JP2006016585A - Polyarylene sulfide oxidized product, solid article and method for producing the same - Google Patents

Polyarylene sulfide oxidized product, solid article and method for producing the same Download PDF

Info

Publication number
JP2006016585A
JP2006016585A JP2004235135A JP2004235135A JP2006016585A JP 2006016585 A JP2006016585 A JP 2006016585A JP 2004235135 A JP2004235135 A JP 2004235135A JP 2004235135 A JP2004235135 A JP 2004235135A JP 2006016585 A JP2006016585 A JP 2006016585A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
fiber
measurement
weight
solid article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004235135A
Other languages
Japanese (ja)
Other versions
JP2006016585A5 (en
JP4742535B2 (en
Inventor
Hideo Muraoka
秀郎 村岡
Koji Yamauchi
幸二 山内
Koji Kanno
幸治 菅埜
Keiji Takeda
恵司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004235135A priority Critical patent/JP4742535B2/en
Publication of JP2006016585A publication Critical patent/JP2006016585A/en
Publication of JP2006016585A5 publication Critical patent/JP2006016585A5/ja
Application granted granted Critical
Publication of JP4742535B2 publication Critical patent/JP4742535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)
  • Paper (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Filtering Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyarylene sulfide oxidized product high in heat resistance, chemical resistance and resistance to moisture absorption, and to provide a method for producing the same. <P>SOLUTION: The polyarylene sulfide oxidized product has the following properties: Degree of crystallinity determined by wide angle X-ray diffractometry is ≥10%, and heat of fusion determined by differential scanning calorimetry(DSC) is ≤15 J/g. The method for producing a solid article as the polyarylene sulfide oxidized product having the above-mentioned properties comprises subjecting a solid article as a polyarylene sulfide compound to oxidative reaction treatment with its form kept intact in the presence of an oxidizing agent-containing liquid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱性、耐薬品性および耐吸湿性に優れたポリアリーレンスルフィド酸化物(以下、PPSOと呼ぶこともある)、およびその製造方法に関するものである。本発明のポリアリーレンスルフィド酸化物は、バグフィルターをはじめ、各種フィルターや、さらに耐吸湿性が要求される電機資材など、工業用途として多岐にわたる分野で有用な化合物である。   The present invention relates to a polyarylene sulfide oxide (hereinafter also referred to as PPSO) excellent in heat resistance, chemical resistance and moisture absorption resistance, and a method for producing the same. The polyarylene sulfide oxide of the present invention is a compound useful in a wide variety of industrial applications such as bag filters, various filters, and electrical materials that require moisture absorption resistance.

ポリアリーレンスルフィド酸化物は、高融点かつ高耐薬品性を有するがゆえに、溶融成形や溶液成形が実用上困難であり、酸化反応処理後の成形は工業的に採用しがたいのが実状であった。このような現状から、ポリアリーレンスルフィド化合物を酸化反応処理前に目的の形態を有する物品とし、その形態を保持したまま酸化反応処理し、目的物を望ましい形態で得ることは大変意義が大きいと言える。   Since polyarylene sulfide oxide has a high melting point and high chemical resistance, melt molding and solution molding are practically difficult, and in reality, molding after oxidation reaction treatment is difficult to adopt industrially. It was. From such a current situation, it can be said that it is very significant to make the polyarylene sulfide compound an article having the desired form before the oxidation reaction treatment, and to carry out the oxidation reaction treatment while maintaining the form to obtain the desired product in a desired form. .

これまでに、液体存在下でポリアリーレンスルフィド化合物を酸化する方法は、ポリフェニレンスルフィドスルホン(以下、PPSSと呼ぶ)を濃硫酸に溶解させた後、過酸化水素水を滴下して酸化する方法(例えば、特許文献1および2参照)、ポリフェニレンスルフィド(以下、PPSと呼ぶ)を濃硝酸中で溶解し、酸化する方法(例えば、特許文献3参照)、PPSを過酸化水素または次亜塩素酸塩で酸化する方法(例えば、特許文献4参照)、PPSを過酢酸、あるいは過酸化水素水と酢酸とで調製される平衡過酢酸で酸化する方法(例えば、特許文献5〜9参照)、PPSをオゾンで酸化した後に特許文献5〜7のいずれかの手法によって酸化する方法(例えば、特許文献10参照)などが提案されている。
英国特許第1234008号明細書(第5−8頁) 英国特許第1365486号明細書(第2−3頁) 特開平10−87998号公報(第5頁) 特公昭60−35370号公報(第5−8頁、第I−III表) 特開平10−87832号公報(第3頁) 特開平7−3027号公報(第6頁) 特開平5−230760号公報(第3頁) 特開2000−328444号公報(第5−6頁、第1表) 特開昭63−182413号公報(第6−9頁) 特開平7−3024号公報(第6−7頁)
Up to now, a method for oxidizing a polyarylene sulfide compound in the presence of a liquid is a method in which polyphenylene sulfide sulfone (hereinafter referred to as PPSS) is dissolved in concentrated sulfuric acid, and then hydrogen peroxide is dropped to oxidize (for example, Patent Documents 1 and 2), a method of dissolving polyphenylene sulfide (hereinafter referred to as PPS) in concentrated nitric acid and oxidizing (for example, refer to Patent Document 3), PPS with hydrogen peroxide or hypochlorite A method of oxidizing (for example, see Patent Document 4), a method of oxidizing PPS with peracetic acid or equilibrium peracetic acid prepared with hydrogen peroxide and acetic acid (for example, see Patent Documents 5 to 9), PPS with ozone There has been proposed a method (for example, see Patent Document 10) in which oxidation is performed by any of the techniques of Patent Documents 5 to 7 after oxidation.
British Patent No. 1234008 (pages 5-8) GB 1365486 (page 2-3) Japanese Patent Laid-Open No. 10-87998 (page 5) Japanese Patent Publication No. 60-35370 (page 5-8, Table I-III) Japanese Patent Laid-Open No. 10-87832 (page 3) JP 7-3027 A (page 6) Japanese Patent Laid-Open No. 5-230760 (page 3) JP 2000-328444 A (page 5-6, Table 1) JP-A-63-182413 (page 6-9) JP 7-3024 A (Page 6-7)

しかし、特許文献1〜3の方法では、ポリアリーレンスルフィド化合物を一旦液体中に溶解して処理するため、酸化反応処理前の形態を保持できないという問題がある。一方、特許文献4〜10の方法は、酸化反応処理前の形態を保持しながら処理できる方法である。しかし、例えば、特許文献4の方法は、物品の一部の表面層のみが酸化され、またその生成物は非常に脆く亀裂が生じたりするという生成物の物性面でも問題が生じていた。また、特許文献5〜9に記載の方法は、酸化反応に過酢酸、あるいは過酸化水素水と酢酸の混合物から形成される平衡過酢酸を用いた例が記載されているが、単にそのような処理をするのみでは、十分な物性を有するポリアリーレンスルフィド酸化物は得られなかった。また特許文献5〜9の方法により得られるポリアリーレンスルフィド酸化物は、吸湿性が高いという問題点を有していた。すなわち吸湿による固体物品の寸法変化や、吸湿による固体物品の電気的特性の低下という本質的問題点を有していた。このように、これまで提案されてきた方法では、得られるポリアリーレンスルフィド酸化物の物性面およびその製造方法に課題が多く、実用に供さないものばかりであった。したがって本発明は、工業用途として満足できる優れた特性を持つポリアリーレンスルフィド酸化物を提供することを課題とする。また、プロセスの安全性を確保し、かつ、効率の良い簡便な方法で、このポリアリーレンスルフィド酸化物を製造することを課題とする。   However, the methods of Patent Documents 1 to 3 have a problem in that the polyarylene sulfide compound is once dissolved in the liquid and processed, so that the form before the oxidation reaction treatment cannot be maintained. On the other hand, the method of patent documents 4-10 is a method which can be processed, maintaining the form before an oxidation reaction process. However, for example, in the method of Patent Document 4, only a part of the surface layer of the article is oxidized, and the product is very brittle and cracks are generated. Moreover, although the method of patent documents 5-9 has described the example using the equilibrium peracetic acid formed from peracetic acid or the mixture of hydrogen peroxide and acetic acid for oxidation reaction, such a method is described simply. Only by the treatment, a polyarylene sulfide oxide having sufficient physical properties could not be obtained. Moreover, the polyarylene sulfide oxide obtained by the methods of Patent Documents 5 to 9 has a problem of high hygroscopicity. That is, there are essential problems such as a dimensional change of the solid article due to moisture absorption and a decrease in electrical characteristics of the solid article due to moisture absorption. As described above, in the methods proposed so far, there are many problems in the physical properties of the resulting polyarylene sulfide oxide and the production method thereof, and the methods have not been put to practical use. Accordingly, an object of the present invention is to provide a polyarylene sulfide oxide having excellent characteristics that can be satisfied for industrial use. Another object of the present invention is to produce this polyarylene sulfide oxide by a simple and efficient method that ensures process safety.

本発明者らはこれらの問題を解決すべく鋭意検討を重ねた結果、工業用途として満足できる優れた特性を持つポリアリーレンスルフィド酸化物を見出した。また、プロセスの安全性を確保しかつ効率の良い簡便な方法で、このポリアリーレンスルフィド酸化物を製造できることを見出した。   As a result of intensive studies to solve these problems, the present inventors have found a polyarylene sulfide oxide having excellent characteristics that can be satisfied for industrial use. It has also been found that this polyarylene sulfide oxide can be produced by a simple and efficient method that ensures process safety.

すなわち本発明は、広角X線回折の測定における結晶化度が10%以上であり、かつ示差走査熱量計(DSC)の測定における融解熱量が15J/g以下を有するポリアリーレンスルフィド酸化物である。   That is, the present invention is a polyarylene sulfide oxide having a crystallinity of 10% or more in the measurement of wide-angle X-ray diffraction and a heat of fusion in the measurement of a differential scanning calorimeter (DSC) of 15 J / g or less.

また、本発明は、上記ポリアリーレンスルフィド酸化物からなり、粉末、繊維、布帛、フィルムおよび紙から選ばれる形態を有する固体物品である。   Moreover, this invention is a solid article which consists of said polyarylene sulfide oxide and has a form chosen from a powder, a fiber, a fabric, a film, and paper.

また、本発明は、ポリアリーレンスルフィド化合物からなる固体物品を酸化剤を含む液体存在下で形態を保持したまま酸化反応処理することにより、広角X線回折の測定における結晶化度が10%以上であり、かつ示差走査熱量計(DSC)の測定における融解熱量が15J/g以下を有するポリアリーレンスルフィド酸化物からなる固体物品を製造する固体物品の製造方法である。   The present invention also provides a solid article comprising a polyarylene sulfide compound by an oxidation reaction treatment in the presence of a liquid containing an oxidant while maintaining the form so that the crystallinity in the measurement of wide-angle X-ray diffraction is 10% or more. And a method for producing a solid article for producing a solid article comprising a polyarylene sulfide oxide having a heat of fusion of 15 J / g or less as measured by a differential scanning calorimeter (DSC).

ポリアリーレンスルフィド酸化物が工業用途として有用な化合物であることは前記の通りであり、本発明によりさらに高耐熱性、耐薬品性、耐吸湿性、電気絶縁性等に優れたポリアリーレンスルフィド酸化物が得られ、工業用途として多岐に渡り有用な固体物品が得られる。また、本発明の製法は、工業的に容易に入手可能な試薬を用い、簡便な手法でかつ効率良く、工業的に優れた方法で所望の形状を有するポリアリーレンスルフィド酸化物からなる固体物品を得る製造方法である。そして目的とする酸化物を、酸化前の形態を保持したまま安全なプロセスで酸化反応処理して得ることは意義が大きいものと言える。   As described above, the polyarylene sulfide oxide is a compound useful for industrial use. According to the present invention, the polyarylene sulfide oxide is further excellent in high heat resistance, chemical resistance, moisture absorption resistance, electrical insulation, and the like. And solid articles useful for various industrial purposes can be obtained. In addition, the production method of the present invention is a method for producing a solid article made of polyarylene sulfide oxide having a desired shape by a simple and efficient method and using an industrially excellent method using a reagent that is easily available industrially. It is a manufacturing method to obtain. It can be said that it is significant to obtain the target oxide by an oxidation reaction treatment in a safe process while maintaining the form before oxidation.

以下に本発明を詳細に説明する。 The present invention is described in detail below.

<ポリアリーレンスルフィド化合物>
本発明において反応原料となるポリアリーレンスルフィド化合物は、一般式(1)
<Polyarylene sulfide compound>
In the present invention, the polyarylene sulfide compound as a reaction raw material is represented by the general formula (1)

Figure 2006016585
Figure 2006016585

(Rは、水素、ハロゲン、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基、芳香族置換基で置換された脂肪族置換基の少なくともいずれか1つを表す。)で示される繰り返し単位を主要構成単位とするホモポリマー、または、上記繰り返し単位と、上記繰り返し単位1モル当たり1.0モル以下、好ましくは0.3モル以下の一般式(2)〜(8) (R represents at least one of hydrogen, halogen, an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, and an aliphatic substituent substituted with an aromatic substituent. ) Or a repeating unit represented by formula (2) to (8) having a repeating unit of 1.0 or less, preferably 0.3 or less, per mole of the repeating unit. )

Figure 2006016585
Figure 2006016585

(Rは、水素、ハロゲン、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基、芳香族置換基で置換された脂肪族置換基のいずれかを表し、R’は、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基を表す。)で示される繰り返し単位とからなる共重合体である。 (R represents hydrogen, halogen, an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, or an aliphatic substituent substituted with an aromatic substituent, and R ′ represents Represents an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence.)).

置換基RおよびR’は、水素または炭素数1〜4の脂肪族置換基が好ましく、具体例としては水素、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基が挙げられる。中でも好ましいのは、メチル基、エチル基、iso−プロピル基、tert−ブチル基であり、さらに好ましいのは、メチル基である。ポリアリーレンスルフィド化合物の具体例としては、ポリ−p−フェニレンスルフィド、ポリ−p−トリレンスルフィド、ポリ−p−クロロフェニレンスルフィド、ポリ−p−フルオロフェニレンスルフィドなどが挙げられ、中でも好ましいのは、ポリ−p−フェニレンスルフィド、ポリ−p−トリレンスルフィドであり、さらに好ましいのは、ポリ−p−フェニレンスルフィドである。   Substituents R and R ′ are preferably hydrogen or an aliphatic substituent having 1 to 4 carbon atoms. Specific examples include hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, Examples include iso-butyl group and tert-butyl group. Among these, a methyl group, an ethyl group, an iso-propyl group, and a tert-butyl group are preferable, and a methyl group is more preferable. Specific examples of the polyarylene sulfide compound include poly-p-phenylene sulfide, poly-p-tolylene sulfide, poly-p-chlorophenylene sulfide, poly-p-fluorophenylene sulfide, and the like. Poly-p-phenylene sulfide and poly-p-tolylene sulfide are preferable, and poly-p-phenylene sulfide is more preferable.

また、本発明に用いる、ポリアリーレンスルフィド化合物からなる固体物品は、粉末、繊維、布帛、フィルム、紙、その他成形体など、いずれの形態でも構わない。繊維形態の具体例としては、ボビンなどに巻き付けられた糸巻き状、かせなどが挙げられる。布帛の具体例としては、不織布、織布、編物などが挙げられる。固体物品は、繊維、布帛、フィルムおよび紙から選ばれた形態を有することが、特に好ましい。固体物品には、本発明を妨げない限りにおいて、各種添加剤や他のポリマーを含んでもかまわない。   Further, the solid article made of the polyarylene sulfide compound used in the present invention may be in any form such as powder, fiber, fabric, film, paper, and other molded articles. Specific examples of the fiber form include a thread wound around a bobbin, a skein, and the like. Specific examples of the fabric include a nonwoven fabric, a woven fabric, and a knitted fabric. It is particularly preferred that the solid article has a form selected from fibers, fabrics, films and paper. The solid article may contain various additives and other polymers as long as they do not interfere with the present invention.

さらに、固体物品を構成するポリアリーレンスルフィド化合物は、結晶化度30%以上かつ重量平均分子量(Mw)30000以上の物性を有することが好ましく、さらに結晶化度は50%以上であることがより好ましい。また、重量平均分子量(Mw)は40000以上であることがより好ましい。従来の方法として、酸化反応処理の処理効率を上げて反応時間を短縮するために、出発原料として結晶化度の低いポリアリーレンスルフィドを用いることが知られていた。しかしながら、発明者等は、むしろ結晶化度が高く、上記特定の範囲の結晶化度および分子量を有するポリアリーレンスルフィド化合物を用いることにより、酸化反応処理においてもその結晶性や分子量が損なわれず、その結果生成するポリアリーレンスルフィド酸化物の物性が大きく向上することを見いだした。それに対して、出発原料として結晶化度の低いポリアリーレンスルフィドを用いると、後の酸化反応処理によりさらに結晶化度が低下し、結果その生成物は非常に脆く、大きく物性を落とすということを見いだした。さらに、反応前のポリアリーレンスルフィドの結晶化度が高いと、ポリマーの分子が規則正しく並んでいるために、架橋反応も起こりやすいことを見いだした。高架橋化が進行することにより、生成するポリアリーレンスルフィド酸化物の物性は、さらに向上する。このような結晶化度及び重量平均分子量を有するポリアリーレンスルフィドからなる固体物品は、例えば以下の方法により得ることができる。   Further, the polyarylene sulfide compound constituting the solid article preferably has physical properties of a crystallinity of 30% or more and a weight average molecular weight (Mw) of 30000 or more, and the crystallinity is more preferably 50% or more. . The weight average molecular weight (Mw) is more preferably 40000 or more. As a conventional method, it has been known to use polyarylene sulfide having a low degree of crystallinity as a starting material in order to increase the treatment efficiency of the oxidation reaction treatment and shorten the reaction time. However, the inventors have rather high crystallinity, and by using a polyarylene sulfide compound having crystallinity and molecular weight in the specific range, the crystallinity and molecular weight are not impaired even in the oxidation reaction treatment. The physical properties of the resulting polyarylene sulfide oxide were found to be greatly improved. On the other hand, when polyarylene sulfide having a low crystallinity was used as a starting material, it was found that the crystallinity was further lowered by the subsequent oxidation reaction treatment, and as a result, the product was very brittle and greatly deteriorated physical properties. It was. Furthermore, it has been found that when the degree of crystallinity of the polyarylene sulfide before the reaction is high, the polymer molecules are regularly arranged, so that a crosslinking reaction is likely to occur. As the cross-linking proceeds, the physical properties of the resulting polyarylene sulfide oxide are further improved. A solid article made of polyarylene sulfide having such crystallinity and weight average molecular weight can be obtained, for example, by the following method.

すなわち、硫黄源として水硫化ナトリウムおよび有機モノマーとしてp−ジクロロベンゼンを用いて、重合する際に重合助剤として酢酸ナトリウムを用い、その重合助剤を水硫化ナトリウムに対して0.04倍モル以上用い、水硫化ナトリウムに対するp−ジクロロベンゼンの過剰率が2.0モル%以上の条件で約4時間重合させることにより、重量平均分子量(Mw)30000以上を有するポリフェニレンスルフィドを得ることができる。   That is, using sodium hydrosulfide as a sulfur source and p-dichlorobenzene as an organic monomer, using sodium acetate as a polymerization aid during polymerization, the polymerization aid is 0.04 times mol or more with respect to sodium hydrosulfide. The polyphenylene sulfide having a weight average molecular weight (Mw) of 30,000 or more can be obtained by polymerization for about 4 hours under the condition that the excess of p-dichlorobenzene with respect to sodium hydrosulfide is 2.0 mol% or more.

また、結晶化度30%以上を有するポリアリーレンスルフィド化合物からなる固体物品を得るためには、固体物品の形態によりその方法が異なるが、例えば、固体物品が繊維またはフィルムの場合、公知の方法により延伸速度、延伸倍率の制御や、延伸後の熱処理条件の制御することによりこれらを得ることができる。   Further, in order to obtain a solid article comprising a polyarylene sulfide compound having a crystallinity of 30% or more, the method varies depending on the form of the solid article. For example, when the solid article is a fiber or a film, a known method is used. These can be obtained by controlling the stretching speed and stretching ratio, and controlling the heat treatment conditions after stretching.

固体物品が繊維または布帛である場合、その物品を構成する繊維の太さ(単糸繊度)は、0.1〜10dtexが好ましく、より好ましくは0.5〜9dtex、さらに好ましくは1〜7dtex、特に好ましくは、2.0〜6.0dtexである。   When the solid article is a fiber or a fabric, the thickness (single yarn fineness) of the fiber constituting the article is preferably 0.1 to 10 dtex, more preferably 0.5 to 9 dtex, still more preferably 1 to 7 dtex, Particularly preferred is 2.0 to 6.0 dtex.

