JP2006016454A - Powder coating for satin coating film - Google Patents

Powder coating for satin coating film Download PDF

Info

Publication number
JP2006016454A
JP2006016454A JP2004193997A JP2004193997A JP2006016454A JP 2006016454 A JP2006016454 A JP 2006016454A JP 2004193997 A JP2004193997 A JP 2004193997A JP 2004193997 A JP2004193997 A JP 2004193997A JP 2006016454 A JP2006016454 A JP 2006016454A
Authority
JP
Japan
Prior art keywords
resin
powder coating
coating
satin
resin component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004193997A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kanoya
美幸 彼ノ矢
Eiichiro Ishida
英一郎 石田
Moriyuki Okamura
守之 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Semiconductor Equipment Inc
Original Assignee
Canon Semiconductor Equipment Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Semiconductor Equipment Inc filed Critical Canon Semiconductor Equipment Inc
Priority to JP2004193997A priority Critical patent/JP2006016454A/en
Publication of JP2006016454A publication Critical patent/JP2006016454A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder coating realizing a uniform and dense satin pattern, giving comfortable touch and suppressed gloss by the dull surface obtained by the satin coating film and, accordingly, having high designing flexibility on the coated surface. <P>SOLUTION: The powder coating containing silica beads 3 insoluble in a molten resin component 2 and having a surface energy higher than the surface tension of the resin component 2 has an average particle diameter range of 5-20μm in the whole powder coating and the maximum particle diameter of <36μm. The silica bead 3 has an average particle diameter range of ≤20μm and the amount of the bead is 5-30 wt.% based on the total powder coating. A coating film having improved designing flexibility can be produced by using the resin component 2 composed of a high melt-viscosity resin having a melt viscosity of ≥8 dPas at 150°C or a high melt-viscosity and high reaction rate resin having a melt viscosity of ≥8 dPas at 150°C and a gel time of ≤180 sec at the temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、“梨地”模様と称されるサテン調の凹凸模様塗膜を形成するための粉体塗料に関する。   The present invention relates to a powder coating material for forming a satin-like concavo-convex pattern coating film referred to as a “pear texture” pattern.

近年、粉体塗料の用途開発が進む中で、意匠性の優れた凹凸模様塗膜を形成するための粉体塗料が多種類にわたり提供されてきた。このような塗膜種類として、例えば、マット調、ビロード調、スエード調、ハンマートーン仕上げなどの凹凸模様塗膜が例示される。このような凹凸塗膜の形成に際し、例えば、特許文献1に示すものは、硬化反応性の異なる2種類の熱硬化性粉体塗料用樹脂をドライブレンドしたものを粉体塗料原料として用い、両者の硬化反応差及び加熱溶融時の溶融粘度差を利用して凹凸模様を得る。即ち、特許文献1の粉体塗料原料を加熱溶融して硬化させる際に、第1樹脂の硬化反応が速く進行し、一方、セルロースエステルを含有する第2樹脂は、溶融粘度が第1樹脂より小さく、かつ、硬化速度が遅い。したがって、この状態で、第1樹脂が硬化に伴って収縮する際に、溶融粘度が小さい第2樹脂が引っ張られる。そして、その後の第2樹脂の硬化時において、第2樹脂部分が凹み、この結果、凹凸模様が形成される。   In recent years, with the progress of application development of powder coatings, a wide variety of powder coatings for forming concavo-convex pattern coating films having excellent design properties have been provided. Examples of such coating film types include concavo-convex pattern coating films such as matte tone, velvet tone, suede tone, and hammer tone finish. In forming such a concavo-convex coating film, for example, the one shown in Patent Document 1 uses a dry blend of two types of resins for thermosetting powder coatings having different curing reactivity as a powder coating material. A concavo-convex pattern is obtained by utilizing the difference in curing reaction and the difference in melt viscosity during heat melting. That is, when the powder coating material of Patent Document 1 is heated and melted and cured, the curing reaction of the first resin proceeds faster, while the second resin containing cellulose ester has a melt viscosity higher than that of the first resin. Small and slow curing rate. Therefore, in this state, when the first resin contracts as it hardens, the second resin having a low melt viscosity is pulled. Then, when the second resin is subsequently cured, the second resin portion is recessed, and as a result, an uneven pattern is formed.

ところで、サテン調凹凸模様と称される梨地塗膜用粉体塗料は、上記した凹凸模様種類の中でも、よりいっそう均一かつ緻密に形成されることが求められる。しかし、特許文献1に示す手法を用いると、両樹脂のドライブレンド時に、両者の混合が不均一になりやすく、これに起因して、凹凸模様形成を精度良く再現することが難しい。このため、得られる塗膜は、梨地ムラを伴うことが多く実用性に欠ける。   By the way, the powder coating material for a satin coating film called a satin-like uneven pattern is required to be formed more uniformly and densely among the above-described uneven pattern types. However, when the technique shown in Patent Document 1 is used, mixing of both resins tends to be non-uniform during dry blending of both resins, and it is difficult to accurately reproduce the formation of uneven patterns. For this reason, the obtained coating film often has pear texture unevenness and lacks practicality.

これに対して、特許文献2に示すものは、目的物を梨地塗膜に特化したものであり、主剤の熱硬化性粉体塗料成分に対して、塗料成分の加熱硬化時においても安定形状を保てる樹脂ビーズを添加する。この方法では、樹脂ビーズの平均粒径を上回らないような膜厚で塗膜を形成することにより、樹脂ビーズが塗膜面に多数の凸部として突出し、サテン調凹凸(梨地)模様が得られる。
特開平5-78605号公報(第5-6頁) 特開平9-302272号公報(第4頁、図1)
On the other hand, the one shown in Patent Document 2 specializes the target product as a satin coating, and has a stable shape even when the coating component is heat-cured with respect to the main component thermosetting powder coating component. Add resin beads that can keep In this method, by forming the coating film with a film thickness that does not exceed the average particle diameter of the resin beads, the resin beads protrude as a large number of protrusions on the coating film surface, and a satin-like unevenness (pear texture) pattern is obtained. .
JP-A-5-78605 (page 5-6) JP-A-9-302272 (4th page, FIG. 1)

しかしながら、特許文献2に示すものは、添加剤樹脂ビーズの粒径に応じてこの粒径を上回らないように塗装膜厚を制御する必要があり、実際の工程での難度が高い。例えば、実際の塗装膜厚は不均一なばらつきを必ず伴うものであり、梨地模様が要求する均一性や緻密性を阻害するパラメータ因子として考慮する必要がある。また、具体的に梨地模様凹凸の均一性や緻密性を表現する「平均粗さ」指標は、中心線平均粗さ(Ra)及び十点平均粗さ(Rz)の両方を採用するのが通常である。そして、中心線平均粗さ(Ra)は凹凸模様の密度の指標であり、一方、十点平均粗さ(Rz)は凹凸模様の高さの指標であるため、それぞれの方法で測定点が異なる。このため、両指標において良好な測定値を得るためには、それぞれの測定点での添加剤樹脂ビーズ粒径と、これに対応した塗装膜厚とにより塗膜形成を行う必要があり、考慮すべきパラメータ因子がさらに増えることになる。この結果、実際の塗装工程で得られる梨地模様の寸法精度は低下し、このような不具合は、特に、塗装対象面が複雑化するほど顕著に現れることになる。   However, in the case of the one shown in Patent Document 2, it is necessary to control the coating film thickness so as not to exceed this particle size according to the particle size of the additive resin beads, and the difficulty in the actual process is high. For example, the actual coating film thickness necessarily includes non-uniform variations, and it is necessary to consider it as a parameter factor that inhibits the uniformity and fineness required by the satin pattern. In addition, as the “average roughness” index, which specifically expresses the uniformity and fineness of the textured pattern irregularities, it is usual to employ both the centerline average roughness (Ra) and the ten-point average roughness (Rz). It is. The center line average roughness (Ra) is an index of the density of the concavo-convex pattern, while the ten-point average roughness (Rz) is an index of the height of the concavo-convex pattern. . For this reason, in order to obtain good measurement values in both indicators, it is necessary to form a coating film with the additive resin bead particle size at each measurement point and the coating film thickness corresponding to this, which is considered. The power parameter factor further increases. As a result, the dimensional accuracy of the satin pattern obtained in the actual painting process is lowered, and such a problem becomes more prominent particularly as the painting target surface becomes more complicated.

