JP2006015462A - Robot system having super-flexible body - Google Patents

Robot system having super-flexible body Download PDF

Info

Publication number
JP2006015462A
JP2006015462A JP2004197272A JP2004197272A JP2006015462A JP 2006015462 A JP2006015462 A JP 2006015462A JP 2004197272 A JP2004197272 A JP 2004197272A JP 2004197272 A JP2004197272 A JP 2004197272A JP 2006015462 A JP2006015462 A JP 2006015462A
Authority
JP
Japan
Prior art keywords
robot system
sensor
super
freedom
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197272A
Other languages
Japanese (ja)
Inventor
Hideo Fujimoto
英雄 藤本
Hiromi Mochiyama
洋 望山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2004197272A priority Critical patent/JP2006015462A/en
Publication of JP2006015462A publication Critical patent/JP2006015462A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a robot system which is equipped with a user-friendly sensing system (sensor system), and has a flexible body having an infinite-dimensional degree of kinetic freedom. <P>SOLUTION: The robot system is formed of the body having the infinite-dimensional degree of kinetic freedom, an actuator 2 for applying power to the body, an internal sensor 3 for detecting a feature value of the body, and a controller 4 for calculating a suitable control input from information from the sensor, and issuing an instruction to the actuator. According to the operation of the robot system, by efficiently selecting the sensing system (sensor system), desired work can be achieved based only on the information of the internal sensor though the robot system is of a super-driving system and a super-deteriorated observing system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無限次元の自由度を有する柔軟な身体をもつロボットシステムに関するものである。   The present invention relates to a robot system having a flexible body having infinite dimensional degrees of freedom.

我々の身の回りは,運動学的柔軟性の極めて高い物質で満ち溢れている.例えばジャケット,ネクタイ,ハンカチなどの布製品,コピー用紙などの各種紙類,鞄などの革製品,糸・紐・ケーブル,食物,植物等,枚挙に暇がない.これらの系の特徴的な点は,以下の3つである.第1に,運動学的自由度が極めて多く,無限次元系として近似できる.また各自由度の可動範囲が広く,線形近似できるとは限らない.第2に,すべての自由度を独立にアクチュエートすることは事実上不可能であるため,ほとんどの場合非常に高い劣駆動系,すなわち超劣駆動系である.第3に,すべての自由度に関する情報をセンシングすることは事実上不可能であるため,ほとんどの場合非常に高い劣観測系,すなわち超劣観測系である.上記の特徴を有するシステムを,超柔軟な身体を有するシステム,あるいは略して,超柔軟系と呼ぶ.
超柔軟系の特徴を直視すると,制御系としてみれば,ほとんど手に負えない,制御の極めて困難なシステムに思える.しかしながら,驚くべきは,上記の超柔軟物質を,人間は上手にマニピュレートしている事実である.人間はこれらのハンドリングを通常苦にしない.ここに,超柔軟系のシステム理論を構築する可能性が見えてくる.
もう1点特筆すべきは,脊椎動物である人間の身体そのものが,かなりの自由度を有し,非常に柔軟であるという事実である.例えば,もし脊椎動物に麻酔をかけて,脳のコントロールが効いていない状態を実現すれば,このシステムが正に超柔軟系であることを実感することができるであろう.ロシアの生理学者Bernsteinが示唆するように,極めて柔軟な身体を有する脊椎動物が高い知能を有し,昆虫のような柔軟でない外骨格系では低い知能しか実現されなかったことを鑑みると,身体の超柔軟性と知能との間に無視することのできない関係があるものと推察される.
以上の事実を踏まえると,超柔軟身体を有するロボットシステムが非常に有益であることに気付く.日常環境で活躍する器用な物体マニピュレーション能力を有する機械システムの開発,また,非常に高度な知能を有するロボットシステムの実現が期待できるからである.さらに,ロボットが柔軟な身体を有することは,今後ロボットシステムが人間と環境を共有しながら利用されていく中で,安全性の面からも重要である.
Our surroundings are full of materials with extremely high kinematic flexibility. For example, there is no time to enumerate fabric products such as jackets, ties and handkerchiefs, various papers such as copy paper, leather products such as bags, threads, strings, cables, food, plants, etc. The characteristic points of these systems are the following three. First, it has an extremely large kinematic degree of freedom and can be approximated as an infinite dimensional system. In addition, the movable range of each degree of freedom is wide, and it cannot always be linearly approximated. Secondly, it is almost impossible to actuate all degrees of freedom independently, so in most cases it is a very high underactuated system, ie a super underactuated system. Third, it is virtually impossible to sense information on all degrees of freedom, so in most cases it is a very high under observation system, that is, a super inferior observation system. A system with the above characteristics is called a system with a super-flexible body, or a system that is abbreviated as super-flexible.
Looking directly at the features of the super flexible system, it seems to be an extremely difficult system to control as a control system. However, what is surprising is the fact that humans are well manipulating the above ultra-soft materials. Humans usually do not suffer from these handling. Here, the possibility of constructing a system theory of super flexible systems becomes apparent.
Another point to note is the fact that the human body itself, which is a vertebrate, has considerable flexibility and is very flexible. For example, if you anesthetize a vertebrate and realize a state where brain control is not effective, you will realize that this system is truly a super flexible system. As suggested by Russian physiologist Bernstein, vertebrates with extremely flexible bodies have high intelligence, and inflexible exoskeletons such as insects have only realized low intelligence. It is inferred that there is a non-negligible relationship between super flexibility and intelligence.
Based on the above facts, we find that a robot system with a super flexible body is very useful. This is because the development of mechanical systems with dexterous object manipulation capabilities that play an active role in everyday environments and the realization of highly intelligent robot systems can be expected. In addition, it is important from the viewpoint of safety that the robot system has a flexible body as the robot system will be used while sharing the environment with humans.