<反応液体>
本発明において、酸化反応処理に使用される液体は、ポリアリーレンスルフィド化合物からなる固体物品の形態を保持するものであれば任意に用いることができ、酸化反応処理に用いる酸化剤を均一に溶解するものであることが好ましい。中でも、有機酸、有機酸無水物または鉱酸を含む液体であることが好ましい。また、液体は単独および混合物のいずれでもよい。また水、あるいは、水を含む混合物でも構わない。液体の具体例としては、水、アセトン、メタノール、エタノール、アセトニトリル、テトラヒドロフラン、クロロホルム、N−メチルピロリドン、酢酸エチル、ピリジン、後述する有機酸および有機酸無水物が挙げられる。有機酸の具体例としては、ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、マレイン酸などが挙げられる。有機酸無水物としては、下記一般式(a)
<Reaction liquid>
In the present invention, the liquid used for the oxidation reaction treatment can be arbitrarily used as long as it maintains the form of the solid article made of the polyarylene sulfide compound, and uniformly dissolves the oxidizing agent used for the oxidation reaction treatment. It is preferable. Among these, a liquid containing an organic acid, an organic acid anhydride, or a mineral acid is preferable. Further, the liquid may be either alone or as a mixture. Also, water or a mixture containing water may be used. Specific examples of the liquid include water, acetone, methanol, ethanol, acetonitrile, tetrahydrofuran, chloroform, N-methylpyrrolidone, ethyl acetate, pyridine, organic acids and organic acid anhydrides described later. Specific examples of the organic acid include formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid, maleic acid and the like. As the organic acid anhydride, the following general formula (a)

Figure 2006016585
Figure 2006016585

(R、Rは、それぞれ炭素数1〜5の脂肪族置換基、芳香族置換基、芳香族置換基で置換された脂肪族置換基のいずれかを表し、RおよびRは互いに連結して環状構造を形成していてもよい。)で示される酸無水物が挙げられ、具体例としては無水酢酸、無水トリフルオロ酢酸、無水プロピオン酸、無水酪酸、無水マレイン酸、無水コハク酸、無水フタル酸、無水安息香酸、無水−クロロ安息香酸などが挙げられる。鉱酸の具体例としては、硝酸、硫酸、塩酸、リン酸などが挙げられる。好ましいのは、水、酢酸、トリフルオロ酢酸、無水酢酸、無水トリフルオロ酢酸、硫酸、塩酸であり、さらに好ましいのは、水、酢酸、トリフルオロ酢酸、硫酸である。中でも特に好ましいのは、水、酢酸および硫酸が混合された液体である。その混合組成比としてより好ましいのは、水:5〜20重量%、酢酸:60〜90重量%、硫酸:5〜20重量%であり、この範囲の濃度において特に良好な結果を与える。 (R 1 and R 2 each represent an aliphatic substituent having 1 to 5 carbon atoms, an aromatic substituent, or an aliphatic substituent substituted with an aromatic substituent, and R 1 and R 2 are And may be linked to form a cyclic structure.), And specific examples thereof include acetic anhydride, trifluoroacetic anhydride, propionic anhydride, butyric anhydride, maleic anhydride, and succinic anhydride. , Phthalic anhydride, benzoic anhydride, and anhydrous chlorobenzoic acid. Specific examples of the mineral acid include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid and the like. Preferred are water, acetic acid, trifluoroacetic acid, acetic anhydride, trifluoroacetic anhydride, sulfuric acid and hydrochloric acid, and more preferred are water, acetic acid, trifluoroacetic acid and sulfuric acid. Among them, particularly preferred is a liquid in which water, acetic acid and sulfuric acid are mixed. More preferable mixed composition ratios are: water: 5 to 20% by weight, acetic acid: 60 to 90% by weight, and sulfuric acid: 5 to 20% by weight, and give particularly good results at concentrations in this range.

<酸化剤>
本反応に使用される酸化剤は、上記液体に均一に溶解するものであって、本発明で規定する特性を有するポリアリーレンスルフィド酸化物を与えるものであれば任意に用いることができる。中でもポリアリーレンスルフィドからなる固体物品をその形態を保持したまま酸化反応処理し得る酸化剤および液体の組み合わせであることが好ましい。酸化剤としては無機塩過酸化物および過酸化水素水から選ばれる少なくとも1つが好ましく、無機塩過酸化物および過酸化水素水から選択される一種以上と、有機酸および有機酸無水物から選択される一種以上との混合物から形成される過酸化物(過酸を含む)であっても構わない。酸化剤として用いる無機塩過酸化物としては、過硫酸塩類、過ホウ酸塩類、過炭酸塩類が好ましく挙げられる。ここで塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩などが挙げられるが、なかでもナトリウム塩、カリウム塩、アンモニウム塩が好ましい。その具体例としては、過硫酸塩としては過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過ホウ酸塩としては過ホウ酸ナトリウム、過ホウ酸カリウム、過ホウ酸アンモニウム、過炭酸塩としては過炭酸ナトリウム、過炭酸カリウムなどが挙げられる。過酸化水素水と、有機酸または有機酸無水物との混合物から形成される過酸の具体例としては、過ギ酸、過酢酸、トリフルオロ過酢酸、過プロピオン酸、過酪酸、過安息香酸、m−クロロ過安息香酸などが挙げられる。中でも好ましいのは、過硫酸ナトリウム、過ホウ酸ナトリウム、過ギ酸、過酢酸、トリフルオロ過酢酸であり、さらに好ましいのは、過ホウ酸ナトリウム、過酢酸、トリフルオロ過酢酸である。
<Oxidizing agent>
The oxidizing agent used in this reaction can be arbitrarily used as long as it dissolves uniformly in the liquid and gives a polyarylene sulfide oxide having the characteristics defined in the present invention. In particular, a combination of an oxidant and a liquid capable of subjecting a solid article made of polyarylene sulfide to an oxidation reaction treatment while maintaining its form is preferable. The oxidizing agent is preferably at least one selected from inorganic salt peroxides and hydrogen peroxide solutions, and is selected from one or more selected from inorganic salt peroxides and hydrogen peroxide solutions, and organic acids and organic acid anhydrides. Peroxides (including peracids) formed from a mixture of one or more of them may be used. Preferred examples of the inorganic salt peroxide used as the oxidizing agent include persulfates, perborates, and percarbonates. Here, examples of the salt include alkali metal salts, alkaline earth metal salts, ammonium salts, and the like, among which sodium salts, potassium salts, and ammonium salts are preferable. Specific examples thereof include sodium persulfate, potassium persulfate, ammonium persulfate as persulfates, sodium perborate, potassium perborate, ammonium perborate as perborate, and percarbonate as percarbonate. Examples thereof include sodium and potassium percarbonate. Specific examples of peracids formed from a mixture of hydrogen peroxide and an organic acid or organic acid anhydride include performic acid, peracetic acid, trifluoroperacetic acid, perpropionic acid, perbutyric acid, perbenzoic acid, and m-chloroperbenzoic acid. Of these, sodium persulfate, sodium perborate, performic acid, peracetic acid, and trifluoroperacetic acid are preferable, and sodium perborate, peracetic acid, and trifluoroperacetic acid are more preferable.

<酸化剤濃度>
酸化剤の濃度は工業的製法における安全性管理の上で重要である。処理効率の点からは高い濃度の方が好ましいが、ポリアリーレンスルフィド化合物からなる固体物品の形態や見かけ体積などから、固体物品が酸化剤を含む液体に十分浸漬しうる濃度まで液体で希釈、あるいは安全面から濃度を下げることは任意に可能である。
<Oxidant concentration>
The concentration of the oxidizing agent is important for safety management in the industrial production process. From the viewpoint of processing efficiency, a high concentration is preferable, but from the form and apparent volume of the solid article made of the polyarylene sulfide compound, the solid article is diluted with the liquid to a concentration that can be sufficiently immersed in the liquid containing the oxidizing agent, or It is possible to lower the concentration from the viewpoint of safety.

酸化剤として過酸を用いる場合、過酸の濃度は20重量%以下が好ましく、より好ましくは0.1重量%〜10重量%であり、さらに好ましくは3〜8重量%である。この範囲の濃度において良好な反応結果を与え、かつ安全性の高いプロセスが構築できる。これより高いとその安定性や安全性が温度に対して非常に影響を受けやすくなり、特に20重量%を超える高濃度の過酸はその安定性やプロセスの安全性の管理が難しいため好ましくない。   When peracid is used as the oxidizing agent, the concentration of peracid is preferably 20% by weight or less, more preferably 0.1% by weight to 10% by weight, and further preferably 3 to 8% by weight. A good reaction result can be obtained at a concentration within this range, and a highly safe process can be constructed. If it is higher than this, its stability and safety are very sensitive to temperature. In particular, a high concentration of peracid exceeding 20% by weight is not preferable because it is difficult to control its stability and process safety. .

また、酸化剤として無機塩過酸化物を用いる場合、ポリアリーレンスルフィド化合物からなる固体物品の形態や見かけ体積などから十分浸漬しうる濃度まで溶媒で希釈、あるいは安全面から濃度を下げることは任意に可能である。好ましくは0.1重量%〜10重量%、さらに好ましくは3重量%〜8重量%である。   In addition, when inorganic salt peroxide is used as the oxidizing agent, it is optional to dilute with a solvent from the form or apparent volume of a solid article made of a polyarylene sulfide compound to a concentration that can be sufficiently immersed, or to reduce the concentration from a safety aspect. Is possible. Preferably they are 0.1 weight%-10 weight%, More preferably, they are 3 weight%-8 weight%.

過酸化水素水と有機酸との混合物から形成される過酸または過酸化物を用いる場合、過酸または過酸化物の濃度は、10重量%以下であることが好ましい。   When a peracid or peroxide formed from a mixture of hydrogen peroxide and an organic acid is used, the concentration of the peracid or peroxide is preferably 10% by weight or less.

過酸化水素水と有機酸無水物との混合物から形成される過酸あるいは過酸化物を用いる場合、過酸または過酸化物の濃度は、好ましくは0.1重量%〜20重量%、さらに好ましくは3重量%〜15重量%、特に好ましくは3重量%〜8重量%である。   When a peracid or peroxide formed from a mixture of hydrogen peroxide and an organic acid anhydride is used, the concentration of the peracid or peroxide is preferably 0.1% by weight to 20% by weight, more preferably Is 3 to 15% by weight, particularly preferably 3 to 8% by weight.

上記範囲の濃度において、特に良好な反応結果を与え、かつ安全性の高いプロセスが構築できる。これより高いとその安定性や安全性が温度に対して非常に影響を受けやすくなり、特に20重量%を超える高濃度の過酸はその安定性やプロセスの安全性の管理が難しいため好ましくない。   When the concentration is within the above range, a particularly safe reaction result and a highly safe process can be constructed. If it is higher than this, its stability and safety are very sensitive to temperature. In particular, a high concentration of peracid exceeding 20% by weight is not preferable because it is difficult to control its stability and process safety. .

例えば、示差走査熱量計(DSC−60:島津製作所)を用い、空気雰囲気下、サンプル量を5mg〜8mgの範囲内で秤量し、ステンレス製4.9MPa(50気圧)耐圧密閉容器にて、温度プログラムを30℃〜200℃(30℃から10℃/分昇温で200℃まで昇温)と設定して測定した時の過酢酸溶液の熱的挙動は、40%過酢酸溶液の場合が分解温度110℃、発熱量770J/gである。酢酸および34.5%過酸化水素水を等重量用いて理論過酢酸濃度を40%に調製した平衡過酢酸の場合は、分解温度133℃、発熱量704J/gである。それに対し、無水酢酸および34.5%過酸化水素水を等重量用いて理論過酢酸濃度を40%に調製した混合液体のそれは分解温度132℃、445J/gと約6割の発熱量である。また理論過酢酸濃度9%のそれは分解温度110℃、230J/gと約3分の1の発熱量であり、非常に小さい。それ故に、酸化剤濃度を下げることで酸化反応処理プロセスの安全性を確保することは非常に重要である。   For example, using a differential scanning calorimeter (DSC-60: Shimadzu Corporation), the sample amount is weighed within a range of 5 mg to 8 mg in an air atmosphere, and the temperature is measured in a stainless steel 4.9 MPa (50 atm) pressure-resistant sealed container. The thermal behavior of the peracetic acid solution when the program is set to 30 ° C to 200 ° C (temperature rise from 30 ° C to 200 ° C at a rate of 10 ° C / min) is decomposed in the case of 40% peracetic acid solution. The temperature is 110 ° C. and the calorific value is 770 J / g. In the case of equilibrium peracetic acid prepared by using equal amounts of acetic acid and 34.5% hydrogen peroxide water to a theoretical peracetic acid concentration of 40%, the decomposition temperature is 133 ° C. and the calorific value is 704 J / g. On the other hand, a liquid mixture prepared by using equal weight of acetic anhydride and 34.5% hydrogen peroxide solution to a theoretical peracetic acid concentration of 40% has a decomposition temperature of 132 ° C. and 445 J / g, which is about 60% of the calorific value. . The theoretical peracetic acid concentration of 9% is a decomposition temperature of 110 ° C. and 230 J / g, which is about one third of the calorific value, which is very small. Therefore, it is very important to ensure the safety of the oxidation reaction treatment process by reducing the oxidant concentration.

<反応温度および時間>
本酸化反応処理は、本発明で規定する特性を有するポリアリーレンスルフィド酸化物が得られる限り特に制限はないが、使用される液体の沸点以下の温度で行われることが好ましい。沸点以上の温度では系が加圧になり、酸化剤の分解が促進されたり煩雑な設備となる場合が多く、また安全面においても厳しいプロセス管理が必要とされる傾向にある。具体的な酸化反応処理温度は、用いる液体の沸点により異なるが、液体の沸点が許容する範囲内において、0℃〜100℃の間、中でも30℃前後〜80℃の間が好ましく、特に40℃〜70℃が好ましい。例えば、液体が酢酸の場合には50℃〜70℃の酸化反応処理温度が好ましく、この範囲の温度において特に良好な反応結果を与える。
<Reaction temperature and time>
The oxidation treatment is not particularly limited as long as a polyarylene sulfide oxide having the characteristics defined in the present invention is obtained, but it is preferably performed at a temperature not higher than the boiling point of the liquid used. When the temperature is higher than the boiling point, the system is pressurized, the decomposition of the oxidant is often promoted and complicated equipment is required, and strict process management tends to be required in terms of safety. The specific oxidation reaction treatment temperature varies depending on the boiling point of the liquid to be used, but is within the range allowed by the boiling point of the liquid, preferably between 0 ° C. and 100 ° C., more preferably between about 30 ° C. and 80 ° C., particularly 40 ° C. ~ 70 ° C is preferred. For example, when the liquid is acetic acid, an oxidation reaction treatment temperature of 50 ° C. to 70 ° C. is preferable, and particularly good reaction results are obtained at temperatures in this range.

酸化反応処理時間は、本発明で規定した特性を有するポリアリーレンスルフィド酸化物が得られる限り特に制限はなく、具体的な時間としても反応温度と酸化剤の濃度により左右されるため一概にはいえないが、例えば、液体が酢酸の場合には、60℃条件下、10重量%の酸化剤濃度において、約2時間である。   The oxidation reaction treatment time is not particularly limited as long as the polyarylene sulfide oxide having the characteristics specified in the present invention can be obtained, and the specific time depends on the reaction temperature and the concentration of the oxidizing agent. For example, when the liquid is acetic acid, it is about 2 hours at 60 ° C. and 10 wt% oxidant concentration.

通常60℃条件下、5重量%の酸化剤濃度において、約1〜8時間が好ましい。さらに酸化剤として前記一般式(a)で示される酸無水物と過酸化水素との混合物から形成される過酸を用いる場合、安全性を確保した上で効率よく短時間で酸化反応処理を行うことが好ましい。例えば、酢酸および34.5%過酸化水素水を等重量用いて理論過酢酸濃度を40%に調製した平衡過酢酸を用いた場合、繊維束、布帛、フェルトのいずれかを酸化反応処理するための時間が60℃温度条件下で約8時間であるのに対し、無水酢酸および34.5%過酸化水素水を等重量用いて理論過酢酸濃度を40%に調製した混合液体のそれは約2時間であり、非常に効率がよい。   Usually, about 1 to 8 hours are preferable under the conditions of 60 ° C. and 5% by weight of oxidizing agent. Further, when a peracid formed from a mixture of an acid anhydride represented by the general formula (a) and hydrogen peroxide is used as an oxidizing agent, the oxidation reaction treatment is efficiently performed in a short time while ensuring safety. It is preferable. For example, in the case of using equilibrium peracetic acid in which the theoretical peracetic acid concentration is adjusted to 40% using equal weight of acetic acid and 34.5% hydrogen peroxide water, any of the fiber bundles, fabrics and felts is subjected to an oxidation reaction treatment. Is about 8 hours under a temperature condition of 60 ° C., whereas that of a mixed liquid prepared by using an equal weight of acetic anhydride and 34.5% aqueous hydrogen peroxide to a theoretical peracetic acid concentration of 40% is about 2 Time and very efficient.

<酸化反応処理方式>
本酸化反応処理を行うための処理方式に特に制限はないが、バッチ式または連続式、あるいはそれらを組み合わせたものも採用できる。また1段式プロセスまたは多段式プロセスのいずれでも採用できる。
<Oxidation reaction treatment method>
Although there is no restriction | limiting in particular in the processing system for performing this oxidation reaction process, The thing of batch type, continuous type, or those combination is also employable. Further, either a single-stage process or a multistage process can be employed.

ここで、バッチ式とは、任意の反応容器内にポリアリーレンスルフィド化合物からなる固体物品および酸化剤の含まれる液体を投入し、任意の濃度、温度、時間で酸化反応処理した後、ポリアリーレンスルフィド酸化物または液体を取り出す処理方式を意味する。連続式とは、ポリアリーレンスルフィド化合物からなる固体物品または酸化剤の含まれる液体を任意の流速を持たせて反応容器内を流通させて酸化反応処理する方式を意味する。連続式においては、任意の形態で固定化したポリアリーレンスルフィド化合物からなる固体物品に対して、酸化剤の含まれる液体を流通または循環させて酸化反応処理する方法、あるいは、酸化剤の含まれる液体を任意の反応容器内に投入し、そこへポリアリーレンスルフィド化合物からなる固体物品を連続的に流通または循環させて酸化反応処理する方法のいずれも採用できる。   Here, the batch type means that a solid article composed of a polyarylene sulfide compound and a liquid containing an oxidant are charged into an arbitrary reaction vessel and subjected to an oxidation reaction treatment at an arbitrary concentration, temperature and time, and then polyarylene sulfide. It means a treatment system for taking out oxide or liquid. The continuous system means a system in which a solid article made of a polyarylene sulfide compound or a liquid containing an oxidizing agent is allowed to flow through a reaction vessel at an arbitrary flow rate and is subjected to an oxidation reaction treatment. In the continuous type, a solid article comprising a polyarylene sulfide compound fixed in an arbitrary form is subjected to an oxidation reaction treatment by circulating or circulating a liquid containing an oxidizing agent, or a liquid containing an oxidizing agent. Any method can be employed in which an arbitrary reaction vessel is charged and a solid article composed of a polyarylene sulfide compound is continuously circulated or circulated therethrough for an oxidation reaction treatment.

また、多段式プロセスとは、バッチ式または連続式を採用した酸化反応処理の単位工程が、複数または段階的に構築されたプロセスを意味する。具体的には、酸化反応処理を複数回に分け、各処理を行う際に、酸化反応処理を行うための酸化剤を含む液体をあらたに調製し、続く酸化反応処理を行う方法が例示される。かかる方法は酸化反応を促進できる点で好ましく、具体的には酸化反応処理時間の短縮や、より低い温度での反応が可能となる点で好ましく用いられる。特に、ポリアリーレンスルフィド化合物からなる固体物品の形態や見かけ体積などの影響で、それが十分浸漬するよう液体で希釈したり、あるいは安全性確保のために濃度を下げたりすることにより生じ得る酸化反応処理時間の延長を抑制したり、過度の温度上昇を不要にし得る点でこの多段式プロセスが好ましく、これを採用することにより、酸化反応時間の延長や温度上昇を被ることなくかつ安全性を確保した上でプロセス構築ができる。   Further, the multistage process means a process in which unit processes of oxidation reaction treatment adopting a batch type or a continuous type are constructed in a plurality or in stages. Specifically, the oxidation reaction treatment is divided into a plurality of times, and when each treatment is performed, a method of newly preparing a liquid containing an oxidant for performing the oxidation reaction treatment and performing the subsequent oxidation reaction treatment is exemplified. . Such a method is preferable in that the oxidation reaction can be promoted. Specifically, it is preferably used in that the oxidation reaction treatment time can be shortened and the reaction can be performed at a lower temperature. In particular, an oxidation reaction that can occur by diluting with a liquid so that it is sufficiently immersed or reducing the concentration to ensure safety, due to the effect of the form and apparent volume of a solid article made of a polyarylene sulfide compound This multi-stage process is preferable in that it can suppress the extension of processing time and eliminate the need for excessive temperature rise. By adopting this process, safety is ensured without extending the oxidation reaction time and temperature rise. Process construction.

さらに、酸化反応処理におけるポリアリーレンスルフィド化合物からなる固体物品と酸化剤の含まれる液体との接触方法は、酸化剤の含まれる液体中にポリアリーレンスルフィド化合物からなる固体物品を浸漬する方法、任意の形態で固定化したポリアリーレンスルフィド化合物からなる固体物品に酸化剤の含まれる液体を散布または噴霧する方法のいずれも採用できる。   Further, the method for contacting the solid article comprising the polyarylene sulfide compound and the liquid containing the oxidizing agent in the oxidation reaction treatment is a method of immersing the solid article comprising the polyarylene sulfide compound in the liquid containing the oxidizing agent, Any method of spraying or spraying a liquid containing an oxidizing agent on a solid article composed of a polyarylene sulfide compound immobilized in a form can be employed.