本発明は、上記問題点に鑑み、均一かつ緻密な梨地模様を実現し、また、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢が得られ、この結果、塗装面において高い意匠性を備え得る粉体塗料を提供することを課題としている。   In view of the above problems, the present invention realizes a uniform and dense satin pattern, and the roundness of the surface obtained in association with this provides a highly sensitive tactile sensation and a suppressed gloss, An object of the present invention is to provide a powder coating that can have high designability on the painted surface.

上記課題を解決するため、本発明の梨地塗膜用粉体塗料は、樹脂成分と、溶融状態の該樹脂成分に対して不溶性の粉状物資とを含有して成るもので、その粉状物質の表面エネルギー値が、樹脂成分の表面張力値より大きいものを用い、また、その粒子径仕様につき、粉体塗料全体の平均粒子径範囲として5〜20μm、かつ、最大粒子径として36μm未満の設定とした。なお、平均粒子径範囲として5〜15μm、かつ、最大粒子径として25μm未満が粒子径仕様のさらに好ましい設定範囲である。   In order to solve the above-mentioned problems, the powder coating material for satin coating of the present invention comprises a resin component and a powdery material that is insoluble in the molten resin component. The surface energy value of the resin component is larger than the surface tension value of the resin component, and the particle diameter specification is set such that the average particle diameter range of the entire powder coating is 5 to 20 μm and the maximum particle diameter is less than 36 μm. It was. In addition, 5 to 15 μm as the average particle size range and less than 25 μm as the maximum particle size are more preferable setting ranges of the particle size specification.

これによれば、粉状物質と樹脂成分とを対比したときに、粉状物質の表面エネルギーが樹脂成分の表面張力より相対的に大きなエネルギー値を有する場合に、粉状物質の固体表面により、溶融状態の樹脂成分が引き寄せられつつ広がるので、塗膜表面において、不溶性粉状物質が主成分たる樹脂成分により厚く覆われて突出し、この結果、表面の平坦部分が減少する。そして、表面における凹凸模様の密度を示す中心線平均粗さ(Ra)においても良好な梨地模様塗膜面が得られる。   According to this, when the powdery material and the resin component are compared, when the surface energy of the powdery material has a relatively large energy value than the surface tension of the resin component, the solid surface of the powdery material, Since the molten resin component is attracted and spreads, the surface of the coating film protrudes while being covered with a thick resin component as a main component, and as a result, the flat portion of the surface is reduced. A good satin-patterned coating film surface is obtained even in the centerline average roughness (Ra) indicating the density of the uneven pattern on the surface.

上記とは逆の場合、即ち、粉状物質の表面エネルギーが樹脂成分の表面張力より相対的に小さいエネルギー値を有する場合には、不溶性の粉状物質と主成分たる樹脂成分とが馴染まず、そのため不溶性粉状物質が樹脂成分にコーティングされずに塗膜から表出してしまう。この結果、塗膜表面では、梨地模様に最適な凹凸面が形成されずに、平坦面形状が保たれることになる。このような平坦面形状では、光沢が目立つ不満足な外観しか得られない。   In the opposite case, that is, when the surface energy of the powdery substance has an energy value relatively smaller than the surface tension of the resin component, the insoluble powdery substance and the resin component as the main component are not compatible, Therefore, the insoluble powdery substance is exposed from the coating film without being coated on the resin component. As a result, a flat surface shape is maintained on the surface of the coating film without forming an uneven surface optimal for the satin pattern. With such a flat surface shape, only an unsatisfactory appearance with conspicuous gloss can be obtained.

上記した不溶性の粉状物質は、粘性梨地模様の凸部を構成するものである。そして、この粉状物質を含有したときの粉体塗料全体における粒子径の設定を、平均粒子径範囲として5〜20μm、かつ、最大粒子径として36μm未満とする。これらの範囲で粒子径を揃えることにより、静電スプレーによる塗料表面電荷が略一定となり、塗膜表面において付着塗料が細密に近い状態で分布し、この結果、均一塗膜が形成される。なお、平均粒子径範囲として5〜15μm、かつ、最大粒子径として25μm未満が粒子径仕様のさらに好ましい設定範囲である。   The insoluble powdery substance described above constitutes the convex part of the viscous satin pattern. And the setting of the particle diameter in the whole powder coating material when this powdery substance is contained shall be 5-20 micrometers as an average particle diameter range, and less than 36 micrometers as a maximum particle diameter. By aligning the particle diameter within these ranges, the coating surface charge by electrostatic spray becomes substantially constant, and the adhered coating material is distributed in a close-to-fine state on the coating film surface. As a result, a uniform coating film is formed. In addition, 5 to 15 μm as the average particle size range and less than 25 μm as the maximum particle size are more preferable setting ranges of the particle size specification.

主成分たる樹脂成分は、通常、粉体塗料として使用される樹脂であれば良いが、本発明においては特に、150℃における溶融粘度が8dPa・s以上の高溶融粘度を備え、または、このような高溶融粘度特性に加えて同温度(150℃)におけるゲルタイムが180秒以下の高速反応性を備える樹脂を用いる。このような高溶融粘度樹脂、または、高溶融粘度及び高速反応性の樹脂を用いることで、塗膜表面において、より良好な梨地模様が得られる。   The resin component as the main component may be a resin that is usually used as a powder coating. In the present invention, the resin component has a high melt viscosity at 150 ° C. of 8 dPa · s or higher. In addition to the high melt viscosity characteristics, a resin having high-speed reactivity with a gel time of 180 seconds or less at the same temperature (150 ° C.) is used. By using such a high melt viscosity resin, or a resin having a high melt viscosity and a high reactivity, a better satin pattern can be obtained on the surface of the coating film.

このような本発明の特徴となる高溶融粘度及び高速反応性のうち、高溶融粘度樹脂を用いることに関しては、主成分たる樹脂成分が溶融状態において示す高い粘性により、樹脂成分自らが不要に流動することが防止されるという利点がある。即ち、粉体塗料の加熱溶融時に、主成分たる樹脂成分により塗膜形成が行われるが、その際、8dPa・s以上(150℃)の高溶融粘度樹脂を用いると塗膜形成面のレベリングを抑制でき、これにより、表面の凹凸模様の高さを示す十点平均粗さ(Rz)においても良好な梨地模様塗膜面が得られる。   Among the high melt viscosity and high-speed reactivity that are the characteristics of the present invention, regarding the use of a high melt viscosity resin, the resin component itself flows unnecessarily due to the high viscosity exhibited by the resin component as the main component in the molten state. There is an advantage that it is prevented. That is, when a powder coating is heated and melted, a coating film is formed with a resin component as a main component. At that time, if a high melt viscosity resin of 8 dPa · s or more (150 ° C.) is used, the coating film forming surface is leveled. Thus, a good satin-patterned coating film surface can be obtained even with a ten-point average roughness (Rz) indicating the height of the uneven pattern on the surface.

さらに、高溶融粘度樹脂を用いることで、隅部や壁部などの複雑形状面においても、均一な粒子付着による平坦化塗膜と、これを利用した梨地模様塗膜面とが同様に得られるという利点もある。   Furthermore, by using a high melt viscosity resin, a flattened coating film with uniform particle adhesion and a satin pattern coating film surface using the same can be obtained even in complicated shape surfaces such as corners and walls. There is also an advantage.

さらに、高溶融粘度特性に加えて高速反応特性、即ち、150℃におけるゲルタイムが180秒以下の高速反応性樹脂を用いることで、主成分たる樹脂成分が備える素早い反応性が、溶融時の高い粘性と相俟って、塗膜形成面のレベリング性をより抑制でき、十点平均粗さ(Rz)のより良好な塗膜面が得られる。   Furthermore, in addition to high melt viscosity characteristics, high-speed reaction characteristics, that is, by using a high-speed reactive resin with a gel time at 150 ° C. of 180 seconds or less, the quick reactivity provided by the resin component as the main component has a high viscosity at the time of melting. In combination with this, the leveling property of the coating film forming surface can be further suppressed, and a coating film surface having a better ten-point average roughness (Rz) can be obtained.

このように、本発明によれば、膜厚制御などの難度の高い手法を組み込まずに、十点平均粗さ(Rz)及び中心線平均粗さ(Ra)の両指標において良好な結果が得られる。そして、この粉体塗料により形成される塗膜面は、均一かつ緻密な梨地模様が形成される。また、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢が得られ、この結果、意匠性の高い塗装面が得られる。   As described above, according to the present invention, good results can be obtained for both the ten-point average roughness (Rz) and the centerline average roughness (Ra) without incorporating a highly difficult method such as film thickness control. It is done. And the coating-film surface formed with this powder coating material forms a uniform and precise | texture finish pattern. Moreover, the roundness of the surface obtained in connection with this provides a highly sensitive tactile sensation and suppressed gloss, and as a result, a painted surface with a high design property is obtained.

さらに、本発明において、粉体塗料に添加する不溶性粉状物質は、さらに、塗料硬化温度においても樹脂成分に対して不溶性を保つものである。樹脂成分は、加熱溶融を経て最終的に熱硬化されるものであるが、この工程の全てに亘って樹脂成分に対して不溶性を保つことが重要である。不溶のまま安定した形状を保つことで、塗膜面での梨地模様の形成が確実に行われる。また、不溶性粉状物質の類例としては、シリカビーズが最適であるが、シリカビーズ以外にも、FeO、Fe23、Feなどの金属鉄あるいは金属鉄酸化物や、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、黄鉛、例えばタルクなどの酸化マグネシウム化合物、硫酸バリウムといった無機材質のうち少なくとも1種類から成る無機材質ビーズを用いることができる。 Furthermore, in the present invention, the insoluble powdery substance added to the powder coating material is further insoluble in the resin component even at the coating curing temperature. The resin component is finally heat-cured through heating and melting, but it is important to maintain insolubility with respect to the resin component throughout this process. By maintaining a stable shape while being insoluble, the satin pattern is surely formed on the coating surface. Further, as an example of the insoluble powdery substance, silica beads are optimal, but besides silica beads, metal iron or metal iron oxide such as FeO, Fe 2 O 3 , Fe, titanium oxide, aluminum oxide, Inorganic material beads made of at least one of inorganic materials such as zirconium oxide, zinc oxide, calcium carbonate, yellow lead, magnesium oxide compounds such as talc, and barium sulfate can be used.

なお、シリカビーズに代表される不溶性粉状物質は、平均粒子径範囲が20μm以下であり、かつ、粉体塗料全体に対して5〜30重量%の添加量で含有されるのが好適である。なお、平均粒子径範囲として8〜12μmであり、かつ、粉体塗料全体に対する添加量が10〜15重量%である場合を、さらに好ましい設定範囲とすることができる。   The insoluble powdery substance typified by silica beads preferably has an average particle size range of 20 μm or less, and is contained in an amount of 5 to 30% by weight based on the whole powder coating material. . In addition, the case where it is 8-12 micrometers as an average particle diameter range and the addition amount with respect to the whole powder coating material is 10-15 weight% can be made into a more preferable setting range.

なお、1種類の無機材質のみの単成分無機材質ビーズの場合と異なり、複数種類の無機材質による混合成分無機材質ビーズの場合は、材質成分の混合に伴って材質種類やその粒子径が異なることになる。しかしながら、無機材質種類や粒子径などについての上記条件を満たす限り、混合成分無機材質ビーズも単成分無機材質ビーズと同様あるいはそれ以上に緻密な梨地模様を得ることができる。   Unlike single component inorganic material beads with only one kind of inorganic material, mixed component inorganic material beads with multiple types of inorganic materials have different material types and particle sizes as the material components are mixed. become. However, as long as the above-mentioned conditions regarding the kind of inorganic material and the particle diameter are satisfied, the mixed component inorganic material beads can obtain a satin pattern that is similar to or more dense than the single component inorganic material beads.

本発明の梨地塗膜用粉体塗料は、樹脂成分と粉状物質とにより構成され、このうち粉状物質は、加熱溶融されて溶融状態となった樹脂成分に対して不溶性を保ち、この樹脂成分を引き寄せつつ広げるため、良好な梨地模様塗膜面が得られる。さらに、高溶融粘度樹脂、または高溶融粘度及び高速反応性の樹脂を用いることで、塗膜形成面のレベリング性を抑制できる。また、また、隅部や壁部などの複雑形状面においても、良好な梨地模様塗膜面が得られる。   The powder coating for satin coating of the present invention is composed of a resin component and a powdery substance, and among these, the powdery substance is insoluble in the resin component that has been melted by heating and is in a molten state. Since the components are drawn while being drawn, a good satin-patterned coating film surface can be obtained. Furthermore, the leveling property of a coating-film formation surface can be suppressed by using high melt viscosity resin or high melt viscosity and high-speed reactive resin. In addition, a good satin-patterned coating film surface can be obtained even on complicated shapes such as corners and walls.

このように本発明によれば、膜厚制御などの難度の高い手法を組み込まずに、十点平均粗さ(Rz)及び中心線平均粗さ(Ra)の両指標において優れた、均一かつ緻密な梨地模様が形成される。そして、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢が得られ、この結果、意匠性の高い塗装面が得られる。   As described above, according to the present invention, without incorporating a highly difficult method such as film thickness control, the ten-point average roughness (Rz) and the centerline average roughness (Ra) are excellent in both uniform and precise indexes. Nashinashi pattern is formed. Then, due to the roundness of the surface obtained along with this, a highly sensitive tactile sensation and a suppressed gloss are obtained, and as a result, a painted surface with a high design property is obtained.

本発明の梨地塗膜用粉体塗料を被塗布物面1に塗布したときの初期状態を図1(a)に示す。粉体塗料は、表面張力値として45dyne/cmの主成分たる樹脂成分2に対して、表面エネルギー値として100dyne/cmの不溶性粉状物質たるシリカビーズ3を重量比で10%含有して構成される。そして、粉体塗料全体で、その平均粒子径範囲が5〜15μmであり、かつ、最大粒子径が20μm未満であるような範囲に設定される。このとき、不溶性粉状物質3の表面エネルギー値が、樹脂成分の表面張力値よりも大きいため、粉状物質3が樹脂成分2によく馴染む。このため、塗膜表面において、不溶性粉状物質3が、主成分たる樹脂成分2により厚く覆われて突出し、この結果、塗膜表面の平坦部分が減少する。さらに、樹脂成分2の溶融粘度は150℃において8dPa・sであり、その高溶融粘度樹脂成分2に対する加熱溶融により、樹脂成分2が高粘度の溶融状態となると、これが形成される塗膜面の基礎となる。即ち、高粘度の溶融樹脂2によりレベリング性が抑制された塗膜面が形成され、レベリングする手前で硬化する。   FIG. 1A shows an initial state when the powder coating material for satin coating of the present invention is applied to the surface 1 to be coated. The powder coating material is constituted by containing 10% by weight of silica beads 3 which are insoluble powdery substances having a surface energy value of 100 dyne / cm with respect to the resin component 2 which is a main component having a surface tension value of 45 dyne / cm. The And in the whole powder coating material, the range of the average particle diameter is 5-15 micrometers, and the maximum particle diameter is set to the range which is less than 20 micrometers. At this time, since the surface energy value of the insoluble powdery substance 3 is larger than the surface tension value of the resin component, the powdery substance 3 is well adapted to the resin component 2. For this reason, the insoluble powdery substance 3 protrudes while being thickly covered with the resin component 2 as the main component on the surface of the coating film, and as a result, the flat portion of the coating film surface is reduced. Furthermore, the melt viscosity of the resin component 2 is 8 dPa · s at 150 ° C., and when the resin component 2 becomes a high-viscosity molten state by heat melting with respect to the high melt viscosity resin component 2, Be the basis. That is, a coating film surface in which leveling properties are suppressed is formed by the high-viscosity molten resin 2, and is cured before leveling.

したがって、この塗膜面を測定すると、形成表面の高さ指標たる十点平均粗さRzの測定結果が良好となる。そして、図1(b)に示すように、高溶融粘度樹脂、または、高溶融粘度及び高速反応性の樹脂を用いた、主成分たる樹脂成分2と添加剤シリカビーズ3とを含有する粉体塗料において、加熱溶融状態の樹脂成分2がシリカビーズ3の表面に引き寄せられて広がる。このため、シリカビーズ3が樹脂成分2に厚く覆われた状態で塗膜表面に突出し、梨地状の凹凸模様塗膜が形成される。この際に得られる梨地模様は、良好な十点平均粗さRzで表される塗膜面を基礎として形成されるため、多数の添加剤シリカビーズ3が、それぞれが確実に塗膜表面に突出し、この結果、凹凸模様の密度を示す中心線平均粗さRaにおいても良好な測定結果が得られる。   Therefore, when this coating film surface is measured, the measurement result of the ten-point average roughness Rz, which is the height index of the formation surface, becomes good. And as shown in FIG.1 (b), the powder containing the resin component 2 which is a main component, and the additive silica bead 3 using high melt viscosity resin or resin with high melt viscosity and high-speed reactivity In the paint, the heat-melted resin component 2 is drawn to the surface of the silica beads 3 and spreads. For this reason, the silica beads 3 are projected on the surface of the coating film with the resin component 2 being thickly covered, and a satin-like uneven pattern coating film is formed. Since the satin pattern obtained at this time is formed on the basis of a coating surface represented by a good ten-point average roughness Rz, a large number of additive silica beads 3 reliably protrude from the coating surface. As a result, a good measurement result can be obtained even in the centerline average roughness Ra indicating the density of the uneven pattern.

さらに、樹脂成分2として、150℃における溶融粘度が8dPa・s以上の高溶融粘度樹脂、または、150℃における溶融粘度が8dPa・s以上であり、かつ、その温度におけるゲルタイムが180秒以下の高溶融粘度及び高速反応性の樹脂を用いると、加熱溶融時における樹脂成分のレベリング抑制効果が増し、十点平均粗さ(Rz)及び中心線平均粗さ(Ra)の両指標において、より良好な結果が得られる。   Furthermore, as the resin component 2, a high melt viscosity resin having a melt viscosity at 150 ° C. of 8 dPa · s or higher, or a melt viscosity at 150 ° C. of 8 dPa · s or higher and a gel time at that temperature of 180 seconds or less. When a resin having a melt viscosity and a high-speed reactivity is used, the leveling suppression effect of the resin component at the time of heating and melting is increased, and both the ten-point average roughness (Rz) and the center line average roughness (Ra) are better. Results are obtained.

なお、本発明において用いる高溶融粘度または高粘度及び高速反応性の樹脂2は、一般の熱硬化性樹脂を用いることができる。その類例は、エポキシ系樹脂、ポリエステル系樹脂、ウレタン系樹脂およびアクリル系樹脂等の熱硬化性樹脂である。これらは単独で用い、あるいは、加熱により溶融または流動する樹脂に硬化剤を配合したものを用いることもできる。   In addition, a general thermosetting resin can be used for the high melt viscosity or high viscosity and high-speed reactive resin 2 used in the present invention. Examples thereof are thermosetting resins such as epoxy resins, polyester resins, urethane resins and acrylic resins. These may be used singly or may be obtained by blending a curing agent with a resin that melts or flows by heating.

このような硬化剤を配合する例として、使用可能な熱硬化性樹脂の幾つかを例示すれば、エポキシ系樹脂としては、例えばビスフェノール類のグリシジルエーテル型エポキシ樹脂と硬化剤としてジシアンジアミド類や酸無水物を混合したものを挙げることができる。   As an example of blending such a curing agent, some of thermosetting resins that can be used are exemplified. As an epoxy resin, for example, a glycidyl ether type epoxy resin of bisphenol and a dicyandiamide or an acid anhydride as a curing agent are used. The thing which mixed the thing can be mentioned.

また、エポキシ系樹脂とポリエステル系樹脂が組み合わされたものとしては、ビスフェノール類のグリシジルエーテル型エポキシ樹脂と硬化剤としてカルボキシル基を含有するポリエステル樹脂を混合したものを挙げることができる。   Moreover, as what combined the epoxy resin and the polyester-type resin, what mixed the glycidyl ether type epoxy resin of bisphenol and the polyester resin containing a carboxyl group as a hardening | curing agent can be mentioned.

また、ウレタン系樹脂としては、水酸基を含有するポリエステル樹脂と硬化剤としてグリシジルイソシアネートを混合したものを挙げることができる。   Examples of the urethane resin include a polyester resin containing a hydroxyl group and a mixture of glycidyl isocyanate as a curing agent.

また、ポリエステル系樹脂としては、カルボキシル基を含有するポリエステル樹脂と硬化剤としてグリシジルイソシアネートを混合したものを挙げることができる。   Moreover, as a polyester-type resin, what mixed the glycidyl isocyanate as a polyester resin containing a carboxyl group and a hardening | curing agent can be mentioned.

また、ポリエステル系樹脂とアクリル系樹脂とが組み合わされたものとしては、水酸基およびカルボキシル基を含有するポリエステル樹脂と硬化剤としてグリシジル基を含有するアクリル樹脂とを混合したものが挙げられる。   Moreover, as what combined polyester resin and acrylic resin, what mixed the polyester resin containing a hydroxyl group and a carboxyl group, and the acrylic resin containing a glycidyl group as a hardening | curing agent is mentioned.

また、アクリル系樹脂としては、グリシジル基を含有するアクリル樹脂と硬化剤として2塩基酸とを混合したものが上げられる。また熱硬化性樹脂以外に、アクリル酸化合物、エポキシ化合物などのモノマーやオリゴマーに増感剤を加えて、紫外線照射で硬化する紫外線硬化型樹脂を用いてもよい。   Moreover, as acrylic resin, what mixed the acrylic resin containing a glycidyl group and a dibasic acid as a hardening | curing agent can be raised. In addition to the thermosetting resin, an ultraviolet curable resin that is cured by ultraviolet irradiation by adding a sensitizer to a monomer or oligomer such as an acrylic acid compound or an epoxy compound may be used.