超柔軟身体を有するロボットシステムの実現に対して,いくつかの関連研究・特許がある.
有隅らは,釣りのキャスティングからヒントを得て,釣り糸の先にロボットハンドを取り付けたシステムを提案している(非特許文献1参照).また,市川・橋本は,ロボットアームの手先に紐を取り付け,紐のマニピュレーションの研究をしている(非特許文献2参照).これらの研究は,超柔軟身体系と関係があるが,どちらも超柔軟身体の特徴量の検出に,外界センサであるカメラを用いている.外界センシングでは,超柔軟身体系の特徴量を正確,迅速に取得するためには,使用に制限があり,適用範囲が広くない.例えば,どちらの場合でも,超柔軟身体の形状を真横からカメラで撮影しており,カメラの設置場所に強い制限がある.
鈴木は,超柔軟マニピュレータと名づけた劣駆動系の制御法に関する特許を出願している(特許文献1参照).しかし実際にはここで述べるような無限次元系ではなく,有限次元系を対象としている.さらに,その有限次元系の全自由度が観測できることを前提としているため,無限次元系への拡張は困難である.
Arisumi, H., T.Kotoku, K. Komoriya: Swing Motion Control of Casting Manipulation, IEEE ControlSystems, Vol. 19, No. 4, 56/64, 1999. 市川智昭,橋本稔: ロボットによる紐の動的マニピュレーション,第19回日本ロボット学会学術講演会予稿集,1243/1244, 2001. 特開2003−266346号公報
There are several related research and patents for the realization of a robot system with an ultra-flexible body.
Arisumi et al. Proposed a system in which a robot hand is attached to the tip of a fishing line based on fishing casting (see Non-Patent Document 1). In addition, Ichikawa and Hashimoto are studying string manipulation by attaching a string to the hand of a robot arm (see Non-Patent Document 2). These studies are related to the super-flexible body system, but both use a camera that is an external sensor to detect the features of the super-flexible body. In external sensing, there is a limit to the use and the scope of application is not wide in order to accurately and quickly acquire the features of a super flexible body system. For example, in both cases, the shape of the ultra-flexible body is photographed from the side, and there are strong restrictions on the location of the camera.
Suzuki has applied for a patent on the control method of the underactuated system, named super flexible manipulator (see Patent Document 1). However, in reality, it is not an infinite dimensional system as described here, but a finite dimensional system. Furthermore, since it is assumed that all the degrees of freedom of the finite-dimensional system can be observed, it is difficult to extend it to an infinite-dimensional system.
Arisumi, H., T. Kotoku, K. Komoriya: Swing Motion Control of Casting Manipulation, IEEE ControlSystems, Vol. 19, No. 4, 56/64, 1999. Tomoaki Ichikawa, Atsushi Hashimoto: Dynamic Manipulation of Strings by Robot, 19th Annual Conference of the Robotics Society of Japan, 1243/1244, 2001. JP 2003-266346 A

