JP2006015657A - Method for blending underground impervious wall material and method for applying underground impervious wall - Google Patents
Method for blending underground impervious wall material and method for applying underground impervious wall Download PDFInfo
- Publication number
- JP2006015657A JP2006015657A JP2004197160A JP2004197160A JP2006015657A JP 2006015657 A JP2006015657 A JP 2006015657A JP 2004197160 A JP2004197160 A JP 2004197160A JP 2004197160 A JP2004197160 A JP 2004197160A JP 2006015657 A JP2006015657 A JP 2006015657A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- bentonite
- underground
- water
- blending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 58
- 238000002156 mixing Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000004568 cement Substances 0.000 claims abstract description 72
- 239000000440 bentonite Substances 0.000 claims abstract description 68
- 229910000278 bentonite Inorganic materials 0.000 claims abstract description 68
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims abstract description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 238000010276 construction Methods 0.000 claims description 23
- 239000004576 sand Substances 0.000 claims description 9
- 150000001768 cations Chemical class 0.000 claims description 7
- 238000005303 weighing Methods 0.000 claims 1
- 239000002689 soil Substances 0.000 abstract description 23
- 239000000203 mixture Substances 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 description 11
- 239000004927 clay Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 239000000945 filler Substances 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011041 water permeability test Methods 0.000 description 1
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は地中遮水壁に関し、さらに詳しくは、地盤内に連続して設けられる不透水性の地中遮水壁材料の配合方法および地中遮水壁の施工方法に関する。 The present invention relates to an underground impermeable wall, and more particularly to a blending method of an impermeable underground impermeable wall material provided continuously in the ground and a construction method of an underground impermeable wall.
近年、地下水等の摂取によるリスクを低減する方法の一つとして、原位置封じ込め等の措置による暴露経路遮断が鉛直遮水工を用いて行われている。この原位置封じ込めの構造としては、遮水壁としてソイルセメント連続地中壁を用いるものがある。しかし、ソイルセメント連続地中壁では、巨大地震(例えば、レベル2程度の地震動)が発生すると、ソイルセメント連続地中壁にクラック等が発生する可能性がある。従来のソイルセメント連続地中壁は固体状であるため、発生したクラック等を自己修復させることは不可能である。したがって、ソイルセメント連続地中壁に一度クラック等が発生して遮水機能が損なわれると、遮水機能が回復することはない。 In recent years, as one of the methods for reducing the risk due to ingestion of groundwater, etc., exposure route blocking by measures such as in-situ containment has been performed using a vertical impermeable construction. As an in-situ containment structure, there is one using a soil cement continuous underground wall as a water shielding wall. However, in a soil cement continuous underground wall, when a large earthquake (for example, ground motion of about level 2) occurs, cracks or the like may occur in the soil cement continuous underground wall. Since conventional soil cement continuous underground walls are solid, it is impossible to self-repair cracks that have occurred. Therefore, once a crack or the like is generated in the soil cement continuous underground wall and the water shielding function is impaired, the water shielding function is not recovered.
このような問題の対策として、巨大地震に対しても損傷しないような強度とするため、ソイルセメント連続地中壁の設計基準強度を高くすることが考えられるが、強度を高くしても地震規模によっては、遮水機能の保持を確実とすることは困難である。 As measures against such problems, it is conceivable to increase the design standard strength of the soil cement continuous underground wall in order to make it strong enough not to damage even a huge earthquake. In some cases, it is difficult to ensure that the water shielding function is maintained.