さらに、これらの高溶融粘度樹脂2、または、高溶融粘度及び高速反応性の樹脂2と、添加剤シリカビーズ3との含有物類例以外に、必要に応じて従来公知の添加剤、例えば硬化触媒または硬化促進剤、酸化防止剤、充填剤、紫外線安定剤、紫外線吸収剤、熱安定剤、ワキ防止剤、可塑剤、顔料分散剤、流動性調整剤、摺動性改良剤、電荷制御剤等を添加することができる。   Furthermore, in addition to the examples of the contents of the high melt viscosity resin 2 or the high melt viscosity and fast reactive resin 2 and the additive silica beads 3, conventionally known additives such as curing catalysts may be used as necessary. Or curing accelerators, antioxidants, fillers, UV stabilizers, UV absorbers, heat stabilizers, anti-waxing agents, plasticizers, pigment dispersants, fluidity modifiers, slidability improvers, charge control agents, etc. Can be added.

あるいは、微粒子塗料の流動性や帯電特性などを向上するために、公知の微粒子径1μm以下の無機微粒子の外添剤、例えば酸化アルミニウムや酸化ケイ素、酸化チタニウム、酸化亜鉛などを添加することができる。その添加量は特に限定されないが、粉体塗料100重量部に対し外添剤を0.1〜3.0重量部程度を用いることができ、必要に応じて、増減することができる。   Alternatively, known external additives for inorganic fine particles having a fine particle diameter of 1 μm or less, such as aluminum oxide, silicon oxide, titanium oxide, and zinc oxide can be added in order to improve the fluidity and charging characteristics of the fine particle paint. . The addition amount is not particularly limited, but about 0.1 to 3.0 parts by weight of the external additive can be used with respect to 100 parts by weight of the powder coating material, and can be increased or decreased as necessary.

さらに粉体塗料に呈色用に顔料を加える場合には、使用する顔料として、ホワイトには酸化チタンなどが挙げられ、ブラックにはカーボンブラックなどが挙げられる。グレーにはこれらの顔料を混合して使用する。またシアンにはコバルトブルー、プルシアンブルー、フタロシアニン、バット系等の有機および無機の顔料が挙げられる。イエローにはキナフタロンやアゾ系、黄色酸化鉄や黄土、黄鉛、亜黄鉛、カドミウムイエロー等の有機および無機の顔料が挙げられる。マゼンタにはキナクリドン、アントラキノン、べんがら、カドミウムレッド、鉛丹、硫化水銀カドミウム、マンガン紫、赤口黄鉛、モリブデンオレンジ、アゾ系、チオインジゴなどが挙げられる。   Further, when a pigment is added to the powder coating for coloring, examples of the pigment to be used include titanium in white and carbon black in black. For gray, these pigments are mixed and used. Examples of cyan include organic and inorganic pigments such as cobalt blue, Prussian blue, phthalocyanine, and vat. Examples of yellow include organic and inorganic pigments such as quinaphthalone, azo, yellow iron oxide, ocher, yellow lead, sub-yellow lead, and cadmium yellow. Examples of magenta include quinacridone, anthraquinone, bengara, cadmium red, red lead, mercury cadmium sulfide, manganese purple, red-yellow chrome, molybdenum orange, azo, and thioindigo.

顔料の添加量は、有機顔料の場合、高溶融粘度樹脂100重量部に対し0.01〜5重量部程度が好ましく、無機顔料の場合、高溶融粘度樹脂100重量部に対し1〜35重量部程度が好ましい。有機顔料と無機顔料とは組み合わせて使用することができる。   The addition amount of the pigment is preferably about 0.01 to 5 parts by weight with respect to 100 parts by weight of the high melt viscosity resin in the case of an organic pigment, and 1 to 35 parts by weight with respect to 100 parts by weight of the high melt viscosity resin in the case of an inorganic pigment. The degree is preferred. Organic pigments and inorganic pigments can be used in combination.

これらの成分を含有する粉体塗料の製法の一例としては、原料である高溶融粘度樹脂または高粘度高速反応性樹脂、不溶性粉状物質、添加剤および顔料をボールミル、ヘンシェンミキサー、スーパーミキサー等の混合機により混合し、熱ロール、エクスクルーダ、コニーダ等の混錬機で溶融混錬し、得られた混合物をペレットに成形する。ついで得られたペレットをアトマイザー等の粉砕機で粗粉砕し、ジェットミル等の粉砕機により求める粒径の収率を考慮した条件で粉砕する。得られた粉体をエルボージェット等の気流分級機やTSPセパレータ等の流体分級機等により、求める粒径に分級することによって、粉体塗料が得られる。   Examples of methods for producing powder coatings containing these components include high-melting viscosity resins or high-viscosity high-speed reactive resins, insoluble powdery substances, additives, and pigments as raw materials in ball mills, Henschen mixers, super mixers, etc. The mixture is melted and kneaded with a kneader such as a hot roll, an excluder or a kneader, and the resulting mixture is formed into pellets. Next, the obtained pellets are roughly pulverized by a pulverizer such as an atomizer, and pulverized by a pulverizer such as a jet mill under the conditions in consideration of the yield of the desired particle diameter. A powder coating material is obtained by classifying the obtained powder to a desired particle size by an air classifier such as an elbow jet or a fluid classifier such as a TSP separator.

もう一つの製法として、不溶性粉状物質を除く上記の成分を上記と同様の製法で作製し、その作製した粉体塗料に不溶性粉状物質をボールミル、ヘンシェンミキサー、スーパーミキサー等の混合機により混合することによって、粉体塗料が得られる。   As another production method, the above components except for the insoluble powdery substance are produced by the same production method as described above, and the insoluble powdery substance is added to the produced powder coating material by a mixer such as a ball mill, a Henschen mixer, or a super mixer. By mixing, a powder coating is obtained.

そして、粉体塗料を用いて塗装する際しては、摩擦やコロナ放電で粉体塗料を一定の極性に帯電し、その粉体塗料を接地した被塗装物の表面に静電付着し、その後、付着した粉体塗料層を約120〜250℃で5〜30分間程度、焼成して加熱溶融し、塗膜を形成する方法を用いることができる。あるいは、気流中で粉体塗料を浮遊、流動させておき、この気流中に予め加熱した被塗装物を挿入して、被塗装物の表面に付着した粉体塗料を被塗装物の熱を利用して溶融し、延展する方法を利用することもできる。   When applying powder paint, the powder paint is charged to a certain polarity by friction or corona discharge, and the powder paint is electrostatically attached to the surface of the grounded object. A method can be used in which the adhered powder coating layer is baked at about 120 to 250 ° C. for about 5 to 30 minutes and heated and melted to form a coating film. Alternatively, the powder coating is floated and fluidized in an air stream, and a pre-heated object to be coated is inserted into the air stream, and the powder paint adhering to the surface of the object to be coated is used for the heat of the object to be coated. Then, a method of melting and spreading can be used.

いずれの塗装方法においても、上記した加熱溶融及び焼成の工程において、溶融状態の高溶融粘度及び高速反応性の樹脂2により塗膜形成面のレベリング性が抑制され、また、耐熱・耐溶剤性を備えたシリカビーズ3が、高溶融粘度樹脂2に対して不溶性を保った状態で塗膜形成を行う。その際に、シリカビーズ3は、高溶融粘度樹脂2により固着されて塗膜表面に突出する状態を保つ。これにより、梨地模様が形成される。このようにして、膜厚制御などの難度の高い手法を組み込まずに、十点平均粗さ(Rz)及び中心線平均粗さ(Ra)の両指標において優れた、均一かつ緻密な梨地模様が形成される。そして、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢の梨地模様が形成される(図1(b)参照。)。   In any of the coating methods, the leveling property of the coating film forming surface is suppressed by the high melt viscosity and high-speed reactive resin 2 in the molten state in the heating and melting and baking processes described above, and the heat resistance and solvent resistance are improved. The coating film is formed in a state where the provided silica beads 3 remain insoluble in the high melt viscosity resin 2. At that time, the silica beads 3 are fixed by the high melt viscosity resin 2 and are kept protruding from the coating surface. As a result, a satin pattern is formed. Thus, a uniform and dense satin pattern excellent in both the ten-point average roughness (Rz) and the centerline average roughness (Ra) is obtained without incorporating a highly difficult method such as film thickness control. It is formed. And the roundness of the surface obtained in connection with this forms a highly sensitive tactile sensation or a suppressed glossy satin pattern (see FIG. 1B).

