JP2006017619A - Gas concentration detector - Google Patents

Gas concentration detector Download PDF

Info

Publication number
JP2006017619A
JP2006017619A JP2004196839A JP2004196839A JP2006017619A JP 2006017619 A JP2006017619 A JP 2006017619A JP 2004196839 A JP2004196839 A JP 2004196839A JP 2004196839 A JP2004196839 A JP 2004196839A JP 2006017619 A JP2006017619 A JP 2006017619A
Authority
JP
Japan
Prior art keywords
gas
explosion
gas concentration
proof body
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196839A
Other languages
Japanese (ja)
Inventor
Akinobu Moriyama
明信 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004196839A priority Critical patent/JP2006017619A/en
Publication of JP2006017619A publication Critical patent/JP2006017619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance explosion-proofness, and to accurately detect a gas concentration even when a large amount of moisture is contained in a measured gas such as that in a fuel cell system. <P>SOLUTION: The first explosion-proof body 10 (sensor protection tube 7 and metal wire gauze 9) is provided to cover a heater built-in type gas concentration sensor element 4, and the second explosion-proof body (capillary) 11 is provided in a passage for introducing the measured gas flowing in a main tube 50 into a gas concentration sensor element 4 side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素濃度あるいは水素濃度等を検出するガス濃度検出装置に関し、特に燃料電池システム等に適用可能な装置に関する。   The present invention relates to a gas concentration detection device that detects an oxygen concentration or a hydrogen concentration, and more particularly to a device applicable to a fuel cell system or the like.

従来、酸素濃度あるいは水素濃度を検出する方法としては、特許文献1に記載のように、酸素イオン伝導性の固体電解質を用いることが知られている。この方法は、酸素イオン伝導性の固体電解質が600℃〜900℃の高温にて最適な動作をする性質を利用するものである。
しかしながら、この方法は、水素を燃料とする燃料電池システムへの適用にあたっては安全面において問題があった。すなわち燃料電池システムにおいて固体電解質のプロトン交換膜が破壊したときには、水素ラインへ酸素(空気)が流入するような異常な事態が生じ、水素ラインに取り付けた水素検出器が着火源となって爆発する恐れがある。一方、酸素(空気)ラインへ水素が流入する場合も同様に、酸素検出器が着火源となって爆発する恐れがある。
Conventionally, as a method for detecting an oxygen concentration or a hydrogen concentration, it is known to use an oxygen ion conductive solid electrolyte as described in Patent Document 1. This method utilizes the property that an oxygen ion conductive solid electrolyte operates optimally at a high temperature of 600 ° C to 900 ° C.
However, this method has a safety problem when applied to a fuel cell system using hydrogen as a fuel. In other words, when the proton exchange membrane of the solid electrolyte breaks down in the fuel cell system, an abnormal situation occurs where oxygen (air) flows into the hydrogen line, and the hydrogen detector attached to the hydrogen line ignites as an ignition source. There is a fear. On the other hand, when hydrogen flows into the oxygen (air) line, there is a possibility that the oxygen detector may cause an explosion as an ignition source.

これらの問題を解決する例として特許文献2に記載の防爆型センサが開示されている。この防爆型センサは、高温の固体電解質体を覆うように金網や焼結金属を設けた防爆構造となっている。この防爆構造は、火炎伝播を防ぐフレームアレスター効果(火炎防止装置としての効果)を有するものであり、検出器外部への火炎伝播を防ぐことからシステム全体の爆発的燃焼を防止する。
特開2000−9685号公報 特開2000−65783号公報
As an example for solving these problems, an explosion-proof sensor described in Patent Document 2 is disclosed. This explosion-proof sensor has an explosion-proof structure in which a wire mesh or a sintered metal is provided so as to cover a high-temperature solid electrolyte body. This explosion-proof structure has a flame arrester effect (effect as a flame prevention device) that prevents flame propagation, and prevents explosion propagation of the entire system because flame propagation to the outside of the detector is prevented.
Japanese Unexamined Patent Publication No. 2000-9985 JP 2000-65783 A

しかしながら、特許文献2においても、防爆構造体の防爆機能だけに頼るものであって、その防爆機能が失陥すれば安全性は保たれなくなる。防爆構造体が防爆機能を失陥する要因としては、防爆構造体の破損、腐食、劣化、または異物接触による損傷等がある。
さらには、燃料電池システムの場合、安全性の問題だけではなく、被測定ガスには水分量が比較的多く、且つガスの温度が100℃以下のため、被測定ガス中の水分が相変化を生じ、気相分の水分濃度が大きく変化してしまうことがある。このような相変化があると、他のガス成分濃度(酸素濃度あるいは水素濃度)が影響を受け、ガス濃度の検出誤差を招いてしまう。
However, Patent Document 2 also relies only on the explosion-proof function of the explosion-proof structure, and if the explosion-proof function fails, safety cannot be maintained. Factors that cause the explosion-proof structure to lose its explosion-proof function include damage to the explosion-proof structure, corrosion, deterioration, or damage caused by contact with foreign matter.
Furthermore, in the case of a fuel cell system, not only is there a safety problem, but the gas to be measured has a relatively large amount of water and the temperature of the gas is 100 ° C. or less, so that the moisture in the gas to be measured undergoes a phase change. May occur, and the moisture concentration of the gas phase may change greatly. When such a phase change occurs, other gas component concentrations (oxygen concentration or hydrogen concentration) are affected, which causes a gas concentration detection error.

本発明は、このような問題に着目してなされたもので、防爆性の向上を図るとともに、燃料電池システム等のように被測定ガス中に水分が多量に含まれる場合においてもガス濃度を正確に検出できる装置を提供することを目的とする。   The present invention has been made paying attention to such a problem. In addition to improving the explosion-proof property, the gas concentration is accurately adjusted even when the gas to be measured contains a large amount of moisture as in a fuel cell system or the like. It is an object of the present invention to provide a device capable of detecting the above.

そのため本発明では、ガス導入管と、加熱型のガス濃度センサ素子と、を有するガス濃度検出装置において、ガス濃度センサ素子を覆うように設けた第1防爆体と、ガス導入管内に配置した第2防爆体と、を設ける。   Therefore, according to the present invention, in a gas concentration detection device having a gas introduction pipe and a heating type gas concentration sensor element, a first explosion-proof body provided so as to cover the gas concentration sensor element, and a first explosion-proof body disposed in the gas introduction pipe And 2 explosion-proof bodies.

本発明によれば、第1防爆体および第2防爆体により防爆性を向上できるため、ガス濃度検出装置の安全性をより高めることができるという効果がある。そして、被測定ガス中に水分が多量に含まれる場合においてもガス濃度を正確に検出でき、計測誤差や信頼性を確保することができるという効果がある。   According to the present invention, the explosion-proof property can be improved by the first explosion-proof body and the second explosion-proof body, so that the safety of the gas concentration detection device can be further improved. And even when a large amount of moisture is contained in the gas to be measured, the gas concentration can be accurately detected, and there is an effect that measurement error and reliability can be ensured.

以下、図面に基づき、本発明の実施形態について説明する。
図1は、第1の実施形態に係るガス濃度検出装置1の構成を示す図である。図2は、図1のA−A線における断面を示す図である。なお、ガス濃度検出装置1は、検出するガス濃度の対象として酸素濃度あるいは水素濃度を検出するものであり、これらの濃度検出は同様に検出可能である、または酸素と水素ガスとからなる被測定ガスにおいては酸素濃度を測定することで残りの水素濃度を検出可能であるため、ここでは酸素濃度を検出する装置についてのみ説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a gas concentration detection apparatus 1 according to the first embodiment. FIG. 2 is a view showing a cross section taken along line AA of FIG. The gas concentration detection device 1 detects an oxygen concentration or a hydrogen concentration as an object of the gas concentration to be detected, and these concentration detections can be detected in the same manner, or a measurement target composed of oxygen and hydrogen gas. Since the remaining hydrogen concentration can be detected by measuring the oxygen concentration in the gas, only an apparatus for detecting the oxygen concentration will be described here.

ガス濃度検出装置1は、センサ本体2とガス導入管3とから大別構成されており、被測定ガスが流れる本管50に形成された貫通孔50aに挿入されている。
センサ本体2は、ガス濃度センサ素子4、センサ素子支持体5、コネクタ6、およびセンサ保護管7を含んで構成されている。ガス濃度センサ素子4は、その根本側にてセンサ素子支持体5により支持され、さらに支持体5の外周にはコネクタ6が配置される一方、コネクタ6には、ガス濃度センサ素子4を覆ってセンサ保護管7が設けられている。
The gas concentration detection apparatus 1 is roughly composed of a sensor body 2 and a gas introduction pipe 3, and is inserted into a through hole 50a formed in a main pipe 50 through which a gas to be measured flows.
The sensor main body 2 includes a gas concentration sensor element 4, a sensor element support 5, a connector 6, and a sensor protective tube 7. The gas concentration sensor element 4 is supported by a sensor element support 5 on the base side, and a connector 6 is disposed on the outer periphery of the support 5, while the connector 6 covers the gas concentration sensor element 4. A sensor protection tube 7 is provided.

ガス濃度センサ素子4はヒーター(図示せず)を内蔵する加熱型であり、ガス濃度(ここでは酸素濃度とする)を検出する。ガス濃度センサ素子4は、一端(図1の下側)がセンサ素子支持体5およびコネクタ6の下端より下側に突出しており、他端(図1の上側)には電気的接続のためのリード線8が接続されている。
センサ素子支持体5は、ガスシール、断熱および電気絶縁の役目をする。リード線8は、ガス濃度センサ素子4からの電気的信号の伝達またはヒーター(図示せず)を昇温させるための電気を送る。
The gas concentration sensor element 4 is a heating type incorporating a heater (not shown), and detects the gas concentration (here, oxygen concentration). The gas concentration sensor element 4 has one end (the lower side in FIG. 1) protruding below the lower ends of the sensor element support 5 and the connector 6 and the other end (the upper side in FIG. 1) for electrical connection. Lead wire 8 is connected.
The sensor element support 5 serves as a gas seal, heat insulation and electrical insulation. The lead wire 8 transmits electricity for transmitting an electric signal from the gas concentration sensor element 4 or for heating a heater (not shown).

コネクタ6には、センサ素子支持体5によりガス濃度センサ素子4が一体的に保持されている。コネクタ6の下端(図の下側)には、ガス濃度センサ素子4を覆うようにセンサ保護管7が接続されている。センサ保護管7は、一端(図の下側)が閉じた有底円筒状であり、他端(図の上側)はコネクタ6の下端に接続されている。センサ保護管7には、円周方向の所定間隔で所定形状の窓(貫通孔)が形成され、この窓に金網9が装着されている(または金網構造となっている)。これによりガス濃度センサ素子4には、ガスの通過が可能となる。   The gas concentration sensor element 4 is integrally held by the connector 6 by the sensor element support 5. A sensor protective tube 7 is connected to the lower end (lower side of the figure) of the connector 6 so as to cover the gas concentration sensor element 4. The sensor protection tube 7 has a bottomed cylindrical shape with one end (lower side in the figure) closed, and the other end (upper side in the figure) is connected to the lower end of the connector 6. The sensor protective tube 7 is formed with windows (through holes) having a predetermined shape at predetermined intervals in the circumferential direction, and a metal mesh 9 is attached to the window (or has a metal mesh structure). As a result, gas can pass through the gas concentration sensor element 4.

センサ保護管7および金網9は、火炎伝播防止機能を有する第1防爆体10として構成されている。特に燃料電池システム等においては被測定ガスが水素ガスであるため、ガス濃度センサ素子4内のヒーターの熱により水素ガスが燃焼を起こしてしまった場合においても第1防爆体10が火炎伝播を防止する。なお、防爆体10は、センサ保護管7全体を金網9にして構成してもよく、火炎伝播を防止し、且つガス濃度センサ素子4に被測定ガスを通過可能であれば金網9の目の大きさは構わない。   The sensor protective tube 7 and the wire mesh 9 are configured as a first explosion-proof body 10 having a flame propagation preventing function. Particularly in a fuel cell system or the like, since the gas to be measured is hydrogen gas, the first explosion-proof body 10 prevents flame propagation even when hydrogen gas is burned by the heat of the heater in the gas concentration sensor element 4. To do. The explosion-proof body 10 may be constituted by a wire mesh 9 as a whole of the sensor protection tube 7. If the gas to be measured can pass through the gas concentration sensor element 4 through the gas concentration sensor element 4, the explosion-proof body 10 may be configured as a mesh. The size doesn't matter.

またガス導入管3は、本管50の貫通孔50aに挿入されており、本管50内を流れる被測定ガスをセンサ本体2のガス濃度センサ素子4(第1防爆体10内)に導入する。ガス導入管3は、中空円筒状であり、この内側にガス導入管3と同じ長さの細管11を隙間無く多数束ねられるように配設している(図1,2参照)。細管11は、肉厚が例えば0.1mm以下の薄肉であり、細管11の内径は、ガス導入管3の内径より十分に小さく、ここでは0.1〜0.3mm程度としている。この細管11が第2防爆体としての機能を有し、ガス濃度センサ素子4内のヒーターの熱により水素ガスが燃焼を起こしてしまった場合においても火炎伝播を防止する。   The gas introduction pipe 3 is inserted into the through hole 50a of the main pipe 50, and introduces the gas to be measured flowing in the main pipe 50 into the gas concentration sensor element 4 (in the first explosion-proof body 10) of the sensor body 2. . The gas introduction tube 3 has a hollow cylindrical shape, and a large number of thin tubes 11 having the same length as the gas introduction tube 3 are arranged inside the gas introduction tube 3 without a gap (see FIGS. 1 and 2). The thin tube 11 has a thin wall thickness of, for example, 0.1 mm or less, and the inner diameter of the thin tube 11 is sufficiently smaller than the inner diameter of the gas introduction tube 3, which is about 0.1 to 0.3 mm here. This thin tube 11 has a function as a second explosion-proof body and prevents flame propagation even when hydrogen gas is burned by the heat of the heater in the gas concentration sensor element 4.

なお、ガス導入管3内に設けられる第2防爆体は、ハニカム構造であってもよい(図2参照)。すなわち、本管50内を流れる被測定ガスをセンサ本体2に導く通路に防爆機能を設けることを目的としている。このため、第2防爆体は、被測定ガスを通過可能であり、且つ火炎伝播を防止可能な強度を兼ね備えていれば足りる。
ガス導入管3は、本管50から外側へ所定の長さ分突き出して設計している。これにより、ガス導入管3の外周が外気によって冷却(空冷)可能となっている。そして、被測定ガス中の水分濃度を低減させるとともに安定させることができ、ガス濃度検出精度を向上させる。
Note that the second explosion-proof body provided in the gas introduction pipe 3 may have a honeycomb structure (see FIG. 2). That is, an object of the present invention is to provide an explosion-proof function in the passage that guides the gas to be measured flowing in the main pipe 50 to the sensor body 2. For this reason, it is sufficient for the second explosion-proof body to have a strength capable of passing the gas to be measured and preventing flame propagation.
The gas introduction pipe 3 is designed to protrude outward from the main pipe 50 by a predetermined length. Thereby, the outer periphery of the gas introduction pipe 3 can be cooled (air cooled) by the outside air. In addition, the moisture concentration in the gas to be measured can be reduced and stabilized, and the gas concentration detection accuracy is improved.

ガス導入管3は、前述のセンサ本体2(コネクタ6)との間に配置されたセンサホルダー12により保持される。センサホルダー12は、略中空円筒状であり、下端部に配置された断熱体13によりガス導入管3の上端部を保持する。
センサホルダー12の上部内周面には、雌ねじ12aが形成されており、この部分12aに、コネクタ6のボス部外周に形成された雄ねじ6aが螺合する。センサホルダー12の上端面12bと、コネクタ6の肩部6bとの間にはガスケット14が圧縮された状態で配置されている。
The gas introduction pipe 3 is held by a sensor holder 12 disposed between the sensor main body 2 (connector 6). The sensor holder 12 has a substantially hollow cylindrical shape, and holds the upper end portion of the gas introduction pipe 3 by a heat insulator 13 disposed at the lower end portion.
A female screw 12a is formed on the upper inner peripheral surface of the sensor holder 12, and a male screw 6a formed on the outer periphery of the boss portion of the connector 6 is screwed into this part 12a. Between the upper end surface 12b of the sensor holder 12 and the shoulder 6b of the connector 6, a gasket 14 is disposed in a compressed state.

以上の構成における作用について説明する。
第一の作用として、ガス導入管3内に配置された細管11(第2防爆体)は、その内径が小さく、火炎伝播を防止する効果を有する。500℃以上の高温部を持つセンサ本体2には第1防爆体10を備えているが、第1防爆体10が機能失陥した場合でも、細管11によってセンサ本体2内で生じた火炎が本管50側に伝播することを防止でき、防爆性が一段と高められる。
The operation of the above configuration will be described.
As a first action, the narrow tube 11 (second explosion-proof body) disposed in the gas introduction tube 3 has an effect of preventing the propagation of flame due to its small inner diameter. Although the sensor body 2 having a high temperature portion of 500 ° C. or more includes the first explosion-proof body 10, even if the first explosion-proof body 10 fails in function, the flame generated in the sensor body 2 by the thin tube 11 is Propagation to the tube 50 side can be prevented, and the explosion-proof property is further enhanced.

第二の作用として、ガス導入管3は、本管50から外側へ所定の長さ分突き出して設けたため、ガス導入管3の外周が外気によって冷却(空冷)されることで、被測定ガス中の水蒸気が凝縮し水蒸気濃度を低減するとともに水蒸気濃度を安定させる作用が働く。この作用効果をさらに詳しく説明すると、被測定ガス中の各成分濃度は、水蒸気濃度の変化が直接的に影響する。   As a second action, the gas introduction pipe 3 is provided to protrude outward from the main pipe 50 by a predetermined length, so that the outer periphery of the gas introduction pipe 3 is cooled (air-cooled) by outside air, so that the gas to be measured The water vapor is condensed to reduce the water vapor concentration and stabilize the water vapor concentration. This effect will be described in more detail. The concentration of each component in the gas to be measured is directly affected by the change in the water vapor concentration.

例えば燃料電池システムのように、発生する水分が多く運転状態によって水分状態(水蒸気状態や液水状態)が大きく変化する場合、ガス(酸素あるいは水素)の濃度もその影響を受け大きく変化してしまう。水分は相変化(気体⇔液体)することから非常に厄介である。このため、ガス導入管3内に配置した細管11により水蒸気濃度(ガス温度)を下げ、水分変化の影響を小さくしてガス濃度を検出する。   For example, in the case of a fuel cell system, when the amount of water generated is large and the water state (water vapor state or liquid water state) changes greatly depending on the operating state, the concentration of gas (oxygen or hydrogen) also changes greatly due to the influence. . Moisture is very troublesome because it undergoes a phase change (gas-liquid). For this reason, the water vapor concentration (gas temperature) is lowered by the thin tube 11 arranged in the gas introduction tube 3, and the gas concentration is detected by reducing the influence of moisture change.

ここで、断熱体13は、センサホルダー12の熱をガス導入管3側に伝熱し難くする。すなわちセンサ本体2に到達する被測定ガスの温度を下げる(水蒸気を低減させる)ためには、この断熱体13も有効に働く。
また、ガス導入管3の長さはガス濃度検出の要求精度を確保できる所定長さであって、応答性を考慮すると短い方が好ましいが、本発明の場合(多管構造で冷却表面積が多い場合)には、水蒸気を効率良く凝縮させることができることから短くて済む効果も有する。
Here, the heat insulator 13 makes it difficult to transfer the heat of the sensor holder 12 to the gas introduction pipe 3 side. That is, in order to lower the temperature of the gas to be measured that reaches the sensor body 2 (reducing water vapor), the heat insulator 13 also works effectively.
The length of the gas introduction pipe 3 is a predetermined length that can ensure the required accuracy of gas concentration detection, and is preferably shorter considering the responsiveness, but in the case of the present invention (the multi-tube structure has a large cooling surface area). In the case of ()), it is possible to condense the water vapor efficiently, so that there is an effect that it can be shortened.

本実施形態によれば、被測定ガスが流れる本管50から被測定ガスを導入するガス導入管3と、導入された被測定ガスの濃度を検出する加熱型のガス濃度センサ素子4と、を有するガス濃度検出装置において、ガス濃度センサ素子4を覆うように設けた第1防爆体10と、ガス導入管3内に配置した第2防爆体と、を有する。このため、第1防爆体10および第2防爆体により防爆性を向上できるため、ガス濃度検出装置1の安全性をより高めることができる。   According to the present embodiment, the gas introduction pipe 3 for introducing the measurement gas from the main pipe 50 through which the measurement gas flows, and the heating type gas concentration sensor element 4 for detecting the concentration of the introduced measurement gas are provided. The gas concentration detection apparatus has a first explosion-proof body 10 provided so as to cover the gas concentration sensor element 4 and a second explosion-proof body arranged in the gas introduction pipe 3. For this reason, since the explosion-proof property can be improved by the first explosion-proof body 10 and the second explosion-proof body, the safety of the gas concentration detection device 1 can be further improved.

また本実施形態によれば、第2防爆体は、ガス導入管3内に複数の細管11を束ねて構成した。このため、本管50から被測定ガスを導入する通路を十分に確保でき、ガス濃度検出応答を損なうことを防止できる。
また本実施形態によれば、第2防爆体は、ガス導入管3内をハニカム構造とした(図2)。このため、本管50から被測定ガスを導入する通路を十分に確保でき、ガス濃度検出応答を損なうことを防止できる。
According to this embodiment, the second explosion-proof body is configured by bundling a plurality of thin tubes 11 in the gas introduction tube 3. For this reason, it is possible to sufficiently secure a passage for introducing the gas to be measured from the main pipe 50, and to prevent the gas concentration detection response from being impaired.
According to this embodiment, the second explosion-proof body has a honeycomb structure in the gas introduction pipe 3 (FIG. 2). For this reason, it is possible to sufficiently secure a passage for introducing the gas to be measured from the main pipe 50, and to prevent the gas concentration detection response from being impaired.

また本実施形態によれば、ガス導入管3は、本管50から外側へ所定の長さ分突き出して形成した。このため、被測定ガス中に水分が多量に含まれる場合においても、ガス導入管3が外気によって冷却され、被測定ガス中の水蒸気濃度を安定させることができる。これによりガス濃度を正確に検出でき、計測誤差や信頼性を確保することができる。
次に、第2の実施形態について図3および図4を用いて説明する。なお、本実施形態において第1の実施形態と同様の構成については同一符号を付して説明を省略する。
Further, according to the present embodiment, the gas introduction pipe 3 is formed to protrude outward from the main pipe 50 by a predetermined length. For this reason, even when the gas to be measured contains a large amount of water, the gas introduction pipe 3 is cooled by the outside air, and the water vapor concentration in the gas to be measured can be stabilized. As a result, the gas concentration can be accurately detected, and measurement errors and reliability can be ensured.
Next, a second embodiment will be described with reference to FIGS. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、図3に示すように、第2防爆体として機能する複数の細管11の長さをそれぞれ変更している。これにより第2防爆体は、ガス導入管3の本管50側(図3の下側)の先端から突出する先端部(11a,11c)が山型の形状となる。更に、第2防爆体は、ガス濃度センサ素子4側の後端部(11b)が本管50側の先端部より高い位置にあり且つ本管50内の被測定ガス流れの下流側(図3の右側)ほど重力が作用する向きに低くなるように形成されている。   In this embodiment, as shown in FIG. 3, the length of the several thin tube 11 which functions as a 2nd explosion-proof body is each changed. Thereby, as for the 2nd explosion-proof body, the front-end | tip parts (11a, 11c) which protrude from the main pipe 50 side (lower side of FIG. 3) of the gas introduction pipe 3 become a mountain shape. Further, the second explosion-proof body has a rear end portion (11b) on the gas concentration sensor element 4 side at a position higher than a front end portion on the main pipe 50 side, and a downstream side of the measured gas flow in the main pipe 50 (FIG. 3). It is formed so that it becomes lower in the direction in which gravity acts.

ここで、第2防爆体(細管11)の先端部の「山型」とは、下側に円錐状に形成することばかりではなく、細管11の最下端点を被測定ガス流れ方向に垂直に形成した稜線とする形状を含むものとする。
第2防爆体の先端部は山型であるため、まず被測定ガスの流れに対向する入口開口部11aでは、被測定ガスが動圧を受けセンサ本体2側に押し込まれるように流入する。この時、被測定ガス中に含まれる水蒸気の凝縮が行われ、凝縮水が発生する。
Here, the “mountain shape” at the tip of the second explosion-proof body (narrow tube 11) is not only formed in a conical shape on the lower side, but also the lowest end point of the narrow tube 11 perpendicular to the gas flow direction to be measured. It shall contain the shape which makes the formed ridgeline.
Since the tip of the second explosion-proof body has a mountain shape, first, the gas to be measured flows into the sensor main body 2 side at the inlet opening 11a opposite to the flow of the gas to be measured under dynamic pressure. At this time, the water vapor contained in the gas to be measured is condensed to generate condensed water.

凝縮水は、細管11の下方(本管50内)に落ちる分と、ガス流によりガス濃度センサ素子4側に運ばれる分とがあるが、ここではガス濃度センサ素子4側に開口した第2防爆体の後端部が下流側ほど重力の作用する向きに低く形状しているため、ガス濃度センサ素子4側に運ばれる水分は下流側に運ばれ易く(センサ側開口部11bにおけるの破線矢印参照)、第2防爆体の出口開口部11cを介して本管50内に排出される。   Condensed water has a part that falls below the narrow pipe 11 (in the main pipe 50) and a part that is carried to the gas concentration sensor element 4 side by the gas flow, but here, the second that opens to the gas concentration sensor element 4 side. Since the rear end portion of the explosion-proof body is shaped to be lower in the direction in which gravity acts on the downstream side, moisture carried to the gas concentration sensor element 4 side is easily carried to the downstream side (dashed arrow in the sensor side opening 11b). See), and is discharged into the main pipe 50 through the outlet opening 11c of the second explosion-proof body.

そして、入口開口部11aは、その傾斜面が被測定ガスの上流側に面するように傾斜して形成している一方、出口開口部11cは、その傾斜面が被測定ガスの下流側に面するように傾斜して形成している(図3参照)。このため、出口開口部11cにおいては、入口開口部11aより圧力が低く、被測定ガス(含む凝縮水)は破線矢印に示すように、入口開口部11a→センサ側開口部11b→出口開口部11cの順に滑らかに流れる。これにより、ガス濃度検出装置1が検出する被測定ガスの置換を速くでき、検出装置1の検出応答性が向上する。   The inlet opening 11a is formed to be inclined so that the inclined surface faces the upstream side of the gas to be measured, while the outlet opening 11c has an inclined surface that faces the downstream side of the gas to be measured. It is formed so as to be inclined (see FIG. 3). Therefore, the pressure at the outlet opening 11c is lower than that at the inlet opening 11a, and the gas to be measured (including condensed water) is, as indicated by the broken arrow, the inlet opening 11a → the sensor side opening 11b → the outlet opening 11c. It flows smoothly in the order. As a result, the gas to be measured detected by the gas concentration detection device 1 can be replaced quickly, and the detection response of the detection device 1 is improved.

なお、図4に示すように、ガス導入管3(細管11)の入口開口部11aの傾きを大きくする一方、出口開口部11cの傾きを小さくすることで(L1<L2)、凝縮水が多い場合でも滑らかなガス流れが得られるようにしてもよい。
本実施形態によれば、第2防爆体(細管11)は、ガス導入管3の本管50側の先端から突出する先端部(入口開口部11a、出口開口部11c)が山型の形状である。このため、第2防爆体内の入口開口部11aからセンサ本体2側に被測定ガスを導入した後、出口開口部11から滑らかに流すことができる。
In addition, as shown in FIG. 4, while increasing the inclination of the inlet opening 11a of the gas introduction pipe 3 (narrow tube 11), while reducing the inclination of the outlet opening 11c (L1 <L2), there is much condensed water. Even in this case, a smooth gas flow may be obtained.
According to the present embodiment, the second explosion-proof body (narrow tube 11) has a mountain-like shape at the tip portions (inlet opening portion 11a, outlet opening portion 11c) protruding from the tip of the gas introduction tube 3 on the main tube 50 side. is there. For this reason, after introduce | transducing to-be-measured gas into the sensor main body 2 side from the inlet opening part 11a in a 2nd explosion-proof body, it can flow smoothly from the outlet opening part 11. FIG.

また本実施形態によれば、第2防爆体は、ガス濃度センサ素子4側の後端部(センサ側開口部11b)が本管50側の先端部(入口開口部11a、出口開口部11c)より高い位置にあり且つ本管50内の被測定ガス流れの下流側ほど重力が作用する向きに低くなるように形成されている。このため、ガス濃度センサ素子4側に導入される時に被測定ガスの圧縮により発生した凝縮水が効率よく排出できる。   Further, according to the present embodiment, the second explosion-proof body has a rear end portion (sensor side opening portion 11b) on the gas concentration sensor element 4 side and a front end portion (inlet opening portion 11a, outlet opening portion 11c) on the main tube 50 side. It is formed so that it is in a higher position and becomes lower in the direction in which gravity acts on the downstream side of the gas flow to be measured in the main pipe 50. For this reason, the condensed water generated by compression of the gas to be measured when introduced into the gas concentration sensor element 4 side can be efficiently discharged.

次に、第3の実施形態について図5を用いて説明する。なお、本実施形態において第2の実施形態と同様の構成については同一符号を付して説明を省略する。
本実施形態では、ガス導入管3の先端部に、本管50内の被測定ガスの流れ方向と平行に配置し、本管50から被測定ガスを導入する試料採取管部3aを形成した。試料採取管部3aの採取部3bは、本管50の上流側に開口しており、被測定ガスが入口開口部11aから導入される。このため、破線矢印に示す通り、入口開口部11aから被測定ガス(含む凝縮水)がセンサ本体2側へ導入されると共に、入口開口部11a→センサ側開口部11b→出口開口部11cの順に滑らかに流れる。そして、試料採取管部3aの排出部3cにより被測定ガスおよび凝縮水が排出される。
Next, a third embodiment will be described with reference to FIG. In the present embodiment, the same components as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, the sampling tube portion 3 a for introducing the measurement gas from the main pipe 50 is formed at the tip of the gas introduction pipe 3 in parallel with the flow direction of the measurement gas in the main pipe 50. The sampling part 3b of the sample sampling pipe part 3a is opened on the upstream side of the main pipe 50, and the gas to be measured is introduced from the inlet opening part 11a. For this reason, as shown by the dashed arrow, the gas to be measured (including condensed water) is introduced from the inlet opening 11a to the sensor body 2 side, and the inlet opening 11a → the sensor side opening 11b → the outlet opening 11c in this order. Flows smoothly. Then, the gas to be measured and the condensed water are discharged by the discharge portion 3c of the sampling tube portion 3a.

なお、ここでも図4に示すように、ガス導入管3(細管11)の入口開口部11aの傾きを大きくする一方、出口開口部11cの傾きを小さくすることで(L1<L2)、凝縮水が多い場合でも滑らかなガス流れが得られるようにしてもよい。
また第2防爆体の先端部(入口開口部11a、出口開口部11c)は、試料採取管部3aの底部に達する必要はなく、例えば第1の実施形態と同じくガス導入管3と同じ長さにしてもよい。
Also here, as shown in FIG. 4, while increasing the inclination of the inlet opening 11a of the gas introduction pipe 3 (narrow pipe 11), while reducing the inclination of the outlet opening 11c (L1 <L2), condensed water Even when there is a large amount of gas, a smooth gas flow may be obtained.
Further, the tip of the second explosion-proof body (inlet opening 11a, outlet opening 11c) does not need to reach the bottom of the sampling tube portion 3a. For example, the length is the same as that of the gas introduction tube 3 as in the first embodiment. It may be.

本実施形態によれば、ガス導入管3は、その先端部に、本管50内の被測定ガスの流れ方向と平行に配置し、本管50から被測定ガスを導入する試料採取管部3aを有する。このため、試料採取管部3aの採取部3bおよび入口開口部11aを介してセンサ本体2側に被測定ガスを容易に導入できると共に、センサ側開口部11b、出口開口部11cおよび排出部3cを介して被測定ガス(含む凝縮水)を排出できる。   According to the present embodiment, the gas introduction pipe 3 is arranged at the tip thereof in parallel with the flow direction of the gas to be measured in the main pipe 50, and the sampling pipe part 3 a for introducing the gas to be measured from the main pipe 50. Have Therefore, the gas to be measured can be easily introduced to the sensor body 2 side through the sampling portion 3b and the inlet opening portion 11a of the sample sampling tube portion 3a, and the sensor side opening portion 11b, the outlet opening portion 11c and the discharge portion 3c are provided. Gas to be measured (including condensed water) can be discharged.

第1の実施形態を示す断面図Sectional drawing which shows 1st Embodiment 図1のA−A線における断面図Sectional drawing in the AA line of FIG. 第2の実施形態を示す断面図Sectional drawing which shows 2nd Embodiment ガス導入管3の下端部を示す断面図Sectional drawing which shows the lower end part of the gas introduction pipe 3 第3の実施形態を示す断面図Sectional drawing which shows 3rd Embodiment

符号の説明Explanation of symbols

1 ガス濃度検出装置
2 センサ本体
3 ガス導入管
4 ガス濃度センサ素子
5 センサ素子支持体
10 第1防爆体
11 細管(第2防爆体)
11a 入口開口部(先端部)
11b センサ開口部(後端部)
11c 出口開口部(先端部)
50 本管
50a 貫通孔
DESCRIPTION OF SYMBOLS 1 Gas concentration detection apparatus 2 Sensor main body 3 Gas introduction pipe 4 Gas concentration sensor element 5 Sensor element support body 10 1st explosion-proof body 11 Narrow tube (2nd explosion-proof body)
11a Inlet opening (tip)
11b Sensor opening (rear end)
11c Exit opening (tip)
50 Main pipe 50a Through hole

Claims (7)

被測定ガスが流れる本管から被測定ガスを導入するガス導入管と、前記導入された被測定ガスの濃度を検出する加熱型のガス濃度センサ素子と、を有するガス濃度検出装置において、
前記ガス濃度センサ素子を覆うように設けた第1防爆体と、
前記ガス導入管内に配置した第2防爆体と、
を有することを特徴とするガス濃度検出装置。
In a gas concentration detection apparatus having a gas introduction pipe for introducing a measurement gas from a main pipe through which the measurement gas flows, and a heating type gas concentration sensor element for detecting the concentration of the introduced measurement gas,
A first explosion-proof body provided to cover the gas concentration sensor element;
A second explosion-proof body disposed in the gas introduction pipe;
A gas concentration detection device comprising:
前記第2防爆体は、前記ガス導入管内に複数の細管を束ねて構成したことを特徴とする請求項1記載のガス濃度検出装置。   The gas concentration detection device according to claim 1, wherein the second explosion-proof body is configured by bundling a plurality of thin tubes in the gas introduction tube. 前記第2防爆体は、前記ガス導入管内をハニカム構造としたことを特徴とする請求項1記載のガス濃度検出装置。   The gas concentration detection device according to claim 1, wherein the second explosion-proof body has a honeycomb structure in the gas introduction pipe. 前記第2防爆体は、前記ガス導入管の本管側の先端から突出する先端部が山型の形状であることを特徴とする請求項1〜請求項3のいずれか1つに記載のガス濃度検出装置。   The gas according to any one of claims 1 to 3, wherein the second explosion-proof body has a chevron-shaped tip portion protruding from a tip on the main pipe side of the gas introduction pipe. Concentration detector. 前記第2防爆体は、前記ガス濃度センサ素子側の後端部が本管側の先端部より高い位置にあり且つ前記本管内の被測定ガス流れの下流側ほど重力が作用する向きに低くなるように形成されていることを特徴とする請求項1〜請求項4のいずれか1つに記載のガス濃度検出装置。   In the second explosion-proof body, the rear end portion on the gas concentration sensor element side is located higher than the front end portion on the main pipe side, and the downstream side of the gas flow to be measured in the main pipe becomes lower in the direction in which gravity acts. The gas concentration detection device according to any one of claims 1 to 4, wherein the gas concentration detection device is formed as described above. 前記ガス導入管は、その先端部に、前記本管内の被測定ガスの流れ方向と平行に配置し、前記本管から被測定ガスを導入する試料採取管部を有することを特徴とする請求項1〜請求項5のいずれか1つに記載のガス濃度検出装置。   The gas introduction pipe has a sampling pipe section that is arranged at a tip portion thereof in parallel with a flow direction of the gas to be measured in the main pipe and introduces the gas to be measured from the main pipe. The gas concentration detection apparatus according to any one of claims 1 to 5. 前記ガス導入管は、前記本管から外側へ所定の長さ分突き出して形成したことを特徴とする請求項1〜請求項6のいずれか1つに記載のガス濃度検出装置。   The gas concentration detection device according to any one of claims 1 to 6, wherein the gas introduction pipe is formed to protrude outward from the main pipe by a predetermined length.
JP2004196839A 2004-07-02 2004-07-02 Gas concentration detector Pending JP2006017619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196839A JP2006017619A (en) 2004-07-02 2004-07-02 Gas concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196839A JP2006017619A (en) 2004-07-02 2004-07-02 Gas concentration detector

Publications (1)

Publication Number Publication Date
JP2006017619A true JP2006017619A (en) 2006-01-19

Family

ID=35792045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196839A Pending JP2006017619A (en) 2004-07-02 2004-07-02 Gas concentration detector

Country Status (1)

Country Link
JP (1) JP2006017619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106224A1 (en) * 2008-02-25 2009-09-03 Daimler Ag Pipe assembly for fuel cell system
KR101188987B1 (en) 2009-12-23 2012-10-08 쿠퍼-스탠다드 오토모티브 인코포레이티드 Device for measuring fluid properties in caustic environments
JP2017102010A (en) * 2015-12-01 2017-06-08 株式会社東芝 Gas detector and detector container
WO2018193743A1 (en) * 2017-04-21 2018-10-25 日立オートモティブシステムズ株式会社 Temperature measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106224A1 (en) * 2008-02-25 2009-09-03 Daimler Ag Pipe assembly for fuel cell system
KR101188987B1 (en) 2009-12-23 2012-10-08 쿠퍼-스탠다드 오토모티브 인코포레이티드 Device for measuring fluid properties in caustic environments
JP2017102010A (en) * 2015-12-01 2017-06-08 株式会社東芝 Gas detector and detector container
WO2018193743A1 (en) * 2017-04-21 2018-10-25 日立オートモティブシステムズ株式会社 Temperature measurement device

Similar Documents

Publication Publication Date Title
US7607340B2 (en) Gas sensor
EP2107364B1 (en) Gas sensor
JP6276662B2 (en) Gas sensor
US9506899B2 (en) Gas sensor
JP6454559B2 (en) Gas sensor
JP2008046102A (en) Gas sensor
JPWO2013168649A1 (en) Gas sensor
JP2006017619A (en) Gas concentration detector
JP4541011B2 (en) Method and apparatus for measuring electrochemical corrosion potential inside small shallow cracks
US20100242574A1 (en) Protective heated screen for element
CN108931610B (en) Probe apparatus, exhaust gas analyzing apparatus, and correction method
US10775342B2 (en) Gas sensor
US10908116B2 (en) Gas sensor
CN113866248B (en) Detection method of carbon dioxide concentration detection sensor
JP2008298626A (en) Gas detection probe
US7805992B2 (en) Gas sensor housing for use in high temperature gas environments
US20200292421A1 (en) Sensor device detecting specific component in gas
JP5095915B2 (en) Oxygen sensor
JPH08152383A (en) Gas concentration measuring instrument
JP2006343105A (en) Gas sensor
JP5152863B2 (en) Gas sensor
JP4695441B2 (en) Gas sensor
JP6086855B2 (en) Gas sensor
JP2005114487A (en) Gas sensor
CN216247861U (en) Flue gas moisture content detection device