JP2006017830A - Optical system and optical head device - Google Patents

Optical system and optical head device Download PDF

Info

Publication number
JP2006017830A
JP2006017830A JP2004193166A JP2004193166A JP2006017830A JP 2006017830 A JP2006017830 A JP 2006017830A JP 2004193166 A JP2004193166 A JP 2004193166A JP 2004193166 A JP2004193166 A JP 2004193166A JP 2006017830 A JP2006017830 A JP 2006017830A
Authority
JP
Japan
Prior art keywords
lens
group
line
abbe number
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004193166A
Other languages
Japanese (ja)
Inventor
Hiroshi Koizumi
小泉  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004193166A priority Critical patent/JP2006017830A/en
Publication of JP2006017830A publication Critical patent/JP2006017830A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system which can sufficiently correct aberration induced by wavelength variation. <P>SOLUTION: The optical system 10 is temperature-compensated such that a lens holder 40 holding a lens group for collimation and a light source 30 or a light receiving part are supported by one supporting member 20 and changes in a synthesized focal length of a lens group due to changes in the refractive index and linear expansion of each lens by temperature change are controlled to be equal to the changes in the linear expansion of the supporting member in a direction of the optical axis caused by the temperature change. The lens group for collimation is composed of a front group FG having positive refractive power and a rear group having positive refractive power, wherein the front group consists of a first lens L1 which is a convex lens and a second lens L2 which is a concave lens, and the rear group consists of a third lens L3 which is a convex lens and a fourth lens L4 which is a concave lens. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は新規な光学系及び光学ヘッド装置に関する。詳しくは、コリメート用のレンズ群と光源又は受光部を含む光学系及び光学ヘッド装置において、温度変化に起因する性能劣化を防止するための技術に関する。   The present invention relates to a novel optical system and optical head device. More specifically, the present invention relates to a technique for preventing performance deterioration due to temperature change in an optical system and an optical head device including a collimating lens group and a light source or a light receiving unit.

高密度・大容量光ディスクへの市場の要望から、405nm付近を中心波長とする青紫色LD(レーザダイオード)を用い、開口数(NA)0.85の高開口数対物レンズを用いた光ディスクシステムが近年実用化されている。この光ディスクシステムは赤外線LDや赤色LDを用いた従来の光ディスクシステムに比べ高い部品精度や高い組付け精度が要求されている。   In response to market demand for high-density, large-capacity optical disks, optical disk systems using blue-violet LDs (laser diodes) centered around 405 nm and high numerical aperture objective lenses with a numerical aperture (NA) of 0.85 It has been put into practical use in recent years. This optical disc system is required to have higher component accuracy and higher assembly accuracy than conventional optical disc systems using infrared LDs and red LDs.

また、一方で、近年光ディスク装置に対する小型化の要望が強く、小型化したために放熱性が悪化して内部温度の上昇を招いている。また、青紫色LDは従来の赤外線LDや赤色LDに比べ駆動電圧が高いことや、高密度化のため高速で駆動する必要から駆動用ICの発熱が従来よりも大きいことなどが内部温度を更に上昇させる要因となっている。   On the other hand, in recent years, there has been a strong demand for miniaturization of optical disc apparatuses, and since the miniaturization has been achieved, the heat dissipation has deteriorated and the internal temperature has risen. In addition, the blue-violet LD has a higher driving voltage than the conventional infrared LD and red LD, and it is necessary to drive at a high speed for higher density, so that the heat generated by the driving IC is larger than the conventional temperature. It is a factor to raise.

光ディスク装置に使われる光源として主にLDが使われているが、一般にLDは温度によってその発振波長が変化する。特に、本発明が想定している青紫色LDでは1℃の温度上昇で0.06〜0.08nm程度発振波長が長波長側にシフトする。また、光ディスクでは信号の再生時と記録時でLDの光出力が異なるが、このときも発振波長が数nm長波長側にシフトする。このため、光ディスクシステムの光学系では温度補償時も含め波長変動により生じる収差(色収差)を補正することが必須である。   An LD is mainly used as a light source used in an optical disk device. In general, the oscillation wavelength of an LD varies depending on temperature. In particular, in the blue-violet LD assumed in the present invention, the oscillation wavelength shifts to the long wavelength side by about 0.06 to 0.08 nm with a temperature increase of 1 ° C. Further, in the optical disc, the optical output of the LD differs between signal reproduction and recording, but at this time, the oscillation wavelength is shifted to the long wavelength side by several nm. For this reason, in an optical system of an optical disc system, it is essential to correct aberrations (chromatic aberrations) caused by wavelength fluctuations, including during temperature compensation.

特許文献1には、温度補償された光学系が示されている。   Patent Document 1 shows an optical system that is temperature-compensated.

特開2003−177295号公報JP 2003-177295 A

しかしながら、特許文献1に示された発明は上記の波長変動により生じる収差を十分に補正しているとは言い難い。実用的な波長変動範囲を±7nm程度としたとき、焦点位置の変動は最大でも0.5μm程度であることが望ましいが、特許文献1に示された発明による実施例ではもっとも変動の小さいものでも1.9μmにもなっていて、青紫色LDを使用する場合に十分に実用的であるとは言い難い。   However, it cannot be said that the invention disclosed in Patent Document 1 sufficiently corrects the aberration caused by the above-described wavelength fluctuation. When the practical wavelength fluctuation range is about ± 7 nm, it is desirable that the fluctuation of the focal position is about 0.5 μm at the maximum. However, even in the embodiment according to the invention disclosed in Patent Document 1, the fluctuation is the smallest. It is 1.9 μm, and it is difficult to say that it is sufficiently practical when using a blue-violet LD.

そこで、本発明は波長変動により生じる収差を十分に補正した光学系を提供することを課題とする。   Therefore, an object of the present invention is to provide an optical system in which aberrations caused by wavelength fluctuations are sufficiently corrected.

本発明光学系は、上記した課題を解決するために、コリメート用のレンズ群を保持したレンズホルダと光源又は受光部とが同一の支持部材により支持されていて、温度変化により発生する支持部材の光軸方向の線膨張変化分に対して、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化分が等しくなるように温度補償されると共に、コリメート用のレンズ群が正の屈折力を有する前群と正の屈折力を有する後群により構成され、前群は凸レンズである第1レンズと凹レンズである第2レンズから構成され、後群は凸レンズである第3レンズと凹レンズである第4レンズから構成されている。   In the optical system of the present invention, in order to solve the above-described problem, the lens holder that holds the collimating lens group and the light source or the light receiving unit are supported by the same support member, and the support member that is generated due to a temperature change is provided. The temperature is compensated so that the change in refractive index of each lens due to temperature change and the change in the combined focal length of the lens group due to change in linear expansion are equal to the change in linear expansion in the optical axis direction. The group includes a front group having a positive refractive power and a rear group having a positive refractive power. The front group includes a first lens that is a convex lens and a second lens that is a concave lens, and the rear group is a convex lens. It is composed of three lenses and a fourth lens which is a concave lens.