このようにして形成される梨地模様は、硬度、耐溶剤、磨耗性等などの点で塗膜物性に優れたものとなる。   The satin pattern thus formed is excellent in coating film properties in terms of hardness, solvent resistance, abrasion resistance, and the like.

なお、不溶性粉状物質の類例としては、シリカビーズ3が最適であるが、シリカビーズ以外にも、FeO、Fe23、Feなどの金属鉄あるいは金属鉄酸化物や、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、黄鉛、例えばタルクなどの酸化マグネシウム化合物、硫酸バリウムといった無機材質のいずれかを材質とする無機材質ビーズを用いることができる。 As an example of the insoluble powdery substance, silica beads 3 are optimal, but besides silica beads, metal iron or metal iron oxides such as FeO, Fe 2 O 3 and Fe, titanium oxide, and aluminum oxide Inorganic material beads made of any one of inorganic materials such as zirconium oxide, zinc oxide, calcium carbonate, yellow lead, magnesium oxide compounds such as talc, and barium sulfate can be used.

また、シリカビーズに代表される不溶性粉状物質は、平均粒子径範囲が20μm以下であり、かつ、粉体塗料全体に対して5〜30重量%の添加量で含有されるのが好適である。このとき、5%以下だと塗膜面の凹凸が不足して、梨地感がなく、30%以上含有させると樹脂成分に対して不溶性粉状物質が多すぎて、塗膜が形成できなくなってしまう。なお、平均粒子径範囲として8〜12μmであり、かつ、粉体塗料全体に対する添加量が10〜15重量%である場合を、さらに好ましい設定範囲とすることができる。   In addition, the insoluble powdery substance typified by silica beads preferably has an average particle size range of 20 μm or less and is contained in an amount of 5 to 30% by weight based on the whole powder coating material. . At this time, if it is 5% or less, the unevenness of the coating film surface is insufficient and there is no texture, and if it is contained 30% or more, there are too many insoluble powdery substances relative to the resin component, and the coating film cannot be formed. End up. In addition, the case where it is 8-12 micrometers as an average particle diameter range and the addition amount with respect to the whole powder coating material is 10-15 weight% can be made into a more preferable setting range.

なお、複数種類の無機材質を用いた混合成分無機材質ビーズの場合は、1種類の無機材質のみの単成分無機材質ビーズの場合と異なり、材質成分の混合に伴って材質種類やその粒子径が異なることになる。しかしながら、無機材質種類や粒子径などについての上記条件を満たすことにより、混合成分無機材質ビーズを用いる場合に、単成分無機材質ビーズ以上に、さらに緻密な梨地模様を形成することができる。   In the case of mixed-component inorganic material beads using a plurality of types of inorganic materials, unlike the case of single-component inorganic material beads consisting of only one type of inorganic material, the material type and its particle size change as the material components are mixed. Will be different. However, by satisfying the above-mentioned conditions concerning the kind of inorganic material and the particle diameter, when using mixed-component inorganic material beads, a denser satin pattern can be formed more than single-component inorganic material beads.

150℃における溶融粘度が26dPa・s、その温度におけるゲルタイムが90〜180秒の高溶融粘度かつ高速反応性の樹脂2に対して、平均粒子径が10μmのシリカビーズ3を添加し粉体塗料原料を作成した。この粉体塗料は、その全体に対するシリカビーズ3の含有量が14重量%であり、さらに、全体の平均粒子径が10μmである。そして、この粉体塗料原料をコロナ帯電方式のスプレーガンに充填し、塗膜面に対して膜厚が25〜30μmとなるように塗装を行った。スプレーガンの設定条件は、電圧30〜40KV、電流30〜50μA、エア量1.5〜2m3/hである。スプレー塗装完了後に、170℃・20分間で加熱硬化させた後、塗膜外観性及び表面の粗さについて評価を行った。このときの結果を図2(a)及び表1に記す。 Powder paint raw material by adding silica beads 3 having an average particle size of 10 μm to resin 2 having a high melt viscosity of 26 dPa · s at 150 ° C. and a gel time at that temperature of 90 to 180 seconds and high-speed reactivity It was created. This powder coating material has a silica bead 3 content of 14% by weight with respect to the whole, and an overall average particle diameter of 10 μm. The powder coating material was filled in a corona charging spray gun, and the coating was applied so that the film thickness was 25 to 30 μm. The setting conditions of the spray gun are a voltage of 30 to 40 KV, a current of 30 to 50 μA, and an air amount of 1.5 to 2 m 3 / h. After the completion of spray coating, the coating film was cured by heating at 170 ° C. for 20 minutes, and then the coating film appearance and surface roughness were evaluated. The results at this time are shown in FIG.

図2(a)は、高溶融粘度かつ高速反応性の樹脂塗膜2に対して、添加剤シリカビーズ3を表出させ梨地模様を形成した状態を拡大して示すものである。得られた塗膜2は肉眼観察により判定した結果、緻密で均一な梨地模様を形成している状態であった。また、梨地模様の表面粗さ(十点平均粗さ(Rz)及び中心線平均粗さ(Ra))及び塗膜のうねりSmを確認し、表1においてそれぞれを数値表示した。表1から明らかなように本実施例により得られる梨地模様塗膜は、十点平均粗さ(Rz)及び中心線平均粗さ(Ra)において細かく緻密であり(図2(b)参照)、凹凸(うねりSm)の間隔も非常に小さいものであることが分かる。   FIG. 2 (a) shows an enlarged view of a satin pattern formed by exposing additive silica beads 3 to a resin film 2 having a high melt viscosity and a high-speed reactivity. As a result of visual observation, the obtained coating film 2 was in a state where a dense and uniform satin pattern was formed. Further, the surface roughness (ten-point average roughness (Rz) and centerline average roughness (Ra)) of the satin pattern and the undulation Sm of the coating film were confirmed, and each was numerically displayed in Table 1. As apparent from Table 1, the satin-finished coating film obtained by this example is fine and dense in ten-point average roughness (Rz) and centerline average roughness (Ra) (see FIG. 2 (b)). It can be seen that the interval between the irregularities (swells Sm) is very small.

不溶性粉状物質として、平均粒子径が10μmのシリカビーズ3を用い、これを粉体塗料全体に対して10重量%含有させた以外は、[実施例1]と同様の塗装条件で塗装を行った。   The coating is performed under the same coating conditions as in Example 1 except that silica beads 3 having an average particle size of 10 μm are used as the insoluble powdery substance and this is contained in an amount of 10% by weight based on the whole powder coating material. It was.

得られた塗膜は、最も均一かつ緻密な梨地模様が形成され、また、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢のものとなる。   The obtained coating film has the most uniform and dense satin pattern, and has a high tactile sensation and a suppressed gloss due to the roundness of the resulting surface.

不溶性粉状物質として、平均粒子径が10μmのシリカビーズ3を用い、これを粉体塗料全体に対して15重量%含有させた以外は、[実施例1]と同様の塗装条件で塗装を行った。   Coating is performed under the same coating conditions as in Example 1 except that silica beads 3 having an average particle size of 10 μm are used as the insoluble powdery substance and 15% by weight of silica beads 3 is contained in the whole powder coating material. It was.

得られた塗膜は肉眼観察により判定した結果、緻密で均一な梨地模様を形成している状態であり、グロスメータにて60度の角度から測定した結果、1.5%の光沢度が得られ、光沢が抑えられた梨地塗膜が形成されたことが分った。   As a result of visual observation, the obtained coating film is in a state where a dense and uniform satin pattern is formed. As a result of measurement with a gloss meter from an angle of 60 degrees, a glossiness of 1.5% is obtained. It was found that a satin film with reduced gloss was formed.

不溶性粉状物質として、平均粒子径が20μmのシリカビーズ3を用いた以外は、[実施例1]と同様の塗装条件で塗装を行った。   The coating was performed under the same coating conditions as in [Example 1] except that silica beads 3 having an average particle size of 20 μm were used as the insoluble powdery substance.

得られた塗膜は肉眼観察により判定した結果、緻密で均一な梨地模様を形成している状態であったが、[実施例1]と比較すると、[実施例1]の方がやや緻密さが上回っていた。   As a result of visual observation, the obtained coating film was in a state where a dense and uniform satin pattern was formed. Compared with [Example 1], [Example 1] is slightly denser. Was over.

粉体塗料全体の平均粒子径を20μmとした以外は、[実施例1]と同様の塗装条件で塗装を行った。   The coating was performed under the same coating conditions as in [Example 1] except that the average particle size of the entire powder coating material was 20 μm.

得られた塗膜は、均一かつ緻密な梨地模様が形成され、また、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢の梨地模様を形成している。しかしながら、[実施例1]のものと比較すると、[実施例1]の方が緻密さがやや上回っていた。   The obtained coating film is formed with a uniform and dense satin pattern, and also has a highly sensitive tactile feel and a suppressed gloss satin pattern due to the roundness of the surface obtained accordingly. However, when compared with that of [Example 1], the density of [Example 1] was slightly higher.

主成分たる樹脂成分2として、150℃における溶融粘度が8dPa・sの高溶融粘度樹脂を用いた以外は、[実施例1]と同様の塗装条件で塗装を行った。得られた塗膜は、均一かつ緻密な梨地模様が形成され、また、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢の梨地模様を形成していた。   The coating was performed under the same coating conditions as in Example 1 except that a high melt viscosity resin having a melt viscosity of 8 dPa · s at 150 ° C. was used as the resin component 2 as the main component. The obtained coating film had a uniform and dense satin pattern, and also formed a satin pattern with a high tactile sensation and a suppressed gloss due to the roundness of the surface obtained accordingly.

主成分たる樹脂成分2として150℃における溶融粘度が8dPa・sであり、その温度におけるゲルタイムが90〜180秒の高溶融粘度かつ高速反応性の樹脂を用いた以外は、[実施例1]と同様の塗装条件で塗装を行った。   [Example 1] except that a resin component 2 as a main component has a melt viscosity at 150 ° C. of 8 dPa · s and a high melt viscosity and high-speed reactive resin having a gel time of 90 to 180 seconds at that temperature. The coating was performed under the same coating conditions.

得られた塗膜は、得られた塗膜は、均一かつ緻密な梨地模様が形成され、また、これに伴って得られる表面の丸みにより、好感度の高い触感や抑制された光沢の梨地模様を形成していた。
[比較例1]
樹脂成分と添加剤シリカビーズとの混合物の替わりに、硬化反応性の異なる2種類の混合塗料を用いた以外は、[実施例1]と同様の塗装条件で塗装を行った。170℃で加熱硬化させた後、塗膜外観性及び表面の粗さについて評価を行った。このときの結果を図3(b)及び表1に記す。
The obtained coating film has a uniform and dense pear texture pattern, and the roundness of the surface obtained along with this results in a highly sensitive tactile feel and suppressed gloss pear texture pattern. Was forming.
[Comparative Example 1]
The coating was performed under the same coating conditions as in [Example 1] except that two types of mixed paints having different curing reactivity were used instead of the mixture of the resin component and the additive silica beads. After heat-curing at 170 ° C., the coating film appearance and surface roughness were evaluated. The results at this time are shown in FIG.

図3(b)は、硬化反応性の異なる混合塗料によって得られた塗装物を拡大して示すものである。硬化反応の進行において、硬化速度が速い第1樹脂が先に硬化する(濃色部分に相当)。そして、この部分は、被塗装面1上に拡がる前に付着面の面積を維持したまま収縮し、突起状の島4を形成する。その後、硬化の遅い第2樹脂が、濃色部分の島4の間に拡がりながら硬化する。この結果、塗膜の厚さ方向に硬化収縮し、凹み5が形成される。このように、第1及び第2樹脂の混合の不均一さに起因して、塗膜の表面は角張った突起状の島4と凹み5から成る不均一な梨地模様で形成される。このときの梨地模様の表面粗さ(十点平均粗さ(Rz)及び中心線平均粗さ(Ra)及び塗膜のうねりSmを確認し、表1においてそれぞれを数値表示した。   FIG.3 (b) expands and shows the coating material obtained by the mixed coating material from which curing reactivity differs. In the progress of the curing reaction, the first resin having a high curing rate is cured first (corresponding to the dark color portion). And before this part spreads on the to-be-coated surface 1, this part shrink | contracts, maintaining the area of an adhesion surface, and forms the projecting island 4. FIG. Thereafter, the second resin that is slowly cured is cured while spreading between the dark-colored islands 4. As a result, the film is cured and contracted in the thickness direction of the coating film, and the recess 5 is formed. As described above, due to the non-uniform mixing of the first and second resins, the surface of the coating film is formed with a non-uniform satin pattern composed of angulated protruding islands 4 and dents 5. The surface roughness (ten-point average roughness (Rz) and centerline average roughness (Ra) and swell Sm of the coating film) of the satin pattern at this time was confirmed, and each was numerically displayed in Table 1.

表1から明らかなように本比較例により得られる梨地模様塗膜は、十点平均粗さ(Rz)及び中心線平均粗さ(Ra)において、ともに不均一であり(図3(b)参照)、凹凸(うねりSm)の間隔も非常に大きいものであることが分かる。また、梨地を得るためには、膜厚50〜70μm程度を塗布する必要があった。   As apparent from Table 1, the satin-patterned coating film obtained by this comparative example is non-uniform in both the ten-point average roughness (Rz) and the center line average roughness (Ra) (see FIG. 3B). It can be seen that the interval between the irregularities (swells Sm) is also very large. Further, in order to obtain a satin finish, it was necessary to apply a film thickness of about 50 to 70 μm.

[比較例2]
粉体塗料全体の平均粒子径を30μmとした以外は、[実施例1]と同様の塗装条件で塗装を行った。
[Comparative Example 2]
The coating was performed under the same coating conditions as in [Example 1] except that the average particle size of the entire powder coating material was 30 μm.

このとき得られる塗膜面は、不均一ではあるが梨地は形成されるが、複雑な形状の部品への塗装は困難であった。これは、複雑形状表面の凹部に対して粉体塗料が溜まりやすく、部品の形状を塗膜面で反映して再現することができないためであった。
[比較例3]
表面エネルギー値が40dyne/cmの不溶性粉状物質を用い、即ち、樹脂成分2の表面張力値(45dyne/cm)より小さい粉状物質を用い、かつ、その粉状物質として、平均粒子径が10μmのアクリルビーズを用いた以外は、[実施例1]と同様の塗装条件で塗装を行った。
Although the coating surface obtained at this time is non-uniform, a satin finish is formed, but it is difficult to paint on parts having complicated shapes. This is because the powder coating material tends to accumulate in the concave portion of the complex shape surface, and the shape of the part cannot be reflected on the coating surface and reproduced.
[Comparative Example 3]
An insoluble powdery substance having a surface energy value of 40 dyne / cm is used, that is, a powdery substance smaller than the surface tension value (45 dyne / cm) of the resin component 2 is used, and the average particle diameter is 10 μm as the powdery substance. The coating was performed under the same coating conditions as in [Example 1] except that the above acrylic beads were used.

その配合樹脂で得られた塗膜面は、平坦部(レベリングした部分)が多いうえに光沢度が高く(58%)、この結果、梨地感の不足したものだった。   The coating surface obtained with the compounded resin had many flat portions (leveled portions) and high glossiness (58%). As a result, the textured surface was insufficient.

本発明は、カメラ、携帯電話、各種家電製品などの高級外観製品等の凹凸形状を有する部品に対して、基体輪郭を明瞭に反映し、寸法精度が保たれた塗膜形成に活用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used to form a coating film that clearly reflects the outline of a substrate and has a dimensional accuracy on parts having irregular shapes such as high-grade appearance products such as cameras, mobile phones, and various home appliances. .

(a)塗布直後の高溶融粘度樹脂及びシリカビーズを示す断面模式図(b)焼成後に得られる塗膜形成面を示す断面模式図(A) Schematic cross-sectional view showing the high melt viscosity resin and silica beads immediately after coating (b) Schematic cross-sectional view showing the coating surface formed after firing (a)[実施例1]により得られる塗膜面を示す写真(b)[実施例1]により得られる塗膜面の表面粗さを示すグラフ図(A) Photograph showing the coating film surface obtained by [Example 1] (b) Graph showing the surface roughness of the coating film surface obtained by [Example 1] (a)[比較例1]により得られる塗膜面を示す写真(b)[比較例1]により得られる塗膜面の表面粗さを示すグラフ図(A) Photograph showing the surface of the coating film obtained by [Comparative Example 1] (b) Graph showing the surface roughness of the coating film surface obtained by [Comparative Example 1]

符号の説明Explanation of symbols

1 塗膜対象面
2 樹脂成分(高溶融粘度または高粘度及び高速反応性の樹脂)
3 シリカビーズ
4 硬化速度大の第1樹脂
5 硬化速度小の第2樹脂

1 Coating target surface 2 Resin component (resin with high melt viscosity or high viscosity and fast reactivity)
3 Silica beads 4 First resin with high curing speed 5 Second resin with low curing speed

Claims (5)

樹脂成分と、溶融状態の該樹脂成分に対して不溶性の粉状物資とを含有してなる粉体塗料であって、
前記粉状物質の表面エネルギー値が、前記樹脂成分の表面張力値より大きいものにおいて、
粉体塗料全体の平均粒子径範囲が5〜20μmであり、かつ、最大粒子径が36μm未満であることを特徴とする梨地塗膜用粉体塗料。
A powder paint comprising a resin component and a powdery material insoluble in the molten resin component,
In the surface energy value of the powdery substance is larger than the surface tension value of the resin component,
An average particle size range of the entire powder coating material is 5 to 20 μm, and a maximum particle size is less than 36 μm.
前記樹脂成分は、150℃における溶融粘度が8dPa・s以上の高溶融粘度樹脂であることを特徴とする請求項1に記載の梨地塗膜用粉体塗料。 2. The powder coating material for satin coating according to claim 1, wherein the resin component is a high melt viscosity resin having a melt viscosity at 150 ° C. of 8 dPa · s or more. 前記樹脂成分は、150℃におけるゲルタイムが180秒以下の高速反応性樹脂であることを特徴とする請求項1または2に記載の梨地塗膜用粉体塗料。 3. The powder coating material for satin coating according to claim 1, wherein the resin component is a high-speed reactive resin having a gel time at 150 ° C. of 180 seconds or less. 前記粉状物質は、シリカ、酸化鉄化合物、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、黄鉛、酸化マグネシウム化合物、硫酸バリウムのうち少なくとも1種類の無機材質ビーズであることを特徴とする請求項1乃至3のいずれか1項に記載の梨地塗膜用粉体塗料。 The powdery substance is at least one inorganic material bead among silica, iron oxide compound, titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, calcium carbonate, yellow lead, magnesium oxide compound, and barium sulfate. The powder coating material for satin coating film according to any one of claims 1 to 3. 前記粉状物質は、平均粒子径範囲が20μm以下であり、かつ、粉体塗料全体に対して5〜30重量%の添加量で含有されることを特徴とする請求項1乃至4のいずれか1項に記載の梨地塗膜用粉体塗料。


5. The powdery substance has an average particle size range of 20 μm or less, and is contained in an amount of 5 to 30% by weight based on the entire powder coating material. The powder coating material for satin coating film according to item 1.


JP2004193997A 2004-06-30 2004-06-30 Powder coating for satin coating film Withdrawn JP2006016454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193997A JP2006016454A (en) 2004-06-30 2004-06-30 Powder coating for satin coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193997A JP2006016454A (en) 2004-06-30 2004-06-30 Powder coating for satin coating film

Publications (1)

Publication Number Publication Date
JP2006016454A true JP2006016454A (en) 2006-01-19

Family

ID=35791014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193997A Withdrawn JP2006016454A (en) 2004-06-30 2004-06-30 Powder coating for satin coating film

Country Status (1)

Country Link
JP (1) JP2006016454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118458A (en) * 2012-12-14 2014-06-30 Lixil Corp Powder coating and coating member
JP2018012790A (en) * 2016-07-21 2018-01-25 富士ゼロックス株式会社 Powder coating and electrostatic powder coating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118458A (en) * 2012-12-14 2014-06-30 Lixil Corp Powder coating and coating member
JP2018012790A (en) * 2016-07-21 2018-01-25 富士ゼロックス株式会社 Powder coating and electrostatic powder coating method

Similar Documents

Publication Publication Date Title
KR100312960B1 (en) Method of Forming Coating Film on Substrate and Manufacturing Powder Coating Composition
EP3376292A1 (en) Curable coating material for non-impact printing
JPH0578605A (en) Powder coating giving uneven pattern, its production, production device and coating method therefor, and coating film therefrom
JPH06293867A (en) Matte powdery coating composition, method for coating and film made therefrom
JP2016506987A (en) Ultra low curing powder coating
EP0536791B1 (en) Powdered paint
WO1995025145A1 (en) Powder paint, method of manufacturing the same, and method of painting using the paint
JP2004073936A (en) Method of coating metal material and coated article
JP2006016454A (en) Powder coating for satin coating film
JP2017109193A (en) Electrostatic powder coating method, and powder coating
JP2017060915A (en) Electrostatic powder coating method, and powder coating material
JP2017060920A (en) Electrostatic powder coating method, and powder coating material
JP2007091802A (en) Uneven pattern-forming powder coating composition
JP3605940B2 (en) Irregular pattern-forming powder coating, method for producing the same, and coated object
JP2704368B2 (en) Powder paint
JP2017057358A (en) Thermosetting powdered paint and coating method
JP2020142477A (en) Coated article, powder coating material setting, and manufacturing method of coated article
JP4012099B2 (en) Powder paint
JP4139173B2 (en) Method for producing glitter powder coating
JP2002194297A (en) Designing powder coating composition for precoat material, method for forming designing coating film and precoat material with designing coating
JP2008063581A (en) Method for manufacturing silver-metallic powder coating for tribocharging spray gun
JP2017109194A (en) Electrostatic powder coating method, and powder coating
JP2000119564A (en) Powdered paint composition for frictional electrification painting, its production and coating method using the same
JP2003003122A (en) Thermally curable powder coating and method of forming thermally curable coating film
JP2003213216A (en) Silver metallic powder coating material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904