本発明が解決しようとする課題は,使いやすい感覚系(センサ系)を備えた,無限次元の運動学的自由度を有する柔軟な身体をもつロボットシステムとその制御方法を与えることである.   The problem to be solved by the present invention is to provide a robot system having a flexible body having an infinite dimensional kinematic degree of freedom and a control method therefor, with an easy-to-use sensory system (sensor system).

無限次元の運動学的自由度を有する身体と,上記身体に力を印加することのできるアクチュエータと,上記身体の特徴量を検出する内界センサと,上記センサからの情報から適切な制御入力を計算しアクチュエータに指令するコントローラと,から構成されるロボットシステムを提案する. Appropriate control input from the body with infinite dimensional kinematic freedom, an actuator that can apply force to the body, an internal sensor that detects the body features, and information from the sensor We propose a robot system consisting of a controller that calculates and commands the actuator.

上記内界センサは,例えば,超柔軟身体の運動学自由度の一部の角度,角速度または角加速度センサである.また,場合によっては,位置,速度または加速度センサである.あるいは,力覚または振動覚センサであっても良い.
超柔軟身体系を実際の機械システムとして実現するためにカギとなるのは,感覚系の開発である.背景技術で述べたように,超柔軟身体系では,すべての自由度を内界センシングすることは不可能であるため,超柔軟身体の特徴量を検出するのに外界センサを使おうとするのが通常であった.本発明では,運動学的自由度の一部を検出する内界センサを用いて,無限次元の運動学的自由度を有する身体に埋め込まれた無限の選択肢の中から,制御達成に必要最小限の特徴量だけを検出する.この結果,感覚系(センサ系)が非常にシンプルになり,適用範囲の広い,制限の少ない使いやすいロボットシステムとなる.
The internal sensor is, for example, an angular, angular velocity, or angular acceleration sensor with a part of the kinematic freedom of a super flexible body. In some cases, it is a position, velocity or acceleration sensor. Alternatively, it may be a force sensor or a vibration sensor.
The key to realizing an ultra-flexible body system as an actual mechanical system is the development of sensory systems. As described in the background art, in an ultra-flexible body system, it is impossible to sense all the degrees of freedom in the inner world, so an external sensor is used to detect the features of the super-flexible body. It was normal. In the present invention, by using an internal sensor that detects a part of the kinematic degrees of freedom, the minimum necessary for achieving control from among infinite options embedded in the body having infinite dimensional kinematic degrees of freedom. Only the feature quantity of is detected. As a result, the sensory system (sensor system) becomes very simple, and the robot system has a wide range of applications and is easy to use.

超柔軟系は,その身体の3次元空間内における位相構造により,(1)3次元空間内の1次元構造(例えば,糸,紐,ケーブル,肢,体幹など)(2)3次元空間内の2次元構造(例えば,布,紙,網,手など)(3)3次元空間内の3次元構造(例えば,パン生地等の食品,粘土,皮膚など),とに分類されるのが妥当である.この中でも特に3次元空間内の1次元構造は,マニピュレーションという観点から見ても,フィッシングに代表されるキャスティングマニピュレーション,カメレオンの舌による飛遊物体捕獲,独楽の叩きなど,数多くの多彩な例が存在する. The super flexible system has (1) a one-dimensional structure in the three-dimensional space (for example, a thread, a string, a cable, a limb, a trunk, etc.) and (2) a three-dimensional space in the three-dimensional space of the body. (3) 3D structure in 3D space (eg food such as bread dough, clay, skin, etc.) is there. Among them, the 1D structure in the 3D space has many various examples from the viewpoint of manipulation, such as casting manipulation represented by fishing, trapping flying objects with the chameleon tongue, and hitting the top. Do it.

ロボットの軽量化.柔軟化による安全性の向上が期待できる.また,器用さを有するロボットシステムの実現が期待できる.   Lighter robot. The improvement of safety can be expected by flexibility. In addition, the realization of a robot system with dexterity can be expected.

本発明で提案するロボットシステムでは、アクチュエータ,コントローラは汎用的なもので良い.超柔軟身体としては,十分な強度を有していれば,身近なもの,例えば,紐,ロープ,布などを用いることができる.内界センサとしては,ロータリエンコーダなどの汎用的な角度センサが利用可能である.また,超柔軟身体の一部に歪ゲージを張ることによって,力の検出をしても良い.ただし,アクチュエータ,コントローラ,内界センサは,それら自身によって,超柔軟身体の運動を妨げないことが望ましい.   In the robot system proposed in the present invention, the actuator and controller may be general purpose. As an ultra-flexible body, familiar items such as strings, ropes, and cloth can be used if they have sufficient strength. A general-purpose angle sensor such as a rotary encoder can be used as the internal sensor. The force may be detected by putting a strain gauge on a part of the super flexible body. However, it is desirable that the actuator, controller, and internal sensor do not interfere with the movement of the super flexible body by themselves.

本発明ロボットシステムと制御方法の1実施例として,平面紐の振動抑制を示す.
図1は、本発明ロボットシステムの1実施例である.1は3次元空間における1次元超柔軟身体である紐であり,ここでは平面内の運動が許容されている.2はアクチュエータであるダイレクトドライブモータであり,水平1自由度の並進運動を行うことができる.なお,紐の一端は,このモータに固定されている.3は内界センサであるロータリエンコーダである.紐のモータとの固定端の角度を検出することができる.4はコントローラである.このように,このロボットシステムは紐部に無限の運動学的自由度を有するが,アクチュエータ自由度はわずかに1であり,超劣駆動システムである.また感覚系の自由度も1であり,紐のモータとの固定端の角度を検出するに過ぎない,超劣観測系である.
初期状態において,紐は鉛直線上にあり,静止しているものとする.まず,アクチュエータにより図2上に示すような正負パルス入力を与えると,土台部は水平方向に移動して止まり,その後紐が振動しつづける.図2下は50自由度シリアルリンク系によるシミュレーション結果を示しており,紐のポテンシャルエネルギの時間グラフである.ポテンシャルエネルギが正弦状となっていることが確認できる.これは紐が振動していることを表している.
これに対して,紐のモータとの固定端の角度から角速度を推定して,この量にゲインを掛けたものをモータ並進力としてネガティブフィーバックする.この結果を表すのが図3である.ポテンシャルエネルギがもとの最小値に速やかに収束しており,効果的に紐に対して振動抑制が実現されていることが確認できる.
このように,無限次元の超柔軟身体系に対して,根元並進力の印加と,根元部角度(角速度)検出のみで,所望の制御を達成することができる.
As an example of the robot system and control method of the present invention, the vibration suppression of the flat string is shown.
FIG. 1 shows an embodiment of the robot system of the present invention. 1 is a string which is a one-dimensional super-flexible body in a three-dimensional space, where movement in a plane is allowed. 2 is a direct drive motor, which is an actuator, and can perform translational motion with one horizontal degree of freedom. One end of the string is fixed to this motor. 3 is a rotary encoder which is an internal sensor. The angle of the fixed end with the string motor can be detected. 4 is a controller. Thus, this robot system has an infinite kinematic degree of freedom in the string part, but the actuator degree of freedom is only 1, and it is a super-poor drive system. In addition, the degree of freedom of the sensory system is 1, and it is an extremely inferior observation system that only detects the angle of the fixed end of the string motor.
In the initial state, the string is on the vertical line and is stationary. First, when a positive / negative pulse input as shown in Fig. 2 is given by the actuator, the foundation moves horizontally and stops, and then the string continues to vibrate. The lower part of Fig. 2 shows the simulation results using a 50-degree-of-freedom serial link system, and is a time graph of the potential energy of the string. It can be confirmed that the potential energy is sinusoidal. This indicates that the string is vibrating.
On the other hand, the angular velocity is estimated from the angle of the fixed end with the string motor, and this amount multiplied by the gain is negatively fed back as the motor translational force. This result is shown in FIG. The potential energy quickly converges to the original minimum value, and it can be confirmed that vibration suppression is effectively realized for the string.
In this way, the desired control can be achieved for the infinite-dimensional super flexible body system only by applying the root translation force and detecting the root angle (angular velocity).

人間と環境を共有するホームロボットシステムの基本部分として利用が可能である.   It can be used as a basic part of a home robot system that shares the environment with humans.

実施例の説明図である。It is explanatory drawing of an Example. 制御を施さなかったときのシステムの応答を説明する図である.上段は,系に加えた入力並進力の時間グラフである.下段は系のポテンシャルエネルギの時間グラフである.ポテンシャルエネルギが正弦状に変化しており,紐が振動する様子が確認できる.It is a figure explaining the response of the system when control is not performed. The top is a time graph of the input translational force applied to the system. The bottom is a time graph of the potential energy of the system. The potential energy changes sinusoidally and you can see how the string vibrates. 本発明のロボットシステムによる制御結果を説明する図である.図2と同様,上段は系に加えた入力並進力,下段は系のポテンシャルエネルギの時間グラフである.時刻2秒から制御を開始している.ポテンシャルエネルギが最小値に向かい,平面紐に減衰を与えることに成功していることが確認できる.It is a figure explaining the control result by the robot system of the present invention. As in Fig. 2, the upper graph shows the input translational force applied to the system, and the lower graph shows the potential energy of the system. Control starts from 2 seconds. It can be confirmed that the potential energy has been reduced to the minimum value and that the flat string has been successfully attenuated.

符号の説明Explanation of symbols

1 3次元空間内の1次元超柔軟身体(紐)
2 アクチュエータ(1軸ダイレクトドライブスライダ)
3 センサ(ロータリエンコーダ)
4 コントローラ
1 One-dimensional super flexible body (string) in three-dimensional space
2 Actuator (1-axis direct drive slider)
3 Sensor (rotary encoder)
4 Controller

Claims (8)

無限次元の運動学的自由度を有する身体と,上記身体に力を印加することのできるアクチュエータと,上記身体の特徴量を検出する内界センサと,上記センサからの情報から適切な制御入力を計算しアクチュエータに指令するコントローラと,から構成されるロボットシステム. Appropriate control input from the body with infinite dimensional kinematic freedom, an actuator that can apply force to the body, an internal sensor that detects the body features, and information from the sensor A robot system consisting of a controller that calculates and commands the actuator. 上記内界センサが,上記身体の運動学自由度の一部の角度,角速度または角加速度センサである請求項1記載のロボットシステム. The robot system according to claim 1, wherein the internal sensor is an angle, angular velocity or angular acceleration sensor of a part of the kinematic freedom of the body. 上記内界センサが,上記身体の運動学自由度の一部の位置,速度または加速度センサである請求項1記載のロボットシステム. The robot system according to claim 1, wherein the inner world sensor is a position, velocity or acceleration sensor of a part of the kinematic freedom of the body. 上記内界センサが,上記身体の運動学自由度の一部の力覚または振動覚センサである請求項1記載のロボットシステム. The robot system according to claim 1, wherein the inner world sensor is a force or vibration sensor that is a part of the degree of freedom of kinematics of the body. 上記ロボットシステムの身体が,紐のような3次元空間内の1次元構造を有する請求項1記載のロボットシステム. The robot system according to claim 1, wherein a body of the robot system has a one-dimensional structure in a three-dimensional space such as a string. 上記ロボットシステムの身体が,布のような3次元空間内の2次元構造を有する請求項1記載のロボットシステム. The robot system according to claim 1, wherein a body of the robot system has a two-dimensional structure in a three-dimensional space such as cloth. 上記ロボットシステムの身体が,粘土のような3次元空間内の3次元構造を有する請求項1記載のロボットシステム. The robot system according to claim 1, wherein the body of the robot system has a three-dimensional structure in a three-dimensional space such as clay. 上記3次元空間内の1次元構造を有する身体の一端に力を印加できるアクチュエータと,同じ一端に取り付けられた角度センサあるいは力センサと,からなるロボットシステムに対して,身体の振動を減衰させる制御を実現する制御方法.
Control that attenuates body vibration for a robot system comprising an actuator that can apply a force to one end of a body having a one-dimensional structure in the three-dimensional space, and an angle sensor or a force sensor attached to the same end. Control method to realize
JP2004197272A 2004-07-02 2004-07-02 Robot system having super-flexible body Pending JP2006015462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197272A JP2006015462A (en) 2004-07-02 2004-07-02 Robot system having super-flexible body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197272A JP2006015462A (en) 2004-07-02 2004-07-02 Robot system having super-flexible body

Publications (1)

Publication Number Publication Date
JP2006015462A true JP2006015462A (en) 2006-01-19

Family

ID=35790147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197272A Pending JP2006015462A (en) 2004-07-02 2004-07-02 Robot system having super-flexible body

Country Status (1)

Country Link
JP (1) JP2006015462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371355A (en) * 2010-08-11 2012-03-14 施瓦本冶金工程汽车有限公司 Sintered Gear Wheel Composite And Method For Its Production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266346A (en) * 2002-03-15 2003-09-24 Foundation For The Promotion Of Industrial Science Driving method for ultraflexible system element, driving method for free joint manipulator, and manipulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266346A (en) * 2002-03-15 2003-09-24 Foundation For The Promotion Of Industrial Science Driving method for ultraflexible system element, driving method for free joint manipulator, and manipulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371355A (en) * 2010-08-11 2012-03-14 施瓦本冶金工程汽车有限公司 Sintered Gear Wheel Composite And Method For Its Production
CN102371355B (en) * 2010-08-11 2016-06-29 施瓦本冶金工程汽车有限公司 Sintered combined thing and manufacture method thereof

Similar Documents

Publication Publication Date Title
US8515579B2 (en) Systems and methods associated with handling an object with a gripper
EP3584042A3 (en) Systems, devices, components, and methods for a compact robotic gripper with palm-mounted sensing, grasping, and computing devices and components
Giri et al. Continuum robots and underactuated grasping
US9242370B2 (en) Miniature robot having multiple legs using piezo legs having two degrees of freedom
Shin et al. Distributed-actuation mechanism for a finger-type manipulator: theory and experiments
Van Vinh et al. A new strategy for making a knot with a general-purpose arm
Suh et al. Soft pneumatic actuator skin with embedded sensors
Yu et al. Gesture-based telemanipulation of a humanoid robot for home service tasks
Hao et al. Beyond soft hands: Efficient grasping with non-anthropomorphic soft grippers
Lee et al. Development of bio-mimetic robot hand using parallel mechanisms
JP2006015462A (en) Robot system having super-flexible body
Bahrami et al. Active vibration control of piezoelectric Stewart platform based on fuzzy control
Trimmer Soft robot control systems: A new grand challenge?
Wang et al. An inchworm-inspired rigid-reinforced soft robot with combined functions of locomotion and manipulation
Dascalu et al. Tele-operated robotic arm and hand with intuitive control and haptic feedback
Mutlu et al. Design of a multi-stage stiffness enhancing unit for a soft robotic finger and its robust motion control
Al-Ibadi et al. Design of two segments continuum robot arm based on Pneumatic Muscle Actuator (PMA)
JP4148347B2 (en) Driving method of super flexible system element, driving method of free joint manipulator and manipulator
JP2007075929A (en) Method for controlling multi-finger robot hand
Maruo et al. Dynamic underactuated manipulator using a flexible body with a structural anisotropy
Sakr et al. Haptic remote control interface for robotic micro-assembly at low frequency
Ruth Robotic assemblies based on IPMC actuator
Sintov et al. Longitudinal regrasping of elongated objects
Abdul-Rani et al. Inverse kinematics-stewart platform actuated by shape memory alloy for immobilization of ankle-foot rehabilitation
Hricko et al. Small-size robotic tools with force sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070625

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012