次に、本反応により得られるポリアリーレンスルフィド酸化物について説明する。   Next, the polyarylene sulfide oxide obtained by this reaction will be described.

<ポリアリーレンスルフィド酸化物>
上述の酸化反応処理により、ポリアリーレンスルフィド化合物中のチオエーテル部分が酸化されてポリアリーレンスルフィド酸化物が得られる。さらに好ましい態様による酸化反応処理により、ポリアリーレンスルフィド化合物中のチオール部分が酸化されるのみでなく、ポリマーの分子鎖間で架橋も生ずる。
<Polyarylene sulfide oxide>
By the oxidation reaction treatment described above, the thioether portion in the polyarylene sulfide compound is oxidized to obtain a polyarylene sulfide oxide. Furthermore, the oxidation reaction treatment according to a preferred embodiment not only oxidizes the thiol moiety in the polyarylene sulfide compound, but also causes crosslinking between the molecular chains of the polymer.

すなわち本発明により得られるポリアリーレンスルフィド酸化物は、
一般式(9)
That is, the polyarylene sulfide oxide obtained by the present invention is
General formula (9)

Figure 2006016585
Figure 2006016585

(R"は、水素、ハロゲン、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基、芳香族置換基で置換された脂肪族置換基のいずれかを表し、分子間のR"同士が互いに連結して架橋構造を形成していてもよい。またR”はポリアリーレンスルフィド酸化物からなるポリマー鎖でもよい。R'''はポリアリーレンスルフィド酸化物からなるポリマー鎖を示し、mは0〜3のいずれかの整数を表す。また、Xは0、1、2のいずれかを表す。)で示される繰り返し単位からなるポリマー、または、主要構造単位としての上記繰り返し単位と、上記繰り返し単位1モル当たり1.0モル以下、好ましくは0.3モル以下の一般式(10)〜(16) (R ″ represents hydrogen, halogen, an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, or an aliphatic substituent substituted with an aromatic substituent. R ″ may be linked to each other to form a crosslinked structure. R ″ may be a polymer chain made of polyarylene sulfide oxide. R ′ ″ is a polymer chain made of polyarylene sulfide oxide. M represents an integer of 0 to 3. X represents 0, 1, or 2), or the above repeating unit as a main structural unit And 1.0 mol or less, preferably 0.3 mol or less of the general formulas (10) to (16) per mol of the repeating unit.

Figure 2006016585
Figure 2006016585

(R”は、水素、ハロゲン、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基、芳香族置換基で置換された脂肪族置換基のいずれかを表し、R''''は、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基を表し、分子間のRまたはR’同士が互いに連結して架橋構造を形成していてもよい。また、R”、R''''はポリアリーレンスルフィド酸化物からなるポリマー鎖でもよい。R'''はポリアリーレンスルフィド酸化物からなるポリマー鎖を示し、mは0〜3のいずれかの整数を表し、nは0〜2のいずれかの整数を表す。また、Xは0、1、2のいずれかを表す。)で示される繰り返し単位とからなる共重合体である。また、一般式(9)で示される繰り返し単位のうち、Xが0、1、2である構造単位中に占める、Xが1または2である構造単位の比率は、0.5以上が好ましく、さらに好ましくは0.7以上である。 (R ″ represents hydrogen, halogen, an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, or an aliphatic substituent substituted with an aromatic substituent, and R ′ '' 'Represents an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, and R or R ′ between molecules may be linked to each other to form a crosslinked structure. R ″ and R ″ ″ may be a polymer chain composed of polyarylene sulfide oxide. R ′ ″ represents a polymer chain composed of polyarylene sulfide oxide, and m is any one of 0 to 3. Represents an integer, n represents an integer of 0 to 2, and X represents 0, 1, or 2). Moreover, among the repeating units represented by the general formula (9), the ratio of the structural units in which X is 1 or 2 in the structural units in which X is 0, 1, or 2 is preferably 0.5 or more. More preferably, it is 0.7 or more.

<ポリアリーレンスルフィド酸化物の残存炭化物量>
本発明における酸化反応処理過程で生じる架橋とは、ポリアリーレンスルフィド化合物を酸化反応処理する過程でポリマー分子間で橋架け構造を形成することを意味し、繰り返し単位の構造中に含まれる炭素原子、硫黄原子、酸素原子のいずれかから選ばれる原子同士が結合して橋架け構造を形成することを意味する。この架橋化度は、該ポリアリーレンスルフィド酸化物の固体NMR分析および熱重量(TGA)測定によりその一部を把握することができる。中でもTGA測定においては、窒素雰囲気下で熱重量変化評価後に残存する炭化物量を測定することにより、架橋構造のうち、炭素原子どうしの架橋構造の割合を把握できる。例えば、示差熱/熱重量同時測定装置(DTG−50:島津製作所)を用い、窒素雰囲気下、サンプル量約10mgを精秤し、白金製セル容器上にて、温度プログラムを30℃〜900℃(30℃から10℃/分昇温で900℃まで昇温)と設定して測定した時の残存する炭化物量は、PPS繊維(東レ社製「トルコン(登録商標)」)がほぼ定量的に熱消失して残存物が検出されないのに対し、本発明において酸化反応処理後に得られるPPSO繊維の一例では炭化物が13.2重量%残存し、酸化反応処理により炭素原子同士の架橋構造を形成していることが確認できる。該ポリアリーレンスルフィド酸化物は、本TGA測定において残存炭化物が実質的に認められることが好ましい。さらに、1重量%以上の残存炭化物量を有することが好ましく、特に、5重量%以上の残存炭化物量を有することが好ましい。この範囲において耐熱性および耐薬品性に関して特に優れた特性を有する。ここで言う残存炭化物量とは、上記の熱重量(TGA)測定において、測定前のポリアリーレンスルフィド酸化物の重量に対する測定後の残存炭化物量の重量%を意味する。
<Residual carbide amount of polyarylene sulfide oxide>
The cross-linking generated in the oxidation reaction treatment process in the present invention means forming a bridge structure between polymer molecules in the process of oxidizing the polyarylene sulfide compound, and the carbon atom contained in the structure of the repeating unit, It means that atoms selected from either a sulfur atom or an oxygen atom are bonded to form a bridge structure. A part of the degree of crosslinking can be grasped by solid NMR analysis and thermogravimetric (TGA) measurement of the polyarylene sulfide oxide. In particular, in the TGA measurement, by measuring the amount of carbide remaining after the thermogravimetric change evaluation under a nitrogen atmosphere, it is possible to grasp the proportion of the crosslinked structure between carbon atoms in the crosslinked structure. For example, using a differential heat / thermogravimetric simultaneous measurement device (DTG-50: Shimadzu Corporation), a sample amount of about 10 mg is precisely weighed in a nitrogen atmosphere, and the temperature program is set to 30 ° C. to 900 ° C. on a platinum cell container. The amount of remaining carbide when measured by setting (from 30 ° C. to 900 ° C. at a rate of 10 ° C./min) is almost quantitatively determined by the PPS fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc.). In the present invention, 13.2% by weight of carbide remains in the example of the PPSO fiber obtained after the oxidation reaction treatment, and a crosslinked structure of carbon atoms is formed by the oxidation reaction treatment, whereas the residue is not detected due to heat loss. Can be confirmed. In the polyarylene sulfide oxide, it is preferable that residual carbide is substantially recognized in the present TGA measurement. Further, it preferably has a residual carbide amount of 1% by weight or more, and particularly preferably has a residual carbide amount of 5% by weight or more. Within this range, it has particularly excellent characteristics regarding heat resistance and chemical resistance. The amount of residual carbide referred to here means the weight percent of the amount of residual carbide after measurement with respect to the weight of the polyarylene sulfide oxide before measurement in the thermogravimetric (TGA) measurement.

<PPSO結晶化度>
また、本発明により得られるポリアリーレンスルフィド酸化物は結晶性を有する。すなわち、広角X線回折の測定における結晶化度が10%以上であり、好ましくは30%以上、より好ましくは50%以上である。この範囲において、ポリアリーレンスルフィド酸化物の物性に関して特に優れた特性を有する。ここで結晶化度は、広角X線回折の測定において観測される、全回折ピーク面積に占める結晶性構造に由来するピーク面積比より算出した値である。例えば、広角X線回折装置(RINT2100:リガク)を用い、Cu線源(λ=1.5406オングストローム)にて、試料厚さ約70μmのフィルムを測定した時の結晶性構造に由来するピーク面積比より算出することができる。本発明においては、前記のとおり酸化反応処理に供するポリアリーレンスルフィドとして結晶性および分子量の比較的高いものを用い、このポリアリーレンスルフィドの結晶性を過大に損なわない酸化条件を選択することにより、高い結晶性を有するポリアリーレンスルフィド酸化物を得ることが可能である。
<PPSO crystallinity>
The polyarylene sulfide oxide obtained by the present invention has crystallinity. That is, the crystallinity in the measurement of wide angle X-ray diffraction is 10% or more, preferably 30% or more, more preferably 50% or more. Within this range, the polyarylene sulfide oxide has particularly excellent characteristics with respect to physical properties. Here, the degree of crystallinity is a value calculated from the peak area ratio derived from the crystalline structure in the total diffraction peak area, which is observed in the wide-angle X-ray diffraction measurement. For example, using a wide-angle X-ray diffractometer (RINT2100: Rigaku), a peak area ratio derived from a crystalline structure when a film having a sample thickness of about 70 μm is measured with a Cu source (λ = 1.5406 Å). Can be calculated. In the present invention, as described above, the polyarylene sulfide to be subjected to the oxidation reaction treatment is a polyarylene sulfide having a relatively high crystallinity and molecular weight, and by selecting an oxidation condition that does not excessively impair the crystallinity of the polyarylene sulfide, It is possible to obtain a polyarylene sulfide oxide having crystallinity.

<PPSO不融化度>
さらに、該ポリアリーレンスルフィド酸化物は、示差走査熱量計(DSC)での測定において、融解熱量が15J/g以下、好ましくは10J/g以下、より好ましくは5J/g以下を表し、特に好ましくは1J/g以下の融解熱量を有するポリアリーレンスルフィド酸化物を意味し、より好ましくは実質的に融解ピークが観察されない化合物である。この範囲において耐熱性および耐薬品性に関して特に優れた特性を有する。ここでDSC測定条件は、窒素雰囲気下、窒素流量20mL/分において、示差走査熱量計(RDC220:セイコー・インスツルメンツ)を用い、サンプル量5mg〜10mgの範囲内で、温度プログラムを30℃〜500℃(30℃から10℃/分昇温で340℃まで昇温後、2分ホールド、続いて10℃/分降温により30℃まで降温後、2分間ホールドした後、10℃/分で500℃まで再昇温)と設定し、測定した時の融解熱量である。このような融解熱量が15J/g以下のポリアリーレンスルフィド酸化物は酸化反応処理条件を前記した好ましい条件とすることにより製造することができる。
<PPSO infusibility>
Further, the polyarylene sulfide oxide has a heat of fusion of 15 J / g or less, preferably 10 J / g or less, more preferably 5 J / g or less, particularly preferably, as measured with a differential scanning calorimeter (DSC). It means a polyarylene sulfide oxide having a heat of fusion of 1 J / g or less, and more preferably a compound in which substantially no melting peak is observed. Within this range, it has particularly excellent characteristics regarding heat resistance and chemical resistance. Here, DSC measurement conditions were as follows: a differential scanning calorimeter (RDC220: Seiko Instruments) at a nitrogen flow rate of 20 mL / min in a nitrogen atmosphere, and a temperature program of 30 ° C. to 500 ° C. within a sample amount of 5 mg to 10 mg. (Temperature rises from 30 ° C to 340 ° C at 10 ° C / min., Hold for 2 minutes, then drop to 30 ° C by 10 ° C / min. Temperature drop, hold for 2 minutes, then to 500 ° C at 10 ° C / min. It is the amount of heat of fusion when it is set and measured. Such a polyarylene sulfide oxide having a heat of fusion of 15 J / g or less can be produced by setting the oxidation reaction treatment conditions to the above-described preferred conditions.

<PPSO用途>
このようにして得られたポリアリーレンスルフィド酸化物は、極めて高い耐熱性を有し、かつアルカリ、濃硫酸および濃硝酸に対して優れた耐薬品性を有しており、工業用途として多岐にわたる分野で有用な化合物であり、耐熱性および耐薬品性が要求される用途に幅広く利用することができる。また耐吸湿性にも優れるため、吸湿時の寸法変化が小さく、また吸湿による電気特性の低下が少ないため、電機資材用途に幅広く利用することができる。また、酸化反応処理前の形態を保持しているため、酸化反応処理前に所望の形状に賦形することにより、所望の形状の固体物品を得ることができる。具体的には、バグフィルター、薬液フィルター、食品用フィルター、ケミカルフィルター、オイルフィルター、エンジンオイルフィルター、空気清浄フィルター等のフィルター用途、電気絶縁紙等の紙用途、消防服等の耐熱作業着用途、ドライヤーカンバス、抄紙用フェルト、縫糸、耐熱性フェルト、離形材、電池用セパレーター、心臓パッチ、人工血管、人工皮膚、プリント基板基材、コピーローリングクリーナー、安全衣服、実験作業着、保温衣料、難燃衣料、イオン交換基材、オイル保持材、断熱材、電極用セパレーター、保護フィルム、建築用断熱材、クッション材、吸液芯、ブラシなどに利用することができる。中でも、フィルター用途、紙用途、耐熱作業着用途が好ましく、さらに、フィルター用途として耐熱バグフィルター、紙用途として電気絶縁紙、耐熱作業着用途として消防服等に好ましく用いられるが、これらの用途に限定されるものではない。これらの固体物品には、本発明を妨げない限りにおいて、各種添加剤や他のポリマーを含んでいてもかまわない。
<Use for PPSO>
The polyarylene sulfide oxide thus obtained has extremely high heat resistance and excellent chemical resistance against alkali, concentrated sulfuric acid and concentrated nitric acid. It is a useful compound and can be widely used for applications requiring heat resistance and chemical resistance. In addition, since it has excellent moisture absorption resistance, the dimensional change at the time of moisture absorption is small, and the electrical characteristics are not significantly reduced by moisture absorption, so that it can be widely used for electrical materials. Moreover, since the form before an oxidation reaction process is hold | maintained, the solid article of a desired shape can be obtained by shaping in a desired shape before an oxidation reaction process. Specifically, filter applications such as bag filters, chemical filters, food filters, chemical filters, oil filters, engine oil filters, air purification filters, paper applications such as electrical insulation paper, heat resistant work wear applications such as fire clothes, Dryer canvas, paper felt, sewing thread, heat-resistant felt, release material, battery separator, heart patch, artificial blood vessel, artificial skin, printed circuit board substrate, copy rolling cleaner, safety clothing, laboratory work clothes, warm clothing, difficulty It can be used for fuel clothing, ion exchange base materials, oil retaining materials, heat insulating materials, electrode separators, protective films, heat insulating materials for construction, cushion materials, liquid absorbent cores, brushes, and the like. Among them, filter applications, paper applications, heat resistant work wear applications are preferable, heat resistant bag filters as filter applications, electrical insulation paper as paper applications, fire fighting clothes as heat resistant work clothes applications, etc., but limited to these applications Is not to be done. These solid articles may contain various additives and other polymers as long as they do not interfere with the present invention.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定するものではない。なお、ここで用いている試薬類のメーカーグレードは、いずれも1級レベルに相当するものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this. The manufacturer grades of the reagents used here correspond to the first level.

(1)示差走査熱量(DSC)測定条件
示差走査熱量測定装置(RDC220(セイコー・インスツルメンツ))を用い、窒素雰囲気下、窒素流量20mL/分とし、サンプル量5mgを秤量し、温度プログラム:30℃から340℃まで10℃/分で昇温後、2分間ホールドし、340℃から30℃まで10℃/分で降温後、2分間ホールドした後、30℃から500℃まで10℃/分で昇温した時のDSCカーブより、融解熱量を測定した。
(1) Differential scanning calorimetry (DSC) measurement conditions Using a differential scanning calorimeter (RDC220 (Seiko Instruments)), under a nitrogen atmosphere, a nitrogen flow rate of 20 mL / min, a sample amount of 5 mg is weighed, and a temperature program: 30 ° C. After raising the temperature from 10 to 340 ° C. at 10 ° C./min, hold for 2 minutes, lowering the temperature from 340 ° C. to 30 ° C. at 10 ° C./min, holding for 2 minutes, and then increasing from 30 ° C. to 500 ° C. at 10 ° C./min. The heat of fusion was measured from the DSC curve when warmed.

(2)熱重量(TGA)測定条件
示差熱/熱重量同時測定装置(DTG−50(島津製作所))を用い、窒素雰囲気下、サンプル量約10mgを精秤し、白金製セル容器上にて、温度プログラム:30℃から900℃まで10℃/分で昇温した時のTGAカーブより、熱重量変化を測定した。測定前のポリアリーレンスルフィド酸化物の重量に対する測定後の残存炭化物の重量%を算出し、残存炭化物量とした。
(2) Thermogravimetric (TGA) measurement conditions Using a differential thermal / thermogravimetric simultaneous measurement device (DTG-50 (Shimadzu Corporation)), weigh accurately about 10 mg of sample in a nitrogen atmosphere and place on a platinum cell container. Temperature program: Thermogravimetric change was measured from a TGA curve when the temperature was raised from 30 ° C. to 900 ° C. at 10 ° C./min. The weight percent of the remaining carbide after the measurement relative to the weight of the polyarylene sulfide oxide before the measurement was calculated and used as the amount of the remaining carbide.

(3)広角X線回折測定条件
X線回折装置(RINT2100(リガク))を用い、Cu線源(λ=1.5406オングストローム)にてX線回折を測定し、観測される全回折ピーク面積に占める結晶性構造に由来するピーク面積比(%)により、結晶化度を算出した。
(3) Wide-angle X-ray diffraction measurement conditions Using an X-ray diffractometer (RINT2100 (Rigaku)), X-ray diffraction was measured with a Cu source (λ = 1.5406 angstrom), and the total diffraction peak area observed The crystallinity was calculated from the peak area ratio (%) derived from the occupied crystalline structure.

(4)耐薬品性評価条件
ポリアリーレンスルフィド化合物からなる固体物品、あるいは酸化反応を施したポリアリーレンスルフィド酸化物からなる固体物品を、それぞれ10%苛性ソーダ水、30%苛性ソーダ水、48%硫酸水、濃硫酸、10%硝酸、濃硝酸(59%硝酸)に93℃で1週間浸漬させ、浸漬時およびピンセットでつまんだ時のサンプル形状を観察し、耐薬品性を評価した。尚、耐薬品性の判定は、薬液中および薬液からピンセットでつまんだ時のいずれも形状を保持している場合を○印、薬液中では形状を保持するが、ピンセットでつまんだ時に形状がくずれる場合を△印、薬液中で溶解する場合を×印とし、その結果を記載した。
(4) Evaluation conditions for chemical resistance A solid article made of a polyarylene sulfide compound or a solid article made of a polyarylene sulfide oxide subjected to an oxidation reaction is respectively 10% caustic soda water, 30% caustic soda water, 48% sulfuric acid water, The sample was immersed in concentrated sulfuric acid, 10% nitric acid, concentrated nitric acid (59% nitric acid) at 93 ° C. for 1 week, and the sample shape was observed when immersed and pinched with tweezers to evaluate chemical resistance. In addition, the judgment of chemical resistance is ○ mark when the shape is held both in the chemical solution and when pinched from the chemical solution with tweezers, the shape is held in the chemical solution, but the shape is broken when pinched with tweezers The case was marked with Δ, and the case of dissolving in a chemical solution was marked with ×, and the result was described.

(5)電気絶縁性測定条件
JIS規準K6911の方法に準じ、測定した。体積抵抗率の場合、直流電圧100V、主電極直径50〜70mm、電極荷重5kgfにて室温付近の温度条件下で測定した。絶縁破壊強さの場合、主電極直径20〜25mm、電極荷重250〜500g、電源周波数60Hz、電圧上昇速度約0.2〜1.0kV/sにて室温付近の温度条件下で測定した。
(5) Electrical insulation measurement conditions: Measured according to the method of JIS standard K6911. In the case of volume resistivity, measurement was performed under a temperature condition near room temperature with a DC voltage of 100 V, a main electrode diameter of 50 to 70 mm, and an electrode load of 5 kgf. In the case of the dielectric breakdown strength, the measurement was performed under a temperature condition near room temperature at a main electrode diameter of 20 to 25 mm, an electrode load of 250 to 500 g, a power supply frequency of 60 Hz, and a voltage increase rate of about 0.2 to 1.0 kV / s.

(6)重量平均分子量測定条件
以下の装置、および操作・条件にて調製した溶離液、試料溶液を用い、重量平均分子量(GPC)を測定した。
(6) Weight average molecular weight measurement conditions The weight average molecular weight (GPC) was measured using the following apparatus, eluent and sample solution prepared by the operation and conditions.

1)溶離液調製
1−クロロナフタレン(1−CN)に活性アルミナ(1−CNに対して1/20重量)を加え、6時間攪拌した後、G4グラスフィルターで濾過した。これを超音波洗浄機にかけながらアスピレーターを用いて脱気した。
1) Preparation of eluent Activated alumina (1/20 weight relative to 1-CN) was added to 1-chloronaphthalene (1-CN), stirred for 6 hours, and then filtered through a G4 glass filter. This was deaerated using an aspirator while applying an ultrasonic cleaner.