そこで、他の対策として、ソイルセメント連続地中壁の中に鉛直シート等を挿入して複合遮水壁とすることが考えられている。この他に、複合構造の遮水壁の施工例としては、地盤に掘削した溝に不透水性を有する止水シートを挿入し、この止水シートの周囲を、柔軟性を有する充填材で覆って複合的な構造の遮水壁を施工する技術が知られている(例えば、特許文献1参照。)。
しかしながら、上述した複合構造の遮水壁では、鉛直シート等を挿入する工程や、ソイルセメント連続地中壁を形成する工程若しくは充填材を注入する工程等を施すため、工数が多くなると共に、遮水壁中に鉛直シート等を適切に配置する技術が要求されて、施工コストが大幅に増大するという問題点がある。 However, in the above-described water barrier with a composite structure, the process of inserting a vertical sheet or the like, the process of forming a soil cement continuous underground wall or the process of injecting a filler, etc., increase the number of steps and reduce the barrier. There is a problem that a technique for appropriately arranging a vertical sheet or the like in the water wall is required, and the construction cost is greatly increased.
また、止水シートの周囲を柔軟性を有する充填材で覆う従来技術では、一旦、止水シートが破損されると充填材だけでは遮水機能が保持できず、遮水壁全体の遮水機能が損なわれるという問題点がある。また、柔軟性を持つ充填材は、遮水壁の修復機能を持たないという問題点がある。 Also, with the conventional technology in which the waterproof sheet is covered with a flexible filler, once the waterproof sheet is damaged, the waterproof function cannot be maintained with the filler alone, and the waterproof function of the entire impermeable wall There is a problem that is damaged. In addition, the flexible filler has a problem that it does not have a function of repairing the impermeable wall.
そこで、本発明は、上述の課題を解決すべくなされたものであり、巨大地震が発生して万一クラック等が発生しても時間の経過に伴って自己修復することができる地中遮水壁材料の配合方法および地中遮水壁の施工方法を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and even if a huge earthquake occurs and a crack or the like should occur, it can be self-repaired with the passage of time. It aims at providing the compounding method of a wall material, and the construction method of an underground impermeable wall.
請求項1記載の発明は、下端が地盤の不透水層に達するように形成される地中遮水壁材料の配合方法であって、セメントとベントナイトの配合比が、セメント:ベントナイト=2:1〜1:10の範囲となるようにセメントとベントナイトとを秤量すると共に、セメントおよびベントナイトで構成される固化材に対して300%以上の質量の水を用意し、水とベントナイトとを撹拌混合した後、セメントを添加して撹拌混合することを特徴としている。
The invention according to
この請求項1記載の発明では、セメントとベントナイトとの配合比の調整と、固化材に対する水の量の調整と、配合順序の規定と、によって、初めて、単一構造の地中遮水壁に自己修復機能を持たせることが可能となる。すなわち、このような配合方法により、地中遮水壁に、配合物に高液性限界シルト(MH)、あるいは高液性限界粘土(CH)の性質を付与することができる。 In the first aspect of the present invention, by adjusting the blending ratio of cement and bentonite, adjusting the amount of water relative to the solidified material, and defining the blending order, it is the first time that an underground impermeable wall with a single structure is formed. It is possible to have a self-healing function. That is, by such a blending method, the properties of high liquid limit silt (MH) or high liquid limit clay (CH) can be imparted to the underground impermeable wall.
請求項2記載の発明は、請求項1記載の地中遮水壁材料の配合方法に関するものである。この発明に係る地中遮水壁材料の配合方法は、地中遮水壁材料は、陽イオンを吸着することを特徴としている。
Invention of
請求項3記載の発明は、下端が地盤の不透水層に達するように形成される地中遮水壁の施工方法であって、地盤に不等水層に達する溝を掘削する工程と、セメントとベントナイトの配合比が、セメント:ベントナイト=2:1〜1:10の範囲となるようにセメントとベントナイトとを秤量すると共に、セメントおよびベントナイトで構成される固化材に対して300%以上の質量の水を用意し、水とベントナイトとを撹拌混合した後、セメントを添加して撹拌混合して地中遮水壁材料を配合する工程と、前記地中遮水壁材料を地盤の土砂と混ぜながら前記溝に打設する工程と、を備えることを特徴としている。
The invention according to
この請求項3記載の発明では、セメントとベントナイトとの配合比の調整と、固化材に対する水の量の調整と、配合順序の規定と、によって、初めて、単一構造の地中遮水壁に自己修復機能を持たせることが可能となる。このため、例えば巨大地震(レベル2程度の地震動)が発生したときに、地中遮水壁に一旦クラック等が発生しても、時間の経過に伴って、地中遮水壁の遮水機能を復元させることが可能となる。
In the invention according to
請求項4記載の発明は、請求項3記載の地中遮水壁の施工方法に関するものである。この発明に係る地中遮水壁の施工方法は、地中遮水壁材料が、陽イオンを吸着することを特徴としている。
The invention described in claim 4 relates to a construction method for the underground impermeable wall described in
請求項5記載の発明は、請求項3又は請求項4に記載された地中遮水壁の施工方法に関するものである。この発明に係る地中遮水壁の施工方法は、前記溝に、前記地中遮水壁に併設される鉛直遮水構造体を構築する工程を備えることを特徴とするとしている。
The invention described in claim 5 relates to a construction method for the underground impermeable wall described in
請求項1記載の発明によれば、地中遮水壁としての遮水機能と、クラック等の発生に対する自己修復機能と、を併せ持つ地中遮水壁材料を実現することができる。 According to the first aspect of the present invention, it is possible to realize an underground impermeable wall material that has both the impermeable function as an underground impermeable wall and a self-repairing function against occurrence of cracks and the like.
請求項2記載の発明によれば、地中遮水壁材料が陽イオンを吸着するため、特に、鉛(Pb)、カドミウム(Cd)等の重金属を地中遮水壁で吸着して透過水より除去することができる。 According to the second aspect of the present invention, since the underground impermeable wall material adsorbs cations, in particular, heavy metals such as lead (Pb) and cadmium (Cd) are adsorbed by the underground impermeable walls and the permeated water. More can be removed.
請求項3記載の発明によれば、地中遮水壁に一旦クラック等が発生しても、時間の経過に伴って、地中遮水壁の遮水機能を復元させることが可能となり、地中遮水壁の修復機能を長期間に亘って維持することが可能となる。
According to invention of
請求項4記載の発明によれば、請求項3記載の発明の効果に加えて、地中遮水壁の透過水より重金属等の汚染物質を除去することができる。
According to the invention of claim 4, in addition to the effect of the invention of
請求項5記載の発明によれば、鉛直者水構造体を併用することで、より確実な遮水効果が得られる。 According to invention of Claim 5, a more reliable water-insulating effect is acquired by using a vertical person water structure together.
以下、本発明の実施の形態に係る地中遮水壁材料の配合方法および地中遮水壁の施工方法について説明する。 Hereinafter, the blending method of the underground impermeable wall material and the construction method of the underground impermeable wall according to the embodiment of the present invention will be described.
(地中遮水壁材料の配合方法)
図1は本発明の実施の形態に係る地中遮水壁材料の配合方法について説明する。
(Method of blending underground impermeable wall material)
FIG. 1 explains a blending method of underground water-impervious wall material according to an embodiment of the present invention.
まず、セメントとベントナイトの配合比が、セメント:ベントナイト=2:1〜1:10の範囲となるようにセメントとベントナイトとを秤量する。 First, the cement and bentonite are weighed so that the blending ratio of cement and bentonite is in the range of cement: bentonite = 2: 1 to 1:10.
また、セメントおよびベントナイトで構成される固化材に対して、300%以上の質量の水を用意する。 Further, water having a mass of 300% or more is prepared for the solidified material composed of cement and bentonite.
そして、上記の配合比の水とベントナイトとを撹拌混合した後、セメントを添加して撹拌混合することにより、地中遮水壁材料を作製することができる。 And after mixing and mixing water and bentonite of said compounding ratio, an underground impermeable wall material can be produced by adding cement and stirring and mixing.
[地中遮水壁材料の評価]
〈液性限界・塑性限界試験〉
セメントとベントナイトとの配合比を変えた以下の試料1〜4を作製して、液性限界・塑性限界試験を行った。図1は、液性限界・塑性限界試験の結果を示す。
[Evaluation of underground impermeable wall materials]
<Liquid limit / plastic limit test>
The following
(試料1)
セメントとベントナイトの配合比は、セメント:ベントナイト=2:1とした。セメントおよびベントナイトの固化材の、母材としての砂に対する固化材添加率は、10〜20%とした。また、固化材に対する水固化材比は500%とした。以下、試料2〜4においても固化材添加率と水固化材比は同様である。なお、母材としての砂は、土質分類ではS−Fに分類される砂を用いた。
(Sample 1)
The blending ratio of cement and bentonite was cement: bentonite = 2: 1. The solidification material addition rate of the cement and bentonite solidification material to the sand as the base material was 10 to 20%. The ratio of the water solidifying material to the solidifying material was 500%. Hereinafter, in
(試料2)
セメントとベントナイトの配合比は、セメント:ベントナイト=1:2とした。
(Sample 2)
The blending ratio of cement and bentonite was cement: bentonite = 1: 2.
(試料3)
セメントとベントナイトの配合比は、セメント:ベントナイト=1:4とした。
(Sample 3)
The blending ratio of cement and bentonite was cement: bentonite = 1: 4.
(試料4)
セメントとベントナイトの配合比は、セメント:ベントナイト=1:10とした。
(Sample 4)
The blending ratio of cement and bentonite was cement: bentonite = 1: 10.
図1に示すように、試料1(セメント:ベントナイト=2:1)および試料2(セメント:ベントナイト=1:2)では、高液性限界のシルト(MH)、試料3(セメント:ベントナイト=1:4)および試料4(セメント:ベントナイト=1:10)では、高液性限界点の粘土(CH)に位置している。 As shown in FIG. 1, in sample 1 (cement: bentonite = 2: 1) and sample 2 (cement: bentonite = 1: 2), high liquid limit silt (MH), sample 3 (cement: bentonite = 1) : 4) and Sample 4 (cement: bentonite = 1: 10) are located on clay (CH) at the high liquid limit point.
図1に示すように、この結果から、試料1〜4は高液性限界シルト(MH)あるいは高液性限界点の粘土(CH)の性質を有するため、自己修復が可能であり、特に試料3および試料4では十分な自己修復機能を有することが判った。また、この結果から、ベントナイトの配合比を増加するにしたがい、粘土の性質に限りなく近づく(MH領域→CH領域となる)ことが判る。
As shown in FIG. 1, from this result,
〈三軸透水試験〉
次に、セメント・ベントナイト混合土の遮水性能を評価するため、上記試料1〜4を用いて三軸透水試験を行った。その結果、図2に示すように、試料1〈セメント:ベントナイト=2:1〉では、固化材の添加率の(10〜20%の範囲内での)増減による透水係数の変化はほとんどないが、試料2(セメント:ベントナイト=1:2)および試料3(セメント:ベントナイト=1:4)では、固化材添加率の増加に伴い透水係数は小さくなることが判った。また、図2に示すように、ベントナイトの配合比を増加するにしたがい、遮水性能も向上することが判った。
<Triaxial permeability test>
Next, in order to evaluate the water shielding performance of the cement-bentonite mixed soil, a triaxial water permeability test was performed using the
〈一軸圧縮試験〉
次に、セメント・ベントナイト混合土のせん断強度を把握するため、上記試料1〜4およびセメントのみを配合した混合土を用いて一軸圧縮試験を実施した。図3に示すように、ベントナイトの比率が大きいセメント・ベントナイト混合土ほど、一軸圧縮強さは小さく、また圧縮破壊ひずみは大きくなることが判った。
<Uniaxial compression test>
Next, in order to grasp the shear strength of the cement / bentonite mixed soil, a uniaxial compression test was performed using the mixed soil containing only the
〈動的変形特性試験〉
次に、セメント・ベントナイト混合土の動的変形特性を求めるため、動的変形特性試験を実施した。せん断性と減衰定数のひずみ依存性(G/G0〜γ、h〜γ)を図4に示す。なお、図4では、砂と粘土のG/G0〜γ、h〜γも合わせて示している。図4に示すように、ベントナイトの比率が大きくなるにしたがい、動的変形特性は粘土に限りなく近づくことが判った。また、セメント:ベントナイト=1:4の試料では、粘土のG/G0〜γ、h〜γとほぼ一致することが判った。
<Dynamic deformation characteristics test>
Next, in order to obtain the dynamic deformation characteristics of cement-bentonite mixed soil, a dynamic deformation characteristic test was conducted. FIG. 4 shows the strain dependency (G / G0 to γ, h to γ) of the shear property and the damping constant. In FIG. 4, G / G0 to γ and h to γ of sand and clay are also shown. As shown in FIG. 4, as the ratio of bentonite increases, it was found that the dynamic deformation characteristics approach the clay as much as possible. Further, it was found that in the sample of cement: bentonite = 1: 4, it almost coincided with G / G0 to γ and h to γ of clay.
以上の説明から明らかなように、本実施の形態に係る地中遮水壁材料の配合方法によれば、セメントとベントナイトの混合比を、セメント:ベントナイト=2:1〜1:10に設定することにより、巨大地震が発生した際に、万一、地中遮水壁にクラック等が発生しても時間の経過とともに自己修復できるようなソイルセメント連続地中壁の配合仕様を確立することができる。 As is clear from the above description, according to the blending method of the underground water-impervious wall material according to the present embodiment, the mixing ratio of cement and bentonite is set to cement: bentonite = 2: 1 to 1:10. Therefore, in the unlikely event that a huge earthquake occurs, even if cracks etc. occur in the underground impermeable walls, it is possible to establish a compound specification for soil cement continuous underground walls that can self-repair over time it can.
(地中遮水壁の施工方法)
次に、本発明の実施の形態に係る地中遮水壁の施工方法について説明する。
(Construction method for underground impermeable walls)
Next, the construction method of the underground impermeable wall which concerns on embodiment of this invention is demonstrated.
先ず、図5(a)に示すように、地盤1の不透水層2に達するように溝3を掘削する。
First, as shown in FIG. 5A, the
上述の地中遮水壁材料の配合方法に基づいて、セメントとベントナイトの配合比が、セメント:ベントナイト=2:1〜1:10の範囲となるようにセメントとベントナイトとを秤量すると共に、セメントおよびベントナイトで構成される固化材に対して300%以上の質量の水を用意し、水とベントナイトと所定配合割合の砂とを撹拌混合した後、セメントを添加して撹拌混合して地中遮水壁材料を配合する。その後、地中遮水壁材料を溝に打設することにより、図(b)に示すような地中遮水壁4を形成することができる。なお、地中遮水壁材料は、地盤を構成する砂と混ぜながら地盤中に注入してもよい。 The cement and bentonite are weighed so that the blending ratio of cement and bentonite is in the range of cement: bentonite = 2: 1 to 1:10 based on the above-described blending method of the underground impermeable wall material. Prepare water with a mass of 300% or more of the solidified material composed of bentonite, stir and mix water, bentonite, and a predetermined blending ratio of sand, add cement, stir and mix, and block the ground. Mix water wall material. Thereafter, the underground impermeable wall 4 as shown in FIG. 2B can be formed by placing an underground impermeable wall material in the groove. The underground impermeable wall material may be injected into the ground while being mixed with sand constituting the ground.
本実施の形態に係る地中遮水壁の施工方法によれば、上述の地中遮水壁材料の評価から明らかなように、地中遮水壁に一旦クラック等が発生しても、時間の経過に伴って、地中遮水壁の遮水機能を復元させることが可能となり、地中遮水壁の修復機能を長期間に亘って維持することが可能となる。 According to the underground impervious wall construction method according to the present embodiment, as is apparent from the above-described evaluation of the underground impervious wall material, even if cracks or the like once occur in the underground impervious wall, the time With the progress of this, it becomes possible to restore the water shielding function of the underground impermeable wall and to maintain the repair function of the underground impermeable wall for a long period of time.
また、上述の地中遮水壁材料の配合方法に基づいて作製された地中遮水壁材料は、陽イオンを吸着する特性を有するため、鉛(Pb)、カドミウム(Cd)等の重金属イオンを透過水から除去することができる。このため、電解質汚染物質(陽イオン)が地中遮水壁から外側へ拡散することを防止できる。 Moreover, since the underground water-impervious wall material produced based on the above-described method for mixing the underground water-impervious wall material has the property of adsorbing cations, heavy metal ions such as lead (Pb) and cadmium (Cd) are used. Can be removed from the permeate. For this reason, it is possible to prevent the electrolyte pollutant (cation) from diffusing outward from the underground impermeable wall.
(その他の実施の形態)
なお、本発明に係る地中遮水壁の施工方法は、鋼矢板土留め壁、鋼管矢板土留め壁、ソイルセメント壁、場所打ち杭壁、既製杭壁、場所打ち鉄筋コンクリート壁、泥水固化壁、鋼製壁等の各種の土留め壁の施工に付加的に適用することが可能である。特に、他の鉛直者水構造体を上述の実施の形態に係る地中遮水壁に併設することで、より確実な遮水効果が得られる。なお、この鉛直者水構造体は、少なくとも一つ以上を併用することで、より確実な遮水効果を得ることができる。このため、例えば、想定を越える力が作用しても、複数の遮水材料を併用することで遮水性を確保することが可能となる。また、大きな力が作用したことにより、上述の実施の形態に係る地中遮水壁にクラックなどが発生しても、地中遮水壁が自己修復するまでの間は、鉛直者水構造体で遮水性能を確保することができる。
(Other embodiments)
In addition, the construction method of the underground impermeable wall according to the present invention includes steel sheet pile earth retaining wall, steel pipe sheet pile earth retaining wall, soil cement wall, cast-in-place pile wall, ready-made pile wall, cast-in-place reinforced concrete wall, mud solidified wall, It can be additionally applied to the construction of various retaining walls such as steel walls. In particular, by providing another vertical person water structure to the underground water-impervious wall according to the above-described embodiment, a more reliable water shielding effect can be obtained. In addition, this vertical person water structure can acquire the more reliable water-insulating effect by using at least 1 or more together. For this reason, for example, even if a force exceeding the assumption is applied, it is possible to ensure water shielding by using a plurality of water shielding materials in combination. Moreover, even if a crack or the like occurs in the underground water-impervious wall according to the above-described embodiment due to the action of a large force, the vertical person water structure remains until the underground impermeable wall self-repairs. In this way, it is possible to ensure water shielding performance.
また、上述の実施の形態では、固化材を配合する母材として砂を用いたが、シルト(粒径が5μm以上75μm以下)を用いても良い。 In the above-described embodiment, sand is used as a base material for blending the solidifying material, but silt (particle size is 5 μm or more and 75 μm or less) may be used.
1 地盤
2 不透水層
3 溝
4 地中遮水壁
1
Claims (5)
セメントとベントナイトの配合比が、セメント:ベントナイト=2:1〜1:10の範囲となるようにセメントとベントナイトとを秤量すると共に、
セメントおよびベントナイトで構成される固化材に対して300%以上の質量の水を用意し、
水とベントナイトとを混合した後、セメントを添加して撹拌混合することを特徴とする地中遮水壁材料の配合方法。 A method of blending underground impermeable wall material formed so that the lower end reaches the impermeable layer of the ground,
While weighing the cement and bentonite so that the blending ratio of cement and bentonite is in the range of cement: bentonite = 2: 1 to 1:10,
Prepare 300% or more of water for the solidified material composed of cement and bentonite,
A method of blending an underground impermeable wall material, comprising mixing water and bentonite, then adding cement and stirring and mixing.
前記地中遮水壁材料は、陽イオンを吸着することを特徴とする地中遮水壁材料の配合方法。 It is a blending method of the underground impermeable wall material according to claim 1,
The underground water-impervious wall material adsorbs cations, wherein the underground water-impervious wall material is blended.
地盤に不等水層に達する溝を掘削する工程と、
セメントとベントナイトの配合比が、セメント:ベントナイト=2:1〜1:10の範囲となるようにセメントとベントナイトとを秤量すると共に、セメントおよびベントナイトで構成される固化材に対して300%以上の質量の水を用意し、水とベントナイトとを撹拌混合した後、セメントを添加して撹拌混合して地中遮水壁材料を配合する工程と、
前記地中遮水壁材料を地盤の土砂と混ぜながら前記溝に打設する工程と、
を備えることを特徴とする地中遮水壁の施工方法。 It is a construction method of underground impermeable walls formed so that the lower end reaches the impermeable layer of the ground,
Excavating a ditch reaching the unequal water layer in the ground;
The cement and bentonite are weighed so that the blending ratio of cement and bentonite is in the range of cement: bentonite = 2: 1 to 1:10, and at least 300% of the solidified material composed of cement and bentonite. Preparing a mass of water, stirring and mixing water and bentonite, then adding cement and stirring and mixing to mix the underground impermeable wall material;
Placing the underground impermeable wall material in the groove while mixing with the earth and sand;
An underground impermeable wall construction method characterized by comprising:
前記地中遮水壁材料は、陽イオンを吸着することを特徴とする地中遮水壁の施工方法。 It is a construction method of the underground impermeable wall according to claim 3,
The underground impermeable wall material adsorbs cations, and the underground impermeable wall construction method.
前記溝に、前記地中遮水壁に併設される鉛直遮水構造体を構築する工程を備えることを地中遮水壁の施工方法。 The construction method of the underground impermeable wall according to claim 3 or claim 4,
The construction method of an underground impermeable wall comprising providing a step of constructing a vertical impermeable structure attached to the underground impermeable wall in the groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197160A JP4776184B2 (en) | 2004-07-02 | 2004-07-02 | Method of blending underground impermeable walls and construction method of underground impermeable walls |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197160A JP4776184B2 (en) | 2004-07-02 | 2004-07-02 | Method of blending underground impermeable walls and construction method of underground impermeable walls |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006015657A true JP2006015657A (en) | 2006-01-19 |
JP4776184B2 JP4776184B2 (en) | 2011-09-21 |
Family
ID=35790314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004197160A Expired - Fee Related JP4776184B2 (en) | 2004-07-02 | 2004-07-02 | Method of blending underground impermeable walls and construction method of underground impermeable walls |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4776184B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015172319A (en) * | 2014-03-12 | 2015-10-01 | 株式会社鴻池組 | Underground impervious wall construction material |
KR101860516B1 (en) * | 2014-09-11 | 2018-05-23 | 삼보이엔씨 주식회사 | Construction method of cut-off wall for recoverable sheet pile |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4898611A (en) * | 1972-03-25 | 1973-12-14 | ||
JPS5535533B2 (en) * | 1975-07-01 | 1980-09-13 | ||
JPH0742147B2 (en) * | 1990-12-17 | 1995-05-10 | スチライト工業株式会社 | Method for producing cement / bentonite injection liquid and powder for producing the injection liquid |
JPH07305346A (en) * | 1994-05-11 | 1995-11-21 | Shimizu Corp | Cutoff wall and method for constructing same |
JPH11310779A (en) * | 1998-02-27 | 1999-11-09 | Sumitomo Osaka Cement Co Ltd | Plastic grout |
JP2000282036A (en) * | 1999-03-30 | 2000-10-10 | Sumitomo Osaka Cement Co Ltd | Plastic injection material |
JP2000309919A (en) * | 1999-04-26 | 2000-11-07 | Taisei Corp | Construction method of soil cement underground continuous wall |
JP2001191322A (en) * | 2000-01-13 | 2001-07-17 | Taiheiyo Cement Corp | Method for kneading hydraulic substance |
JP2002096317A (en) * | 2000-09-21 | 2002-04-02 | Ohbayashi Corp | Method for manufacturing hydraulic mixture |
-
2004
- 2004-07-02 JP JP2004197160A patent/JP4776184B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4898611A (en) * | 1972-03-25 | 1973-12-14 | ||
JPS5535533B2 (en) * | 1975-07-01 | 1980-09-13 | ||
JPH0742147B2 (en) * | 1990-12-17 | 1995-05-10 | スチライト工業株式会社 | Method for producing cement / bentonite injection liquid and powder for producing the injection liquid |
JPH07305346A (en) * | 1994-05-11 | 1995-11-21 | Shimizu Corp | Cutoff wall and method for constructing same |
JPH11310779A (en) * | 1998-02-27 | 1999-11-09 | Sumitomo Osaka Cement Co Ltd | Plastic grout |
JP2000282036A (en) * | 1999-03-30 | 2000-10-10 | Sumitomo Osaka Cement Co Ltd | Plastic injection material |
JP2000309919A (en) * | 1999-04-26 | 2000-11-07 | Taisei Corp | Construction method of soil cement underground continuous wall |
JP2001191322A (en) * | 2000-01-13 | 2001-07-17 | Taiheiyo Cement Corp | Method for kneading hydraulic substance |
JP2002096317A (en) * | 2000-09-21 | 2002-04-02 | Ohbayashi Corp | Method for manufacturing hydraulic mixture |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015172319A (en) * | 2014-03-12 | 2015-10-01 | 株式会社鴻池組 | Underground impervious wall construction material |
KR101860516B1 (en) * | 2014-09-11 | 2018-05-23 | 삼보이엔씨 주식회사 | Construction method of cut-off wall for recoverable sheet pile |
Also Published As
Publication number | Publication date |
---|---|
JP4776184B2 (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Federico et al. | On the mechanical behaviour of dredged submarine clayey sediments stabilized with lime or cement | |
Wang et al. | Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea | |
Opdyke et al. | Slag-cement-bentonite slurry walls | |
Spagnoli | A review of soil improvement with non-conventional grouts | |
Abbey et al. | Understanding the performance of deep mixed column improved soils-a review | |
Sasanian | The behaviour of cement stabilized clay at high water contents | |
AU2017321804B2 (en) | Use of composite particles for protecting a lifeline structure against seismic wave damage | |
Djandjieme et al. | Swelling and strength characteristics of sand treated with paper sludge ash-based stabilizer | |
Liao et al. | Liquefaction resistance of a colloid silica grouted sand | |
Jefferis¹ | The origins of the slurry trench cut-off and a review of cement-bentonite cut-off walls in the UK | |
Ghazi | Engineering characteristics of compacted sand-bentonite mixtures | |
JP4776184B2 (en) | Method of blending underground impermeable walls and construction method of underground impermeable walls | |
Uy et al. | Hyperbolic model parameters of Philippine coal ash | |
Sayehvand et al. | Use of Grouting Method to Improve Soil Stability Against Liquefaction--A Review | |
JPH1143931A (en) | Manufacture of fluidization treated soil | |
Kim et al. | Estimation on the Field Application for In‐Site Recycling of the Wastes Soil from Preboring | |
Evans et al. | Slurry walls for groundwater control: a comparison of UK and US practice | |
JP4703575B2 (en) | Mixing design method for solidification material of impermeable wall | |
Athira et al. | A framework for geotechnical characterization of dredged reservoir sediments and its sustainable reuse after stabilization | |
Grubb et al. | Waterfront Toronto: soil–cement mix designs in sands and peats for proposed brownfields redevelopment project | |
Starcher | Impact of curing time and curing stress on the mechanical behavior of cement-improved and cement-fiber-improved soft soil | |
Nguyen et al. | Interface Shear Strength Behavior of Cement-Treated Soil under Consolidated Drained Conditions. Buildings 2023, 13, 1626 | |
Huybrechts et al. | General report of tc 211 ground improvement | |
Khairy et al. | Analysis and design of a deep subsurface dam | |
Sarker et al. | A review on ground improvement techniques to improve soil stability against liquefaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4776184 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |