JP2006018977A - Mold for mounting transfer printing plate and transfer printing method - Google Patents

Mold for mounting transfer printing plate and transfer printing method Download PDF

Info

Publication number
JP2006018977A
JP2006018977A JP2004198431A JP2004198431A JP2006018977A JP 2006018977 A JP2006018977 A JP 2006018977A JP 2004198431 A JP2004198431 A JP 2004198431A JP 2004198431 A JP2004198431 A JP 2004198431A JP 2006018977 A JP2006018977 A JP 2006018977A
Authority
JP
Japan
Prior art keywords
transfer printing
printing plate
mold
printed
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198431A
Other languages
Japanese (ja)
Inventor
Kinichi Usami
欽一 宇佐美
Hideki Sasaki
英樹 佐々木
Hiroto Onuki
啓人 大貫
Hideto Onuki
英仁 大貫
Tsutomu Hayashida
勉 林田
Masahiko Ogino
雅彦 荻野
Nobuaki Kitano
延明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAMURA SEISAKUSHO KK
ONUKI KOGYOSHO KK
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
KAWAMURA SEISAKUSHO KK
ONUKI KOGYOSHO KK
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAMURA SEISAKUSHO KK, ONUKI KOGYOSHO KK, Hitachi Cable Ltd, Hitachi Ltd filed Critical KAWAMURA SEISAKUSHO KK
Priority to JP2004198431A priority Critical patent/JP2006018977A/en
Publication of JP2006018977A publication Critical patent/JP2006018977A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for mounting a transfer printing plate which is miniaturized and simple, has a short tact time as well as a high precision high positioning of the printing, and to provide a transfer printing method. <P>SOLUTION: In the mold for mounting the transfer printing plate for transferring the protruded and recessed shape of the transfer printing plate to a member to be printed, by pressing under vacuum the transfer printing plate 24 which has the recesses and protrusions against the member 25 to be printed, when an upper mold 16 and a lower mold 18 thereof are put together, a vacuum depressurization chamber 19 is formed in the upper mold 16 or the lower mold 18 for holding either the transfer printing plate 24 or the member 25 to be printed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面に微細な凹凸を有する転写印刷板によって、被印刷部材に熱硬化性樹脂、熱可塑性樹脂、光硬化樹脂などを用いて印刷するインプリント印刷方式において、これに用いる転写版を実装する金属金型に関するものである。   The present invention provides a transfer printing plate for use in an imprint printing method in which a printing member having fine irregularities on its surface is used to print a member to be printed using a thermosetting resin, a thermoplastic resin, a photocurable resin, or the like. The present invention relates to a metal mold to be mounted.

CD−ROM、DVD−ROMなどの光ディスクは、現在フォトリソグラフィー法で作製した金属製の樹脂成型用金型を用いた、ドットパターンの樹脂成型法によって作られている。この光ディスクには映像、音楽などのデータがドットパターンとして記録されており、これをレーザー光で読み取り再生される。   Optical disks such as CD-ROMs and DVD-ROMs are currently made by a dot pattern resin molding method using a metal resin molding die produced by a photolithography method. On this optical disk, data such as video and music is recorded as a dot pattern, which is read and reproduced with a laser beam.

またMOなどの光磁気ディスクでは、同じく金属金型によるドットパターンの形成後に、磁性体薄膜が記録薄膜として形成されている。MOではこの記録薄膜データをレーザー光で読み出したりできるほか、消去、書き込みなども可能で、繰り返し記録(消去、書き込み)が可能な記録媒体として市販されている。   Also, in magneto-optical disks such as MO, a magnetic thin film is formed as a recording thin film after forming a dot pattern with a metal mold. In MO, this recording thin film data can be read by laser light, and can be erased and written, and is commercially available as a recording medium capable of repeated recording (erasing and writing).

最近、これらの記録媒体は小型軽量化、携帯性、保管性、管理性、大容量化などの高い市場要求から、年々記録密度の向上が求められている。このため、高密度ドットパターン形成法の技術開発競争が盛んに行われている。このなかで、インプリント法と呼ばれる方法では、パターン形成用樹脂に熱硬化性樹脂、熱可塑性樹脂、または光硬化型の感光性の樹脂などを用いて、凹凸を有する金型と称する印刷板による転写印刷方式でドットパターンなどを印刷する方法である。またパターン形成用の転写印刷用金型には主にシリコン、石英などの基板を用い、この基板にEB法(電子ビーム法)で微細なパターンを形成する。インプリントでは金型の材質は金属でない場合でも、慣例的に金型と呼んでいる。EB法では100ナノメーター以下のドットパターンの形成が容易であり、これを金型として用いることにより、高密度記録媒体の形成が可能になる。また記録媒体用樹脂に光硬化型を用いる場合は、熱硬化性樹脂や熱可塑性樹脂を用いる場合と比較して低温でのドットパターンの形成が可能になり、熱によるパターンの歪みなどを考慮することなく、高密度な記録が可能となる特徴がある。   Recently, these recording media have been required to improve recording density year by year due to high market demands such as reduction in size and weight, portability, storability, manageability, and increase in capacity. For this reason, there is an active competition for technological development of high-density dot pattern formation methods. Among them, in a method called an imprint method, a thermosetting resin, a thermoplastic resin, a photocurable photosensitive resin, or the like is used as a pattern forming resin, and a printing plate called an uneven mold is used. This is a method of printing a dot pattern or the like by a transfer printing method. Further, a substrate made of silicon, quartz or the like is mainly used as a transfer printing mold for pattern formation, and a fine pattern is formed on this substrate by an EB method (electron beam method). In the imprint, even if the mold material is not metal, it is customarily called a mold. In the EB method, it is easy to form a dot pattern of 100 nanometers or less. By using this as a mold, it is possible to form a high-density recording medium. In addition, when using a photo-curing type as the recording medium resin, it is possible to form a dot pattern at a lower temperature than when using a thermosetting resin or a thermoplastic resin, and the distortion of the pattern due to heat is taken into consideration. Therefore, there is a feature that enables high-density recording.

従来のCD−ROM、MOなどの場合、通常のドットパターンである形状は、幅0.4μm、深さ0.9〜3.3μmである。これに対して、インプリント法では、この1/10サイズのドットパターンの形成が可能であり、10倍の記録密度が達成できる。この光ナノプリント技術の開発によって将来の100GBの記録媒体が可能となると期待されている。   In the case of a conventional CD-ROM, MO, etc., the shape that is a normal dot pattern is 0.4 μm wide and 0.9-3.3 μm deep. On the other hand, in the imprint method, it is possible to form a dot pattern of 1/10 size, and a recording density of 10 times can be achieved. The development of this optical nanoprint technology is expected to enable future 100 GB recording media.

このインプリント技術は、1995年Chouによって初めて紹介され日が浅いため、学会論文はまだ少ないが、例えば、砥粒学会誌、第46巻、第6号、p282,(2002)(非特許文献1)にナノプリントの技術の現状として紹介されている。このなかでは金型にはEBでパターン形成したサファイアを用いている。   This imprint technique was first introduced by Chou in 1995, and since the days are shallow, there are still few academic papers. For example, Journal of the Japan Society for Abrasives, Vol. 46, No. 6, p282, (2002) (Non-Patent Document 1) ) Is introduced as the current state of nanoprint technology. Among them, sapphire patterned with EB is used for the mold.

この装置では熱硬化性樹脂、熱可塑性樹脂などを用いて、熱転写印刷することができるが、光転写方式の感光性樹脂を用いることもできる。感光性樹脂を用いる場合には、上部から紫外線を照射して樹脂を硬化させる。また熱転写方式では、被印刷部材(非特許文献1では基板ホルダー)の下に設けられたヒータで被印刷部材を加熱することにより行える。   In this apparatus, thermal transfer printing can be performed using a thermosetting resin, a thermoplastic resin, or the like, but a photo-transfer type photosensitive resin can also be used. When a photosensitive resin is used, the resin is cured by irradiating ultraviolet rays from above. In the thermal transfer system, the printing member can be heated by a heater provided under the printing member (substrate holder in Non-Patent Document 1).

この非特許文献1における転写印刷版となるサファイア製の金型は、非特許文献1の中ではモールドと称しており、モールド上にはサファイア製の紫外線照射レンズが配置されている。この紫外線照射レンズは上下移動可能なベローズを持った台座に取り付けられている。さらに照射レンズとモールド間、およびその周囲を真空状態あるいは減圧状態にするために、全体を密閉構造とし、その一部がロータリーポンプに繋がっている。非特許文献1では光ナノプリントリソグラフィ装置として、印刷装置の図面が記載されている。   The sapphire mold used as the transfer printing plate in Non-Patent Document 1 is referred to as a mold in Non-Patent Document 1, and an ultraviolet irradiation lens made of sapphire is disposed on the mold. This ultraviolet irradiation lens is attached to a pedestal having a bellows movable up and down. Further, in order to make a vacuum state or a reduced pressure state between the irradiation lens and the mold and the periphery thereof, the whole has a sealed structure, and a part thereof is connected to a rotary pump. Non-Patent Document 1 describes a drawing of a printing apparatus as an optical nanoprint lithography apparatus.

この非特許文献1に掲載されている図を用いて、従来技術をさらに詳細に説明する。非特許文献1に掲載された図を図5に示す。   The prior art will be described in more detail with reference to the figures published in Non-Patent Document 1. A diagram published in Non-Patent Document 1 is shown in FIG.

サファイア製のモールド1の下には基板(被印刷部材)2が配置されている。光ナノインプリントでは、上部から紫外線を照射するために、モールド1の上部を光を通さない材料で保持すると、紫外線などの光を遮断することになり、このためにモールド(金型)1の端部のみを保持して、モールド1の面は広い面積で紫外線が照射できるよう、出来る限り広く開放することが重要である。下にはステージ12が配置されていて、ステージ12はステージ上昇矢印13の方向に上昇して、サファイア製のモールド1に押圧される。この時ステージ12の上に配置された基板(被印刷部材)2も上昇し、ステージ12に設けられた隔壁部12aが台座6aに取り付けられたベローズ6に接触して加圧されても、縮むことによって、室Rの真空減圧状態の構成が可能である。また同時に基板(被印刷部材)2もモールド1に押圧されるので、転写印刷が可能になる。真空減圧状態が構成されたら、その後、ロータリーポンプ接続口8から、減圧が開始され、真空または減圧状態が形成される。サファイア(紫外線照射板)3の上部には照射レンズ4が取り付けられており、照射レンズ4には光ファイバー5から紫外線が導光される。ステージ12の下には、ロードセル10があり、印刷圧力を記録したり調節することができる。ロードセル10の下にはボールネジ11があり、ボールネジ11を介してステージ12がステッピングモーター7で上に押し上げられる。印刷終了後は、ステッピングモーター7が逆回転して、ステージ12は下に下がる。   A substrate (a member to be printed) 2 is disposed under the sapphire mold 1. In the optical nanoimprint, in order to irradiate ultraviolet rays from above, if the upper part of the mold 1 is held by a material that does not transmit light, light such as ultraviolet rays is blocked. It is important to keep the surface of the mold 1 as wide as possible so that the surface of the mold 1 can be irradiated with ultraviolet rays over a wide area. A stage 12 is disposed below, and the stage 12 rises in the direction of the stage rising arrow 13 and is pressed by the sapphire mold 1. At this time, the substrate (printed member) 2 disposed on the stage 12 is also lifted, and contracts even if the partition wall portion 12a provided on the stage 12 comes into contact with the bellows 6 attached to the pedestal 6a and is pressed. Thus, a configuration in a vacuum reduced state of the chamber R is possible. At the same time, the substrate (printed member) 2 is also pressed against the mold 1 so that transfer printing is possible. When the vacuum decompression state is configured, decompression is then started from the rotary pump connection port 8 to form a vacuum or decompression state. An irradiation lens 4 is attached to the upper part of the sapphire (ultraviolet irradiation plate) 3, and ultraviolet rays are guided from the optical fiber 5 to the irradiation lens 4. Below the stage 12 is a load cell 10 that can record and adjust printing pressure. A ball screw 11 is provided under the load cell 10, and the stage 12 is pushed up by the stepping motor 7 through the ball screw 11. After printing, the stepping motor 7 rotates in the reverse direction and the stage 12 is lowered.

以上が従来方式の転写印刷機であるが、光硬化型に限らず、熱転写方式も含めたインプリントにおける転写印刷用実装金型の要求特性としては、その機能から、1)真空あるいは減圧条件を維持する転写印刷室はできる限りシンプルで小型であること、2)真空あるいは減圧条件が短時間で得られること、3)全体の印刷タクトタイムが短いこと、4)印刷機が安価であること、5)印刷の位置精度が高いこと、6)転写印刷板と被印刷部材が常に平行な状態で印刷されること、などがあげられる。   The above is a conventional transfer printing machine, but the required characteristics of a mounting mold for transfer printing in imprint including not only the photo-curing type but also the thermal transfer method are as follows: 1) Vacuum or reduced pressure conditions The transfer printing chamber to be maintained is as simple and small as possible, 2) vacuum or reduced pressure conditions can be obtained in a short time, 3) the overall printing tact time is short, and 4) the printing press is inexpensive, 5) The printing positional accuracy is high, and 6) the transfer printing plate and the member to be printed are always printed in a parallel state.

転写印刷機は、これらの課題を解決し、印刷の生産性に優れていることが重要であるが、従来技術では、その工夫がまだ見出されていない。   It is important that the transfer printer solves these problems and is excellent in printing productivity, but the contrivance has not yet been found in the prior art.

谷口淳、他3名、「ナノインプリント技術の現状」、砥粒加工学会誌、砥粒加工学会、2002年6月、46巻6号、p.282Satoshi Taniguchi and three others, “Current Status of Nanoimprint Technology”, Journal of Abrasive Technology, Abrasive Technology Association, June 2002, 46, 6, p. 282

従来技術の中で記述したように、特に重要な点は、1)真空あるいは減圧条件を維持する転写印刷室はできる限りシンプルで小型であること、2)真空あるいは減圧条件が短時間で得られること、3)全体の印刷タクトタイムが短いこと、4)印刷機が安価であること、5)印刷の位置精度が高いこと、6)転写印刷板と被印刷部材が常に平行な状態で印刷されることである。   As described in the prior art, particularly important points are: 1) the transfer printing chamber that maintains the vacuum or reduced pressure conditions is as simple and small as possible, and 2) the vacuum or reduced pressure conditions can be obtained in a short time. 3) The overall printing tact time is short, 4) the printing press is inexpensive, 5) the printing positional accuracy is high, and 6) the transfer printing plate and the printing member are always printed in parallel. Is Rukoto.

本発明の目的は、上記の課題を解決するために小型でシンプルで、タクトタイムが短く印刷の位置精度が高い転写印刷版用実装金型及び転写印刷方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a transfer printing plate mounting mold and a transfer printing method that are small and simple, have a short tact time, and have high printing positional accuracy in order to solve the above-described problems.

上記の目的を達成するために請求項1の発明は、凹凸が形成された転写印刷版を被印刷部材に真空下で押し付けて被印刷部材に転写印刷版の凹凸形状を転写する転写印刷版用実装金型において、転写印刷版と被印刷部材とのいずれかを保持する上型と下型に、その上型と下型を合わせたときに真空減圧室を形成した転写印刷版用実装金型である。   In order to achieve the above object, the invention of claim 1 is for a transfer printing plate in which a transfer printing plate on which unevenness is formed is pressed against a printing member under vacuum to transfer the uneven shape of the transfer printing plate to the printing member. In a mounting mold, a mounting mold for a transfer printing plate in which a vacuum decompression chamber is formed when the upper mold and the lower mold are combined with an upper mold and a lower mold that hold either the transfer printing plate or the printing target member. It is.

請求項2の発明は、下型に、被印刷部材を保持する基板載置台が設けられ、上型に転写印刷版が保持され、下型と上型の合わせ面にOリングなどのシール部材が設けられ、下型と上型とが合わされたとき、そのシール部材により上型と下型内に真空減圧室が形成される請求項1記載の転写印刷版用実装金型である。   According to the second aspect of the present invention, the lower mold is provided with a substrate mounting table for holding the printing member, the upper printing mold is held on the upper mold, and a sealing member such as an O-ring is provided on the mating surface of the lower mold and the upper mold. 2. The mounting mold for a transfer printing plate according to claim 1, wherein when the lower mold and the upper mold are combined, a vacuum decompression chamber is formed in the upper mold and the lower mold by the sealing member.

請求項3の発明は、シール部材で上型と下型とがシールされて真空減圧室が形成された後、上型と下型がさらに合わされた時に転写印刷版が被印刷部材に着版される請求項2記載の転写印刷版用実装金型である。   According to the invention of claim 3, after the upper die and the lower die are sealed by the sealing member to form the vacuum decompression chamber, the transfer printing plate is attached to the printing member when the upper die and the lower die are further combined. The mounting mold for a transfer printing plate according to claim 2.

請求項4の発明は、上型には、変形可能な転写印刷版が保持され、上型に、その転写印刷版を被印刷部材に押し付ける加圧室が形成される請求項3記載の転写印刷版用実装金型である。   According to a fourth aspect of the present invention, in the upper mold, the deformable transfer printing plate is held, and the upper mold is formed with a pressurizing chamber for pressing the transfer printing plate against the member to be printed. This is a mounting mold for printing plates.

請求項5の発明は、上型には、剛性のある転写印刷版が保持され、転写印刷版が被印刷部材に着版される請求項3記載の転写印刷版用実装金型である。   The invention according to claim 5 is the mounting mold for the transfer printing plate according to claim 3, wherein the upper mold holds a rigid transfer printing plate, and the transfer printing plate is attached to the member to be printed.

請求項6の発明は、凹凸が形成された転写印刷版を被印刷部材に真空下で押し付けて被印刷部材に転写印刷版の凹凸形状を転写する転写印刷方法において、転写印刷版と被印刷部材とのいずれかを保持する上型と下型を合わせたときに密閉空間を形成し、その密閉空間を真空排気した後、転写印刷版を被印刷部材に着版させることを特徴とする転写印刷方法である。   The invention according to claim 6 is a transfer printing method in which a transfer printing plate on which unevenness is formed is pressed against a member to be printed under vacuum to transfer the uneven shape of the transfer printing plate to the member to be printed. The transfer printing is characterized in that a sealed space is formed when the upper mold and the lower mold holding one of the above and the lower mold are combined, the sealed space is evacuated, and then the transfer printing plate is attached to the printing material. Is the method.

請求項7の発明は、着版後、転写印刷版の背面を空気圧で加圧して、転写印刷版を被印刷部材に押し付ける請求項6記載の転写印刷方法である。   A seventh aspect of the invention is the transfer printing method according to the sixth aspect of the present invention, wherein after the plate is received, the back surface of the transfer printing plate is pressurized with air pressure and the transfer printing plate is pressed against the member to be printed.

請求項8の発明は、着版して転写印刷版の凹凸を被印刷部材に転写した後、密閉空間の真空状態を解除させ、その後転写印刷版を被印刷部材から離版させる請求項6記載の転写印刷方法である。   According to an eighth aspect of the present invention, after the plate is transferred and the unevenness of the transfer printing plate is transferred to the member to be printed, the vacuum state of the sealed space is released, and then the transfer printing plate is released from the member to be printed. This is a transfer printing method.

本発明は以下のような効果を奏する。
(1)ベローズなどを用いることがなく、構造がシンプルで小型である。
(2)真空減圧室を構造上小さくできるので、真空減圧に要する時間を短縮できる。また真空ポンプは小型化のものが使用できる。
(3)加圧室を形成することで、転写印刷版に対して均一な圧力がかけられ、転写印刷むらがなくなる。
(4)気体による加圧室を形成することで、転写印刷版の押圧および引き剥がし(離版)を加圧室の解除によって行える。
(5)気体による加圧式なので、転写印刷版を薄くすることが可能で、人工石英などの材料費が低減でき、転写印刷版をやすく製作できる。
(6)上型、下型構造で、上下移動距離が短いので、全体のタクトタイムを短くできる。
(7)構造が簡単で、かつ小型なので、装置コストを安くできる。
(8)金型の精度で実装金型を製作でき、印刷の精度を高くできる。
(9)Oリングなどの弾性体からなるシール部材を用いており、被印刷部材と転写印刷版の平行度を常に維持しながら印刷できる。
(10)汎用の簡単なプレスを用いて印刷でき、インフラを応用できる。
The present invention has the following effects.
(1) The structure is simple and small without using a bellows or the like.
(2) Since the vacuum decompression chamber can be made structurally small, the time required for vacuum decompression can be shortened. A vacuum pump with a reduced size can be used.
(3) By forming the pressurizing chamber, a uniform pressure is applied to the transfer printing plate, and transfer printing unevenness is eliminated.
(4) By forming the pressurizing chamber by gas, the transfer printing plate can be pressed and peeled off (release) by releasing the pressurizing chamber.
(5) Since it is a pressure type by gas, the transfer printing plate can be made thin, the material cost of artificial quartz or the like can be reduced, and the transfer printing plate can be easily manufactured.
(6) Since the upper and lower structures have a short vertical movement distance, the overall tact time can be shortened.
(7) Since the structure is simple and small, the apparatus cost can be reduced.
(8) A mounting die can be manufactured with the accuracy of the die, and the printing accuracy can be increased.
(9) A seal member made of an elastic body such as an O-ring is used, and printing can be performed while always maintaining the parallelism between the printing member and the transfer printing plate.
(10) Printing can be performed using a general-purpose simple press, and infrastructure can be applied.

以下本発明の実施形態を添付図面により説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本実施の形態の転写印刷用実装金型を説明するための断面図である。図2は実装金型の上部金型(以下、上型と称す)と下部金型(以下、下型)を合体させたときの断面図である。   FIG. 1 is a cross-sectional view for explaining a mounting mold for transfer printing according to the present embodiment. FIG. 2 is a cross-sectional view of a mounting mold when an upper mold (hereinafter referred to as an upper mold) and a lower mold (hereinafter referred to as a lower mold) are combined.

図において、基台14上に支柱15が立設され、その支柱15に上下移動自在にステージ12が設けられ、詳細は省略するが、ステージ12がボールネジ11の回転で図示の矢印13のように上昇したり、或いは降下するようになっており、そのボールネジ11の回転をステッピングモータ7で制御して、ステージ12の上昇速度と降下速度を自在に制御できるようになっていると共にボールネジ11とステージ12間にロードセル10が設けられ、後述するが転写印刷版21と被印刷部材22との接触圧が検出できるようになっている。   In the figure, a support column 15 is erected on a base 14, and a stage 12 is provided on the support column 15 so as to be movable up and down. Although details are omitted, the stage 12 is rotated as the ball screw 11 is moved as indicated by an arrow 13 in the drawing. Ascending or descending, the rotation of the ball screw 11 is controlled by the stepping motor 7 so that the ascending speed and descending speed of the stage 12 can be freely controlled, and the ball screw 11 and the stage A load cell 10 is provided between the two, and a contact pressure between the transfer printing plate 21 and the printing member 22 can be detected as will be described later.

このステージ12上には、断面凹形状の下型18が設けられ、その凹部18aに被印刷部材25を真空吸引方式で保持する基板載置台26が取り付けられる。   A lower mold 18 having a concave cross section is provided on the stage 12, and a substrate mounting table 26 for holding the printing member 25 by a vacuum suction method is attached to the concave portion 18 a.

下型18には、ロータリーポンプ接続口8が設けられ、その上面には、弾性体からなるシール部材としてのOリング17が設けられ、その外周に位置決めピン21が立設される。このOリング17は、図示例では、内外2個設ける例を示したが1個でもよい。   The lower mold 18 is provided with a rotary pump connection port 8, an O-ring 17 as a sealing member made of an elastic body is provided on the upper surface thereof, and a positioning pin 21 is erected on the outer periphery thereof. In the illustrated example, two O-rings 17 are provided in the illustrated example, but one O-ring 17 may be provided.

支柱15の上部には、アーム16aを介して上型16が取り付けられ、その上型16の内周に形成した溝に転写印刷版24が取り付けられる。上型16の上部にはサファイア(紫外線照射板)3を保持する上蓋22が設けられ、転写印刷版24と上蓋22間に加圧室28が形成される。   An upper die 16 is attached to the upper portion of the support 15 via an arm 16a, and a transfer printing plate 24 is attached to a groove formed on the inner periphery of the upper die 16. An upper lid 22 for holding sapphire (ultraviolet irradiation plate) 3 is provided on the upper die 16, and a pressurizing chamber 28 is formed between the transfer printing plate 24 and the upper lid 22.

上型16には、加圧室28に空気等を供給して、着版時に転写印刷版25を下向きに湾曲するよう、また離版時に加圧室28を徐々に減圧するロータリーポンプ或いはコンプレッサー接続口23が設けられる。上型16の下面には、下型18に立設した位置決めピン21を嵌合する位置決め受け穴20が形成される。   A rotary pump or a compressor is connected to the upper die 16 so that air or the like is supplied to the pressurizing chamber 28 so that the transfer printing plate 25 is bent downward at the time of printing, and the pressurizing chamber 28 is gradually decompressed at the time of release. A mouth 23 is provided. On the lower surface of the upper mold 16, a positioning receiving hole 20 is formed for fitting a positioning pin 21 erected on the lower mold 18.

また、サファイア3上には照射レンズ4、光ファイバ5が配置され、光ファイバ5からの紫外線が、これらを通し、転写印刷版24を通して、被印刷部材25上に塗布された紫外線硬化樹脂等に照射できるようになっている。   Further, an irradiation lens 4 and an optical fiber 5 are disposed on the sapphire 3, and ultraviolet rays from the optical fiber 5 pass through these, through the transfer printing plate 24, to an ultraviolet curable resin or the like applied on the printing member 25. Can be irradiated.

この転写印刷版用実装金型において、ステージ12が上昇され、被印刷部材25が転写印刷版25に着版する際に、上型16と下型18間がOリング17にてシールされて密閉空間が形成され、その空間内の空気がロータリーポンプ接続口8から吸引排気されることで、真空減圧室19が形成され、その状態で、転写印刷版24が被印刷部材25に着版する。この着版時には、被印刷部材25上に塗布された紫外線硬化樹脂中に気泡が混入することが防止される。   In this transfer printing plate mounting mold, when the stage 12 is raised and the member 25 to be printed is deposited on the transfer printing plate 25, the space between the upper die 16 and the lower die 18 is sealed with an O-ring 17. A space is formed, and air in the space is sucked and exhausted from the rotary pump connection port 8 to form a vacuum decompression chamber 19. In this state, the transfer printing plate 24 is attached to the printing member 25. At the time of the plate-making, bubbles are prevented from being mixed in the ultraviolet curable resin applied on the printing member 25.

Oリング17はゴムなどの弾性体なので、上型16と下型18の降下あるいは上昇時の押し付け圧力によって歪み変形でき、印刷圧力の調整も同時に可能である。下型18には位置決めピン21が、また上型16には位置決めピン21が挿入できる位置決め用受け穴20が設けられているため、上型18と下型16の位置精度は、この位置決めピン21と位置決め受け穴20により高い精度で位置合わせされながら合体される。   Since the O-ring 17 is an elastic body such as rubber, it can be distorted and deformed by the pressing pressure when the upper die 16 and the lower die 18 are lowered or raised, and the printing pressure can be adjusted simultaneously. Since the lower die 18 is provided with positioning pins 21 and the upper die 16 is provided with positioning receiving holes 20 into which the positioning pins 21 can be inserted, the positioning accuracy of the upper die 18 and the lower die 16 is determined by the positioning pins 21. And the positioning receiving holes 20 while being aligned with high accuracy.

真空減圧室19が形成された後に、上型16に下型18をさらに押し付けることで、転写印刷版24が被印刷部材25に着版する。この着版時に、加圧室28にロータリーポンプ接続口8から加圧空気を供給することで、転写印刷版24と被印刷部材25の接触圧を均一にすることができる。   After the vacuum decompression chamber 19 is formed, the lower mold 18 is further pressed against the upper mold 16, so that the transfer printing plate 24 is applied to the printing member 25. By supplying pressurized air from the rotary pump connection port 8 to the pressurizing chamber 28 at the time of the plate-making, the contact pressure between the transfer printing plate 24 and the printing member 25 can be made uniform.

この場合、転写印刷版24を着版の際に、加圧室28の圧力で若干下方に湾曲させるようにすることで、被印刷部材25の中央が転写印刷版24と接触し、その後、徐々に外周側が接触する。これによりより完全に気泡の巻き込みを無くすことが可能となる。   In this case, when the transfer printing plate 24 is fixed, the center of the printing member 25 is brought into contact with the transfer printing plate 24 by being slightly bent downward by the pressure in the pressurizing chamber 28, and thereafter gradually. The outer peripheral side contacts. This makes it possible to completely eliminate the bubble entrainment.

着版後は、光ファイバ4からの紫外線を被印刷部材21上の紫外線硬化樹脂に照射して硬化させる。   After printing, the ultraviolet curable resin on the printing member 21 is irradiated with ultraviolet rays from the optical fiber 4 and cured.

離版時には、加圧室28内を徐々に減圧して排気すると共に、ステージ12を降下させることで、転写印刷版24は、被印刷部材25から剥がれる。この際、転写印刷版24は、その周囲から徐々に被印刷版25から剥がれていくために、容易に剥離することができる。また、加圧室28は、最終的には大気圧まで開放(或いは減圧状態まで)される。   At the time of release of the plate, the inside of the pressurizing chamber 28 is gradually depressurized and exhausted, and the transfer printing plate 24 is peeled off from the printing member 25 by lowering the stage 12. At this time, since the transfer printing plate 24 is gradually peeled off from the printing plate 25 from the periphery thereof, it can be easily peeled off. Further, the pressurizing chamber 28 is finally opened to atmospheric pressure (or to a reduced pressure state).

このように、上型16と下型18とを合わせたときに真空状態とすることが、出来るため、装置がシンプルとなる。   In this way, when the upper die 16 and the lower die 18 are put together, a vacuum state can be obtained, so that the apparatus becomes simple.

次に、図3,図4により本発明の他の実施の形態を説明する。   Next, another embodiment of the present invention will be described with reference to FIGS.

図3,図4は、上型16と下型18のみを示しているが、図1,2と同様に下型18はステージ12に、上型16は、支持アーム16aを介して支柱15に保持されるようになっている。   3 and 4 show only the upper die 16 and the lower die 18, but the lower die 18 is on the stage 12 and the upper die 16 is on the support column 15 via the support arm 16a as in FIGS. It is supposed to be retained.

本実施の形態においては、転写印刷版24aを厚板で形成し、この転写印刷版24aで直接被印刷部材25に着版させるようにしたものである。この例においては、図1、図2に示した加圧室28がないため、よりシンプルな装置とすることが可能となる。   In the present embodiment, the transfer printing plate 24a is formed of a thick plate, and the transfer printing plate 24a is directly attached to the printing target member 25. In this example, since the pressurizing chamber 28 shown in FIGS. 1 and 2 is not provided, a simpler apparatus can be obtained.

(実施例1)
図1、図2に示した転写印刷版実装金型を用い、上型18および下型16に超硬を用い、Oリング17にはシリコーンゴムを用いた。また転写印刷板24には人工石英を用い、この転写印刷板24には幅50ナノメートル、長さ50〜100ナノメータの凸型のドットパターンが形成されている。転写印刷版用人工石英は、直径4インチφ(100mmφ)で厚さが0.50mmである。シリコーンゴム製Oリング17は断面円形で、厚さは直径で8.0mm、またシリコーンゴムの硬度はショア硬度で70である。この転写印刷版用実装金型を用いて、被印刷部材25である、厚さ1.0mm、直径3インチφ(75mmφ)のナノガラスに転写印刷を行った。感光性樹脂には、PMMA(ポリメチルメタクリレート)系の溶剤希釈型感光樹脂を用い、この感光性樹脂をナノガラス上に10μmの厚さで塗布し、溶剤を乾燥させてから基板載置台12に配置した。ナノガラスを配置後、下型18を上昇させて、真空減圧室19を形成させた。上型16と下型8は図2に示すように位置決めピン21が位置決め受け穴20に挿入され、金型の加工精度で合体された。位置決めピン21の位置決め受け穴20に対する繰り返し位置合わせ精度は5μmである。
Example 1
The transfer printing plate mounting mold shown in FIGS. 1 and 2 was used, the upper mold 18 and the lower mold 16 were made of carbide, and the O-ring 17 was made of silicone rubber. Artificial quartz is used for the transfer printing plate 24, and a convex dot pattern having a width of 50 nanometers and a length of 50 to 100 nanometers is formed on the transfer printing plate 24. The artificial quartz for transfer printing plates has a diameter of 4 inches φ (100 mmφ) and a thickness of 0.50 mm. The silicone rubber O-ring 17 has a circular cross section, a thickness of 8.0 mm in diameter, and a silicone rubber hardness of 70 in Shore hardness. Using this transfer printing plate mounting mold, transfer printing was performed on nano glass having a thickness of 1.0 mm and a diameter of 3 inches φ (75 mmφ), which is the member to be printed 25. The photosensitive resin is a PMMA (polymethylmethacrylate) -based solvent-diluted photosensitive resin. This photosensitive resin is coated on the nanoglass to a thickness of 10 μm, and after the solvent is dried, it is placed on the substrate mounting table 12. did. After placing the nanoglass, the lower mold 18 was raised to form a vacuum decompression chamber 19. As shown in FIG. 2, the upper die 16 and the lower die 8 are combined with the mold processing accuracy by inserting the positioning pins 21 into the positioning receiving holes 20. The repeat positioning accuracy of the positioning pin 21 with respect to the positioning receiving hole 20 is 5 μm.

実施例1では下型上昇型の印刷機を用いて印刷を行った。下型18を上昇させて真空減圧室19を形成後、ロータリー真空ポンプによって、真空減圧室19と加圧室28を0.1atm(0.1Kgf/cm2 )まで減圧し、転写印刷版24とナノガラス間および感光樹脂中の内蔵気体を排除した。この状態では、被印刷部材25であるナノガラスと転写印刷版24は接触しておらず、0.05mmのギャップに保持されている。真空減圧室19と加圧室28の間には圧力差はないので、転写印刷版が下に押されて変形することはない。その後加圧室のみ減圧を解除して転写印刷版24を被印刷部材25に押圧した。転写印刷版24は0.5mmと薄いので、変形が可能であり、ナノガラスに転写印刷版24が押し当てられて転写印刷が可能な状態になる。押圧した後、波長365nmの紫外線ランプを用いて、光量10mJで5秒間紫外線を照射した。照射完了後、真空減圧室19の減圧を解除して転写印刷版24をナノガラスから剥がし、その後下型18を降下させて印刷を完了した。真空減圧室19の減圧の解除によって、転写印刷版24とガラス間は0.05mmのギャップに復元するので、転写印刷版24のドットパターンがナノガラスに転写され、良好な印刷結果が得られた。 In Example 1, printing was performed using a lower mold ascent type printing machine. After the lower mold 18 is raised to form the vacuum decompression chamber 19, the vacuum decompression chamber 19 and the pressurization chamber 28 are decompressed to 0.1 atm (0.1 kgf / cm 2 ) by a rotary vacuum pump, The built-in gas between the nanoglasses and in the photosensitive resin was excluded. In this state, the nano glass which is the member to be printed 25 and the transfer printing plate 24 are not in contact with each other and are held in a gap of 0.05 mm. Since there is no pressure difference between the vacuum decompression chamber 19 and the pressurizing chamber 28, the transfer printing plate is not pushed down and deformed. Thereafter, the pressure reduction was released only in the pressurizing chamber, and the transfer printing plate 24 was pressed against the printing member 25. Since the transfer printing plate 24 is as thin as 0.5 mm, it can be deformed, and the transfer printing plate 24 is pressed against the nanoglass so that transfer printing is possible. After pressing, ultraviolet rays were irradiated for 5 seconds at a light amount of 10 mJ using an ultraviolet lamp with a wavelength of 365 nm. After the irradiation was completed, the reduced pressure in the vacuum decompression chamber 19 was released, the transfer printing plate 24 was peeled off from the nanoglass, and then the lower mold 18 was lowered to complete the printing. By releasing the decompression of the vacuum decompression chamber 19, the gap between the transfer printing plate 24 and the glass is restored to a 0.05 mm gap, so that the dot pattern of the transfer printing plate 24 is transferred to the nanoglass, and a good printing result is obtained.

(実施例2)
実施例1のシリコーンゴムOリングに代わりPTFE(フッ素ゴム)製Oリングを用いた。PTFEは耐紫外線材料として知られている。実施例1と同じく良好な印刷結果が得られた。
(Example 2)
Instead of the silicone rubber O-ring of Example 1, a PTFE (fluororubber) O-ring was used. PTFE is known as an ultraviolet resistant material. The same good printing results as in Example 1 were obtained.

(実施例3)
実施例3では、上型16と下型18の金型材料にSUS304のステンレスを用いた。SUS304ステンレスは金型材料としては通常用いられないが、転写印刷版用金型では、切断曲げ、冷間鍛造のように金属を直接加工するものではない。このため機械加工性に優れたステンレスを試験的に採用したが、実施例と同じく良好な結果が得られた。
Example 3
In Example 3, SUS304 stainless steel was used as the mold material for the upper mold 16 and the lower mold 18. SUS304 stainless steel is not usually used as a mold material. However, a transfer printing plate mold does not directly process metal like cutting and bending or cold forging. For this reason, stainless steel excellent in machinability was experimentally adopted, and good results were obtained as in the examples.

(実施例4)
実施例1において、真空減圧室19の減圧も加圧室28と同時に解除して印刷を行った。この場合、加圧室は減圧解除の後、コンプレッサーで2.0atm(2.0Kgf/cm2)まで内圧を上げて、転写印刷版24をナノガラスに押圧した。紫外線を照射した後、電磁バルブを開き加圧室28の加圧を解除して、ナノガラスから転写印刷版24を剥がして印刷を終了した。実施例1と同じく良好な印刷結果が得られた。
Example 4
In Example 1, the vacuum decompression chamber 19 was also decompressed simultaneously with the pressurization chamber 28, and printing was performed. In this case, the pressure chamber was released from the reduced pressure, and the internal pressure was increased to 2.0 atm (2.0 Kgf / cm 2) with a compressor to press the transfer printing plate 24 against the nanoglass. After irradiating with ultraviolet rays, the electromagnetic valve was opened to release the pressurization of the pressurizing chamber 28, and the transfer printing plate 24 was peeled off from the nanoglass to complete the printing. The same good printing results as in Example 1 were obtained.

(実施例5)
図3,図4に示した実装金型を用い、上型16および下型18に超硬を用い、Oリング17にはシリコーンゴムを用いた。また転写印刷板24aには人工石英を用い、この転写印刷板24aには幅50ナノメートル、長さ50〜100ナノメータの凸型のドットパターンが形成されている。転写印刷版用人工石英は、直径4インチφ(100mmφ)で厚さが5.0mmである。シリコーンゴム製Oリング17は断面円形であり、厚さは直径で8.0mm、またシリコーンゴムの硬度はショア硬度で70である。この転写印刷版用実装金型を用いて、被印刷部材25である、厚さ1.0mm、直径3インチφ(75mmφ)のナノガラスに転写印刷を行った。感光性樹脂には、PMMA(ポリメチルメタクリレート)系の溶剤希釈型感光樹脂を用い、この感光性樹脂をナノガラス上に10μmの厚さで塗布し、溶剤を乾燥させてから基板載置台26に配置した。ナノガラスを配置後、下型18を上昇させて、真空減圧室19を形成させた。上型16と下型18は図4に示すように位置決めピン21が位置決め受け穴20に挿入され、金型の加工精度で合体された。位置決めピン21の位置決め受け穴20に対する繰り返し位置合わせ精度は5μmである。
(Example 5)
3 and 4, the upper mold 16 and the lower mold 18 were made of carbide, and the O-ring 17 was made of silicone rubber. Artificial quartz is used for the transfer printing plate 24a, and a convex dot pattern having a width of 50 nanometers and a length of 50 to 100 nanometers is formed on the transfer printing plate 24a. The artificial quartz for transfer printing plates has a diameter of 4 inches φ (100 mmφ) and a thickness of 5.0 mm. The silicone rubber O-ring 17 has a circular cross section, a thickness of 8.0 mm in diameter, and a silicone rubber hardness of 70 in Shore hardness. Using this transfer printing plate mounting mold, transfer printing was performed on nano glass having a thickness of 1.0 mm and a diameter of 3 inches φ (75 mmφ), which is the member to be printed 25. As the photosensitive resin, a PMMA (polymethyl methacrylate) -based solvent-diluted photosensitive resin is used. The photosensitive resin is applied on the nanoglass to a thickness of 10 μm, and after the solvent is dried, the photosensitive resin is placed on the substrate mounting table 26. did. After placing the nanoglass, the lower mold 18 was raised to form a vacuum decompression chamber 19. As shown in FIG. 4, the upper mold 16 and the lower mold 18 are combined with the mold processing accuracy by inserting the positioning pins 21 into the positioning receiving holes 20. The repeat positioning accuracy of the positioning pin 21 with respect to the positioning receiving hole 20 is 5 μm.

実施例5では下型上昇型の印刷機を用いて印刷を行った。下型18を上昇させて真空減圧室19を形成後、ロータリー真空ポンプによって、0.1atm(0.1Kgf/cm2 )まで減圧した。この状態では、被印刷部材であるナノガラスと転写印刷版24aは接触しておらす、0.3mmの距離に保持されている。転写印刷版の厚さは5mmなので大気圧との圧力差で転写印刷版24aが下に押されて変形することはない。この減圧状態によって、転写印刷版24aとナノガラス間、及び感光性樹脂中の微小な内蔵気体が排除される。その後、下型18をさらに上昇させて、ナノガラスを転写印刷版24aが押圧した。押圧した後、波長365nmの紫外線ランプを用いて、光量10mJで5秒間紫外線を照射した。印刷時のステージによる上昇押し圧力は、常時加圧で0.2MPaである。この圧力はおよそ大気圧の2倍に等しく、約2.0Kgf/cm2 である。上型16と下型18の基板載置台26を含めた全体の平坦度は、実測で3μmで加工されており、従って、そのまま上型16と下型18が合体したときの最大ギャップは6μmであるが、下型18を上昇させる駆動軸は、下型18の台座との間で機械的にμmオーダで稼働でき、さらに上型下型間にはOリング17があるため、Oリング17が傾き補正の緩衝材として働き、ナノガラスと転写印刷版24aは常に並行に押圧される。紫外線照射の後、真空減圧室19の減圧を解除し、下型18を降下させてナノガラスを取り出し確認した。人工石英の転写印刷版24aのドットパターンがナノガラスに転写され、良好な印刷結果が得られた。 In Example 5, printing was performed using a lower mold ascent type printing machine. After the lower mold 18 was raised to form a vacuum decompression chamber 19, the pressure was reduced to 0.1 atm (0.1 kgf / cm 2 ) by a rotary vacuum pump. In this state, the nano glass which is a member to be printed and the transfer printing plate 24a are kept in contact with each other at a distance of 0.3 mm. Since the thickness of the transfer printing plate is 5 mm, the transfer printing plate 24a is not pushed and deformed by the pressure difference from the atmospheric pressure. By this reduced pressure state, minute built-in gas between the transfer printing plate 24a and the nano glass and in the photosensitive resin is eliminated. Then, the lower mold | type 18 was raised further and the transfer printing plate 24a pressed nano glass. After pressing, ultraviolet rays were irradiated for 5 seconds at a light amount of 10 mJ using an ultraviolet lamp with a wavelength of 365 nm. The upward pressing force by the stage at the time of printing is 0.2 MPa by constant pressure. This pressure is approximately equal to twice the atmospheric pressure and is about 2.0 Kgf / cm 2 . The overall flatness of the upper mold 16 and the lower mold 18 including the substrate mounting table 26 is actually measured to be 3 μm. Therefore, the maximum gap when the upper mold 16 and the lower mold 18 are combined is 6 μm. However, the drive shaft for raising the lower mold 18 can be mechanically operated with the base of the lower mold 18 on the order of μm, and the O-ring 17 is provided between the upper and lower molds. It works as a buffer material for tilt correction, and the nanoglass and the transfer printing plate 24a are always pressed in parallel. After the ultraviolet irradiation, the vacuum in the vacuum decompression chamber 19 was released, the lower mold 18 was lowered, and the nanoglass was taken out and confirmed. The dot pattern of the artificial quartz transfer printing plate 24a was transferred to the nanoglass, and good printing results were obtained.

(実施例6)
実施例5のシリコーンゴムOリングに代わりPTFE(フッ素ゴム)製Oリング17を用いた。PTFEは耐紫外線材料として知られている。実施例5と同じく良好な印刷結果が得られた。
(Example 6)
Instead of the silicone rubber O-ring of Example 5, an O-ring 17 made of PTFE (fluororubber) was used. PTFE is known as an ultraviolet resistant material. Good printing results were obtained as in Example 5.

(実施例7)
実施例7では、上型16と下型18の金型材料にSUS304のステンレスを用いた。SUS304ステンレスは金型材料としては通常用いられないが、転写印刷版用金型では、切断曲げ、冷間鍛造のように金属を直接加工するものではない。このため機械加工性に優れたステンレスを試験的に採用したが、実施例5と同じく良好な結果が得られた。
(Example 7)
In Example 7, SUS304 stainless steel was used as the mold material for the upper mold 16 and the lower mold 18. SUS304 stainless steel is not usually used as a mold material. However, a transfer printing plate mold does not directly process metal like cutting and bending or cold forging. For this reason, stainless steel excellent in machinability was experimentally adopted, and good results were obtained as in Example 5.

(実施例8)
実施例5において、紫外線照射後、すぐに減圧状態を解除せずに、減圧状態を維持しながら、ステッピングモータで下型を0.1mm降下させ、転写印刷版から被印刷部材25であるナノガラスを剥がした。この状態では、まだシリコーンゴムリング17は上型16と下型18の間で加圧されているので、減圧状態は維持されている。この条件では減圧状態で転写印刷版24aをナノガラスから剥がすことになるが、実施例5に同じく良好な印刷結果が得られた。
(Example 8)
In Example 5, without releasing the reduced pressure state immediately after the ultraviolet irradiation, the lower mold is lowered by 0.1 mm with a stepping motor while maintaining the reduced pressure state, and the nano glass as the printing member 25 is transferred from the transfer printing plate. I peeled it off. In this state, since the silicone rubber ring 17 is still pressurized between the upper die 16 and the lower die 18, the reduced pressure state is maintained. Under these conditions, the transfer printing plate 24a was peeled off from the nanoglass in a reduced pressure state, but the same good printing results as in Example 5 were obtained.

(実施例9)
実施例5において、真空減圧室19の減圧状態を解除してから紫外線照射を行った。この状態でも実施例5と同じく良好な印刷結果が得られた。
Example 9
In Example 5, ultraviolet irradiation was performed after releasing the vacuum state of the vacuum vacuum chamber 19. Even in this state, the same good printing results as in Example 5 were obtained.

本発明の転写印刷用実装金型の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the mounting die for transfer printing of this invention. 図1において、実装金型の上部金型と下部金型を合体させたときの断面図である。In FIG. 1, it is sectional drawing when the upper mold and lower mold of a mounting mold are united. 本発明の転写印刷用実装金型の他の実施の形態を示す要部断面図であるIt is principal part sectional drawing which shows other embodiment of the mounting die for transfer printing of this invention. 図3において、実装金型の上部金型と下部金型を合体させたときの断面図である。In FIG. 3, it is sectional drawing when the upper mold and lower mold of a mounting mold are united. 従来の転写印刷用実装金型の断面図である。It is sectional drawing of the conventional mounting die for transfer printing.

符号の説明Explanation of symbols

16 上型
17 Oリング(シール部材)
18 下型
19 真空減圧室
24 転写印刷版
25 被印刷部材
16 Upper mold 17 O-ring (seal member)
18 Lower mold 19 Vacuum decompression chamber 24 Transfer printing plate 25 Printed material

Claims (8)

凹凸が形成された転写印刷版を被印刷部材に真空下で押し付けて被印刷部材に転写印刷版の凹凸形状を転写する転写印刷版用実装金型において、転写印刷版と被印刷部材とのいずれかを保持する上型と下型に、その上型と下型を合わせたときに真空減圧室を形成したことを特徴とする転写印刷版用実装金型。   In a transfer printing plate mounting mold for transferring the uneven shape of the transfer printing plate to the printing member by pressing the transfer printing plate on which the unevenness is formed to the printing member under vacuum, either the transfer printing plate or the printing member A mounting mold for a transfer printing plate, wherein a vacuum decompression chamber is formed when an upper mold and a lower mold are combined with an upper mold and a lower mold for holding the above. 下型に、被印刷部材を保持する基板載置台が設けられ、上型に転写印刷版が保持され、下型と上型の合わせ面にOリングなどのシール部材が設けられ、下型と上型とが合わされたとき、そのシール部材により上型と下型内に真空減圧室が形成される請求項1記載の転写印刷版用実装金型。   The lower mold is provided with a substrate mounting table for holding a printing member, the upper mold is held with a transfer printing plate, and a sealing member such as an O-ring is provided on the mating surface of the lower mold and the upper mold. 2. The mounting mold for a transfer printing plate according to claim 1, wherein when the mold is combined, a vacuum decompression chamber is formed in the upper mold and the lower mold by the sealing member. シール部材で上型と下型とがシールされて真空減圧室が形成された後、上型と下型がさらに合わされた時に転写印刷版が被印刷部材に着版される請求項2記載の転写印刷版用実装金型。   3. The transfer according to claim 2, wherein after the upper die and the lower die are sealed by the sealing member to form the vacuum decompression chamber, the transfer printing plate is attached to the printing member when the upper die and the lower die are further combined. Mounting mold for printing plate. 上型には、変形可能な転写印刷版が保持され、上型に、その転写印刷版を被印刷部材に押し付ける加圧室が形成される請求項3記載の転写印刷版用実装金型。   The mounting mold for a transfer printing plate according to claim 3, wherein a deformable transfer printing plate is held in the upper mold, and a pressurizing chamber for pressing the transfer printing plate against a member to be printed is formed in the upper mold. 上型には、剛性のある転写印刷版が保持され、転写印刷版が被印刷部材に着版される請求項3記載の転写印刷版用実装金型。   The mounting mold for a transfer printing plate according to claim 3, wherein a rigid transfer printing plate is held on the upper die, and the transfer printing plate is attached to a member to be printed. 凹凸が形成された転写印刷版を被印刷部材に真空下で押し付けて被印刷部材に転写印刷版の凹凸形状を転写する転写印刷方法において、転写印刷版と被印刷部材とのいずれかを保持する上型と下型を合わせたときに密閉空間を形成し、その密閉空間を真空排気した後、転写印刷版を被印刷部材に着版させることを特徴とする転写印刷方法。   In a transfer printing method for transferring a concavo-convex shape of a transfer printing plate to a member to be printed by pressing the transfer printing plate on which the concavo-convex is formed in a vacuum, holding either the transfer printing plate or the member to be printed A transfer printing method comprising: forming a sealed space when an upper mold and a lower mold are combined, evacuating the sealed space, and then depositing a transfer printing plate on a member to be printed. 着版後、転写印刷版の背面を空気圧で加圧して、転写印刷版を被印刷部材に押し付ける請求項6記載の転写印刷方法。   The transfer printing method according to claim 6, wherein, after the plate is attached, the back surface of the transfer printing plate is pressurized with air pressure to press the transfer printing plate against a member to be printed. 着版して転写印刷版の凹凸を被印刷部材に転写した後、密閉空間の真空状態を解除させ、その後転写印刷版を被印刷部材から離版させる請求項6記載の転写印刷方法。
The transfer printing method according to claim 6, wherein after the plate is transferred and the unevenness of the transfer printing plate is transferred to the member to be printed, the vacuum state of the sealed space is released, and then the transfer printing plate is released from the member to be printed.
JP2004198431A 2004-07-05 2004-07-05 Mold for mounting transfer printing plate and transfer printing method Pending JP2006018977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198431A JP2006018977A (en) 2004-07-05 2004-07-05 Mold for mounting transfer printing plate and transfer printing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198431A JP2006018977A (en) 2004-07-05 2004-07-05 Mold for mounting transfer printing plate and transfer printing method

Publications (1)

Publication Number Publication Date
JP2006018977A true JP2006018977A (en) 2006-01-19

Family

ID=35793093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198431A Pending JP2006018977A (en) 2004-07-05 2004-07-05 Mold for mounting transfer printing plate and transfer printing method

Country Status (1)

Country Link
JP (1) JP2006018977A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105474A1 (en) * 2006-03-10 2007-09-20 Pioneer Corporation Imprinting method and imprinting apparatus
JP2011005845A (en) * 2009-06-26 2011-01-13 Minuta Technology Substrate vacuum forming device and vacuum forming method
JP2011020272A (en) * 2009-07-13 2011-02-03 Toshiba Mach Co Ltd Transfer device and transfer method
JP2012220346A (en) * 2011-04-08 2012-11-12 Institute Of National Colleges Of Technology Japan Hardness tester and imprint device
WO2013077386A1 (en) * 2011-11-25 2013-05-30 Scivax株式会社 Imprinting device and imprinting method
WO2013122109A1 (en) * 2012-02-14 2013-08-22 Scivax株式会社 Imprint device and imprint method
US10343312B2 (en) 2012-08-27 2019-07-09 Scivax Corporation Imprint device and imprint method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105474A1 (en) * 2006-03-10 2007-09-20 Pioneer Corporation Imprinting method and imprinting apparatus
JPWO2007105474A1 (en) * 2006-03-10 2009-07-30 パイオニア株式会社 Imprint method and imprint apparatus
JP4642897B2 (en) * 2006-03-10 2011-03-02 パイオニア株式会社 Imprint method and imprint apparatus
JP2011005845A (en) * 2009-06-26 2011-01-13 Minuta Technology Substrate vacuum forming device and vacuum forming method
JP2011020272A (en) * 2009-07-13 2011-02-03 Toshiba Mach Co Ltd Transfer device and transfer method
JP2012220346A (en) * 2011-04-08 2012-11-12 Institute Of National Colleges Of Technology Japan Hardness tester and imprint device
WO2013077386A1 (en) * 2011-11-25 2013-05-30 Scivax株式会社 Imprinting device and imprinting method
JPWO2013077386A1 (en) * 2011-11-25 2015-04-27 Scivax株式会社 Imprint apparatus and imprint method
US9606431B2 (en) 2011-11-25 2017-03-28 Scivax Corporation Imprinting device and imprinting method
WO2013122109A1 (en) * 2012-02-14 2013-08-22 Scivax株式会社 Imprint device and imprint method
US10343312B2 (en) 2012-08-27 2019-07-09 Scivax Corporation Imprint device and imprint method

Similar Documents

Publication Publication Date Title
JP3889386B2 (en) Imprint apparatus and imprint method
JP5117318B2 (en) Nanoimprinting stamper and fine structure transfer apparatus using the stamper
JP5163929B2 (en) Imprint method and apparatus
JP4886400B2 (en) Imprint apparatus and imprint method
TWI573685B (en) Nanoimprinting method and nanoimprinting apparatus for executing the nanoimprinting method
WO2007094213A1 (en) Imprinting device and imprinting method
JP5036322B2 (en) System, method and apparatus for membrane, pad and stamper structures that achieve uniform base layer and nanoimprint pressure
JP4290174B2 (en) Method of manufacturing member having pattern, pattern transfer device and mold
JP2010049745A (en) Mold for nano-imprint, and magnetic recording medium fabricated by using the same
WO2007099907A1 (en) Imprinting mold and method of imprinting
JP2006326927A (en) Imprinting device and fine structure transferring method
JP2010280065A (en) Fine structure transfer device
JP2007194304A (en) Imprinting device and imprinting method
EP1497102A1 (en) Device and method for transferring a pattern to a substrate
WO2011077882A1 (en) Double-side imprint device
JP2013219230A (en) Nanoimprint method and nanoimprint device
JP2006018977A (en) Mold for mounting transfer printing plate and transfer printing method
JP5416420B2 (en) Microstructure transfer device
WO2012066864A1 (en) Double-side imprinting apparatus
JP4441675B2 (en) Transfer printing machine and transfer printing method
JP2011005773A (en) Stamper for imprint and imprint device
JP4542382B2 (en) Transfer printing plate holding structure
JP2010267357A (en) Method and device for manufacturing patterned medium
JP2008276907A (en) Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
JP5752889B2 (en) Transfer method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212