2)試料溶液調製
ポリマー5mgおよび1−CN 5gをサンプル瓶に計り取った。これを、210℃に設定した高温濾過装置(センシュー科学製SSC−9300)に入れ、5分間(1分間予備加熱、4分間攪拌)加熱した。サンプルを、高温濾過装置から取り出し、室温になるまで放置した。
2) Sample solution preparation 5 mg of polymer and 5 g of 1-CN were weighed into a sample bottle. This was put into a high temperature filtration apparatus (SSC-9300 manufactured by Senshu Kagaku) set at 210 ° C. and heated for 5 minutes (1 minute preheating, 4 minutes stirring). The sample was removed from the high temperature filtration device and left to reach room temperature.

3)GPC測定環境
装置 : センシュー科学 SSC−7100
カラム名 : センシュー科学 GPC3506×1
溶離液 : 1−クロロナフタレン(1−CN)
検出器 : 示差屈折率検出器
検出器感度 : Range 8
検出器極性 : +
カラム温度 : 210℃
プレ恒温槽温度 : 250℃
ポンプ恒温槽温度 : 50℃
検出器温度 : 210℃
サンプル側流量 : 1.0mL/min
リファレンス側流量 : 1.0mL/min
試料注入量 : 300μL
検量線作成試料 : ポリスチレン。
3) GPC measurement environment device: Senshu Science SSC-7100
Column name: Senshu Science GPC3506 × 1
Eluent: 1-chloronaphthalene (1-CN)
Detector: Differential refractive index detector Detector sensitivity: Range 8
Detector polarity: +
Column temperature: 210 ° C
Pre-temperature bath temperature: 250 ° C
Pump bath temperature: 50 ° C
Detector temperature: 210 ° C
Sample-side flow rate: 1.0 mL / min
Reference side flow rate: 1.0 mL / min
Sample injection amount: 300 μL
Calibration curve preparation sample: polystyrene.

(7)吸湿性
ポリアリーレンスルフィド酸化物からなる固体物品を、高温高湿槽(20℃、65RH%)内で24時間処理し、吸湿率を測定した。吸湿率は、[(処理後の重量―処理前の重量)/処理前の重量]×100(%)より算出した。
(7) Hygroscopicity A solid article made of polyarylene sulfide oxide was treated in a high temperature and high humidity tank (20 ° C., 65 RH%) for 24 hours, and the moisture absorption rate was measured. The moisture absorption rate was calculated from [(weight after treatment−weight before treatment) / weight before treatment] × 100 (%).

実施例1
酢酸 800mL (関東化学社製)、過ホウ酸ナトリウム4水和物 46.16g(0.30mmol;三菱ガス化学社製) を反応容器に投入し、60℃で攪拌し、溶解させた。次に、ポリ−p−フェニレンスルフィド(PPS)繊維4.03g(東レ社製「トルコン(登録商標)」;繊維長:約200m、単糸繊度:4.5dtex)をその反応溶液に浸漬させて60℃、10時間酸化反応処理した。繊維の重量は24.3%増加し、5.01gのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して10.2重量%であった。また吸湿率は5.1%程度であった。また、広角X線回折を評価した。なお後述するが、PPS繊維の吸湿率は0.8%程度であり、PPS繊維の酸化により吸湿率は相対的に高くなるものの、実用レベルにおいては十分なレベルの耐吸湿性である。
Example 1
800 mL of acetic acid (manufactured by Kanto Chemical Co., Inc.) and 46.16 g (0.30 mmol; manufactured by Mitsubishi Gas Chemical Company) of sodium perborate tetrahydrate were put into a reaction vessel, and stirred at 60 ° C. for dissolution. Next, 4.03 g of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 200 m, single yarn fineness: 4.5 dtex) was immersed in the reaction solution. The oxidation reaction treatment was performed at 60 ° C. for 10 hours. The weight of the fiber increased by 24.3% and 5.01 g of poly-p-phenylene sulfone (PPSO) fiber was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was infusible. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 10.2% by weight with respect to the PPSO fiber. The moisture absorption rate was about 5.1%. In addition, wide-angle X-ray diffraction was evaluated. As will be described later, the moisture absorption rate of the PPS fiber is about 0.8%, and the moisture absorption rate is relatively high due to the oxidation of the PPS fiber, but it has a sufficient level of moisture resistance in practical use.

実施例2
PPS繊維の代わりに、PPS布帛3.65g(東レ社製「トルコン(登録商標)」;サイズ:12.5×4.0cm、単糸繊度:3.0dtex)を用い、実施例1と同様に酸化反応処理を行った。布帛の重量は29.0%増加し、4.71gのPPS酸化物からなる布帛(PPSO布帛)を得た。本布帛は、DSC測定においてPPSの融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化した布帛であり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿性等についても実施例1と同様に評価した。
Example 2
Instead of PPS fiber, 3.65 g of PPS fabric (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 12.5 × 4.0 cm, single yarn fineness: 3.0 dtex) was used in the same manner as in Example 1. An oxidation reaction treatment was performed. The weight of the fabric increased by 29.0% to obtain a fabric composed of 4.71 g of PPS oxide (PPSO fabric). This fabric loses the melting point of PPS in DSC measurement, no melting peak is observed at any of the observed temperatures, is an infusible fabric, and has no substantial variation in size before and after treatment. Was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, hygroscopicity and the like were also evaluated in the same manner as in Example 1.

実施例3
PPS繊維の代わりに、PPSフェルト4.79g(東レ社製「トルコン(登録商標)」;サイズ:9.5×9.0cm、単糸繊度:2.2dtex)を用い、実施例1と同様に酸化反応処理を行った。フェルトの重量は30.5%増加し、6.25gのPPS酸化物からなるフェルト(PPSOフェルト)を得た。本フェルトは、DSC測定においてPPS繊維の融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化したフェルトであり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿性等についても実施例1と同様に評価した。
Example 3
Instead of PPS fiber, PPS felt 4.79 g (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 9.5 × 9.0 cm, single yarn fineness: 2.2 dtex) was used in the same manner as in Example 1. An oxidation reaction treatment was performed. The weight of the felt was increased by 30.5% to obtain 6.25 g of felt composed of PPS oxide (PPSO felt). In this felt, the melting point of the PPS fiber disappears in DSC measurement, the melting peak is not observed at any observed temperature, the felt is infusible, and there is no substantial change in size before and after the treatment. The form was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, hygroscopicity and the like were also evaluated in the same manner as in Example 1.

実施例4
過ホウ酸ナトリウム4水和物の代わりに、過ホウ酸ナトリウム1水和物 (三菱ガス化学社製) に変え、実施例1と同様に酸化反応処理を行った。繊維の重量は24.0%増加し、同様の不融化されたPPSO繊維を得た。実施例1と同様に評価した。
Example 4
Instead of sodium perborate tetrahydrate, sodium perborate monohydrate (manufactured by Mitsubishi Gas Chemical Company) was used, and an oxidation reaction treatment was performed in the same manner as in Example 1. The weight of the fiber increased by 24.0% and a similar infusible PPSO fiber was obtained. Evaluation was performed in the same manner as in Example 1.

実施例5
反応時間を10時間から8時間に短縮し、実施例1と同様に酸化反応処理を行った。繊維の重量は23.9%増加し、4.99gのPPSO繊維を得た。本繊維は、示差走査熱量計(DSC)測定において285℃付近で3.10J/gの融解熱量を有し、ほぼ不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して7.6重量%であった。広角X線回折、吸湿性についても実施例1と同様に評価した。
Example 5
The reaction time was shortened from 10 hours to 8 hours, and an oxidation reaction treatment was performed in the same manner as in Example 1. The fiber weight increased by 23.9%, yielding 4.99 g of PPSO fiber. This fiber was a substantially infusible fiber having a heat of fusion of 3.10 J / g at around 285 ° C. in a differential scanning calorimeter (DSC) measurement. In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbides was 7.6% by weight with respect to PPSO fiber. Wide-angle X-ray diffraction and hygroscopicity were also evaluated in the same manner as in Example 1.

実施例6
酢酸 800mL (関東化学社製)、過ホウ酸ナトリウム4水和物 46.16g(0.30mmol;三菱ガス化学社製) を反応容器に投入し、60℃で攪拌・溶解させた。次に、ポリ−p−フェニレンスルフィド(PPS)繊維4.03g(東レ社製「トルコン(登録商標)」;繊維長:約20m;単糸繊度:2.2dtex)をその反応溶液に浸漬させて60℃、4時間酸化反応処理した。繊維の重量は18.4%増加し、4.77gの繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、285℃付近で17.01J/gの融解熱量を有していた。さらに1段目と同様に、酢酸 800mL (関東化学社製)、過ホウ酸ナトリウム4水和物 46.16g(0.30mmol;三菱ガス化学社製) を新たに反応容器に調製し、続いて1段目で得た繊維をその反応溶液に浸漬させて60℃、4時間で多段処理の2段目酸化反応処理を行った。繊維の重量は初期のPPSに対して24.3%増加し、5.01gのポリ−p−フェニレンスルホキシド(PPSO)繊維を得た。本繊維は、PPS繊維の融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して12.7重量%であった。また吸湿率は5.1%と低い値を示した。また、広角X線回折等についても実施例1と同様に評価した。
Example 6
800 mL of acetic acid (manufactured by Kanto Chemical Co., Inc.) and 46.16 g (0.30 mmol; manufactured by Mitsubishi Gas Chemical Company) of sodium perborate tetrahydrate were put into a reaction vessel, and stirred and dissolved at 60 ° C. Next, 4.03 g of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 20 m; single yarn fineness: 2.2 dtex) was immersed in the reaction solution. The oxidation reaction treatment was performed at 60 ° C. for 4 hours. The fiber weight increased by 18.4%, yielding 4.77 g of fiber. This fiber had a heat of fusion of 17.01 J / g at around 285 ° C. in a differential scanning calorimeter (DSC) measurement. Further, as in the first stage, 800 mL of acetic acid (manufactured by Kanto Chemical Co., Inc.) and 46.16 g of sodium perborate tetrahydrate (0.30 mmol; manufactured by Mitsubishi Gas Chemical Co., Inc.) were newly prepared in a reaction vessel. The fiber obtained in the first stage was immersed in the reaction solution and subjected to the second stage oxidation reaction treatment of multistage treatment at 60 ° C. for 4 hours. The fiber weight increased 24.3% relative to the initial PPS, yielding 5.01 g of poly-p-phenylene sulfoxide (PPSO) fiber. This fiber was an infusible fiber in which the melting peak near the melting point (285 ° C.) of the PPS fiber disappeared and no melting peak was observed at any observed temperature. In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbide was 12.7% by weight with respect to PPSO fiber. Further, the moisture absorption rate was as low as 5.1%. Further, wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

比較例1
反応時間を10時間から3時間に短縮し、実施例1と同様に酸化反応処理を行った。繊維の重量はわずかに4.7%増加し、さらに、示差走査熱量計(DSC)測定において285℃付近で22.01J/gの融解熱量を有すことから、酸化反応が十分に進行していないことがわかる。また、耐薬品性評価については、濃硝酸中では溶解し、濃硫酸中では薬液中では形状を保持するものの、ピンセットでつまんだ時には形状がくずれる結果であり、耐熱性、耐薬品性ともに、本発明の目的であるPPSO繊維のそれに劣るものであった。さらに、熱重量(TGA)測定では、ほぼ定量的に熱消失して残存物は検出されなかった。結晶化度は50%と高いものの、目的の酸化反応が十分に進行しておらず、本結晶化度はPPS繊維の結晶化度を表しているといえる。それゆえ、吸湿性は1.2%程度とPPS繊維に低い値を示した。
Comparative Example 1
The reaction time was shortened from 10 hours to 3 hours, and an oxidation reaction treatment was performed in the same manner as in Example 1. The fiber weight increased slightly by 4.7%, and further, the oxidation reaction proceeded sufficiently because it had a heat of fusion of 22.01 J / g near 285 ° C. in the differential scanning calorimeter (DSC) measurement. I understand that there is no. As for chemical resistance evaluation, although dissolved in concentrated nitric acid and retained in chemical solution in concentrated sulfuric acid, the shape is broken when pinched with tweezers. Both heat resistance and chemical resistance are It was inferior to that of the PPSO fiber which is the object of the invention. Furthermore, in thermogravimetric (TGA) measurement, the heat disappeared almost quantitatively and no residue was detected. Although the crystallinity is as high as 50%, the target oxidation reaction does not proceed sufficiently, and it can be said that this crystallinity represents the crystallinity of the PPS fiber. Therefore, the hygroscopicity was about 1.2%, indicating a low value for the PPS fiber.

比較例2
実施例と同様の測定あるいは評価条件にて、実施例1に記載のPPS繊維(東レ社製「トルコン(登録商標)」)をDSC測定および耐薬品性評価を行った結果、本繊維は、285℃付近で37.10J/gの融解熱量を有し、また、耐薬品性評価については、濃硝酸中では溶解し、濃硫酸中では薬液中では形状を保持するものの、ピンセットでつまんだ時には形状がくずれる結果であり、耐熱性、耐薬品性ともにPPSO繊維のそれに劣るものであった。さらに、熱重量(TGA)を測定では、ほぼ定量的に熱消失して残存物は検出されなかった。吸湿率は0.8%程度とPPS繊維に低い値を示した。
実施例1〜6および比較例1〜2の結果を表1に示す。
Comparative Example 2
As a result of DSC measurement and chemical resistance evaluation of the PPS fiber described in Example 1 (“Torcon (registered trademark)” manufactured by Toray Industries, Inc.) under the same measurement or evaluation conditions as in the example, the fiber was 285. It has a heat of fusion of 37.10 J / g in the vicinity of ℃, and for chemical resistance evaluation, it dissolves in concentrated nitric acid and retains its shape in concentrated sulfuric acid but is pinched with tweezers. As a result, both heat resistance and chemical resistance were inferior to those of PPSO fiber. Furthermore, in the measurement of thermogravimetry (TGA), the heat disappeared almost quantitatively and no residue was detected. The moisture absorption was as low as about 0.8% for PPS fibers.
The results of Examples 1-6 and Comparative Examples 1-2 are shown in Table 1.

Figure 2006016585
Figure 2006016585

実施例7
酢酸15.0g(0.15mol;和光純薬社製)および34.5%過酸化水素水5.0g(0.05mol;関東化学社製)を反応容器に投入後、室温(約20℃)にて均一溶液になるまで攪拌した。次に、ポリ−p−フェニレンスルフィド(PPS)繊維69.3mg(東レ社製「トルコン(登録商標)」;繊維長:約2m;単糸繊度:4.5dtex)をその反応溶液に浸漬させて60℃で酸化反応処理したと。6時間で反応は完結し、重量が27.2%増加した88.1mgのポリ−p−フェニレンスルホキシド(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPS繊維の融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても溶融ピークが観測されず、不融化した繊維であった。また、耐薬品性についても上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.2重量%であった。また吸湿率は5.2%と低いレベルであった。広角X線回折等についても実施例1と同様に評価した。
Example 7
Acetic acid 15.0 g (0.15 mol; manufactured by Wako Pure Chemical Industries, Ltd.) and 34.5% hydrogen peroxide water 5.0 g (0.05 mol; manufactured by Kanto Chemical Co., Inc.) were charged into the reaction vessel, and then room temperature (about 20 ° C.). The mixture was stirred until a homogeneous solution was obtained. Next, 69.3 mg of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 2 m; single yarn fineness: 4.5 dtex) was immersed in the reaction solution. When oxidation treatment was performed at 60 ° C. The reaction was completed in 6 hours, and 88.1 mg of poly-p-phenylene sulfoxide (PPSO) fiber having a weight increase of 27.2% was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared from the melting peak near the melting point (285 ° C.) of the PPS fiber, and no melting peak was observed at any of the observed temperatures. It was. Further, regarding the chemical resistance, the shape was completely maintained in all of the evaluation target chemicals in the chemical solution and at the time of taking out from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbide was 13.2% by weight with respect to PPSO fiber. The moisture absorption rate was a low level of 5.2%. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

実施例8
酸化剤および液体の投入量をそれぞれ、酢酸10.0g(0.10mol;和光純薬社製)、34.5%過酸化水素水10.0g(0.10mol;関東化学社製)に変え、ポリ−p−フェニレンスルフィド(PPS)繊維71.2mg(東レ社製「トルコン(登録商標)」;繊維長:約2m;単糸繊度:4.5dtex)を用いて実施例7と同様に60℃で酸化反応処理した。7時間で反応は完結し、重量が25.2%増加した89.2mgのポリ−p−フェニレンスルホキシド(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPS繊維の融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であり、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.2重量%であった。また吸湿率は5.1%と低いレベルであった。広角X線回折等についても実施例1と同様に評価した。
Example 8
The amounts of the oxidant and liquid were changed to 10.0 g of acetic acid (0.10 mol; manufactured by Wako Pure Chemical Industries, Ltd.) and 10.0 g (0.10 mol; manufactured by Kanto Chemical Co., Ltd.) of 34.5% hydrogen peroxide, 60 ° C. as in Example 7 using 71.2 mg of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 2 m; single yarn fineness: 4.5 dtex) Oxidation reaction treatment was performed. The reaction was completed in 7 hours, and 89.2 mg of poly-p-phenylene sulfoxide (PPSO) fiber having a weight increase of 25.2% was obtained. This fiber is an infusible fiber in which the melting peak near the melting point (285 ° C.) of the PPS fiber disappears in any differential scanning calorimeter (DSC) measurement, and no melting peak is observed at any observed temperature. The chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and at the time of removal from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbide was 13.2% by weight with respect to PPSO fiber. Further, the moisture absorption rate was a low level of 5.1%. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

実施例9
酢酸 (関東化学社製)を用いて、過酢酸濃度を8重量%に調整した過酢酸溶液20.0g(過酢酸23.67mmol;三菱ガス化学社製)を反応容器に投入し、60℃で攪拌した。次に、ポリ−p−フェニレンスルフィド(PPS)繊維70.6mg(東レ社製「トルコン(登録商標)」;繊維長:約2m;単糸繊度:2.2dtex)をその反応溶液に浸漬させて60℃、5時間酸化反応処理した。重量は29.8%増加し、91.6mgのポリ−p−フェニレンスルホキシド(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して12.8重量%であった。また吸湿率は5.0%と低いレベルであった。広角X線回折等についても実施例1と同様に評価した。
Example 9
Using acetic acid (manufactured by Kanto Chemical Co., Inc.), 20.0 g of a peracetic acid solution (peracetic acid 23.67 mmol; manufactured by Mitsubishi Gas Chemical Co., Ltd.) adjusted to a peracetic acid concentration of 8% by weight was charged into the reaction vessel, and Stir. Next, 70.6 mg of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 2 m; single yarn fineness: 2.2 dtex) was immersed in the reaction solution. An oxidation reaction treatment was performed at 60 ° C. for 5 hours. The weight increased by 29.8% and 91.6 mg of poly-p-phenylene sulfoxide (PPSO) fiber was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbide was 12.8% by weight with respect to PPSO fiber. Further, the moisture absorption rate was a low level of 5.0%. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

実施例10
過酢酸濃度を3.6重量%に変え、実施例9と同様に酸化反応処理を行った。繊維の重量は27.4%増加し、同様の不融化されたPPSO繊維を得た。広角X線回折、吸湿率についても実施例1と同様に評価した。
Example 10
The peracetic acid concentration was changed to 3.6% by weight, and an oxidation reaction treatment was performed in the same manner as in Example 9. The weight of the fiber increased by 27.4% and a similar infusible PPSO fiber was obtained. Wide-angle X-ray diffraction and moisture absorption were also evaluated in the same manner as in Example 1.

実施例11
50重量%の酢酸水溶液を用いて、過酢酸濃度を4.5重量%に調整した過酢酸/酢酸水溶液を用いて、実施例9と同様に酸化反応処理を行った。繊維の重量は25.7%増加し、同様の不融化されたPPSO繊維を得た。広角X線回折等についても実施例1と同様に評価した。
Example 11
An oxidation reaction treatment was performed in the same manner as in Example 9 using a 50% by weight aqueous acetic acid solution and a peracetic acid / acetic acid aqueous solution adjusted to a peracetic acid concentration of 4.5% by weight. The weight of the fiber increased by 25.7% and a similar infusible PPSO fiber was obtained. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

実施例12
PPS繊維の代わりに、PPSフェルト1.57g(東レ社製「トルコン(登録商標)」;サイズ:8.9×3.2cm;単糸繊度:3.0dtex)を用い、実施例9と同様に酸化反応処理を行った。フェルトの重量は31.2%増加し、2.06gのPPSOフェルトを得た。本フェルトは、DSC測定においてPPS繊維の融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化したフェルトであり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。
Example 12
Instead of PPS fiber, 1.57 g of PPS felt (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 8.9 × 3.2 cm; single yarn fineness: 3.0 dtex) was used in the same manner as in Example 9. An oxidation reaction treatment was performed. The weight of the felt increased by 31.2% to obtain 2.06 g of PPSO felt. In this felt, the melting point of the PPS fiber disappears in DSC measurement, the melting peak is not observed at any observed temperature, the felt is infusible, and there is no substantial change in size before and after the treatment. The form was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1.

実施例13
PPS繊維の代わりに、PPSフィルム1.54g(東レ社製「トルコン(登録商標)」;サイズ:9.0×21.0cm)を用い、実施例9と同様に酸化反応処理を行った。フィルムの重量は27.1%増加し、1.96gのPPSOフィルムを得た。本フィルムは、DSC測定においてPPSフィルムの融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化したフィルムであり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量等についても実施例1と同様に評価した。さらに、広角X線回折測定の結果、本PPSOフィルムの全回折ピーク面積に占める結晶性構造に由来するピーク面積比は、56%であった。また吸湿率は4.5%と低い値を示した。実施例7〜12との比較から、吸湿性が低いが、これは繊維形態とフィルム形態の違いによる表面積の違い、すなわち水分との接触面積による差であると考えられる。
Example 13
Instead of the PPS fiber, 1.54 g of PPS film (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 9.0 × 21.0 cm) was used, and an oxidation reaction treatment was performed in the same manner as in Example 9. The weight of the film increased by 27.1% to obtain 1.96 g of PPSO film. The melting point of the PPS film disappears in DSC measurement, the melting peak is not observed at any observed temperature, this film is an infusible film, and there is no substantial variation in size before and after processing. The form was retained. Further, the chemical resistance and the amount of residual carbides by TGA measurement were also evaluated in the same manner as in Example 1. Furthermore, as a result of wide-angle X-ray diffraction measurement, the peak area ratio derived from the crystalline structure in the total diffraction peak area of the PPSO film was 56%. Further, the moisture absorption was as low as 4.5%. From comparison with Examples 7-12, although hygroscopicity is low, it is thought that this is the difference by the surface area difference by the difference in a fiber form and a film form, ie, the difference by the contact area with a water | moisture content.

実施例14
PPS繊維の代わりに、PPS紙5.95g(東レ社製「トルコンペーパー(登録商標)」;サイズ:20.0cm×36.0cm×100μm)を用い、実施例9と同様に酸化反応処理を行った。紙の重量は22.4%増加し、7.28gのPPSO紙を得た。本PPSO紙は、DSC測定においてPPS紙の融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化した紙であり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量等についても実施例1と同様に評価した。また吸湿率は5.7%と低いレベルであった。さらに、電気絶縁性測定の結果、体積抵抗率は1.3×1016Ω・cm、絶縁破壊強さは6.4kV/mmであった。
Example 14
Instead of PPS fiber, 5.95 g of PPS paper (“Torcon Paper (registered trademark)” manufactured by Toray Industries, Inc .; size: 20.0 cm × 36.0 cm × 100 μm) was used, and an oxidation reaction treatment was performed in the same manner as in Example 9. It was. The weight of the paper increased by 22.4% and 7.28 g of PPSO paper was obtained. This PPSO paper loses the melting point of the PPS paper in the DSC measurement, no melting peak is observed at any observed temperature, is an infusible paper, and has no substantial variation in size before and after processing. The shape was retained. Further, the chemical resistance and the amount of residual carbides by TGA measurement were also evaluated in the same manner as in Example 1. Further, the moisture absorption rate was as low as 5.7%. Furthermore, as a result of electrical insulation measurement, the volume resistivity was 1.3 × 10 16 Ω · cm, and the dielectric breakdown strength was 6.4 kV / mm.

また、PPS紙を酸化した本PPSO紙は紙用途、特に電気絶縁紙としての効果を発揮することがわかった。また耐湿熱性の特長を示すため、本PPSO紙を吸湿処理後、電気絶縁性を測定した。その結果、体積抵抗率は1.0×1016Ω・cm、絶縁破壊強さは5.4kV/mmと、吸湿による電気特性の低下は小さく、実用に耐えうる電気特性を示すことがわかった。 Further, it has been found that the present PPSO paper obtained by oxidizing PPS paper exhibits an effect as a paper application, particularly as an electrical insulating paper. Moreover, in order to show the feature of moisture and heat resistance, the electrical insulation was measured after moisture absorption treatment of this PPSO paper. As a result, the volume resistivity was 1.0 × 10 16 Ω · cm, the dielectric breakdown strength was 5.4 kV / mm, and the decrease in electrical characteristics due to moisture absorption was small, indicating that the electrical characteristics could withstand practical use. .

実施例15
酢酸 (関東化学社製)を用いて、過酢酸濃度を8重量%に調整した過酢酸溶液20.0g(過酢酸23.67mmol;三菱ガス化学社製)を反応容器に投入し、60℃で攪拌した。次に、ポリ−p−フェニレンスルフィド(PPS)繊維70.60mg(東レ社製「トルコン(登録商標)」;繊維長:約2m、繊維太さ:4.5dtex)をその反応溶液に浸漬させて60℃、1時間で多段処理の1段目酸化反応処理を行った。繊維の重量は13.0%増加し、79.76mgのポリ−p−フェニレンスルフィド酸化物の繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、285℃付近で15.90J/gの融解熱量を有していた。さらに1段目と同様に、酢酸 (関東化学社製)を用いて、過酢酸濃度を8重量%に調整した過酢酸溶液20.0g(過酢酸23.67mmol;三菱ガス化学社製)を新たに反応容器に調製し、続いて1段目で得たポリ−p−フェニレンスルフィド酸化物の繊維をその反応溶液に浸漬させて60℃、1時間で多段処理の2段目酸化反応処理を行った。繊維の重量は初期のPPSに対して29.6%増加し、91.53mgのポリ−p−フェニレンスルホキシド(PPSO)繊維を得た。本繊維は、PPS繊維の融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.0重量%であった。広角X線回折等についても実施例1と同様に評価した。
Example 15
Using acetic acid (manufactured by Kanto Chemical Co., Inc.), 20.0 g of a peracetic acid solution (peracetic acid 23.67 mmol; manufactured by Mitsubishi Gas Chemical Co., Ltd.) adjusted to a peracetic acid concentration of 8% by weight was charged into the reaction vessel, and Stir. Next, 70.60 mg of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 2 m, fiber thickness: 4.5 dtex) was immersed in the reaction solution. The first stage oxidation reaction treatment of multistage treatment was performed at 60 ° C. for 1 hour. The fiber weight increased by 13.0%, yielding 79.76 mg of poly-p-phenylene sulfide oxide fiber. This fiber had a heat of fusion of 15.90 J / g at around 285 ° C. in a differential scanning calorimeter (DSC) measurement. In the same manner as in the first stage, 20.0 g of peracetic acid solution (peracetic acid 23.67 mmol; manufactured by Mitsubishi Gas Chemical Company) was newly added using acetic acid (manufactured by Kanto Chemical Co., Ltd.) to adjust the peracetic acid concentration to 8% by weight. Next, the poly-p-phenylene sulfide oxide fiber obtained in the first stage is immersed in the reaction solution and subjected to the multistage second stage oxidation reaction treatment at 60 ° C. for 1 hour. It was. The fiber weight increased 29.6% relative to the initial PPS, yielding 91.53 mg of poly-p-phenylene sulfoxide (PPSO) fiber. This fiber was an infusible fiber in which the melting peak near the melting point (285 ° C.) of the PPS fiber disappeared and no melting peak was observed at any observed temperature. In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbides was 13.0% by weight with respect to PPSO fiber. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

比較例3
20重量%の酢酸水溶液にて1.8重量%に調整した過酢酸/酢酸水溶液を用いて、実施例9と同様に酸化反応処理を行った。繊維の重量は12.4%増加した。本繊維は、示差走査熱量計(DSC)測定において、285℃付近で15.70J/gの融解熱量を有すことから、酸化反応が十分に進行しておらず、未反応のPPS構造を有していることがわかる。また、耐薬品性評価については、濃硝酸中では溶解し、濃硫酸中では薬液中では形状を保持するものの、ピンセットでつまんだ時には形状がくずれる結果であり、耐熱性、耐薬品性ともにPPSO繊維のそれに劣るものであった。広角X線回折等についても実施例1と同様に評価した。結晶化度は50%と高いものの、目的の酸化反応が十分に進行しておらず、結晶化度はPPS繊維の結晶化度を表しているといえる。それゆえ、吸湿率は1.0%程度とPPS繊維に近い低い値を示した。
実施例7〜15および比較例3の結果を表2に示す。
Comparative Example 3
An oxidation reaction treatment was performed in the same manner as in Example 9 using a peracetic acid / acetic acid aqueous solution adjusted to 1.8% by weight with a 20% by weight acetic acid aqueous solution. The fiber weight increased by 12.4%. Since this fiber has a heat of fusion of 15.70 J / g at around 285 ° C. in a differential scanning calorimeter (DSC) measurement, the oxidation reaction does not proceed sufficiently and has an unreacted PPS structure. You can see that In addition, regarding chemical resistance evaluation, although dissolved in concentrated nitric acid and retained in chemical solution in concentrated sulfuric acid, the shape is broken when pinched with tweezers. Both PPSO fibers are resistant to heat and chemicals. It was inferior to that. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1. Although the crystallinity is as high as 50%, the target oxidation reaction does not proceed sufficiently, and the crystallinity can be said to represent the crystallinity of the PPS fiber. Therefore, the moisture absorption rate was about 1.0%, which was a low value close to that of PPS fibers.
The results of Examples 7 to 15 and Comparative Example 3 are shown in Table 2.

Figure 2006016585
Figure 2006016585

実施例16
無水酢酸15.0g(0.15mol;和光純薬社製)および34.5%過酸化水素水5.0g(0.05mol;関東化学社製)を反応容器に投入後、室温(約20℃)にて均一溶液になるまで攪拌した。次に、ポリ−p−フェニレンスルフィド(PPS)繊維68.6mg(東レ社製「トルコン(登録商標)」;繊維長:約2m;単糸繊度:4.5dtex)をその反応溶液に浸漬させて60℃で酸化反応処理した。2時間で反応は完結し、重量が24.4%増加した85.4mgのポリ−p−フェニレンスルホキシド(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPS繊維の融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.2重量%であった。広角X線回折等についても実施例1と同様に評価した。
Example 16
Acetic anhydride 15.0 g (0.15 mol; manufactured by Wako Pure Chemical Industries, Ltd.) and 34.5% hydrogen peroxide water 5.0 g (0.05 mol; manufactured by Kanto Chemical Co., Inc.) were charged into the reaction vessel, and then room temperature (about 20 ° C. ) Until a uniform solution is obtained. Next, 68.6 mg of poly-p-phenylene sulfide (PPS) fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; fiber length: about 2 m; single yarn fineness: 4.5 dtex) was immersed in the reaction solution. The oxidation reaction treatment was performed at 60 ° C. The reaction was completed in 2 hours, and 85.4 mg of poly-p-phenylene sulfoxide (PPSO) fiber having a weight increase of 24.4% was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared from the melting peak near the melting point (285 ° C.) of the PPS fiber, and no melting peak was observed at any of the observed temperatures. It was. In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring thermogravimetry (TGA), the amount of remaining carbide was 13.2% by weight with respect to PPSO fiber. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

実施例17
無水酢酸の重量を10.0g(0.10mol;和光純薬社製)、34.5%過酸化水素水の重量を10.0g(0.10mol;関東化学社製)に変え、実施例16と同様に酸化反応処理を行った。3時間で反応は完結し、重量が26.0%増加した同様の不融化されたPPSO繊維を得、実施例1と同様に評価した。
Example 17
The weight of acetic anhydride was changed to 10.0 g (0.10 mol; manufactured by Wako Pure Chemical Industries, Ltd.), and the weight of 34.5% hydrogen peroxide water was changed to 10.0 g (0.10 mol; manufactured by Kanto Chemical Co., Inc.). The oxidation reaction treatment was performed in the same manner as described above. The reaction was completed in 3 hours, and a similar infusible PPSO fiber having a weight increase of 26.0% was obtained and evaluated in the same manner as in Example 1.

実施例18
無水酢酸の重量を17.5g(0.17mol;和光純薬社製)、34.5%過酸化水素水の重量を2.5g(0.025mol;関東化学社製)に変え、実施例16と同様に酸化反応処理を行った。5時間で反応は完結し、重量が26.6%増加した同様の不融化されたPPSO繊維を得、実施例1と同様に評価した。
Example 18
The weight of acetic anhydride was changed to 17.5 g (0.17 mol; manufactured by Wako Pure Chemical Industries, Ltd.) and the weight of 34.5% hydrogen peroxide water was changed to 2.5 g (0.025 mol; manufactured by Kanto Chemical Co., Inc.). The oxidation reaction treatment was performed in the same manner as described above. The reaction was completed in 5 hours, and a similar infusible PPSO fiber having a weight increase of 26.6% was obtained and evaluated in the same manner as in Example 1.

実施例19
PPS繊維の代わりに、PPS布帛65.1mg(東レ社製「トルコン(登録商標)」;サイズ:1.0cm×1.0cm、単糸繊度:4.5dtex)を用い、実施例16と同様に酸化反応処理を行った。2時間で反応は完結し、重量が28.4%増加した83.6mgのPPSO布帛を得た。本布帛は、DSC測定においてPPSの融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化した布帛であり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。
Example 19
Instead of PPS fibers, 65.1 mg of PPS fabric (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 1.0 cm × 1.0 cm, single yarn fineness: 4.5 dtex) was used in the same manner as in Example 16. An oxidation reaction treatment was performed. The reaction was completed in 2 hours, and 83.6 mg of PPSO fabric having an increased weight of 28.4% was obtained. This fabric loses the melting point of PPS in DSC measurement, no melting peak is observed at any of the observed temperatures, is an infusible fabric, and has no substantial variation in size before and after treatment. Was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1.

本PPS布帛を酸化したPPSO布帛は、フィルター、特に不融性を活かしたバグフィルターとしての効果や、耐熱作業着、特に消防服としての高い効果を発揮した。   The PPSO fabric obtained by oxidizing the present PPS fabric exhibited an effect as a filter, particularly a bag filter utilizing infusibilities, and a high effect as a heat-resistant work wear, particularly as a fire fighting suit.

実施例20
PPS繊維の代わりに、PPSフェルト65.3mg(東レ社製「トルコン(登録商標)」;サイズ:0.5cm×1.0cm、単糸繊度:4.5dtex)を用い、実施例16と同様に酸化反応処理を行った。2時間で反応は完結し、重量が30.1%増加した84.9gのPPSOフェルトを得た。本フェルトは、DSC測定においてPPSの融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化したフェルトであり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性、TGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。本PPSフェルトを酸化したPPSOフェルトは、フィルター、特に不融性を活かしたバグフィルターとしての効果や、耐熱作業着、特に消防服としての高い効果を発揮した。
Example 20
In the same manner as in Example 16, using 65.3 mg of PPS felt (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 0.5 cm × 1.0 cm, single yarn fineness: 4.5 dtex) instead of the PPS fiber. An oxidation reaction treatment was performed. The reaction was completed in 2 hours, and 84.9 g of PPSO felt having a weight increase of 30.1% was obtained. This felt is a felt in which the melting point of PPS disappears in DSC measurement, no melting peak is observed at any observed temperature, is infusible felt, and has no substantial variation in size before and after processing. Was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1. The PPSO felt obtained by oxidizing this PPS felt exhibited a high effect as a filter, particularly as a bag filter utilizing infusibilities, and as a heat-resistant work wear, particularly as a fire fighting suit.

実施例21
PPS繊維の代わりに、PPS紙5.95g(東レ社製「トルコンペーパー(登録商標)」;サイズ:20.0cm×36.0cm×100μm)を用い、実施例16と同様に酸化反応処理を行った。2時間で反応は完結し、重量は23.4%増加し、7.34gのPPSO紙を得た。本PPSO紙は、DSC測定においてPPS繊維の融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化した紙であり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性についても実施例16と同等、吸湿率は5.4%であった。広角X線回折についても実施例1と同様に評価した。さらに、電気絶縁性測定の結果、体積抵抗率は1.2×1016Ω・cm、絶縁破壊強さは6.0kV/mmであった。また本PPSO紙を吸湿処理後、電気絶縁性を測定した結果、体積抵抗率は1.0×1016Ω・cm、絶縁破壊強さは5.5kV/mmと、吸湿による電気特性の低下は小さく、実用に耐えうることがわかった。
Example 21
Instead of PPS fiber, 5.95 g of PPS paper (“Torcon Paper (registered trademark)” manufactured by Toray Industries, Inc .; size: 20.0 cm × 36.0 cm × 100 μm) was used, and an oxidation reaction treatment was performed in the same manner as in Example 16. It was. The reaction was completed in 2 hours, the weight increased by 23.4%, and 7.34 g of PPSO paper was obtained. This PPSO paper is a paper in which the melting point of the PPS fiber disappears in DSC measurement, no melting peak is observed at any observed temperature, is infusible, and has no substantial variation in size before and after the treatment. The shape was retained. Further, the chemical resistance was the same as in Example 16, and the moisture absorption rate was 5.4%. Wide-angle X-ray diffraction was also evaluated in the same manner as in Example 1. Furthermore, as a result of electrical insulation measurement, the volume resistivity was 1.2 × 10 16 Ω · cm, and the dielectric breakdown strength was 6.0 kV / mm. In addition, as a result of measuring the electrical insulation after moisture absorption treatment of this PPSO paper, the volume resistivity is 1.0 × 10 16 Ω · cm, the dielectric breakdown strength is 5.5 kV / mm. It turned out to be small and practical.

また、PPS紙を酸化した本PPSO紙は紙用途、特にモーター用電気絶縁紙としての高い効果を発揮した。   Further, the present PPSO paper obtained by oxidizing PPS paper exhibited a high effect as a paper application, particularly as an electric insulating paper for a motor.

実施例22
無水酢酸を無水プロピオン酸15.0g(0.12mol;東京化成社製)に変え、実施例16と同様に酸化反応処理を行った。10時間で反応は完結し、重量が26.0%増加した同様の不融化されたPPSO繊維を得、実施例1と同様に評価した。
実施例16〜22の結果および参考用として前記比較例2の結果を表3に示す。
Example 22
The acetic anhydride was changed to 15.0 g of propionic anhydride (0.12 mol; manufactured by Tokyo Chemical Industry Co., Ltd.), and an oxidation reaction treatment was performed in the same manner as in Example 16. The reaction was completed in 10 hours, and a similar infusible PPSO fiber having a weight increase of 26.0% was obtained and evaluated in the same manner as in Example 1.
Table 3 shows the results of Examples 16 to 22 and the results of Comparative Example 2 for reference.

Figure 2006016585
Figure 2006016585

実施例23
酢酸111g(1.85mol;関東化学社製)および34.5%過酸化水素水37.0g(0.38mol;関東化学社製)を反応容器に投入後、室温(約20℃)にて攪拌した。次に、PPSステープル繊維19.8g(東レ社製「トルコン(登録商標)」;単糸繊度:2.2dtex)をその反応溶液に浸漬させて60℃に加熱し、続いて95%硫酸10.0g(0.1mol;関東化学社製)を30分かけてゆっくり滴下して酸化反応処理した。滴下終了後から2時間で反応は完結し、重量が30.3%増加した25.8gのポリ−p−フェニレンスルホキシド(PPSO)ステープル繊維を得た。本ステープル繊維は、示差走査熱量計(DSC)測定において、PPS繊維の融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.3重量%であった。また吸湿率は5.2%と低いレベルを示した。広角X線回折等についても実施例1と同様に評価した。
Example 23
111 g of acetic acid (1.85 mol; manufactured by Kanto Chemical Co., Inc.) and 37.0 g of 34.5% hydrogen peroxide water (0.38 mol; manufactured by Kanto Chemical Co., Inc.) were charged into the reaction vessel and stirred at room temperature (about 20 ° C.). did. Next, 19.8 g of PPS staple fiber (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; single yarn fineness: 2.2 dtex) was immersed in the reaction solution and heated to 60 ° C., followed by 95% sulfuric acid 10. 0 g (0.1 mol; manufactured by Kanto Chemical Co., Inc.) was slowly dropped over 30 minutes to carry out an oxidation reaction treatment. The reaction was completed in 2 hours after the completion of the dropping, and 25.8 g of poly-p-phenylene sulfoxide (PPSO) staple fiber having an increased weight of 30.3% was obtained. In the staple fiber, the melting peak near the melting point (285 ° C.) of the PPS fiber disappears in the differential scanning calorimeter (DSC) measurement, and no melting peak is observed at any observed temperature, and the staple fiber is an infusible fiber. there were. In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 13.3% by weight with respect to the PPSO fiber. Further, the moisture absorption rate was as low as 5.2%. Wide-angle X-ray diffraction and the like were also evaluated in the same manner as in Example 1.

実施例24
PPSステープル繊維の代わりに、PPSフェルト20.1g(東レ社製「トルコン(登録商標)」;サイズ15cm×20cm、単糸繊度:3.0dtex)を用い、実施例23と同様に酸化反応処理を行った。2時間で反応は完結し、重量が28.9%増加した25.9gのPPSOフェルトを得た。本フェルトは、DSC測定においてPPSの融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化したフェルトであり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。
Example 24
In place of the PPS staple fiber, 20.1 g of PPS felt (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size 15 cm × 20 cm, single yarn fineness: 3.0 dtex) was used, and an oxidation reaction treatment was performed in the same manner as in Example 23. went. The reaction was completed in 2 hours to obtain 25.9 g of PPSO felt with an increase of 28.9% in weight. This felt is a felt in which the melting point of PPS disappears in DSC measurement, no melting peak is observed at any observed temperature, is infusible felt, and has no substantial variation in size before and after processing. Was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1.

実施例25
PPS繊維の代わりに、PPS布帛4.73g(東レ社製「トルコン(登録商標)」;サイズ:12.5cm×5.0cm、単糸繊度:3.0dtex)を用い、実施例23と同様に酸化反応処理を行った。2時間で反応は完結し、重量は23.5%増加し、5.84gのPPSO布帛を得た。本布帛は、DSC測定においてPPS繊維の融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化した布帛であり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。
Example 25
In the same manner as in Example 23, 4.73 g of PPS fabric (“Torcon (registered trademark)” manufactured by Toray Industries, Inc .; size: 12.5 cm × 5.0 cm, single yarn fineness: 3.0 dtex) was used instead of the PPS fiber. An oxidation reaction treatment was performed. The reaction was completed in 2 hours, the weight increased by 23.5%, and 5.84 g of PPSO fabric was obtained. The melting point of the PPS fiber disappears in DSC measurement, the melting peak is not observed at any of the observed temperatures, the fabric is an infusible fabric, and has no substantial variation in size before and after the treatment. The form was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1.

実施例26
PPS繊維の代わりに、PPS紙4.49g(東レ社製「トルコンペーパー(登録商標)」;サイズ:20.0cm×34.0cm×100μm)を用い、実施例23と同様に酸化反応処理を行った。2時間で反応は完結し、重量は22.5%増加し、5.50gのPPSO紙を得た。本PPSO紙は、DSC測定においてPPS繊維の融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化した紙であり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。吸湿率は5.3%であった。さらに、電気絶縁性測定の結果、体積抵抗率は3.5×1014Ω・cm、絶縁破壊強さは6.0kV/mmであった。本PPSO紙を吸湿処理後、電気絶縁性を測定した結果、体積抵抗率は2.0×1014Ω・cm、絶縁破壊強さは5.3kV/mmと、吸湿による電気特性の低下は小さいことがわかった。
Example 26
Instead of PPS fibers, PPS paper 4.49 g (“Torcon Paper (registered trademark)” manufactured by Toray Industries, Inc .; size: 20.0 cm × 34.0 cm × 100 μm) was used, and an oxidation reaction treatment was performed in the same manner as in Example 23. It was. The reaction was completed in 2 hours, the weight increased by 22.5%, and 5.50 g of PPSO paper was obtained. This PPSO paper is a paper in which the melting point of the PPS fiber disappears in DSC measurement, no melting peak is observed at any observed temperature, is infusible, and has no substantial variation in size before and after the treatment. The shape was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1. The moisture absorption rate was 5.3%. Furthermore, as a result of electrical insulation measurement, the volume resistivity was 3.5 × 10 14 Ω · cm, and the dielectric breakdown strength was 6.0 kV / mm. As a result of measuring the electrical insulation after moisture absorption treatment of this PPSO paper, the volume resistivity is 2.0 × 10 14 Ω · cm, the dielectric breakdown strength is 5.3 kV / mm, and the deterioration of the electrical characteristics due to moisture absorption is small. I understood it.

実施例27
酸化剤および液体の投入量をそれぞれ、酢酸120g(2.0mol;関東化学社製)、34.5%過酸化水素水18.0g(0.18mol;関東化学社製)、95%硫酸20.0g(0.2mol;関東化学社製)に変え、PPSステープル繊維20.1g(東レ社製「トルコン(登録商標)」)を用いて実施例23と同様に酸化反応処理を行った。3時間で反応は完結し、重量が30.0%増加した26.1gのPPSOステープル繊維を得た。本ステープル繊維は、DSC測定においてPPSの融点が消失し、観察したいずれの温度においても融解ピークが観察されず、不融化したフェルトであり、かつ処理前後でサイズに実質的な変動のない完全に形態が保持されたものであった。また、耐薬品性およびTGA測定による残存炭化物量、吸湿率等についても実施例1と同様に評価した。
実施例23〜27の結果を表4に示す。
Example 27
The amounts of the oxidizing agent and the liquid used were 120 g of acetic acid (2.0 mol; manufactured by Kanto Chemical Co., Inc.), 38.0% hydrogen peroxide solution 18.0 g (0.18 mol; manufactured by Kanto Chemical Co., Ltd.), 95% sulfuric acid 20. In place of 0 g (0.2 mol; manufactured by Kanto Chemical Co., Inc.), an oxidation reaction treatment was performed in the same manner as in Example 23 using 20.1 g of PPS staple fibers (“Torcon (registered trademark)” manufactured by Toray Industries, Inc.). The reaction was completed in 3 hours, and 26.1 g of PPSO staple fibers having a weight increase of 30.0% were obtained. This staple fiber has a melting point of PPS disappeared by DSC measurement, no melting peak is observed at any observed temperature, is an infusible felt, and has no substantial variation in size before and after the treatment. The form was retained. Further, the chemical resistance, the amount of residual carbides by TGA measurement, the moisture absorption rate, and the like were also evaluated in the same manner as in Example 1.
The results of Examples 23 to 27 are shown in Table 4.

Figure 2006016585
Figure 2006016585

<ポリ−p−フェニレンスルフィド樹脂の製造>
参考例1
撹拌機付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8267.0g(70.0モル)、96%水酸化ナトリウム2975.0g(71.4モル)、N−メチル−2−ピロリドン(NMP)11434.5g(115.5モル)、酢酸ナトリウム516.6g(6.3モル)、及びイオン交換水10500.0gを仕込み、常圧で窒素を通じながら230℃まで約3時間かけて徐々に加熱し、水14770.0gおよびNMP280.0gを留出したのち、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.08モルであった。また、硫化水素の飛散量は仕込みアルカリ金属硫化物1モル当たり0.017モルであった。
<Production of poly-p-phenylene sulfide resin>
Reference example 1
In a 70 liter autoclave equipped with a stirrer, 8267.0 g (70.0 mol) of 47.5% sodium hydrosulfide, 2975.0 g (71.4 mol) of 96% sodium hydroxide, N-methyl-2-pyrrolidone (NMP ) 11434.5 g (115.5 mol), 516.6 g (6.3 mol) sodium acetate, and 10500.0 g of ion-exchanged water, gradually heated to 230 ° C. over about 3 hours while passing nitrogen at normal pressure After distilling 14770.0 g of water and 280.0 g of NMP, the reaction vessel was cooled to 160 ° C. The residual water content in the system per 1 mol of the charged alkali metal sulfide was 1.08 mol including the water consumed for the hydrolysis of NMP. The amount of hydrogen sulfide scattered was 0.017 mol per mol of the alkali metal sulfide charged.

次に、p−ジクロロベンゼン(p−DCB)10347.6g(70.4モル)、NMP9064.4g(91.6モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら、200℃から270℃まで0.6℃/分の速度で昇温し、270℃で140分保持した。   Next, 10347.6 g (70.4 mol) of p-dichlorobenzene (p-DCB) and NMP9064.4 g (91.6 mol) were added, the reaction vessel was sealed under nitrogen gas, and the mixture was stirred at 240 rpm. The temperature was raised from 200 ° C. to 270 ° C. at a rate of 0.6 ° C./min and held at 270 ° C. for 140 minutes.

270℃で140分経過後、2646.0g(147.0モル)のイオン交換水を15分かけて反応系内に圧入しながら、250℃まで冷却した。次いで200℃まで1.0℃/分の速度で冷却し、その後室温近傍まで急冷した。   After 140 minutes at 270 ° C., 2646.0 g (147.0 mol) of ion-exchanged water was injected into the reaction system over 15 minutes, and then cooled to 250 ° C. Next, it was cooled to 200 ° C. at a rate of 1.0 ° C./min, and then rapidly cooled to near room temperature.

内容物を取り出し、35リットルのNMPで希釈後、溶剤と固形物をふるい(80mesh)で濾別し、得られた粒子を70リットルの温水で数回洗浄、濾別した。これを、80℃で熱風乾燥し、120℃で減圧乾燥してポリフェニレンスルフィドを得た。この時のポリフェニレンスルフィドの重量平均分子量(Mw)は、GPC測定の結果、Mw=40,000であった。   The contents were taken out, diluted with 35 liters of NMP, the solvent and solids were filtered off with a sieve (80 mesh), and the resulting particles were washed several times with 70 liters of warm water and filtered off. This was dried with hot air at 80 ° C. and dried under reduced pressure at 120 ° C. to obtain polyphenylene sulfide. The weight average molecular weight (Mw) of the polyphenylene sulfide at this time was Mw = 40,000 as a result of GPC measurement.

参考例2
酢酸ナトリウム量を229.6g(2.8モル)とした以外、参考例1と同様にして行った結果、重量平均分子量Mw=30,000のポリフェニレンスルフィドを得た。
Reference example 2
As a result of carrying out in the same manner as in Reference Example 1 except that the amount of sodium acetate was 229.6 g (2.8 mol), polyphenylene sulfide having a weight average molecular weight Mw = 30,000 was obtained.

<ポリ−p−フェニレンスルフィド樹脂組成物の作製(フィルム製造前のペレット作製)>
参考例3
平均粒径1.0μmの球状のカルサイト型炭酸カルシウムをエチレングリコール中に50重量%微分散させたスラリーを調製した。このスラリーを1μmカットフィルターで濾過した後、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末にヘンシェルミキサを用いて炭酸カルシウムが5.0重量%となるよう混合した。次いで、2個所のベント孔を有する2軸押出機に供給し、溶融混練と同時にベント孔よりエチレングリコールを除去し、ガット状に押出し、水中で冷却後切断して粒子ペレットとした。
<Preparation of poly-p-phenylene sulfide resin composition (preparation of pellets before film production)>
Reference example 3
A slurry was prepared by finely dispersing 50% by weight of spherical calcite-type calcium carbonate having an average particle diameter of 1.0 μm in ethylene glycol. This slurry was filtered through a 1 μm cut filter, and then mixed with the poly-p-phenylene sulfide powder produced in Reference Example 1 or Reference Example 2 using a Henschel mixer so that the calcium carbonate would be 5.0 wt%. Next, the mixture was supplied to a twin screw extruder having two vent holes, and ethylene glycol was removed from the vent holes simultaneously with melt kneading, extruded into a gut shape, cooled in water, and then cut into particle pellets.

また、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末のみを上記同様に溶融押出し、無粒子ペレットとした。   Moreover, only the poly-p-phenylene sulfide powder produced in Reference Example 1 or Reference Example 2 was melt-extruded in the same manner as described above to obtain particle-free pellets.

<ポリ−p−フェニレンスルフィドフイルムの作製>
参考例4
参考例3にて作製した粒子ペレットおよび無粒子ペレットを炭酸カルシウムが0.4重量%となるよう混合した。粒子ペレットと無粒子ペレットは、重量平均分子量の同じもの同士を組み合わせた。回転式真空乾燥機で150℃、3mmHg(400Pa)の減圧下で3時間処理して結晶化ペレットとした。次いで、この結晶化ペレットを90mm直径の単軸押出機に供給し、溶融温度330℃、瀘過精度10μmのフィルターを通過させて、リップ幅400mm、スリット間隙1.5mmのステンレス製Tダイから吐出させ、表面を30℃に保った金属ドラム上で冷却固化して、厚さ650μmの非晶フィルムとした。次いで、この非晶フィルムを表面温度95℃の回転ロール群に巻き付けて加熱し、引き続いて配置された表面温度25℃のロールとの間で3.5倍にフィルムの長手方向(MD)に延伸した。次いで、テンタ−で100℃の熱風が循環する室内でフィルムの長手と直行方向(TD)に3.5倍延伸し、引き続いて280℃の熱風が循環する室内で10秒間定長熱処理した後、200℃の温度で幅方向に3.0%制限収縮を行い、厚さ50μmのポリ−p−フェニレンスルフィドフイルムを得た。
<Preparation of poly-p-phenylene sulfide film>
Reference example 4
The particle pellets and non-particle pellets prepared in Reference Example 3 were mixed so that the calcium carbonate would be 0.4% by weight. Particle pellets and non-particle pellets were combined in the same weight average molecular weight. Crystallized pellets were processed in a rotary vacuum dryer at 150 ° C. under reduced pressure of 3 mmHg (400 Pa) for 3 hours. Next, this crystallization pellet is supplied to a 90 mm diameter single screw extruder, passed through a filter having a melting temperature of 330 ° C. and a filtration accuracy of 10 μm, and discharged from a stainless steel T die having a lip width of 400 mm and a slit gap of 1.5 mm. The film was cooled and solidified on a metal drum whose surface was kept at 30 ° C. to obtain an amorphous film having a thickness of 650 μm. Next, the amorphous film is wound around a rotating roll group having a surface temperature of 95 ° C. and heated, and subsequently stretched 3.5 times in the machine direction (MD) of the film with a roll having a surface temperature of 25 ° C. did. Next, the film was stretched 3.5 times in the lengthwise and direct direction (TD) of the film in a room where hot air of 100 ° C. circulates in a tenter, and then subjected to a constant length heat treatment for 10 seconds in a room where hot air of 280 ° C. circulates. 3.0% limited shrinkage was performed in the width direction at a temperature of 200 ° C. to obtain a poly-p-phenylene sulfide film having a thickness of 50 μm.

該フィルムの広角X線回折測定による結晶化度はいずれも68%であり、重量平均分子量は、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかった。   The degree of crystallinity of the films measured by wide-angle X-ray diffraction was 68%, and the weight average molecular weight was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 1 or Reference Example 2.

参考例5
参考例3にて作製した無粒子ペレットのみを用い、参考例4と同様に90mmφの単軸押出機に供給し、溶融温度330℃、瀘過精度10μmのフィルターを通過させて、リップ幅400mm、スリット間隙1.5mmのステンレス製Tダイから吐出させ、表面を30℃に保った金属ドラム上で冷却固化して、厚さ650μmの非晶フィルムとした。次いで、この非晶フィルムを表面温度95℃の回転ロール群に巻き付けて加熱し、引き続いて配置された表面温度25℃のロールとの間で3.5倍にフィルムの長手方向(MD)に延伸した。次いで、テンタ−で100℃の熱風が循環する室内でフィルムの長手と直行方向(TD)に3.5倍延伸し、引き続いて280℃の熱風が循環する室内で10秒間定長熱処理した後、200℃の温度で幅方向に3.0%制限収縮を行い、厚さ50μmのポリ−p−フェニレンスルフィドフイルムを得た。
Reference Example 5
Using only the non-particle pellets produced in Reference Example 3, it was supplied to a 90 mmφ single screw extruder in the same manner as in Reference Example 4, passed through a filter having a melting temperature of 330 ° C. and a filtration accuracy of 10 μm, and a lip width of 400 mm, It was discharged from a stainless steel T-die having a slit gap of 1.5 mm and cooled and solidified on a metal drum whose surface was kept at 30 ° C. to obtain an amorphous film having a thickness of 650 μm. Next, the amorphous film is wound around a rotating roll group having a surface temperature of 95 ° C. and heated, and subsequently stretched 3.5 times in the machine direction (MD) of the film with a roll having a surface temperature of 25 ° C. did. Next, the film was stretched 3.5 times in the lengthwise and direct direction (TD) of the film in a room where hot air of 100 ° C. circulates in a tenter, and then subjected to a constant length heat treatment for 10 seconds in a room where hot air of 280 ° C. circulates. 3.0% limited shrinkage was performed in the width direction at a temperature of 200 ° C. to obtain a poly-p-phenylene sulfide film having a thickness of 50 μm.

該フィルムの広角X線回折測定による結晶化度はいずれも65%であり、重量平均分子量は、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかった。   The crystallinity of the films measured by wide-angle X-ray diffraction was 65%, and the weight average molecular weight was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 1 or Reference Example 2.

<ポリ−p−フェニレンスルフィド繊維の作製>
参考例6
参考例3にて作製した無粒子ペレットを用い、溶融温度320℃、吐出量350g/分、引速800m/分で口金より吐出させ、23℃に保たれた雰囲気内を落下・冷却させて繊度4375dtexの未延伸糸とした。次いで、この未延伸糸を表面温度98℃の回転ロール群に巻き付けて加熱し、延伸倍率3.27、延伸速度120m/分にて延伸した。引き続いて配置された表面温度90℃のクリンパーとの間でけん縮度13.0にてけん縮を付与し、さらに125℃に保たれた雰囲気内に通すことで熱処理した後冷却し、さらにカットして単糸繊維2.2dtex、長さ50mm〜80mmのポリ−p−フェニレンスルフィド繊維を得た。
<Preparation of poly-p-phenylene sulfide fiber>
Reference Example 6
Using the particle-free pellets prepared in Reference Example 3, the fineness is obtained by discharging from the die at a melting temperature of 320 ° C., a discharge rate of 350 g / min, and a drawing speed of 800 m / min, and dropping and cooling the atmosphere maintained at 23 ° C. An undrawn yarn of 4375 dtex was obtained. Next, the undrawn yarn was wound around a rotating roll group having a surface temperature of 98 ° C. and heated, and drawn at a draw ratio of 3.27 and a draw speed of 120 m / min. Next, it is crimped at a crimping degree of 13.0 with a crimper having a surface temperature of 90 ° C., then heat-treated by passing it through an atmosphere maintained at 125 ° C., and then cooled and cut. Thus, poly-p-phenylene sulfide fiber having a single yarn fiber of 2.2 dtex and a length of 50 mm to 80 mm was obtained.

該繊維の広角X線回折測定による結晶化度はいずれも55%であり、重量平均分子量は、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかった。   The degree of crystallinity of the fibers measured by wide-angle X-ray diffraction was 55%, and the weight average molecular weight was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 1 or Reference Example 2.

実施例28
参考例6にて作製した重量平均分子量Mw=40,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維4.03gを用いて実施例1と同様に酸化反応処理を行った。繊維の重量は24.3%増加し、5.01gのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して10.2重量%であリ、広角X線回折測定による結晶化度は45%であった。
Example 28
The oxidation reaction treatment was carried out in the same manner as in Example 1 using 4.03 g of poly-p-phenylene sulfide (PPS) fiber having a weight average molecular weight Mw of 40,000 and a crystallinity of 55% prepared in Reference Example 6. . The weight of the fiber increased by 24.3% and 5.01 g of poly-p-phenylene sulfone (PPSO) fiber was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 10.2% by weight with respect to the PPSO fiber, and the crystallinity by wide-angle X-ray diffraction measurement was 45%.

実施例29
参考例6にて作製した重量平均分子量Mw=40,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維69.3mgを用いて実施例7と同様に酸化反応処理を行った。繊維の重量は27.2%増加し、88.1mgのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.2重量%であリ、広角X線回折測定による結晶化度は45%であった。
Example 29
The oxidation reaction treatment was carried out in the same manner as in Example 7 using 69.3 mg of poly-p-phenylene sulfide (PPS) fiber having a weight average molecular weight Mw of 40,000 and a crystallinity of 55% prepared in Reference Example 6. . The fiber weight increased by 27.2%, yielding 88.1 mg of poly-p-phenylenesulfone (PPSO) fiber. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 13.2% by weight with respect to the PPSO fiber, and the crystallinity by wide-angle X-ray diffraction measurement was 45%.

実施例30
重量平均分子量Mw=30,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維に変え、実施例29と同様に酸化反応処理を行った。繊維の重量は28.2%増加し、88.8mgのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して12.8重量%であリ、広角X線回折測定による結晶化度は43%であった。また吸湿率は5.2%と低い値を示した。
Example 30
The oxidation reaction treatment was performed in the same manner as in Example 29 except that the poly-p-phenylene sulfide (PPS) fiber having a weight average molecular weight Mw = 30,000 and a crystallinity of 55% was used. The fiber weight increased by 28.2%, yielding 88.8 mg of poly-p-phenylenesulfone (PPSO) fiber. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Further, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 12.8% by weight with respect to the PPSO fiber, and the crystallinity by wide-angle X-ray diffraction measurement was 43%. Further, the moisture absorption rate was as low as 5.2%.

実施例31
参考例6にて作製した重量平均分子量Mw=40,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維68.6mgを用いて実施例16と同様に酸化反応処理を行った。繊維の重量は24.4%増加し、85.4mgのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して14.3重量%であリ、広角X線回折測定による結晶化度は44%、吸湿率は5.0%と低い値を示した。
Example 31
The oxidation reaction treatment was carried out in the same manner as in Example 16 using 68.6 mg of poly-p-phenylene sulfide (PPS) fibers having a weight average molecular weight Mw of 40,000 and a crystallinity of 55% prepared in Reference Example 6. . The fiber weight increased by 24.4%, yielding 85.4 mg of poly-p-phenylenesulfone (PPSO) fiber. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Further, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide is 14.3% by weight with respect to the PPSO fiber, the crystallinity is 44% by the wide angle X-ray diffraction measurement, and the moisture absorption is 5.0. % And a low value.

実施例32
重量平均分子量Mw=30,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維に変え、実施例31と同様に酸化反応処理を行った。繊維の重量は25.7%増加し、86.2mgのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して12.7重量%であリ、広角X線回折測定による結晶化度は42%、吸湿率は5.3%と低い値であった。
Example 32
The oxidation reaction treatment was performed in the same manner as in Example 31 except that the poly-p-phenylene sulfide (PPS) fiber having a weight average molecular weight Mw = 30,000 and a crystallinity of 55% was used. The fiber weight increased by 25.7%, yielding 86.2 mg of poly-p-phenylenesulfone (PPSO) fiber. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide is 12.7% by weight with respect to the PPSO fiber, the crystallinity by the wide-angle X-ray diffraction measurement is 42%, and the moisture absorption is 5.3. % Was a low value.