また、本発明光学ヘッド装置は、上記した課題を解決するために、記録媒体に対する信号の読取又は記録を行うために、光源又は受光部と、コリメート用のレンズ群を備え、コリメート用のレンズ群を保持したレンズホルダと光源又は受光部とが同一の支持部材により支持されていて、温度変化により発生する支持部材の光軸方向の線膨張変化分に対して、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化分が等しくなるように温度補償されると共に、コリメート用のレンズ群が正の屈折力を有する前群と正の屈折力を有する後群により構成され、前群は凸レンズである第1レンズと凹レンズである第2レンズから構成され、後群は凸レンズである第3レンズと凹レンズである第4レンズから構成されている。   In order to solve the above-described problems, the optical head device of the present invention includes a light source or a light receiving unit and a collimating lens group for reading or recording a signal on a recording medium, and the collimating lens group. The lens holder and the light source or light receiving unit are supported by the same support member, and the refractive index of each lens due to the temperature change with respect to the linear expansion change in the optical axis direction of the support member caused by the temperature change Temperature compensation is performed so that the amount of change in the combined focal length of the lens group due to change and linear expansion change is equal, and the collimating lens group has a positive refractive power and a rear group having positive refractive power. The front group is composed of a first lens that is a convex lens and a second lens that is a concave lens, and the rear group is composed of a third lens that is a convex lens and a fourth lens that is a concave lens. To have.

従って、本発明にあっては、温度変化により発生する支持部材の光軸方向の線膨張変化が、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化によってほぼ相殺され、また、温度変化による波長変動に伴う焦点距離の変動を実用的な範囲に抑えると共に、収差、特に、色収差の補正が効果的に為される。   Therefore, in the present invention, the linear expansion change in the optical axis direction of the support member caused by the temperature change is almost due to the change in the refractive index of each lens due to the temperature change and the change in the combined focal length of the lens group due to the linear expansion change. In addition, the focal length variation accompanying the wavelength variation due to the temperature change is suppressed to a practical range, and aberrations, in particular, chromatic aberration is effectively corrected.

本発明光学系は、コリメート用のレンズ群を保持したレンズホルダと光源又は受光部とが同一の支持部材により支持されていて、温度変化により発生する支持部材の光軸方向の線膨張変化分に対して、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化分が等しくなるように温度補償された光学系において、コリメート用のレンズ群が正の屈折力を有する前群と正の屈折力を有する後群により構成され、前群は凸レンズである第1レンズと凹レンズである第2レンズから構成され、後群は凸レンズである第3レンズと凹レンズである第4レンズから構成されることを特徴とする。   In the optical system of the present invention, the lens holder holding the collimating lens group and the light source or the light receiving unit are supported by the same support member, and the amount of linear expansion change in the optical axis direction of the support member caused by temperature change is reduced. On the other hand, in a temperature-compensated optical system in which the change in the refractive index of each lens due to temperature change and the change in the combined focal length of the lens group due to linear expansion change are equal, the collimating lens group has a positive refractive power. The front group includes a first lens that is a convex lens and a second lens that is a concave lens, and the rear group is a third lens that is a convex lens and a concave lens. It is composed of four lenses.

また、本発明光学ヘッド装置は、記録媒体に対する信号の読取又は記録を行うために、光源又は受光部と、コリメート用のレンズ群を備え、コリメート用のレンズ群を保持したレンズホルダと光源又は受光部とが同一の支持部材により支持されていて、温度変化により発生する支持部材の光軸方向の線膨張変化分に対して、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化分が等しくなるように温度補償された光学ヘッド装置において、コリメート用のレンズ群が正の屈折力を有する前群と正の屈折力を有する後群により構成され、前群は凸レンズである第1レンズと凹レンズである第2レンズから構成され、後群は凸レンズである第3レンズと凹レンズである第4レンズから構成されることを特徴とする。   In addition, the optical head device of the present invention includes a light source or a light receiving unit and a collimating lens group, and a lens holder holding the collimating lens group and the light source or light receiving in order to read or record a signal on the recording medium. Are supported by the same support member, and the change in refractive index of each lens due to temperature change and the change in lens expansion due to change in linear expansion with respect to the change in linear expansion in the optical axis direction of the support member caused by temperature change. In an optical head device that is temperature-compensated so that the amount of change in the combined focal length is equal, the collimating lens group is composed of a front group having a positive refractive power and a rear group having a positive refractive power. The first lens is a convex lens and the second lens is a concave lens, and the rear group is a third lens that is a convex lens and a fourth lens that is a concave lens. To.

従って、本発明にあっては、温度変化により発生する支持部材の光軸方向の線膨張変化が、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化によってほぼ相殺され、また、温度変化による波長変動に伴う焦点距離の変動を実用的な範囲に抑えると共に、収差、特に、色収差の補正が効果的に為される。   Therefore, in the present invention, the linear expansion change in the optical axis direction of the support member caused by the temperature change is almost due to the change in the refractive index of each lens due to the temperature change and the change in the combined focal length of the lens group due to the linear expansion change. In addition, the focal length variation accompanying the wavelength variation due to the temperature change is suppressed to a practical range, and aberrations, in particular, chromatic aberration is effectively corrected.

請求項2及び請求項12に記載した発明にあっては、上記凸レンズにおける屈折率の温度変化率をdN(凸)/dT 、上記凹レンズにおける屈折率の温度変化率をdN(凹)/dT として、条件式(1)dN(凸)/dT < 1.2×10−6/℃及び(2)dN(凹)/dT > 5.7×10−6/℃を満足するので、レンズ全体の温度変動による焦点距離の変動量を支持部材の温度変動による伸縮量と概ね一致させて良好な温度補償を行うことができる。 In the invention described in claims 2 and 12, the temperature change rate of the refractive index in the convex lens is dN (convex) / dT, and the temperature change rate of the refractive index in the concave lens is dN (concave) / dT. Since the conditional expression (1) dN (convex) / dT <1.2 × 10 −6 / ° C. and (2) dN (concave) / dT> 5.7 × 10 −6 / ° C. is satisfied, the focal point due to the temperature variation of the entire lens Good temperature compensation can be performed by making the variation amount of the distance substantially coincide with the expansion / contraction amount due to the temperature variation of the support member.

請求項3、請求項4、請求項13及び請求項14に記載した発明にあっては、上記支持部材における屈折率の温度変化率をdN(base)/dTとして、条件式(3)0.253 < (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT) < 0.367を満足するので、レンズ全体の温度変動による焦点距離の変動量を支持部材の温度変動による伸縮量と概ね一致させて良好な温度補償を行うことができる。   In the invention described in claim 3, claim 4, claim 13, and claim 14, the temperature change rate of the refractive index in the support member is defined as dN (base) / dT, and conditional expression (3) 0.253 < Since (dN (concave) / dT-dN (convex) / dT) / (dN (base) / dT) <0.367 is satisfied, the amount of focal length variation due to temperature variation of the entire lens is expanded or contracted due to temperature variation of the support member. Good temperature compensation can be performed in general with the amount.

