en) Fuel cell power generating system
JP2003151599A (en) Fuel cell system
JP2006019226A (en) Fuel cell system
JP2003031255A (en) Fuel cell power generation device and feeding method of condensate to water storage tank
JP3956755B2 (en) Fuel cell power generation system
JP2009503791A (en) Gas separation method and apparatus using partial pressure swing adsorption
JP2003132928A (en) Fuel cell system
JP6638464B2 (en) Fuel cell system
JP2004292293A (en) Apparatus for generating hydrogen and method of its operation
JP2008130266A (en) Circulation method of condensed water in fuel cell system
JP4364029B2 (en) Direct liquid fuel cell power generator
JP3349802B2 (en) Method and apparatus for regenerating nitrogen gas for fuel cell sealing
JP4719407B2 (en) Fuel cell cogeneration system
JP2012136560A (en) Desulfurization system, and method of controlling the same
JP2005285626A (en) Fuel gas manufacturing power generation system
JP2004327429A (en) Fuel cell and air purifier for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301