実施例33
参考例6にて作製した重量平均分子量Mw=40,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維19.8gを用いて実施例23と同様に酸化反応処理を行った。繊維の重量は30.3%増加し、25.8gのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.3重量%であり、広角X線回折測定による結晶化度は44%、吸湿率は5.2%であった。
Example 33
The oxidation reaction treatment was performed in the same manner as in Example 23 using 19.8 g of poly-p-phenylene sulfide (PPS) fibers having a weight average molecular weight Mw of 40,000 and a crystallinity of 55%, which were prepared in Reference Example 6. . The weight of the fiber increased by 30.3% and 25.8 g of poly-p-phenylene sulfone (PPSO) fiber was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 13.3% by weight with respect to the PPSO fiber, the crystallinity was 44% and the moisture absorption was 5.2% by wide-angle X-ray diffraction measurement. Met.

実施例34
重量平均分子量Mw=30,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)繊維に変え、実施例33と同様に酸化反応処理を行った。繊維の重量は29.2%増加し、25.6gのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化した繊維であった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して12.6重量%であリ、広角X線回折測定による結晶化度は43%、吸湿率は5.3%であった。
Example 34
The oxidation reaction treatment was performed in the same manner as in Example 33 except that the poly-p-phenylene sulfide (PPS) fiber having a weight average molecular weight Mw = 30,000 and a crystallinity of 55% was used. The weight of the fiber increased by 29.2% and 25.6 g of poly-p-phenylene sulfone (PPSO) fiber was obtained. In the differential scanning calorimeter (DSC) measurement, this fiber disappeared in the melting peak near the melting point (285 ° C.) of PPS, and no melting peak was observed at any observed temperature, and the fiber was an infusible fiber. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Further, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide is 12.6% by weight with respect to the PPSO fiber, the degree of crystallinity by wide-angle X-ray diffraction measurement is 43%, and the moisture absorption is 5.3. %Met.

実施例35
参考例4にて作製した重量平均分子量Mw=40,000、結晶化度68%のポリ−p−フェニレンスルフィド(PPS)フィルム20.0gを用いて実施例23の繊維を処理した条件と同様に酸化反応処理を行った。8hで反応は完結し、重量が30.3%増加した26.1gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化したフィルムであった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して13.2重量%であリ、広角X線回折測定による結晶化度は56%、吸湿率は4.7%と低い値を示した。
Example 35
Similar to the conditions in which the fiber of Example 23 was treated with 20.0 g of poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 40,000 and a crystallinity of 68% prepared in Reference Example 4. An oxidation reaction treatment was performed. The reaction was completed in 8 h, and 26.1 g of a poly-p-phenylene sulfone (PPSO) film having a weight increase of 30.3% was obtained. In the differential scanning calorimeter (DSC) measurement, the melting peak near the melting point (285 ° C.) of PPS disappeared and no melting peak was observed at any observed temperature, and this film was an infusible film. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 13.2% by weight with respect to the PPSO film, the crystallinity by wide-angle X-ray diffraction measurement was 56%, and the moisture absorption was 4.7. % And a low value.

実施例36
重量平均分子量Mw=30,000、結晶化度68%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、実施例35と同様に酸化反応処理を行った。フィルムの重量は29.2%増加し、25.8gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化したフィルムであった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して12.9重量%であリ、広角X線回折測定による結晶化度は54%、吸湿率は4.6%であった。
Example 36
The oxidation reaction treatment was performed in the same manner as in Example 35 except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 30,000 and a crystallinity of 68% was used. The weight of the film increased by 29.2%, yielding 25.8 g of poly-p-phenylene sulfone (PPSO) film. In the differential scanning calorimeter (DSC) measurement, the melting peak near the melting point (285 ° C.) of PPS disappeared and no melting peak was observed at any observed temperature, and this film was an infusible film. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 12.9% by weight with respect to the PPSO film, the crystallinity by wide-angle X-ray diffraction measurement was 54%, and the moisture absorption was 4.6. %Met.

実施例37
参考例5にて作製した重量平均分子量Mw=40,000、結晶化度65%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、実施例35と同様に酸化反応処理を行った。フィルムの重量は29.5%増加し、25.9gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化したフィルムであった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.1重量%であリ、広角X線回折測定による結晶化度は55%、吸湿率は4.3%であった。
Example 37
An oxidation reaction treatment was carried out in the same manner as in Example 35 except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 40,000 and a crystallinity of 65% was prepared in Reference Example 5. The weight of the film increased by 29.5%, yielding 25.9 g of poly-p-phenylene sulfone (PPSO) film. In the differential scanning calorimeter (DSC) measurement, the melting peak near the melting point (285 ° C.) of PPS disappeared and no melting peak was observed at any observed temperature, and this film was an infusible film. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide is 13.1% by weight with respect to the PPSO fiber, the degree of crystallinity by wide-angle X-ray diffraction measurement is 55%, and the moisture absorption is 4.3. %Met.

実施例38
参考例5にて作製した重量平均分子量Mw=30,000、結晶化度65%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、実施例35と同様に酸化反応処理を行った。フィルムの重量は28.3%増加し、25.7gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されず、不融化したフィルムであった。また、耐薬品性についても優れた特性を示し、上記評価対象薬品の全てに対して、薬液中および薬液からの取り出し時において形状を完全に保持したものであった。さらに、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して12.8重量%であリ、広角X線回折測定による結晶化度は53%、吸湿率は4.5%であった。
実施例28〜38の結果を表5に示す。
Example 38
The oxidation reaction treatment was performed in the same manner as in Example 35, except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 30,000 and a crystallinity of 65% was prepared in Reference Example 5. The weight of the film increased by 28.3% and 25.7 g of poly-p-phenylene sulfone (PPSO) film was obtained. In the differential scanning calorimeter (DSC) measurement, the melting peak near the melting point (285 ° C.) of PPS disappeared and no melting peak was observed at any observed temperature, and this film was an infusible film. . In addition, the chemical resistance was also excellent, and the shape was completely retained in all of the evaluation target chemicals in the chemical solution and when taken out from the chemical solution. Furthermore, as a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 12.8% by weight with respect to the PPSO film, the crystallinity by wide-angle X-ray diffraction measurement was 53%, and the moisture absorption was 4.5. %Met.
The results of Examples 28-38 are shown in Table 5.

Figure 2006016585
Figure 2006016585

<ポリ−p−フェニレンスルフィド樹脂の製造>
参考例7
撹拌機付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8267.0g(70.0モル)、96%水酸化ナトリウム2986.7g(71.7モル)、N−メチル−2−ピロリドン(NMP)11434.5g(115.5モル)、及びイオン交換水10500.0gを仕込み、常圧で窒素を通じながら230℃まで約3時間かけて徐々に加熱し、水14770.0gおよびNMP280.0gを留出したのち、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.08モルであった。また、硫化水素の飛散量は仕込みアルカリ金属硫化物1モル当たり0.015モルであった。
<Production of poly-p-phenylene sulfide resin>
Reference Example 7
In a 70 liter autoclave equipped with a stirrer, 8267.0 g (70.0 mol) of 47.5% sodium hydrosulfide, 2986.7 g (71.7 mol) of 96% sodium hydroxide, N-methyl-2-pyrrolidone (NMP ) 11434.5 g (115.5 mol) and 10500.0 g of ion-exchanged water were charged and gradually heated to 230 ° C. over about 3 hours while passing nitrogen at normal pressure, and 14770.0 g of water and 280.0 g of NMP were distilled. After dispensing, the reaction vessel was cooled to 160 ° C. The residual water content in the system per 1 mol of the charged alkali metal sulfide was 1.08 mol including the water consumed for the hydrolysis of NMP. The amount of hydrogen sulfide scattered was 0.015 mol per mol of the alkali metal sulfide charged.

次に、p−ジクロロベンゼン(p−DCB)10368.7g(70.5モル)、NMP9064.4g(91.6モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら、200℃から270℃まで0.6℃/分の速度で昇温し、270℃で50分保持した。   Next, 10368.7 g (70.5 mol) of p-dichlorobenzene (p-DCB) and 9064.4 g (91.6 mol) of NMP were added, the reaction vessel was sealed under nitrogen gas, and stirred at 240 rpm. The temperature was raised from 200 ° C. to 270 ° C. at a rate of 0.6 ° C./min, and held at 270 ° C. for 50 minutes.

270℃で50分経過後、室温近傍まで急冷した。   After 50 minutes at 270 ° C., it was rapidly cooled to near room temperature.

内容物を取り出し、ガラスフィルターで濾過した後、70リットルの温水を注ぎ込み、吸引濾過した。この操作を数回繰り返してPPSケークを得た。これを80℃で熱風乾燥し、120℃で減圧乾燥してポリフェニレンスルフィドを得た。この時のポリ−p−フェニレンスルフィドの重量平均分子量(Mw)は、GPC測定の結果、Mw=20,000であった。   The contents were taken out and filtered through a glass filter, and then 70 liters of warm water was poured and suction filtered. This operation was repeated several times to obtain a PPS cake. This was dried with hot air at 80 ° C. and dried under reduced pressure at 120 ° C. to obtain polyphenylene sulfide. The weight average molecular weight (Mw) of poly-p-phenylene sulfide at this time was Mw = 20,000 as a result of GPC measurement.

参考例8
p−DCB量を10338.4g(70.3モル)とした以外、参考例7と同様にして行った結果、重量平均分子量Mw=25,000のポリ−p−フェニレンスルフィドを得た。
Reference Example 8
As a result of carrying out in the same manner as in Reference Example 7 except that the amount of p-DCB was 10338.4 g (70.3 mol), poly-p-phenylene sulfide having a weight average molecular weight Mw = 25,000 was obtained.

ポリp−フェニレンスルフィド樹脂組成物の作製(フィルム製造前のペレット作製)
参考例9
平均粒径1.0μmの球状のカルサイト型炭酸カルシウムをエチレングリコール中に50重量%微分散させたスラリーを調製した。このスラリーを1μmカットフィルターで濾過した後、参考例7または参考例8にて作製したポリ−p−フェニレンスルフィド粉末にヘンシェルミキサを用いて炭酸カルシウムが5.0重量%となるよう混合した。次いで、2個所のベント孔を有する2軸押出機に供給し、溶融混練と同時にベント孔よりエチレングリコールを除去し、ガット状に押出し、水中で冷却後切断して粒子ペレットとした。
Preparation of poly p-phenylene sulfide resin composition (preparation of pellets before film production)
Reference Example 9
A slurry was prepared by finely dispersing 50% by weight of spherical calcite-type calcium carbonate having an average particle diameter of 1.0 μm in ethylene glycol. This slurry was filtered through a 1 μm cut filter, and then mixed with the poly-p-phenylene sulfide powder prepared in Reference Example 7 or Reference Example 8 using a Henschel mixer so that the calcium carbonate would be 5.0 wt%. Next, the mixture was supplied to a twin screw extruder having two vent holes, and ethylene glycol was removed from the vent holes simultaneously with melt kneading, extruded into a gut shape, cooled in water, and then cut into particle pellets.

また、参考例7または参考例8にて作製したポリ−p−フェニレンスルフィド粉末のみを上記同様に溶融押出し、無粒子ペレットとした。   Further, only the poly-p-phenylene sulfide powder produced in Reference Example 7 or Reference Example 8 was melt-extruded in the same manner as described above to obtain particle-free pellets.

ポリ−p−フェニレンスルフィドフイルムの作製
参考例10
参考例9にて作製した粒子ペレット(重量平均分子量Mw=20,000)および無粒子ペレット(重量平均分子量Mw=20,000)を炭酸カルシウムが0.4重量%となるよう混合し、回転式真空乾燥機で150℃、3mmHg(400Pa)の減圧下で3時間処理して結晶化ペレットとした。次いで、この結晶化ペレットを90mm直径の単軸押出機に供給し、溶融温度330℃、瀘過精度10μmのフィルターを通過させて、リップ幅400mm、スリット間隙1.5mmのステンレス製Tダイから吐出させ、表面を30℃に保った金属ドラム上で冷却固化して、厚さ60μmのポリ−p−フェニレンスルフィドフイルムのフィルムを得た。 該フィルムの広角X線回折測定による結晶化度は56%であり、重量平均分子量は、参考例7または参考例8にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかった。
Preparation of poly-p-phenylene sulfide film Reference Example 10
The particle pellets (weight average molecular weight Mw = 20,000) and non-particle pellets (weight average molecular weight Mw = 20,000) prepared in Reference Example 9 were mixed so that the calcium carbonate would be 0.4 wt%, and the rotary type Crystallized pellets were processed in a vacuum dryer at 150 ° C. under reduced pressure of 3 mmHg (400 Pa) for 3 hours. Next, this crystallization pellet is supplied to a 90 mm diameter single screw extruder, passed through a filter having a melting temperature of 330 ° C. and a filtration accuracy of 10 μm, and discharged from a stainless steel T die having a lip width of 400 mm and a slit gap of 1.5 mm. The film was cooled and solidified on a metal drum whose surface was kept at 30 ° C. to obtain a film of poly-p-phenylene sulfide film having a thickness of 60 μm. The crystallinity of the film measured by wide-angle X-ray diffraction was 56%, and the weight average molecular weight was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 7 or Reference Example 8.

参考例11
参考例9にて作製した無粒子ペレット(重量平均分子量Mw=20,000)のみを用い、参考例10と同様に90mm直径の単軸押出機に供給し、溶融温度330℃、瀘過精度10μmのフィルターを通過させて、リップ幅400mm、スリット間隙1.5mmのステンレス製Tダイから吐出させ、表面を30℃に保った金属ドラム上で冷却固化して、厚さ60μmのポリ−p−フェニレンスルフィドフイルムのフィルムを得た。
Reference Example 11
Using only the non-particle pellets prepared in Reference Example 9 (weight average molecular weight Mw = 20,000), it was supplied to a 90 mm diameter single screw extruder in the same manner as Reference Example 10, melting temperature 330 ° C., filtration accuracy 10 μm. And is discharged from a stainless steel T-die having a lip width of 400 mm and a slit gap of 1.5 mm, cooled and solidified on a metal drum whose surface is kept at 30 ° C., and poly-p-phenylene having a thickness of 60 μm A film of sulfide film was obtained.

該フィルムの広角X線回折測定による結晶化度は55%であり、重量平均分子量は、参考例7または参考例8にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかった。   The crystallinity of the film measured by wide-angle X-ray diffraction was 55%, and the weight average molecular weight was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 7 or Reference Example 8.

参考例12
参考例3にて作製した有粒子ペレット(重量平均分子量Mw=40,000)および無粒子ペレット(重量平均分子量Mw=40,000)を炭酸カルシウムが0.4重量%となるよう混合し、回転式真空乾燥機で150℃、3mmHg(400Pa)の減圧下で3時間処理して結晶化ペレットとした。次いで、この結晶化ペレットを90mm直径の単軸押出機に供給し、溶融温度330℃、瀘過精度10μmのフィルターを通過させて、リップ幅400mm、スリット間隙1.5mmのステンレス製Tダイから吐出させ、表面を30℃に保った金属ドラム上で冷却固化して、厚さ60μmのポリ−p−フェニレンスルフィドフイルムのフィルムを得た。 該フィルムの重量平均分子量は、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかったが、広角X線回折測定による結晶化度は6%であった。
Reference Example 12
The particulate pellets prepared in Reference Example 3 (weight average molecular weight Mw = 40,000) and the non-particle pellets (weight average molecular weight Mw = 40,000) were mixed so that calcium carbonate was 0.4% by weight, and rotated. Crystallized pellets were processed in a vacuum drier at 150 ° C. under reduced pressure of 3 mmHg (400 Pa) for 3 hours. Next, this crystallization pellet is supplied to a 90 mm diameter single screw extruder, passed through a filter having a melting temperature of 330 ° C. and a filtration accuracy of 10 μm, and discharged from a stainless steel T die having a lip width of 400 mm and a slit gap of 1.5 mm. The film was cooled and solidified on a metal drum whose surface was kept at 30 ° C. to obtain a film of poly-p-phenylene sulfide film having a thickness of 60 μm. The weight average molecular weight of the film was not different from that of the poly-p-phenylene sulfide powder produced in Reference Example 1 or Reference Example 2, but the degree of crystallinity by wide-angle X-ray diffraction measurement was 6%.

参考例13
参考例3にて作製した無粒子ペレット(重量平均分子量Mw=40,000)のみを用い、参考例12と同様に90mmφの単軸押出機に供給し、溶融温度330℃、瀘過精度10μmのフィルターを通過させて、リップ幅400mm、スリット間隙1.5mmのステンレス製Tダイから吐出させ、表面を30℃に保った金属ドラム上で冷却固化して、厚さ60μmのポリ−p−フェニレンスルフィドフイルムのフィルムを得た。
Reference Example 13
Using only the non-particle pellets prepared in Reference Example 3 (weight average molecular weight Mw = 40,000), it was supplied to a 90 mmφ single-screw extruder in the same manner as in Reference Example 12, and the melting temperature was 330 ° C. and the filtration accuracy was 10 μm. Passed through a filter, discharged from a stainless steel T die with a lip width of 400 mm and a slit gap of 1.5 mm, cooled and solidified on a metal drum whose surface was kept at 30 ° C., and poly-p-phenylene sulfide having a thickness of 60 μm A film film was obtained.

該フィルムの重量平均分子量は、参考例1または参考例2にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかったが、広角X線回折測定による結晶化度は5%であった。   The weight average molecular weight of the film was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 1 or Reference Example 2, but the degree of crystallinity by wide-angle X-ray diffraction measurement was 5%.

<ポリ−p−フェニレンスルフィド繊維の作製>
参考例14
参考例9にて作製した無粒子ペレット(重量平均分子量Mw=20,000のもの、もしくは重量平均分子量Mw=25,000のもの)を用い、溶融温度320℃、吐出量350g/分、引速800m/分で口金より吐出させ、23℃に保たれた雰囲気内を落下・冷却させて繊度4375dtexの未延伸糸とした。次いで、この未延伸糸を表面温度98℃の回転ロール群に巻き付けて加熱し、延伸倍率3.27、延伸速度120m/分にて延伸した。引き続いて配置された表面温度90℃のクリンパーとの間でけん縮度13.0にてけん縮を付与し、さらに125℃に保たれた雰囲気内に通すことで熱処理した後冷却し、さらにカットして繊維の太さ(単糸繊度)5.0dtex、長さ50mm〜80mmのポリ−p−フェニレンスルフィド繊維を得た。
<Preparation of poly-p-phenylene sulfide fiber>
Reference Example 14
Using the non-particle pellets prepared in Reference Example 9 (with a weight average molecular weight Mw = 20,000 or with a weight average molecular weight Mw = 25,000), a melting temperature of 320 ° C., a discharge rate of 350 g / min, a drawing speed An undrawn yarn having a fineness of 4375 dtex was discharged from the die at 800 m / min and dropped and cooled in an atmosphere maintained at 23 ° C. Next, the undrawn yarn was wound around a rotating roll group having a surface temperature of 98 ° C. and heated, and drawn at a draw ratio of 3.27 and a draw speed of 120 m / min. Next, it is crimped at a crimping degree of 13.0 with a crimper having a surface temperature of 90 ° C., then heat-treated by passing it through an atmosphere maintained at 125 ° C., and then cooled and cut. Thus, a poly-p-phenylene sulfide fiber having a fiber thickness (single yarn fineness) of 5.0 dtex and a length of 50 mm to 80 mm was obtained.

該繊維の広角X線回折測定による結晶化度はいずれも25%であり、重量平均分子量は、参考例7または参考例8にて作製したポリ−p−フェニレンスルフィド粉末のそれと変化がなかった。   The degree of crystallinity of the fibers measured by wide-angle X-ray diffraction was 25%, and the weight average molecular weight was not different from that of the poly-p-phenylene sulfide powder prepared in Reference Example 7 or Reference Example 8.

比較例4
参考例14にて作製した重量平均分子量Mw=20,000、結晶化度25%のポリ−p−フェニレンスルフィド(PPS)繊維19.8gを用いて実施例33と同様に酸化反応処理を行った。繊維の重量は31.0%増加し、25.9gのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されない繊維であったが、広角X線回折測定による結晶化度はほぼ0%までに低下した。なお、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.7重量%であった。また、分子量が低く、かつ結晶化度の低いPPS繊維を酸化して得られたPPSO繊維の吸湿率は、驚くべきことに、14.9%と極めて耐吸湿性に劣ることがわかる。
Comparative Example 4
The oxidation reaction treatment was carried out in the same manner as in Example 33 using 19.8 g of poly-p-phenylene sulfide (PPS) fibers having a weight average molecular weight Mw of 20,000 and a crystallinity of 25% prepared in Reference Example 14. . The weight of the fiber increased by 31.0% and 25.9 g of poly-p-phenylene sulfone (PPSO) fiber was obtained. This fiber was a fiber in which the melting peak near the melting point (285 ° C.) of PPS disappeared by differential scanning calorimetry (DSC), and no melting peak was observed at any observed temperature. The degree of crystallinity by diffraction measurement decreased to almost 0%. In addition, as a result of measuring thermogravimetry (TGA), the amount of remaining carbides was 13.7% by weight with respect to PPSO fiber. In addition, the moisture absorption rate of PPSO fibers obtained by oxidizing PPS fibers having a low molecular weight and low crystallinity is surprisingly 14.9%, which is extremely poor in moisture absorption resistance.