請求項5、請求項6、請求項15及び請求項16に記載した発明にあっては、上記凹レンズのd線におけるアッベ数をνdn、上記凸レンズのd線におけるアッベ数をνdp、各レンズのd線におけるアッベ数の比をνdn/νdpとして、条件式(4)0.54 < νdn/νdp < 0.79を満足するので、色収差の補正が良好に為される。   In the invention described in claim 5, claim 6, claim 15 and claim 16, the Abbe number of the concave lens at the d-line is νdn, the Abbe number of the convex lens at the d-line is νdp, and the d of each lens The conditional expression (4) 0.54 <νdn / νdp <0.79 is satisfied where the Abbe number ratio in the line is νdn / νdp, so that the chromatic aberration is corrected well.

請求項7、請求項8、請求項17及び請求項18に記載した発明にあっては、前群の凹レンズのd線におけるアッベ数をνdfn、前群の凸レンズのd線におけるアッベ数をνdfp、後群の凹レンズのd線におけるアッベ数をνdrn、後群の凸レンズのd線におけるアッベ数をνdrpとして、条件式(5)νdfn/νdfp < νdrn/νdrpを満足するので、色収差及び球面収差の補正が良好に為される。   In the invention described in claim 7, claim 8, claim 17 and claim 18, the Abbe number in the d-line of the concave lens in the front group is νdfn, the Abbe number in the d-line of the convex lens in the front group is νdfp, Conditional expression (5) νdfn / νdfp <νdrn / νdrp is satisfied, where νdrn is the Abbe number of the rear group concave lens at the d-line and νdrp is the Abbe number of the rear lens group convex lens. Is made well.

請求項9、請求項10、請求項19及び請求項20に記載した発明にあっては、前群の焦点距離をf(front)、後群の焦点距離をf(rear)として、条件式(6)0.24 < f(rear)/f(front) < 0.49を満足するので、色収差が良好に補正されると共に必要な焦点距離が確保される。   In the invention described in claim 9, claim 10, claim 19 and claim 20, the focal length of the front group is f (front) and the focal length of the rear group is f (rear). 6) Since 0.24 <f (rear) / f (front) <0.49 is satisfied, the chromatic aberration is corrected well and the necessary focal length is secured.

以下に、本発明を実施するための最良の形態について添付図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1に本発明にかかる光学系10の構成を示す。   FIG. 1 shows a configuration of an optical system 10 according to the present invention.

光学系10は、支持部材20に支持された光源30と上記支持部材20にレンズホルダ40を介して支持されたコリメータレンズ50とを備える。   The optical system 10 includes a light source 30 supported by a support member 20 and a collimator lens 50 supported by the support member 20 via a lens holder 40.

コリメータレンズ50は、光源30から出射された発散光線を平行光にして出射するするもので、出射側に位置した前群FGと入射側に位置した後群RGとの2群で構成されている。前群FGは出射(平行光)側から順に位置した両凸レンズの第1レンズL1と出射側に凹面を向けた負メニスカスレンズの第2レンズL2との接合レンズで構成され、後群RGは出射側から順に位置した両凸レンズの第3レンズL3と出射側に凹面を向けた負メニスカスレンズの第4レンズL4との接合レンズで構成されている。   The collimator lens 50 emits divergent light emitted from the light source 30 as parallel light, and is composed of two groups of a front group FG located on the emission side and a rear group RG located on the incident side. . The front group FG is composed of a cemented lens of a first lens L1 of a biconvex lens positioned in order from the output (parallel light) side and a second lens L2 of a negative meniscus lens having a concave surface facing the output side, and the rear group RG is output. It is composed of a cemented lens composed of a third lens L3 of a biconvex lens positioned in order from the side and a fourth lens L4 of a negative meniscus lens having a concave surface facing the exit side.

光源30は、ここではレーザダイオード(LD)が使用されており、パッケージ31内に配置されたレーザダイオード32の前面がカバーガラス33によって覆われている。   Here, a laser diode (LD) is used as the light source 30, and the front surface of the laser diode 32 disposed in the package 31 is covered with a cover glass 33.

そして、上記コリメータレンズ50は、上記したように、レンズホルダ40により保持され、光源30の放射角に合わせて、コリメータレンズ50からの出射光線が平行光となるように光源30とコリメータレンズ50との間の間隔を調整し、レンズホルダ40及び光源30が支持部材20に固定される。   The collimator lens 50 is held by the lens holder 40 as described above, and the light source 30 and the collimator lens 50 are arranged so that the emitted light from the collimator lens 50 becomes parallel light in accordance with the radiation angle of the light source 30. The lens holder 40 and the light source 30 are fixed to the support member 20.

温度変化により支持部材20及びレンズホルダ40はそれぞれの線膨張係数に従って膨張、収縮する。このため、コリメータレンズ50と光源30との間の間隔も支持部材20及びレンズホルダ40の線膨張係数と温度の変化量で決まる長さだけ伸び縮みする。   Due to the temperature change, the support member 20 and the lens holder 40 expand and contract according to their respective linear expansion coefficients. For this reason, the distance between the collimator lens 50 and the light source 30 also expands and contracts by a length determined by the linear expansion coefficient of the support member 20 and the lens holder 40 and the amount of change in temperature.

一方、温度変化により各レンズL1、L2、L3、L4はそれぞれの線膨張係数に従って膨張、収縮し、屈折率もその硝材固有の温度変化率にしたがって変化する。このため、コリメータレンズ50の焦点距離は温度の変化量と線膨張係数、屈折率の温度変化率に従って変化する。本発明では支持部材20及びレンズホルダ40の膨張、収縮によるコリメータレンズ50と光源30との間の間隔の変化と、レンズの膨張、収縮および屈折率の変化による焦点距離の変化が概ね一致するように設計してある。   On the other hand, each lens L1, L2, L3, L4 expands and contracts according to the respective linear expansion coefficient due to temperature change, and the refractive index also changes according to the temperature change rate specific to the glass material. For this reason, the focal length of the collimator lens 50 changes according to the temperature change rate, the linear expansion coefficient, and the temperature change rate of the refractive index. In the present invention, the change in the distance between the collimator lens 50 and the light source 30 due to the expansion and contraction of the support member 20 and the lens holder 40 and the change in the focal length due to the expansion and contraction of the lens and the change in the refractive index almost coincide with each other. Designed.

本発明では上記凹レンズL2、L4に屈折率の温度変化率が大きい硝材を用い、凸レンズL1、L3に屈折率の温度変化率が小さい硝材又は負の温度変化率の硝材を用いることで、レンズ全体の温度変動による焦点距離の変動量を支持部材の温度変動による伸縮量と概ね一致させて温度補償を行っている。そのため、上記凸レンズL1、L3における屈折率の温度変化率をdN(凸)/dT 、上記凹レンズL2、L4における屈折率の温度変化率をdN(凹)/dT として、以下の条件式(1)及び(2)を満足することが望ましい。   In the present invention, a glass material having a large refractive index temperature change rate is used for the concave lenses L2 and L4, and a glass material having a low refractive index temperature change rate or a negative temperature change rate glass material is used for the convex lenses L1 and L3. The temperature compensation is performed by making the amount of change in the focal length due to the temperature variation substantially equal to the amount of expansion / contraction due to the temperature variation of the support member. Therefore, assuming that the temperature change rate of the refractive index in the convex lenses L1 and L3 is dN (convex) / dT and the temperature change rate of the refractive index in the concave lenses L2 and L4 is dN (concave) / dT, the following conditional expression (1) And it is desirable to satisfy (2).

(1)dN(凸)/dT < 1.2×10−6/℃
(2)dN(凹)/dT > 5.7×10−6/℃
条件式(1)において、dN(凸)/dT が1.2×10−6/℃を上回ると、コリメータレンズ50全体の焦点距離の変動量が小さくなり、また、条件式(2)において、dN(凹)/dTが 5.7×10−6/℃を下回るとコリメータレンズ50全体の焦点距離の変動量が大きくなり、いずれの場合も十分な温度補償が出来なくなる。
(1) dN (convex) / dT <1.2 × 10 −6 / ° C
(2) dN (concave) / dT> 5.7 × 10 −6 / ° C
In the conditional expression (1), when dN (convex) / dT exceeds 1.2 × 10 −6 / ° C., the fluctuation amount of the focal length of the entire collimator lens 50 becomes small, and in the conditional expression (2), dN ( If (concave) / dT is less than 5.7 × 10 −6 / ° C., the amount of variation in the focal length of the entire collimator lens 50 becomes large, and in either case, sufficient temperature compensation cannot be performed.

また、上記支持部材20における屈折率の温度変化率をdN(base)/dTとして、下記条件式(3)を満足することが望ましい。   Further, it is desirable that the following conditional expression (3) is satisfied, where dN (base) / dT is the temperature change rate of the refractive index in the support member 20.

(3)0.253 < (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT) < 0.367
条件式(3)の上限を超えるとコリメータレンズ50全体の焦点距離の変動量が支持部材20の伸縮量よりも大きくなり、下限を下回るとコリメータレンズ50全体の焦点距離の変動量が支持部材20の伸縮量よりも小さくなり、いずれの場合も十分な温度補償が出来なくなる。
(3) 0.253 <(dN (concave) / dT-dN (convex) / dT) / (dN (base) / dT) <0.367
When the upper limit of conditional expression (3) is exceeded, the amount of fluctuation of the focal length of the entire collimator lens 50 becomes larger than the amount of expansion / contraction of the support member 20. The amount of expansion / contraction becomes smaller than that, and in either case, sufficient temperature compensation cannot be performed.

上記条件式(1)、(2)、(3)を満足することにより、コリメータレンズ50と光源30との間の間隔の変化とレンズの焦点距離の変化との差を温度差50℃で4μm以下に抑えることができる。   By satisfying the above conditional expressions (1), (2), and (3), the difference between the change in the distance between the collimator lens 50 and the light source 30 and the change in the focal length of the lens is 4 μm at a temperature difference of 50 ° C. The following can be suppressed.

温度変化に基づく光源30の波長変動によって発生する色収差に関して、本発明では、異なるアッベ数の硝材で構成した接合レンズにより補正するようにしている。すなわち、上記凸レンズで構成された第1、第3レンズL1、L3にアッベ数の大きな硝材を使用し、凹レンズで構成された第2、第4レンズL2、L4にアッベ数の小さな硝材を使用している。   In the present invention, the chromatic aberration caused by the wavelength variation of the light source 30 based on the temperature change is corrected by a cemented lens made of glass materials having different Abbe numbers. That is, a glass material having a large Abbe number is used for the first and third lenses L1 and L3 made of the convex lens, and a glass material having a small Abbe number is used for the second and fourth lenses L2 and L4 made of a concave lens. ing.

そして、本発明にあっては、上記凹レンズのd線におけるアッベ数をνdn、上記凸レンズのd線におけるアッベ数をνdp、各レンズのd線におけるアッベ数の比をνdn/νdpとして、下記条件式(4)を満足することが望ましい。   In the present invention, the Abbe number at the d-line of the concave lens is νdn, the Abbe number at the d-line of the convex lens is νdp, and the ratio of the Abbe number at the d-line of each lens is νdn / νdp. It is desirable to satisfy (4).

(4)0.54 < νdn/νdp < 0.79
この条件式(4)の上限を超えると色収差が補正不足となり、また、下限を下回ると色収差の補正が過剰になって共に焦点距離の変動が大きくなる。
(4) 0.54 <νdn / νdp <0.79
If the upper limit of conditional expression (4) is exceeded, the chromatic aberration will be undercorrected, and if it falls below the lower limit, the correction of chromatic aberration will be excessive and the variation in focal length will increase.

さらに、色収差と球面収差の補正を最適に分担するため、前群の凹レンズのd線におけるアッベ数をνdfn、前群の凸レンズのd線におけるアッベ数をνdfp、後群の凹レンズのd線におけるアッベ数をνdrn、後群の凸レンズのd線におけるアッベ数をνdrpとして、以下の条件式(5)を満足することが望ましい。   Further, in order to optimally share the correction of chromatic aberration and spherical aberration, the Abbe number at the d-line of the front group concave lens is νdfn, the Abbe number at the d-line of the front group convex lens is νdfp, and the Abbe number at the d-line of the rear group concave lens is It is desirable that the following conditional expression (5) is satisfied, where νdrn is the number and νdrp is the Abbe number in the d-line of the rear group convex lens.

(5)νdfn/νdfp < νdrn/νdrp
すなわち、前群の正のレンズと負のレンズのアッベ数の差を大きく取ることで主に前群に色収差の補正を分担させ、後群では主に球面収差の補正を分担させている。従って、νdfn/νdfp ≧ νdrn/νdrp となると、色収差の補正が不足して焦点距離の変動が大きくなり、あるいは色収差の補正が過剰となり相対的に球面収差の補正が不足して波面収差を悪化させる。
(5) νdfn / νdfp <νdrn / νdrp
That is, a large difference in Abbe number between the positive lens and the negative lens in the front group is used to mainly share the correction of chromatic aberration in the front group, and the correction of the spherical aberration in the rear group. Therefore, if νdfn / νdfp ≧ νdrn / νdrp, the correction of chromatic aberration is insufficient and the variation in focal length becomes large, or the correction of chromatic aberration is excessive, and the correction of spherical aberration is relatively insufficient, thereby deteriorating the wavefront aberration. .

また、必要な焦点距離を確保しつつ色収差を適切に補正するために、前群と後群の屈折力の配分を適切にするために、前群FGの焦点距離をf(front)、後群RGの焦点距離をf(rear)として、以下の条件式(6)を満足することが望ましい。   Further, in order to appropriately correct the chromatic aberration while ensuring the necessary focal length, in order to appropriately distribute the refractive power of the front group and the rear group, the focal length of the front group FG is f (front), and the rear group It is desirable to satisfy the following conditional expression (6), where the focal length of RG is f (rear).

(6)0.24 < f(rear)/f(front) < 0.49
すなわち、前群FGには主に色収差の補正を分担させるため屈折力を小さくし、後群RGには屈折力を上げて焦点距離の確保を図っている。条件式(6)の上限を超えると色収差が補正不足となり、下限を下回ると必要な焦点距離を確保できなくなる。
(6) 0.24 <f (rear) / f (front) <0.49
That is, the front group FG is mainly assigned correction of chromatic aberration, so that the refractive power is reduced, and the rear group RG is increased in refractive power to ensure the focal length. If the upper limit of conditional expression (6) is exceeded, the chromatic aberration will be undercorrected, and if it falls below the lower limit, the necessary focal length cannot be secured.

以上のような本発明によると、光源30の波長変動で生じる焦点距離の変動を良好に補正できるため、安定して平行光を出射できる。   According to the present invention as described above, it is possible to satisfactorily correct the focal length variation caused by the wavelength variation of the light source 30, so that parallel light can be stably emitted.

なお、上記説明では、本発明を光源部に適用した例を示したが、図1の光源30が配置された位置に受光素子を配置することによって受光部に適用することが出来る。   In the above description, the example in which the present invention is applied to the light source unit has been described. However, the present invention can be applied to the light receiving unit by disposing the light receiving element at the position where the light source 30 in FIG. 1 is disposed.

図2に本発明を光学ヘッド装置60に適用した実施の形態の構成の要部のみを概略的に示す。   FIG. 2 schematically shows only a main part of the configuration of the embodiment in which the present invention is applied to the optical head device 60.

記録媒体70は、例えば、光ディスクであり、光学的な信号の読取又は記録を行えるように構成されており、光学ヘッド装置60に設けられた対物レンズ61を経て記録媒体70の記録面71に対してスポット光の照射が行われる。なお、図示を省略してあるが、対物レンズ61はこれを支持した駆動装置(2軸アクチュエータ)によってフォーカシング方向及びトラッキング方向へ駆動制御される。   The recording medium 70 is, for example, an optical disk, and is configured to be able to read or record an optical signal. The recording medium 70 is applied to the recording surface 71 of the recording medium 70 through an objective lens 61 provided in the optical head device 60. Irradiation of spot light is performed. Although not shown, the objective lens 61 is driven and controlled in the focusing direction and the tracking direction by a driving device (biaxial actuator) that supports the objective lens 61.

光学ヘッド装置60は、光源、受光部、レンズ系を備えている。レーザダイオード62(光源)から出射された光はレンズ63により平行光とされ、ビームスプリッタ64やλ/4波長板等を介して対物レンズ61に向かい、対物レンズ61によってスポット光として記録媒体70の記録面71に照射される。また、記録媒体70の記録面71で反射された戻り光が対物レンズ61を経て往路とは逆の経路を辿り、ビームスプリッタ64によって反射されてレンズ65を経て受光素子66に受光される。   The optical head device 60 includes a light source, a light receiving unit, and a lens system. The light emitted from the laser diode 62 (light source) is converted into parallel light by the lens 63, travels toward the objective lens 61 through the beam splitter 64, the λ / 4 wavelength plate, and the like, and is spotted by the objective lens 61 as the spot light. The recording surface 71 is irradiated. The return light reflected by the recording surface 71 of the recording medium 70 follows the path opposite to the forward path through the objective lens 61, is reflected by the beam splitter 64, and is received by the light receiving element 66 through the lens 65.

そして、上記光源62とレンズ63、受光素子66とレンズ65は、それぞれ同じ支持部材に取り付けられ、該部分に本発明が適用される。図1では同一の支持部材20に光源30とコリメータレンズ50が支持された例を示したが、光源30に替えて受光部を支持部材20に支持することもできる。   The light source 62 and the lens 63, and the light receiving element 66 and the lens 65 are respectively attached to the same support member, and the present invention is applied to these portions. Although FIG. 1 shows an example in which the light source 30 and the collimator lens 50 are supported by the same support member 20, the light receiving unit can be supported by the support member 20 instead of the light source 30.

以下に、本発明光学系の各レンズに具体的数値を適用した5つの数値実施例について表1〜5に示す。なお、各表において「si」は平行光側からi番目の面の面番号、「r」はsi面の曲率半径、「d」はsi面とsi+1面との間の面間隔、「n(408nm)」はsi面が平行光側の面を成す硝材の波長408nmにおける屈折率、「nd」はsi面が平行光側の面を成す硝材のd線(597.6nm)における屈折率、「νd」はsi面が平行光側の面を成す硝材のd線におけるアッベ数、「dN/dT」はsi面が平行光側の面を成す硝材のd線における屈折率の温度変化率、「α」はsi面が平行光側の面を成す硝材の線膨張係数である。また、「f」は波長408nmにおける焦点距離、s7、s8は光源30のカバーガラス33の両面である。   Tables 1 to 5 show five numerical examples in which specific numerical values are applied to each lens of the optical system of the present invention. In each table, “si” is the surface number of the i-th surface from the parallel light side, “r” is the radius of curvature of the si surface, “d” is the surface spacing between the si surface and the si + 1 surface, and “n ( 408 nm) "is the refractive index at a wavelength of 408 nm of the glass material whose si surface is a parallel light side surface, and" nd "is the refractive index at the d-line (597.6 nm) of the glass material whose si surface is a parallel light side surface, “νd” is the Abbe number in the d-line of the glass material whose si surface is the parallel light side surface, “dN / dT” is the temperature change rate of the refractive index in the d-line of the glass material whose si surface is the parallel light side surface, “ “α” is a linear expansion coefficient of the glass material in which the si surface forms a parallel light side surface. “F” is a focal length at a wavelength of 408 nm, and s7 and s8 are both surfaces of the cover glass 33 of the light source 30.

Figure 2006017830
Figure 2006017830

Figure 2006017830
Figure 2006017830

Figure 2006017830
Figure 2006017830

Figure 2006017830
Figure 2006017830

Figure 2006017830
Figure 2006017830

表6に、上記各数値実施例におけるνdfn/νdfp、νdrn/νdrp、νdfn/νdfp - νdrn/νdrp、f(rear)、f(front)、f(rear)/f(front)のパラメータを示す。   Table 6 shows parameters of νdfn / νdfp, νdrn / νdrp, νdfn / νdfp−νdrn / νdrp, f (rear), f (front), and f (rear) / f (front) in the above numerical examples.

Figure 2006017830
Figure 2006017830

表7に、上記各数値実施例におけるdN(凸)/dT (10−6/℃)、dN(凹)/dT (10−6/℃)、 (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT)のパラメータを示す。なお、ここで支持部材20にはマグネシウム合金を想定しており、dN(base)/dT=260×10-7/℃として示した。また、レンズホルダ40にはエポキシ樹脂を使用し、その線膨張係数を、100×10-7/℃とした。 Table 7 shows dN (convex) / dT (10 −6 / ° C.), dN (concave) / dT (10 −6 / ° C.), (dN (concave) / dT−dN (convex)) in each numerical example. Indicates the parameters of / dT) / (dN (base) / dT). Here, the support member 20 is assumed to be a magnesium alloy, and is shown as dN (base) / dT = 260 × 10 −7 / ° C. Further, an epoxy resin was used for the lens holder 40, and its linear expansion coefficient was set to 100 × 10 −7 / ° C.

Figure 2006017830
Figure 2006017830

図3に数値実施例1の、図4に数値実施例2の、図5に数値実施例3の、図6に数値実施例4の、図7に数値実施例5の、20℃と70℃における波長による焦点距離の理想状態からのずれを示した。   FIG. 3 shows a numerical example 1, FIG. 4 shows a numerical example 2, FIG. 5 shows a numerical example 3, FIG. 6 shows a numerical example 4, and FIG. The deviation of the focal length from the ideal state due to the wavelength was shown.

これら図3乃至図7から分かるように、上記各数値実施例では設計中心波長(408nm)に対して±7nmの範囲での焦点距離の変動が0.5μm以下に抑えられている。また、コリメータレンズと光源との間隔の変化とレンズの焦点距離の変化の差は温度差50℃で4μm以下に抑えられている。   As can be seen from FIGS. 3 to 7, in each of the above numerical examples, the variation of the focal length in the range of ± 7 nm with respect to the design center wavelength (408 nm) is suppressed to 0.5 μm or less. The difference between the change in the distance between the collimator lens and the light source and the change in the focal length of the lens is suppressed to 4 μm or less at a temperature difference of 50 ° C.

なお、上記した実施の形態及び各数値実施例において示した各部の形状及び構造並びに数値は、いずれも本発明を実施するに際して行う具体化のほんの一例を示したものにすぎず、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならないものである。   It should be noted that the shapes, structures, and numerical values of the respective parts shown in the above-described embodiments and numerical examples are merely examples of the implementation performed in carrying out the present invention, and the present invention is thereby limited. This technical scope should not be interpreted in a limited way.

温度変化に起因する波長変動によるコリメート光の平行光からのずれによって生じる色収差が良好に補正されるため、品質の良好な信号を得ることができる。そのため、温度変化による波長変動が予想される光源を使用した光学ヘッド装置に適用して好適である。   Since the chromatic aberration caused by the shift of the collimated light from the parallel light due to the wavelength fluctuation caused by the temperature change is corrected well, a signal with good quality can be obtained. Therefore, it is suitable for application to an optical head device using a light source that is expected to have a wavelength variation due to a temperature change.

本発明光学系の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of the optical system of this invention. 光学ヘッド装置の概略を示す図である。It is a figure which shows the outline of an optical head apparatus. 数値実施例1における20℃と70℃における波長による焦点距離の理想状態からのずれを示すグラフ図である。It is a graph which shows the shift | offset | difference from the ideal state of the focal distance by the wavelength in 20 degreeC and 70 degreeC in Numerical Example 1. FIG. 数値実施例2における20℃と70℃における波長による焦点距離の理想状態からのずれを示すグラフ図である。It is a graph which shows the shift | offset | difference from the ideal state of the focal distance by the wavelength in 20 degreeC and 70 degreeC in Numerical Example 2. FIG. 数値実施例3における20℃と70℃における波長による焦点距離の理想状態からのずれを示すグラフ図である。It is a graph which shows the shift | offset | difference from the ideal state of the focal distance by the wavelength in 20 degreeC and 70 degreeC in Numerical Example 3. FIG. 数値実施例4における20℃と70℃における波長による焦点距離の理想状態からのずれを示すグラフ図である。It is a graph which shows the shift | offset | difference from the ideal state of the focal distance by the wavelength in 20 degreeC and 70 degreeC in Numerical Example 4. FIG. 数値実施例5における20℃と70℃における波長による焦点距離の理想状態からのずれを示すグラフ図である。It is a graph which shows the shift | offset | difference from the ideal state of the focal distance by the wavelength in 20 degreeC and 70 degreeC in Numerical Example 5. FIG.

符号の説明Explanation of symbols

10…光学系、20…支持部材、30…光源、40…レンズホルダ、50…コリメータレンズ(コリメート用のレンズ群)、FG…前群、RG…後群、L1…第1レンズ、L2…第2レンズ、L3…第3レンズ、L4…第4レンズ   DESCRIPTION OF SYMBOLS 10 ... Optical system, 20 ... Support member, 30 ... Light source, 40 ... Lens holder, 50 ... Collimator lens (collimating lens group), FG ... Front group, RG ... Rear group, L1 ... First lens, L2 ... First 2 lenses, L3 ... 3rd lens, L4 ... 4th lens

Claims (20)

コリメート用のレンズ群を保持したレンズホルダと光源又は受光部とが同一の支持部材により支持されていて、温度変化により発生する支持部材の光軸方向の線膨張変化分に対して、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化分が等しくなるように温度補償された光学系において、
コリメート用のレンズ群が正の屈折力を有する前群と正の屈折力を有する後群により構成され、前群は凸レンズである第1レンズと凹レンズである第2レンズから構成され、後群は凸レンズである第3レンズと凹レンズである第4レンズから構成される
ことを特徴とする光学系。
The lens holder holding the collimating lens group and the light source or light receiving unit are supported by the same support member, and the change in temperature with respect to the linear expansion change in the optical axis direction of the support member caused by the temperature change In the optical system temperature-compensated so that the change in the combined focal length of the lens group due to the refractive index change and linear expansion change of each lens becomes equal,
The collimating lens group is composed of a front group having a positive refractive power and a rear group having a positive refractive power. The front group is composed of a first lens that is a convex lens and a second lens that is a concave lens. An optical system comprising a third lens that is a convex lens and a fourth lens that is a concave lens.
上記凸レンズにおける屈折率の温度変化率をdN(凸)/dT 、上記凹レンズにおける屈折率の温度変化率をdN(凹)/dT として、以下の条件式(1)及び(2)を満足することを特徴とする請求項1に記載の光学系。
(1)dN(凸)/dT < 1.2×10−6/℃
(2)dN(凹)/dT > 5.7×10−6/℃
The following conditional expressions (1) and (2) are satisfied, where dN (convex) / dT is the temperature change rate of the refractive index in the convex lens and dN (concave) / dT is the temperature change rate of the refractive index in the concave lens. The optical system according to claim 1.
(1) dN (convex) / dT <1.2 × 10 −6 / ° C
(2) dN (concave) / dT> 5.7 × 10 −6 / ° C
上記支持部材における屈折率の温度変化率をdN(base)/dTとして、下記条件式(3)を満足することを特徴とする請求項1に記載の光学系。
(3)0.253 < (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT) < 0.367
2. The optical system according to claim 1, wherein the following conditional expression (3) is satisfied, where dN (base) / dT is a temperature change rate of the refractive index of the support member.
(3) 0.253 <(dN (concave) / dT-dN (convex) / dT) / (dN (base) / dT) <0.367
上記支持部材における屈折率の温度変化率をdN(base)/dTとして、下記条件式(3)を満足することを特徴とする請求項2に記載の光学系。
(3)0.253 < (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT) < 0.367
The optical system according to claim 2, wherein the following conditional expression (3) is satisfied, where dN (base) / dT is a temperature change rate of the refractive index of the support member.
(3) 0.253 <(dN (concave) / dT-dN (convex) / dT) / (dN (base) / dT) <0.367
上記凹レンズのd線におけるアッベ数をνdn、上記凸レンズのd線におけるアッベ数をνdp、各レンズのd線におけるアッベ数の比をνdn/νdpとして、下記条件式(4)を満足することを特徴とする請求項1に記載の光学系。
(4)0.54 < νdn/νdp < 0.79
The following conditional expression (4) is satisfied, where the Abbe number at the d-line of the concave lens is νdn, the Abbe number at the d-line of the convex lens is νdp, and the ratio of the Abbe numbers at the d-line of each lens is νdn / νdp. The optical system according to claim 1.
(4) 0.54 <νdn / νdp <0.79
上記凹レンズのd線におけるアッベ数をνdn、上記凸レンズのd線におけるアッベ数をνdp、各レンズのd線におけるアッベ数の比をνdn/νdpとして、下記条件式(4)を満足することを特徴とする請求項2に記載の光学系。
(4)0.54 < νdn/νdp < 0.79
The following conditional expression (4) is satisfied, where the Abbe number at the d-line of the concave lens is νdn, the Abbe number at the d-line of the convex lens is νdp, and the ratio of the Abbe numbers at the d-line of each lens is νdn / νdp. The optical system according to claim 2.
(4) 0.54 <νdn / νdp <0.79
前群の凹レンズのd線におけるアッベ数をνdfn、前群の凸レンズのd線におけるアッベ数をνdfp、後群の凹レンズのd線におけるアッベ数をνdrn、後群の凸レンズのd線におけるアッベ数をνdrpとして、以下の条件式(5)を満足することを特徴とする請求項1に記載の光学系。
(5)νdfn/νdfp < νdrn/νdrp
The Abbe number at the d-line of the front group concave lens is νdfn, the Abbe number at the d-line of the front group convex lens is νdfp, the Abbe number at the d-line of the rear group concave lens is νdrn, and the Abbe number at the d-line of the rear group convex lens is The optical system according to claim 1, wherein the following conditional expression (5) is satisfied as νdrp.
(5) νdfn / νdfp <νdrn / νdrp
前群の凹レンズのd線におけるアッベ数をνdfn、前群の凸レンズのd線におけるアッベ数をνdfp、後群の凹レンズのd線におけるアッベ数をνdrn、後群の凸レンズのd線におけるアッベ数をνdrpとして、以下の条件式(5)を満足することを特徴とする請求項2に記載の光学系。
(5)νdfn/νdfp < νdrn/νdrp
The Abbe number at the d-line of the front group concave lens is νdfn, the Abbe number at the d-line of the front group convex lens is νdfp, the Abbe number at the d-line of the rear group concave lens is νdrn, and the Abbe number at the d-line of the rear group convex lens is The optical system according to claim 2, wherein the following conditional expression (5) is satisfied as νdrp.
(5) νdfn / νdfp <νdrn / νdrp
前群の焦点距離をf(front)、後群の焦点距離をf(rear)として、以下の条件式(6)を満足することを特徴とする請求項1に記載の光学系。
(6)0.24 < f(rear)/f(front) < 0.49
2. The optical system according to claim 1, wherein the following conditional expression (6) is satisfied, where f (front) is the focal length of the front group and f (rear) is the focal length of the rear group.
(6) 0.24 <f (rear) / f (front) <0.49
前群の焦点距離をf(front)、後群の焦点距離をf(rear)として、以下の条件式(6)を満足することを特徴とする請求項2に記載の光学系。
(6)0.24 < f(rear)/f(front) < 0.49
The optical system according to claim 2, wherein the following conditional expression (6) is satisfied, where f (front) is the focal length of the front group and f (rear) is the focal length of the rear group.
(6) 0.24 <f (rear) / f (front) <0.49
記録媒体に対する信号の読取又は記録を行うために、光源又は受光部と、コリメート用のレンズ群を備え、コリメート用のレンズ群を保持したレンズホルダと光源又は受光部とが同一の支持部材により支持されていて、温度変化により発生する支持部材の光軸方向の線膨張変化分に対して、温度変化による各レンズの屈折率変化及び線膨張変化によるレンズ群の合成焦点距離の変化分が等しくなるように温度補償された光学ヘッド装置において、
コリメート用のレンズ群が正の屈折力を有する前群と正の屈折力を有する後群により構成され、前群は凸レンズである第1レンズと凹レンズである第2レンズから構成され、後群は凸レンズである第3レンズと凹レンズである第4レンズから構成される
ことを特徴とする光学ヘッド装置。
In order to read or record a signal on a recording medium, a light source or light receiving unit and a collimating lens group are provided, and the lens holder holding the collimating lens group and the light source or light receiving unit are supported by the same support member. The change in the refractive index of each lens due to the temperature change and the change in the combined focal length of the lens group due to the linear expansion change are equal to the change in the linear expansion of the support member caused by the temperature change. In the temperature-compensated optical head device,
The collimating lens group is composed of a front group having a positive refractive power and a rear group having a positive refractive power. The front group is composed of a first lens that is a convex lens and a second lens that is a concave lens. An optical head device comprising a third lens that is a convex lens and a fourth lens that is a concave lens.
上記凸レンズにおける屈折率の温度変化率をdN(凸)/dT 、上記凹レンズにおける屈折率の温度変化率をdN(凹)/dT として、以下の条件式(1)及び(2)を満足することを特徴とする請求項11に記載の光学ヘッド装置。
(1)dN(凸)/dT < 1.2×10−6/℃
(2)dN(凹)/dT > 5.7×10−6/℃
The following conditional expressions (1) and (2) are satisfied, where dN (convex) / dT is the temperature change rate of the refractive index in the convex lens and dN (concave) / dT is the temperature change rate of the refractive index in the concave lens. The optical head device according to claim 11.
(1) dN (convex) / dT <1.2 × 10 −6 / ° C
(2) dN (concave) / dT> 5.7 × 10 −6 / ° C
上記支持部材における屈折率の温度変化率をdN(base)/dTとして、下記条件式(3)を満足することを特徴とする請求項11に記載の光学ヘッド装置。
(3)0.253 < (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT) < 0.367
12. The optical head device according to claim 11, wherein the following conditional expression (3) is satisfied, where dN (base) / dT is a temperature change rate of the refractive index of the support member.
(3) 0.253 <(dN (concave) / dT-dN (convex) / dT) / (dN (base) / dT) <0.367
上記支持部材における屈折率の温度変化率をdN(base)/dTとして、下記条件式(3)を満足することを特徴とする請求項12に記載の光学ヘッド装置。
(3)0.253 < (dN(凹)/dT - dN(凸) /dT)/( dN(base)/dT) < 0.367
13. The optical head device according to claim 12, wherein the following conditional expression (3) is satisfied, where dN (base) / dT is a temperature change rate of the refractive index of the support member.
(3) 0.253 <(dN (concave) / dT-dN (convex) / dT) / (dN (base) / dT) <0.367
上記凹レンズのd線におけるアッベ数をνdn、上記凸レンズのd線におけるアッベ数をνdp、各レンズのd線におけるアッベ数の比をνdn/νdpとして、下記条件式(4)を満足することを特徴とする請求項11に記載の光学ヘッド装置。
(4)0.54 < νdn/νdp < 0.79
The following conditional expression (4) is satisfied, where the Abbe number at the d-line of the concave lens is νdn, the Abbe number at the d-line of the convex lens is νdp, and the ratio of the Abbe numbers at the d-line of each lens is νdn / νdp. The optical head device according to claim 11.
(4) 0.54 <νdn / νdp <0.79
上記凹レンズのd線におけるアッベ数をνdn、上記凸レンズのd線におけるアッベ数をνdp、各レンズのd線におけるアッベ数の比をνdn/νdpとして、下記条件式(4)を満足することを特徴とする請求項12に記載の光学ヘッド装置。
(4)0.54 < νdn/νdp < 0.79
The following conditional expression (4) is satisfied, where the Abbe number at the d-line of the concave lens is νdn, the Abbe number at the d-line of the convex lens is νdp, and the ratio of the Abbe numbers at the d-line of each lens is νdn / νdp. The optical head device according to claim 12.
(4) 0.54 <νdn / νdp <0.79
前群の凹レンズのd線におけるアッベ数をνdfn、前群の凸レンズのd線におけるアッベ数をνdfp、後群の凹レンズのd線におけるアッベ数をνdrn、後群の凸レンズのd線におけるアッベ数をνdrpとして、以下の条件式(5)を満足することを特徴とする請求項11に記載の光学ヘッド装置。
(5)νdfn/νdfp < νdrn/νdrp
The Abbe number at the d-line of the front group concave lens is νdfn, the Abbe number at the d-line of the front group convex lens is νdfp, the Abbe number at the d-line of the rear group concave lens is νdrn, and the Abbe number at the d-line of the rear group convex lens is The optical head device according to claim 11, wherein the following conditional expression (5) is satisfied as νdrp.
(5) νdfn / νdfp <νdrn / νdrp
前群の凹レンズのd線におけるアッベ数をνdfn、前群の凸レンズのd線におけるアッベ数をνdfp、後群の凹レンズのd線におけるアッベ数をνdrn、後群の凸レンズのd線におけるアッベ数をνdrpとして、以下の条件式(5)を満足することを特徴とする請求項12に記載の光学ヘッド装置。
(5)νdfn/νdfp < νdrn/νdrp
The Abbe number at the d-line of the front group concave lens is νdfn, the Abbe number at the d-line of the front lens group is νdfp, the Abbe number at the d-line of the rear lens group is νdrn, and the Abbe number at the d-line of the rear lens group is The optical head device according to claim 12, wherein the following conditional expression (5) is satisfied as νdrp.
(5) νdfn / νdfp <νdrn / νdrp
前群の焦点距離をf(front)、後群の焦点距離をf(rear)として、以下の条件式(6)を満足することを特徴とする請求項11に記載の光学ヘッド装置。
(6)0.24 < f(rear)/f(front) < 0.49
12. The optical head device according to claim 11, wherein the following conditional expression (6) is satisfied, where f (front) is the focal length of the front group and f (rear) is the focal length of the rear group.
(6) 0.24 <f (rear) / f (front) <0.49
前群の焦点距離をf(front)、後群の焦点距離をf(rear)として、以下の条件式(6)を満足することを特徴とする請求項12に記載の光学ヘッド装置。
(6)0.24 < f(rear)/f(front) < 0.49
13. The optical head device according to claim 12, wherein the following conditional expression (6) is satisfied, where f (front) is the focal length of the front group and f (rear) is the focal length of the rear group.
(6) 0.24 <f (rear) / f (front) <0.49
JP2004193166A 2004-06-30 2004-06-30 Optical system and optical head device Pending JP2006017830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193166A JP2006017830A (en) 2004-06-30 2004-06-30 Optical system and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193166A JP2006017830A (en) 2004-06-30 2004-06-30 Optical system and optical head device

Publications (1)

Publication Number Publication Date
JP2006017830A true JP2006017830A (en) 2006-01-19

Family

ID=35792195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193166A Pending JP2006017830A (en) 2004-06-30 2004-06-30 Optical system and optical head device

Country Status (1)

Country Link
JP (1) JP2006017830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047277A1 (en) * 2008-09-16 2010-04-15 Hella Kgaa Hueck & Co. Optical device for use as fixed focus camera system that is utilized as image pickup camera in motor vehicle, has compensation body provided with material including thermal expansion coefficient
JP2011197005A (en) * 2010-03-18 2011-10-06 Mitsutoyo Corp Chromatic confocal point sensor optical pen
CN117111235A (en) * 2023-10-17 2023-11-24 成都光创联科技有限公司 Compensation system, manufacturing and compensation method for high-low temperature power drop of optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047277A1 (en) * 2008-09-16 2010-04-15 Hella Kgaa Hueck & Co. Optical device for use as fixed focus camera system that is utilized as image pickup camera in motor vehicle, has compensation body provided with material including thermal expansion coefficient
JP2011197005A (en) * 2010-03-18 2011-10-06 Mitsutoyo Corp Chromatic confocal point sensor optical pen
CN117111235A (en) * 2023-10-17 2023-11-24 成都光创联科技有限公司 Compensation system, manufacturing and compensation method for high-low temperature power drop of optical device
CN117111235B (en) * 2023-10-17 2023-12-19 成都光创联科技有限公司 Compensation system, manufacturing and compensation method for high-low temperature power drop of optical device

Similar Documents

Publication Publication Date Title
EP1986189B1 (en) Optical pickup apparatus
US6927923B2 (en) Objective lens, converging optical system, optical pickup apparatus and recording and/or reproducing apparatus
KR20030084691A (en) Recording reproducing optical system, objective lens and optical pickup apparatus
KR20020096938A (en) Objective lens, optical pickup apparatus, and recording and/or reproducing apparatus
KR100882063B1 (en) Objective lens, optical pickup apparatus, and recording or reproducing apparatus
JPH07311337A (en) Optical information recording and reproducing device
EP1422703A2 (en) Objective lens, optical system and optical pickup apparatus
JP2002333575A (en) Objective lens, condensing optical system, optical pickup device, and recording and reproducing device
KR930000991B1 (en) Objective lens for optical disk system and optical head using the same
JP2002522809A (en) Optical scanning device and optical apparatus for reading and / or writing information on an information surface equipped with such a device
JP2006017830A (en) Optical system and optical head device
JP2003140036A (en) Objective for optical recording medium and optical pickup device using the same
JP2003178480A (en) Light source device and optical pickup
KR20040105579A (en) Optical system for optical pickup apparatus, opitcal pickup apparatus, optical information recording and/or reproducing apparatus, aberration-correcting element for optical pickup apparatus and converging lens for optical pickup apparatus
JP2004251924A (en) Beam expander and optical head using the same
JP4635872B2 (en) Light source device and optical pickup device
JP2001155374A (en) Recording/reproducing optical system, and optical head device
JP2001243650A (en) Divergent angle converting lens and optical pickup device
JP2001083410A (en) Objective lens and pickup device using it
JP2004037826A (en) Optical element and optical pickup device
JP2001337269A (en) Optical device for compensating chromatic aberration and optical pickup device
JP2003077164A (en) Optical system of optical pickup and optical pickup device
JP2004164825A (en) Optical pickup device
JP4255886B2 (en) Optical pickup and optical information processing apparatus
JPH08180446A (en) Optical device for optical information recording and reproduction