比較例5
参考例14で作製した重量平均分子量Mw=25,000、結晶化度25%のポリ−p−フェニレンスルフィド(PPS)繊維に変え、比較例4と同様に酸化反応処理を行った。繊維の重量は30.0%増加し、25.7gのポリ−p−フェニレンスルホン(PPSO)繊維を得た。本繊維は、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されない繊維であったが、広角X線回折測定による結晶化度はほぼ0%までに低下した。なお、熱重量(TGA)を測定した結果、残存する炭化物量はPPSO繊維に対して13.5重量%であった。また吸湿率は13.0%と高く、耐吸湿性に極めて劣ることがわかる。
Comparative Example 5
The oxidation reaction treatment was performed in the same manner as in Comparative Example 4 except that the poly-p-phenylene sulfide (PPS) fiber having a weight average molecular weight Mw of 25,000 and a crystallinity of 25% was prepared in Reference Example 14. The weight of the fiber increased by 30.0% and 25.7 g of poly-p-phenylene sulfone (PPSO) fiber was obtained. This fiber was a fiber in which the melting peak near the melting point (285 ° C.) of PPS disappeared by differential scanning calorimetry (DSC), and no melting peak was observed at any observed temperature. The degree of crystallinity by diffraction measurement decreased to almost 0%. In addition, as a result of measuring thermogravimetry (TGA), the amount of remaining carbides was 13.5% by weight with respect to PPSO fiber. Also, the moisture absorption rate is as high as 13.0%, indicating that the moisture absorption resistance is extremely inferior.

比較例6
参考例10にて作製した重量平均分子量Mw=20,000、結晶化度56%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、比較例4と同様に酸化反応処理を行った。フィルムの重量は28.7%増加し、25.5gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されないフィルムであり、かつ広角X線回折測定による結晶化度はほぼゼロまで低下した。また濃硝酸中での耐薬品性にやや劣る結果となった。なお、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して12.9重量%であった。また本比較例のように、PPSフィルムの結晶化度が高くても、分子量が低いと、吸湿率が9.0%と、高い値を示すことがわかる。
Comparative Example 6
The oxidation reaction treatment was performed in the same manner as in Comparative Example 4 except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 20,000 and a crystallinity of 56% was prepared in Reference Example 10. The film weight increased by 28.7%, yielding 25.5 g of poly-p-phenylenesulfone (PPSO) film. In the differential scanning calorimeter (DSC) measurement, this film is a film in which the melting peak near the melting point of PPS (285 ° C.) disappears, and no melting peak is observed at any observed temperature, and wide-angle X-ray diffraction The crystallinity measured was reduced to almost zero. Moreover, the chemical resistance in concentrated nitric acid was slightly inferior. As a result of measuring the thermogravimetric (TGA), the amount of remaining carbide was 12.9% by weight with respect to the PPSO film. Moreover, even if the crystallinity of the PPS film is high as in this comparative example, it can be seen that when the molecular weight is low, the moisture absorption rate is as high as 9.0%.

比較例7
参考例11にて作製した重量平均分子量Mw=20,000、結晶化度55%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、比較例4と同様に酸化反応処理を行った。フィルムの重量は29.6%増加し、25.7gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されないフィルムであったが、広角X線回折測定による結晶化度はほぼゼロまでに低下した。また濃硝酸中での耐薬品性にやや劣る結果となった。なお、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して12.6重量%、吸湿率は9.0%であった。
Comparative Example 7
The oxidation reaction treatment was performed in the same manner as in Comparative Example 4 except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 20,000 and a crystallinity of 55% was prepared in Reference Example 11. The weight of the film increased by 29.6% and 25.7 g of poly-p-phenylene sulfone (PPSO) film was obtained. In this differential scanning calorimeter (DSC) measurement, the melting peak near the melting point of PPS (285 ° C.) disappeared and no melting peak was observed at any observed temperature. The crystallinity by diffraction measurement was reduced to almost zero. Moreover, the chemical resistance in concentrated nitric acid was slightly inferior. In addition, as a result of measuring thermogravimetry (TGA), the amount of remaining carbides was 12.6% by weight with respect to the PPSO film, and the moisture absorption was 9.0%.

比較例8
参考例12にて作製した重量平均分子量Mw=40,000、結晶化度6%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、比較例4と同様に酸化反応処理を行った。フィルムの重量は30.5%増加し、25.8gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されないフィルムであったが、広角X線回折による結晶化度測定では結晶化ピークは実質上観測されなかった。またまた濃硝酸中での耐薬品性にやや劣る結果となった。なお、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して13.0重量%であった。また吸湿率は15.0%と耐吸湿性に劣ったPPSOフィルムであることがわかる。
Comparative Example 8
The oxidation reaction treatment was performed in the same manner as in Comparative Example 4 except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 40,000 and a crystallinity of 6% was prepared in Reference Example 12. The weight of the film increased by 30.5% and 25.8 g of poly-p-phenylene sulfone (PPSO) film was obtained. In this differential scanning calorimeter (DSC) measurement, the melting peak near the melting point of PPS (285 ° C.) disappeared and no melting peak was observed at any observed temperature. In the measurement of crystallinity by diffraction, virtually no crystallization peak was observed. In addition, the chemical resistance in concentrated nitric acid was slightly inferior. In addition, as a result of measuring thermogravimetry (TGA), the amount of remaining carbides was 13.0% by weight with respect to the PPSO film. It can also be seen that the moisture absorption is 15.0%, which is a PPSO film inferior in moisture absorption resistance.

比較例9
参考例13にて作製した重量平均分子量Mw=40,000、結晶化度5%のポリ−p−フェニレンスルフィド(PPS)フィルムに変え、比較例4と同様に酸化反応処理を行った。フィルムの重量は31.3%増加し、26.0gのポリ−p−フェニレンスルホン(PPSO)フィルムを得た。本フィルムは、示差走査熱量計(DSC)測定において、PPSの融点(285℃)付近の融解ピークが消失し、観測したいずれの温度においても融解ピークが観察されないフィルムであったが、広角X線回折による結晶化度測定では結晶化ピークは実質上観測されなかった。また濃硝酸中での耐薬品性にやや劣る結果となった。ず、触れるだけでフィルムの一部が脱落するような脆いものであった。なお、熱重量(TGA)を測定した結果、残存する炭化物量はPPSOフィルムに対して13.2重量%、吸湿率は14.9%であった。
比較例4〜9の結果を表6に示す。
Comparative Example 9
The oxidation reaction treatment was performed in the same manner as in Comparative Example 4 except that the poly-p-phenylene sulfide (PPS) film having a weight average molecular weight Mw of 40,000 and a crystallinity of 5% was prepared in Reference Example 13. The weight of the film increased by 31.3%, yielding 26.0 g of poly-p-phenylene sulfone (PPSO) film. In this differential scanning calorimeter (DSC) measurement, the melting peak near the melting point of PPS (285 ° C.) disappeared and no melting peak was observed at any observed temperature. In the measurement of crystallinity by diffraction, virtually no crystallization peak was observed. Moreover, the chemical resistance in concentrated nitric acid was slightly inferior. In addition, the film was so brittle that a part of the film dropped off when it was touched. As a result of measuring thermogravimetry (TGA), the amount of remaining carbide was 13.2% by weight with respect to the PPSO film, and the moisture absorption was 14.9%.
Table 6 shows the results of Comparative Examples 4 to 9.

Figure 2006016585
Figure 2006016585

このようにして得られたポリアリーレンスルフィド酸化物は、極めて高い耐熱性を有し、かつアルカリ、濃硫酸および濃硝酸に対して優れた耐薬品性を有しており、工業用途として多岐にわたる分野で有用な化合物であり、耐熱性、耐薬品性、耐吸湿性などが要求される用途に幅広く利用することができる。具体的には、バグフィルター、薬液フィルター、ドライヤーカンバス、抄紙用フェルト、縫糸、耐熱性フェルト、食品用フィルター、離形材、電池用セパレーター、心臓パッチ、人工血管、人工皮膚、プリント基板基材、電気絶縁紙、ケミカルフィルター、オイルフィルター、エンジンオイルフィルター、コピーローリングクリーナー、空気清浄フィルター、安全衣服、耐熱衣類、実験作業着、保温衣料、難燃衣料、イオン交換基材、オイル保持材、断熱材、電極用セパレーター、保護フィルム、建築用断熱材、クッション材、吸液芯、ブラシなどに利用することができるが、これらの用途に限定されるものではない。   The polyarylene sulfide oxide thus obtained has extremely high heat resistance and excellent chemical resistance against alkali, concentrated sulfuric acid and concentrated nitric acid. It is a useful compound and can be widely used in applications requiring heat resistance, chemical resistance, moisture absorption resistance and the like. Specifically, bug filters, chemical filters, dryer canvas, papermaking felts, sewing threads, heat-resistant felts, food filters, mold release materials, battery separators, heart patches, artificial blood vessels, artificial skin, printed circuit board substrates, Electrical insulation paper, chemical filter, oil filter, engine oil filter, copy rolling cleaner, air cleaning filter, safety clothing, heat resistant clothing, experimental work clothes, warm clothing, flame retardant clothing, ion exchange base material, oil retaining material, heat insulating material It can be used for separators for electrodes, protective films, heat insulating materials for construction, cushion materials, liquid absorbent cores, brushes, etc., but is not limited to these applications.

Claims (18)

広角X線回折の測定における結晶化度が10%以上であり、かつ示差走査熱量計(DSC)の測定における融解熱量が15J/g以下であるポリアリーレンスルフィド酸化物。 A polyarylene sulfide oxide having a crystallinity of 10% or more as measured by wide-angle X-ray diffraction and a heat of fusion as measured by a differential scanning calorimeter (DSC) of 15 J / g or less. 広角X線回折の測定における結晶化度が30%以上であり、かつ示差走査熱量計(DSC)の測定における融解熱量が15J/g以下である請求項1記載のポリアリーレンスルフィド酸化物。 The polyarylene sulfide oxide according to claim 1, wherein the degree of crystallinity in the measurement by wide-angle X-ray diffraction is 30% or more and the heat of fusion in the measurement by a differential scanning calorimeter (DSC) is 15 J / g or less. 示差走査熱量計(DSC)の測定において融解ピークが実質的に認められない請求項1または2記載のポリアリーレンスルフィド酸化物。 The polyarylene sulfide oxide according to claim 1 or 2, wherein a melting peak is substantially not observed in a differential scanning calorimeter (DSC) measurement. 熱重量(TGA)の測定において残存炭化物が実質的に認められる請求項1〜3のいずれか記載のポリアリーレンスルフィド酸化物。 The polyarylene sulfide oxide according to any one of claims 1 to 3, wherein residual carbides are substantially recognized in measurement of thermogravimetry (TGA). 熱重量(TGA)の測定において残存炭化物量が、1重量%以上である請求項4記載のポリアリーレンスルフィド酸化物。 The polyarylene sulfide oxide according to claim 4, wherein the amount of residual carbide is 1% by weight or more in the measurement of thermogravimetry (TGA). 請求項1〜5のいずれかに記載のポリアリーレンスルフィド酸化物からなり、粉末、繊維、布帛、フィルムおよび紙から選ばれる形態を有する固体物品。 A solid article comprising the polyarylene sulfide oxide according to any one of claims 1 to 5 and having a form selected from powder, fiber, fabric, film and paper. ポリアリーレンスルフィド化合物からなる固体物品を酸化剤を含む液体存在下で、形態を保持したまま酸化反応処理することにより、広角X線回折測定における結晶化度が10%以上であり、かつ示差走査熱量計(DSC)の測定における融解熱量が15J/g以下であるポリアリーレンスルフィド酸化物からなる固体物品を製造する固体物品の製造方法。 By subjecting a solid article made of a polyarylene sulfide compound to an oxidation reaction treatment in the presence of a liquid containing an oxidant while maintaining the form, the degree of crystallinity in wide-angle X-ray diffraction measurement is 10% or more, and differential scanning calorific value A method for producing a solid article for producing a solid article comprising a polyarylene sulfide oxide having a heat of fusion of 15 J / g or less as measured by a meter (DSC). 固体物品が、繊維または布帛であって、この物品を構成する繊維の繊度が0.1〜10dtexである請求項7記載の製造方法。 The manufacturing method according to claim 7, wherein the solid article is a fiber or a fabric, and the fineness of the fiber constituting the article is 0.1 to 10 dtex. ポリアリーレンスルフィド化合物が、結晶化度30%以上かつ重量平均分子量(Mw)30000以上の物性を有するポリアリーレンスルフィド化合物であって、かつ、ポリアリーレンスルフィド酸化物が、広角X線回折の測定において結晶性ピークが実質的に認められるものである請求項7または8記載の固体物品の製造方法。 The polyarylene sulfide compound is a polyarylene sulfide compound having physical properties of a crystallinity of 30% or more and a weight average molecular weight (Mw) of 30000 or more, and the polyarylene sulfide oxide is crystallized in the measurement of wide angle X-ray diffraction. The method for producing a solid article according to claim 7 or 8, wherein a sex peak is substantially recognized. ポリアリーレンスルフィド酸化物が、熱重量(TGA)の測定において残存炭化物が実質的に認められるものである請求項7〜9のいずれかに記載の固体物品の製造方法。 The method for producing a solid article according to any one of claims 7 to 9, wherein the polyarylene sulfide oxide is one in which residual carbides are substantially recognized in the measurement of thermogravimetry (TGA). 酸化剤が、無機塩過酸化物および過酸化水素水から選ばれる少なくとも1つである請求項7〜10のいずれかに記載の固体物品の製造方法。 The method for producing a solid article according to any one of claims 7 to 10, wherein the oxidizing agent is at least one selected from inorganic salt peroxide and hydrogen peroxide solution. 液体が、有機酸および有機酸無水物から選ばれる少なくとも1つを含む請求項7〜11のいずれかに記載の固体物品の製造方法。 The method for producing a solid article according to any one of claims 7 to 11, wherein the liquid contains at least one selected from an organic acid and an organic acid anhydride. 液体が、鉱酸を含有する請求項7〜12のいずれかに記載の固体物品の製造方法。 The method for producing a solid article according to any one of claims 7 to 12, wherein the liquid contains a mineral acid. 液体が水、酢酸および硫酸を含む混合物であり、かつ酸化剤が過酸化水素水である請求項7〜13のいずれかに記載の固体物品の製造方法。 The method for producing a solid article according to any one of claims 7 to 13, wherein the liquid is a mixture containing water, acetic acid and sulfuric acid, and the oxidizing agent is hydrogen peroxide. ポリアリーレンスルフィド酸化物からなる固体物品が、フィルター用途、紙用途および耐熱作業着用途の中から選ばれる用途として用いられる請求項6記載の固体物品。 The solid article according to claim 6, wherein the solid article comprising a polyarylene sulfide oxide is used as an application selected from a filter application, a paper application, and a heat-resistant work wear application. 請求項1〜5のいずれかに記載のポリアリーレンスルフィド酸化物からなる布帛を含むバグフィルター。 A bag filter comprising a fabric comprising the polyarylene sulfide oxide according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載のポリアリーレンスルフィド酸化物からなる紙を含む電気絶縁紙。 An electrically insulating paper comprising a paper comprising the polyarylene sulfide oxide according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載のポリアリーレンスルフィド酸化物からなる布帛を含む消防服。 A fire fighting suit comprising a fabric made of the polyarylene sulfide oxide according to any one of claims 1 to 5.
JP2004235135A 2003-08-19 2004-08-12 Polyarylene sulfide oxide, solid article and method for producing the same Expired - Fee Related JP4742535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235135A JP4742535B2 (en) 2003-08-19 2004-08-12 Polyarylene sulfide oxide, solid article and method for producing the same

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2003207914 2003-08-19
JP2003207914 2003-08-19
JP2003207915 2003-08-19
JP2003207915 2003-08-19
JP2003378970 2003-11-07
JP2003378970 2003-11-07
JP2004167744 2004-06-04
JP2004167744 2004-06-04
JP2004235135A JP4742535B2 (en) 2003-08-19 2004-08-12 Polyarylene sulfide oxide, solid article and method for producing the same

Publications (3)

Publication Number Publication Date
JP2006016585A true JP2006016585A (en) 2006-01-19
JP2006016585A5 JP2006016585A5 (en) 2007-06-28
JP4742535B2 JP4742535B2 (en) 2011-08-10

Family

ID=35791134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235135A Expired - Fee Related JP4742535B2 (en) 2003-08-19 2004-08-12 Polyarylene sulfide oxide, solid article and method for producing the same

Country Status (1)

Country Link
JP (1) JP4742535B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772474A1 (en) * 2004-07-23 2007-04-11 Toray Industries, Inc. Polyarylene sulfide oxide, solid article and process for producing the same
JP2008050702A (en) * 2006-08-22 2008-03-06 Toray Ind Inc Fiber structure and bag filter composed of the same
JP2010018733A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Cyclic polyarylene sulfide and method for producing it
JP2010126817A (en) * 2008-11-25 2010-06-10 Toray Ind Inc Polyphenylene sulfone fiber and method for producing the same
CN115637582A (en) * 2022-10-26 2023-01-24 清源创新实验室 Method for preparing polyphenylene sulfone sulfoxide fiber by ozone-hydrogen peroxide synergistic heterogeneous oxidation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192829A (en) * 1984-10-12 1986-05-10 Toray Ind Inc Biaxially orientated poly-p-phenylenesulfone film
JPS63182413A (en) * 1986-09-29 1988-07-27 Toray Ind Inc Polyphenylene sulfone fiber and production thereof
JPH0347839A (en) * 1989-07-17 1991-02-28 Toray Ind Inc Sulfonation of sulfur-containing aromatic resin
JPH05209368A (en) * 1986-09-29 1993-08-20 Toray Ind Inc Production of polyphenylene sulfone fiber
JP2000328444A (en) * 1999-04-12 2000-11-28 Ticona Gmbh Quick oxidization of polyarylene sulfide fiber material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192829A (en) * 1984-10-12 1986-05-10 Toray Ind Inc Biaxially orientated poly-p-phenylenesulfone film
JPS63182413A (en) * 1986-09-29 1988-07-27 Toray Ind Inc Polyphenylene sulfone fiber and production thereof
JPH05209368A (en) * 1986-09-29 1993-08-20 Toray Ind Inc Production of polyphenylene sulfone fiber
JPH0347839A (en) * 1989-07-17 1991-02-28 Toray Ind Inc Sulfonation of sulfur-containing aromatic resin
JP2000328444A (en) * 1999-04-12 2000-11-28 Ticona Gmbh Quick oxidization of polyarylene sulfide fiber material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772474A1 (en) * 2004-07-23 2007-04-11 Toray Industries, Inc. Polyarylene sulfide oxide, solid article and process for producing the same
EP1772474A4 (en) * 2004-07-23 2007-07-25 Toray Industries Polyarylene sulfide oxide, solid article and process for producing the same
JP2008050702A (en) * 2006-08-22 2008-03-06 Toray Ind Inc Fiber structure and bag filter composed of the same
JP2010018733A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Cyclic polyarylene sulfide and method for producing it
JP2010126817A (en) * 2008-11-25 2010-06-10 Toray Ind Inc Polyphenylene sulfone fiber and method for producing the same
CN115637582A (en) * 2022-10-26 2023-01-24 清源创新实验室 Method for preparing polyphenylene sulfone sulfoxide fiber by ozone-hydrogen peroxide synergistic heterogeneous oxidation

Also Published As

Publication number Publication date
JP4742535B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP2008202164A (en) Polyphenylene sulfide fiber
WO2001061086A1 (en) Meta-form wholly aromatic polyamide fiber and process for producing the same
WO2008140124A1 (en) Laminated porous film
AU2015325717B2 (en) Polyphenylene sulfide fiber
JP4742535B2 (en) Polyarylene sulfide oxide, solid article and method for producing the same
JP5109789B2 (en) Method for producing porous film
WO2006011183A1 (en) Polyarylene sulfide oxide, solid article and process for producing the same
EP0283520A1 (en) Polyphenylene sulfone fibers and a method for their production
JP6578945B2 (en) Polyphenylene sulfide fiber and method for producing the same
JP4692129B2 (en) Heat resistant wet nonwoven fabric
KR20070036776A (en) Polyarylene sulfide oxide, solid article and process for producing the same
JP2008231251A (en) Oxidized substance of polyphenylene sulfide, solid article and method for producing the same
JPS59168032A (en) Production of aromatic sulfide polymer having high melting viscosity
JP2003105087A (en) Polyarylenesulfide resin for film or fiber, method of manufacturing the same, and film or fiber
JPH0478730B2 (en)
JPH05209368A (en) Production of polyphenylene sulfone fiber
JP4710344B2 (en) Electrical insulation material
JP2969904B2 (en) High dielectric constant film and capacitor using the same
JP4701870B2 (en) paper
JP2005232254A (en) Polyarylene sulfide resin and extruded molding artice
JP2001098106A (en) Wholly aromatic polyamide porous film and its production
JP2009084713A (en) Polyphenylene sulfide paper, polyphenylene sulfide oxide paper, and method for producing them
JP2009179918A (en) Braid and electrically insulated sleeve
JP2017166078A (en) Polyphenylene sulfide fiber
JP2003292317A (en) Processes for producing carbonaceous substance, carbonaceous substance obtained by the process and active carbon

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees