JP2006015461A - Thermal displacement estimating method for machine tool - Google Patents

Thermal displacement estimating method for machine tool Download PDF

Info

Publication number
JP2006015461A
JP2006015461A JP2004197266A JP2004197266A JP2006015461A JP 2006015461 A JP2006015461 A JP 2006015461A JP 2004197266 A JP2004197266 A JP 2004197266A JP 2004197266 A JP2004197266 A JP 2004197266A JP 2006015461 A JP2006015461 A JP 2006015461A
Authority
JP
Japan
Prior art keywords
thermal displacement
temperature
time constant
machine tool
measured temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004197266A
Other languages
Japanese (ja)
Other versions
JP4658531B2 (en
Inventor
Harumitsu Senda
治光 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2004197266A priority Critical patent/JP4658531B2/en
Publication of JP2006015461A publication Critical patent/JP2006015461A/en
Application granted granted Critical
Publication of JP4658531B2 publication Critical patent/JP4658531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate thermal displacement in all operating conditions from a transient state to a steady state by filling the time constant difference of temperature and thermal displacement. <P>SOLUTION: When rotating speed changes during the execution of thermal displacement correction including temperature measurement (step 3), a thermal displacement time constant at the rotating speed is computed (step 4), and a measured temperature time constant and the thermal displacement time constant are used to compute each response characteristic coefficient. The measured temperature and the temperature response characteristic coefficient are used to obtain a change of heating value (step 5). With this result as input, a thermal displacement equivalent temperature change is computed (step 6) to compute thermal displacement estimation of a spindle (step 7). Based on this value, the corresponding amount of correction is outputted to an NC device (step 8). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工作機械における主軸等の熱変位を温度に基づいて推定する方法に関するものである。   The present invention relates to a method for estimating thermal displacement of a spindle or the like in a machine tool based on temperature.

一般に、工作機械は、機械の特性上各部に熱源(例えば主軸の転がり軸受)を持っており、この熱源によって発生した熱が機械各部に伝わることで、機体の熱変位を引き起こす。機体の熱変位は加工精度に大きく影響するため、その防止対策として、機体温度情報から熱変位を推定して補正する方法が広く採用されている。   Generally, a machine tool has a heat source (for example, a rolling bearing of a main shaft) in each part due to the characteristics of the machine, and heat generated by the heat source is transmitted to each part of the machine, thereby causing thermal displacement of the machine body. Since the thermal displacement of the airframe greatly affects the machining accuracy, a method for estimating and correcting the thermal displacement from the airframe temperature information is widely adopted as a preventive measure.

このような熱変位推定方法として、温度上昇の即時値を用いて式1で熱変位量を推定する方法が知られている。
推定熱変位δ=5×(温度上昇+0.8) 式1
As such a thermal displacement estimation method, a method is known in which the thermal displacement amount is estimated by Equation 1 using an immediate value of temperature rise.
Estimated thermal displacement δ = 5 × (temperature rise + 0.8) Equation 1

しかし、主軸の回転速度が変化した後の過渡状態において、温度および熱変位の時間応答は、主軸回転速度に対する一次遅れ系で表現されるため、温度上昇の即時値を用いる手法では、過渡状態において、熱変位推定誤差が顕著に現われる。なお、図5(a)の条件にて運転されたマシニングセンタの主軸熱変位と主軸軸受の温度上昇(機体温度からの相対値)の関係を図5(b)に示し、上記条件の下でのこの手法による推定熱変位量と実際の熱変位との推定誤差を図6に示す。   However, in the transient state after the rotation speed of the spindle changes, the time response of temperature and thermal displacement is expressed by a first-order lag system with respect to the spindle rotation speed. A thermal displacement estimation error appears remarkably. FIG. 5B shows the relationship between the spindle thermal displacement of the machining center operated under the conditions of FIG. 5A and the temperature rise of the spindle bearing (relative value from the body temperature). FIG. 6 shows an estimation error between the estimated thermal displacement amount and the actual thermal displacement by this method.

そこで、過渡状態においても正確に熱変位量を推定しようとするものとして、下記特許文献1に開示されたものが知られている。特許文献1のものでは、主軸の熱変位時定数より短い温度時定数と長い温度時定数を計測し、それらを合成して主軸の熱変位相当の時定数を持った変化を作り出す手法と、主軸の熱変位時定数より短い時定数を計測して、該計測結果に対して、一次遅れ処理を行うことで、主軸の熱変位相当の時定数を持った変化を作り出す手法が開示されている。   Therefore, what is disclosed in Patent Document 1 below is known as an attempt to accurately estimate the amount of thermal displacement even in a transient state. In the method of Patent Document 1, a temperature time constant shorter and longer than the thermal displacement time constant of the main spindle are measured, and a combination of them is measured to create a change having a time constant equivalent to the thermal displacement of the main spindle. A method is disclosed in which a time constant shorter than the thermal displacement time constant is measured and a change having a time constant equivalent to the thermal displacement of the spindle is created by performing a first-order lag process on the measurement result.

特開平8−174380号公報JP-A-8-174380

上記特許文献1における熱変位推定方法において、温度時定数と長い温度時定数を計測し、それらを合成して主軸の熱変位相当の時定数を持った変化を作り出す前者の手法では、時定数の異なる2種類の温度変化を計測する位置の決定が困難であるし、温度時定数の合成等をしなければならないため熱変位を推定する演算処理が複雑になってしまう。一方、短い時定数に一次遅れ処理を行うことで主軸の熱変位相当の時定数を持った変化を作り出す後者の手法では、温度計測が一次遅れ特性になっていることから、該計測結果に一次遅れ処理を行うと二次の特性となって、一次遅れ特性の主軸の熱変位特性と異なり、熱変位推定が不正確になってしまう。   In the thermal displacement estimation method in Patent Document 1 above, the former method of measuring a temperature time constant and a long temperature time constant and combining them to create a change having a time constant equivalent to the thermal displacement of the main shaft, It is difficult to determine the position at which two different types of temperature changes are measured, and the calculation processing for estimating the thermal displacement becomes complicated because it is necessary to synthesize temperature time constants. On the other hand, in the latter method, which produces a change with a time constant equivalent to the thermal displacement of the main spindle by performing a first-order lag process with a short time constant, the temperature measurement has a first-order lag characteristic. When the delay process is performed, the characteristic becomes a second order characteristic, and unlike the thermal displacement characteristic of the main axis of the first order lag characteristic, the thermal displacement estimation becomes inaccurate.

そこで、請求項1に記載の発明は、温度および熱変位の時定数差を埋めて、定常状態から過渡状態にわたる全ての運転状況において、簡易な演算処理によって熱変位を正確に推定できる方法を提供することを目的としたものである。   Therefore, the invention described in claim 1 provides a method that can accurately estimate thermal displacement by simple arithmetic processing in all operating situations ranging from a steady state to a transient state by filling in the time constant difference between temperature and thermal displacement. It is intended to do.

上記目的を達成するために、請求項1に記載の発明は、予め実験あるいは数値解析により、熱変位推定対象に係る熱変位時定数と回転速度の関係、および測定温度時定数を決定しておく段階と、工作機械の熱変位推定対象近傍の温度上昇を測定する段階と、前記測定された温度上昇と前記測定温度時定数から逆問題として一次遅れ系の応答式を用いて発熱量の変化に係る算出値を得る段階と、回転速度から得られる熱変位時定数と前記算出値とから順問題として一次遅れ系の応答式で熱変位相当値を算出する段階と、該熱変位相当値を推定熱変位量に換算する段階と、を含むことを特徴とするものである。   In order to achieve the above object, according to the first aspect of the present invention, the relationship between the thermal displacement time constant and the rotational speed related to the thermal displacement estimation target and the measured temperature time constant are determined in advance by experiment or numerical analysis. Measuring the temperature rise in the vicinity of the thermal displacement estimation target of the machine tool, and changing the calorific value using the response equation of the first-order lag system as an inverse problem from the measured temperature rise and the measured temperature time constant. Obtaining the calculated value, calculating the thermal displacement equivalent value from the thermal displacement time constant obtained from the rotational speed and the calculated value as a forward problem using a first-order lag response formula, and estimating the thermal displacement equivalent value And a step of converting to a thermal displacement amount.

請求項2に記載の発明は、測定された温度上昇として、主軸近傍の測定温度から、工作機械の基準となる構造体の測定温度を減算した差を用いることを特徴とするものである。   The invention described in claim 2 is characterized in that a difference obtained by subtracting a measured temperature of a structure serving as a reference for a machine tool from a measured temperature in the vicinity of the spindle is used as the measured temperature rise.

請求項1に記載の発明によれば、高精度な熱変位量を演算するために一次遅れ応答処理演算値を応用し、熱変位を推定演算するようにしたので、従来のような複雑な演算が無くなり、演算処理能力を軽減しながら、正確に熱変位の推定が行える効果がある。   According to the first aspect of the present invention, the first-order lag response processing calculation value is applied to calculate the thermal displacement amount with high accuracy, and the thermal displacement is estimated and calculated. Thus, there is an effect that the thermal displacement can be estimated accurately while reducing the processing capacity.

請求項2に記載の発明によれば、主軸の機体温度に対する上昇値を用いるので、上記効果に加えて、室温変化にともなう温度変化が排除でき、主軸のみの熱変位を高精度に推定できる効果がある。   According to the second aspect of the present invention, since the increase value of the main shaft relative to the airframe temperature is used, in addition to the above-described effect, the temperature change accompanying the change in the room temperature can be eliminated, and the effect that the thermal displacement of only the main shaft can be accurately estimated. There is.

以下、熱変位推定対象を主軸とした本発明の実施形態に係る工作機械の主軸熱変位推定方法について説明する。一般に、温度変化(主軸とベッドつまり室温との温度差)と主軸の熱変位量とは、主軸の回転速度が一定した定常状態において、比例関係
熱変位=K・温度変化 式2
K:熱変位変換係数 (μm/℃)
でよく一致することが知られている。
Hereinafter, a spindle thermal displacement estimation method for a machine tool according to an embodiment of the present invention in which a thermal displacement estimation target is a spindle will be described. In general, the temperature change (temperature difference between the main shaft and the bed, that is, the room temperature) and the thermal displacement of the main shaft are proportional to each other in a steady state where the rotation speed of the main shaft is constant.
K: Thermal displacement conversion coefficient (μm / ° C)
It is well known that

また、熱変位時定数T(N)(分)の回転速度N(min−1)に対する変化は、予め実験あるいは数値解析により求めることができ、各特性係数A〜Cを調整して式3にフィットさせることで表現される。
T(N)=A・e−N/C+B 式3
A:第1特性係数 B:第2特性係数 C:第3特性係数
Further, the change of the thermal displacement time constant T (N) (minute) with respect to the rotational speed N (min −1 ) can be obtained in advance by experiment or numerical analysis, and each characteristic coefficient A to C is adjusted to the expression 3 Expressed by fitting.
T (N) = A · e− N / C + B Equation 3
A: First characteristic coefficient B: Second characteristic coefficient C: Third characteristic coefficient

一方、主軸の回転速度が変化した後の過渡状態において、温度および熱変位の時間応答は、主軸回転速度に対する一次遅れ系で表現でき、一次遅れ系の応答処理には、例えばデジタルで一次遅れ応答を表現した式4が好ましく使える。なお、この式4において、入力Xを与えれば、順問題として出力Yが容易に求められる。
=Yn−1+(X−Yn−1 )・α 式4
:n回目の入力 Y:n回目の一次遅れ応答出力
α:応答特性係数
On the other hand, in a transient state after the rotation speed of the spindle changes, the time response of temperature and thermal displacement can be expressed by a first-order lag system with respect to the spindle rotation speed. Equation 4 expressing is preferably used. Incidentally, in this equation 4, if you give an input X n, the output Y n can be easily determined as a forward problem.
Y n = Y n-1 + (X n -Y n-1) · α formula 4
X n: n-th input Y n: n-th of the first-order lag response output
α: Response characteristic coefficient

ところで、式4を変形し、応答特性係数αを温度応答特性係数αとすることで、式5が得られる。なお、式5により、測定が容易な温度変化TYから、一次遅れ系の逆問題として、入力である発熱量の変化TXを求めることが可能になる。
TX=TYn−1+(TY−TYn−1)/α 式5
However, by modifying the equation 4, the response characteristic coefficient alpha by a temperature response characteristic coefficient alpha T, the expression 5 is obtained. Incidentally, the equation 5, the measurement is easy temperature change TY n, as an inverse problem of first-order lag system, it is possible to determine a change in TX n calorific is input.
TX n = TY n-1 + (TY n -TY n-1 ) / α T equation 5

具体的には、式5のTYに測定温度を適用し、TYn−1に前回の測定温度を適用することで、発熱量の変化に相当するTXを得ることができる。ここで、温度応答特性係数αは、予め実験または数値解析により求めた測定温度時定数T、および温度測定間隔Δtから、温度変化に対応するものとして式6より求められる。
α=Δt/(Δt+T) 式6
Specifically, TX n corresponding to a change in the amount of generated heat can be obtained by applying the measurement temperature to TY n of Equation 5 and applying the previous measurement temperature to TY n-1 . Here, the temperature response characteristic coefficient α T is obtained from Equation 6 as a value corresponding to the temperature change from the measured temperature time constant T T obtained in advance by experiment or numerical analysis and the temperature measurement interval Δt.
α T = Δt / (Δt + T T ) Equation 6

また、温度変化と主軸熱変位とは主軸回転速度の一次遅れ系の応答を示すことから、式5により算出された算出値TXを入力として式4の応答特性係数αに主軸の特性を適用した熱変位応答特性係数αとし、式4を式7に変形することで、主軸熱変位に相当する熱変位相当値DYを得ることができ、これを式2における熱変位変換係数Kと乗算することで、主軸の推定熱変位量に変換することができる。
DY=DYn−1+(TX−DYn−1)・α 式7
Further, since the temperature change and the main shaft thermal displacement indicate the response of the first-order lag system of the main shaft rotation speed, the main shaft characteristic is applied to the response characteristic coefficient α of Expression 4 by using the calculated value TX n calculated by Expression 5 as an input. The thermal displacement response characteristic coefficient α D is obtained and the equation 4 is transformed into the equation 7 to obtain a thermal displacement equivalent value DY n corresponding to the main shaft thermal displacement, which is expressed as the thermal displacement conversion coefficient K in the equation 2 By multiplying, it can be converted into an estimated thermal displacement amount of the main shaft.
DY n = DY n-1 + (TX n -DY n-1) · α D type 7

なお、ここでの熱変位応答特性係数αは、温度測定時点での主軸回転速度Nにおける熱変位時定数T(N)から、熱変位推定演算に係るものとして式8より求められる。また、熱変位変換係数Kは、最後に乗算せず、測定温度が得られた際に測定温度に乗算しておくこと等も可能である。
α=Δt/(Δt+T(N)) 式8
Note that the thermal displacement response characteristic coefficient α D here is obtained from Equation 8 as a thermal displacement estimation calculation from the thermal displacement time constant T (N) at the spindle rotational speed N at the time of temperature measurement. Further, the thermal displacement conversion coefficient K can be multiplied by the measured temperature when the measured temperature is obtained without being multiplied at the end.
α D = Δt / (Δt + T (N)) Equation 8

続いて、上記実施形態を縦型マシニングセンタに適用した実施例につき適宜図面に基づいて説明する。図1は当該実施例に係る熱変位補正システムを示すものである。縦型マシニングセンタは、周知のように、主軸ヘッド1、コラム2、主軸3、基準となる構造体としてのベッド4、移動テーブル5等から構成されている。   Next, an example in which the above embodiment is applied to a vertical machining center will be described based on the drawings as appropriate. FIG. 1 shows a thermal displacement correction system according to this embodiment. As is well known, the vertical machining center includes a spindle head 1, a column 2, a spindle 3, a bed 4 as a reference structure, a moving table 5, and the like.

主軸3にはその軸受発熱温度を検出する第1温度センサ6が取り付けられ、ベッド4には基準温度を検出する第2温度センサ7が取り付けられている。温度測定装置8は、各温度センサ6,7からの温度を示すアナログ信号をデジタル信号に変換して測定温度として数値化し、第1温度センサ6の測定温度から第2温度センサ7の測定温度を減算して温度上昇値を得る。熱変位推定演算器9は、記憶装置10に予め記憶された補正パラメータに基づき、測定に係る温度変化等の値を所定の演算式にあてはめて熱変位の補正量を推定する。NC装置11は、その補正量に従って周知の方法で位置補正を行う。   A first temperature sensor 6 for detecting the bearing heat generation temperature is attached to the main shaft 3, and a second temperature sensor 7 for detecting a reference temperature is attached to the bed 4. The temperature measuring device 8 converts an analog signal indicating the temperature from each of the temperature sensors 6 and 7 into a digital signal and digitizes it as a measured temperature, and calculates the measured temperature of the second temperature sensor 7 from the measured temperature of the first temperature sensor 6. Subtract the temperature rise value. The thermal displacement estimation calculator 9 estimates a correction amount of thermal displacement by applying a value such as a temperature change related to the measurement to a predetermined arithmetic expression based on a correction parameter stored in advance in the storage device 10. The NC device 11 performs position correction by a known method according to the correction amount.

次に、位置補正を行う前の工作機械について、主軸の熱変位時定数Tδと主軸回転速度Nとの関係、並びに測定温度時定数と主軸回転速度Nとの関係を測定する実験、或いは解析をあらかじめ行い、熱変位時定数Tδと主軸回転速度Nとの関係式T(N)、並びに測定温度時定数を決定しておく。   Next, with respect to the machine tool before position correction, an experiment or analysis for measuring the relationship between the thermal displacement time constant Tδ of the spindle and the spindle rotational speed N and the relationship between the measured temperature time constant and the spindle rotational speed N is performed. It is performed in advance, and the relational expression T (N) between the thermal displacement time constant Tδ and the spindle rotational speed N and the measurement temperature time constant are determined.

図2は図1に示した主軸の熱変位特性に対する回転速度と熱変位時定数の関係を示すものであり、これから各特性係数A〜Cを、A=5.25、B=7.58、C=3000と定めて、関係式T(N)を次式に同定する。
熱変位時定数T(N)=5.25・e−N/3000+7.58 式9
FIG. 2 shows the relationship between the rotational speed and the thermal displacement time constant with respect to the thermal displacement characteristics of the spindle shown in FIG. 1, and from this, the characteristic coefficients A to C are expressed as A = 5.25, B = 7.58, With C = 3000, the relational expression T (N) is identified by the following expression.
Thermal displacement time constant T (N) = 5.25 · e −N / 3000 +7.58 Equation 9

ここで具体例として、主軸回転速度2000min−1時の熱変位演算について説明する。実験によって求めた測定温度時定数は5.8分であり、式9から熱変位時定数は、T(2000)=10.3分である。更に、実験および式2から、熱変位変換係数は、K=5μm/℃と求められている。この場合、温度測定間隔を10秒とすると、温度変化に対応する式5の温度応答特性係数αは式6より0.028であり、熱変位を推定演算する式7の熱変位応答特性係数αは式8より0.016となる。 Here, as a specific example, thermal displacement calculation at a spindle rotational speed of 2000 min −1 will be described. The measured temperature time constant determined by the experiment is 5.8 minutes, and the thermal displacement time constant from Equation 9 is T (2000) = 10.3 minutes. Furthermore, from the experiment and Equation 2, the thermal displacement conversion coefficient is determined to be K = 5 μm / ° C. In this case, assuming that the temperature measurement interval is 10 seconds, the temperature response characteristic coefficient α T in Expression 5 corresponding to the temperature change is 0.028 from Expression 6, and the thermal displacement response characteristic coefficient in Expression 7 for estimating and calculating the thermal displacement. α D becomes 0.016 from the equation 8.

図3は、本実施例に係るフローチャートである。まず、温度測定値を取得し(Step1)、温度上昇演算を含む熱変位補正を実行する(Step2)。この実行中に再び回転速度が変化すると(Step3)、式3によりその回転速度における熱変位時定数T(N)が演算される(Step4)。   FIG. 3 is a flowchart according to the present embodiment. First, a temperature measurement value is acquired (Step 1), and thermal displacement correction including a temperature increase calculation is executed (Step 2). When the rotational speed changes again during this execution (Step 3), the thermal displacement time constant T (N) at the rotational speed is calculated by Equation 3 (Step 4).

次いで、式5により発熱量の変化が演算される(Step5)。この結果をもとに、式7によりその回転速度における熱変位時定数T(N)の熱変位応答特性係数αを使って、熱変位相当温度変化DYが演算される(Step6)。この結果に、熱変位変換係数Kを式2により乗算することで、主軸の推定熱変位量に変換する(Step7)。その後、これに相当する補正量がNC装置11に出力され、NC装置11が熱変位補正処理を行う(Step8)。そして、適宜補正処理が続行される(Step9)。 Next, the change in the amount of heat generated is calculated by Equation 5 (Step 5). Based on this result, the thermal displacement equivalent temperature change DY n is calculated using the thermal displacement response characteristic coefficient α D of the thermal displacement time constant T (N) at the rotational speed according to Equation 7 (Step 6). By multiplying this result by the thermal displacement conversion coefficient K according to Equation 2, it is converted into the estimated thermal displacement amount of the main shaft (Step 7). Thereafter, a correction amount corresponding to this is output to the NC device 11, and the NC device 11 performs a thermal displacement correction process (Step 8). Then, the correction process is continued as appropriate (Step 9).

なお、この処理では熱変位相当温度変化DYを算出してから熱変位量変換したが、計測した温度(Step2)に対して、予め熱変位変換係数Kを乗算して処理を行っても結果は同じになる。 Although the thermal displacement amount conversion after calculating the thermal distortion corresponding temperature change DY n in this process, with respect to the measured temperature (Step2), be subjected to a treatment by multiplying the pre-thermal displacement conversion coefficient K results Will be the same.

図4は、本実施例に係る熱変位推定における、図5(a)の条件にて運転された場合の推定誤差を示す特性図を示す。温度上昇即時値を用いて式1により推定した従来例に係る図6と比較し、本実施例ではシンプルな演算ながら主軸が時定数の異なる回転速度に変化した場合でも正確に熱変位を推定できることが明らかである。   FIG. 4 is a characteristic diagram showing an estimation error in the case of operating under the condition of FIG. 5A in the thermal displacement estimation according to the present embodiment. Compared with FIG. 6 related to the conventional example estimated by Equation 1 using the immediate temperature rise value, this embodiment can accurately estimate the thermal displacement even when the spindle changes to a rotational speed with a different time constant in a simple calculation. Is clear.

なお、本発明は上記実施例に限定されることはなく、例えば横型マシニングセンタを始めとする他の工作機械に適用したり、一次遅れ系の応答処理を他の形式のフィルタにて実行したり、主軸以外を対象として熱変位推定を実施したりすることができる。   Note that the present invention is not limited to the above-described embodiments, for example, it is applied to other machine tools such as a horizontal machining center, or the first-order delay system response processing is executed by another type of filter. Thermal displacement estimation can be performed for objects other than the main shaft.

本発明の方法が実施される縦型マシニングセンタの熱変位補正システムを示す概略図である。It is the schematic which shows the thermal displacement correction | amendment system of the vertical machining center with which the method of this invention is implemented. 主軸の熱変位時定数と回転速度の関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between the thermal displacement time constant of a main axis | shaft, and rotational speed. 本発明の熱変位推定方法の一実施例を示すフローチャートである。It is a flowchart which shows one Example of the thermal displacement estimation method of this invention. 本発明の方法により熱変位を推定した誤差を、図5と経時変化の横軸を揃えて示す特性図である。It is a characteristic view which shows the error which estimated the thermal displacement by the method of this invention, aligning the horizontal axis of FIG. 5 and a time-dependent change. 経時変化の横軸を揃えて示す、(a)主軸の回転速度を示す特性図、(b)主軸と温度上昇とを示す特性図である。It is a characteristic diagram showing the rotational speed of the main shaft, (a) showing the rotational speed of the main shaft, and (b) showing the main shaft and the temperature rise. 従来例としての温度上昇即時値により熱変位を推定した誤差を、図5と経時変化の横軸を揃えて示す特性図である。FIG. 6 is a characteristic diagram showing an error in estimating a thermal displacement based on an immediate value of temperature rise as a conventional example, with FIG. 5 aligned with the horizontal axis of change with time.

符号の説明Explanation of symbols

3 主軸
4 ベッド(構造体)
6 第1温度センサ
7 第2温度センサ
8 温度測定装置
9 熱変位推定演算器
10 記憶装置
11 NC装置
3 Spindle 4 Bed (structure)
6 First temperature sensor 7 Second temperature sensor 8 Temperature measurement device 9 Thermal displacement estimation calculator 10 Storage device 11 NC device

Claims (2)

予め実験あるいは数値解析により、熱変位推定対象に係る熱変位時定数と回転速度の関係、および測定温度時定数を決定しておく段階と、
工作機械の熱変位推定対象近傍の温度を測定する段階と、
前記測定された温度と前記測定温度時定数から逆問題として一次遅れ系の応答式を用いて発熱量の変化に係る算出値を得る段階と、
回転速度から得られる熱変位時定数と前記算出値とから順問題として一次遅れ系の応答式で熱変位相当温度変化を算出する段階と、
該熱変位相当温度変化を推定熱変位量に換算する段階と、
を含むことを特徴とする工作機械の熱変位推定方法。
Steps for determining the relationship between the thermal displacement time constant and the rotational speed related to the thermal displacement estimation object and the measurement temperature time constant in advance by experiment or numerical analysis;
Measuring the temperature in the vicinity of the thermal displacement estimation target of the machine tool;
Obtaining a calculated value related to a change in calorific value using a response equation of a first-order lag system as an inverse problem from the measured temperature and the measured temperature time constant;
Calculating a temperature change corresponding to thermal displacement by a response equation of a first-order lag system as a forward problem from a thermal displacement time constant obtained from a rotation speed and the calculated value;
Converting the thermal displacement equivalent temperature change into an estimated thermal displacement amount;
A method of estimating thermal displacement of a machine tool, comprising:
測定された温度として、主軸近傍の測定温度から、工作機械の基準となる構造体の測定温度を減算した温度変化を用いることを特徴とする請求項1に記載の工作機械の熱変位推定方法。   2. The thermal displacement estimation method for a machine tool according to claim 1, wherein a temperature change obtained by subtracting a measured temperature of a structure serving as a reference for a machine tool from a measured temperature in the vicinity of the spindle is used as the measured temperature.
JP2004197266A 2004-07-02 2004-07-02 Thermal displacement estimation method for machine tools Expired - Fee Related JP4658531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197266A JP4658531B2 (en) 2004-07-02 2004-07-02 Thermal displacement estimation method for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197266A JP4658531B2 (en) 2004-07-02 2004-07-02 Thermal displacement estimation method for machine tools

Publications (2)

Publication Number Publication Date
JP2006015461A true JP2006015461A (en) 2006-01-19
JP4658531B2 JP4658531B2 (en) 2011-03-23

Family

ID=35790146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197266A Expired - Fee Related JP4658531B2 (en) 2004-07-02 2004-07-02 Thermal displacement estimation method for machine tools

Country Status (1)

Country Link
JP (1) JP4658531B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005676A1 (en) 2007-01-29 2008-08-21 Okuma Corporation Thermal displacement estimation method for machine tool involves applying compensation amount calculated from correction coefficient and elapsed time after main-shaft rotational speed change to temperature-considerable emitted heat amount
JP2009248209A (en) * 2008-04-02 2009-10-29 Okuma Corp Method of estimating thermal displacement of machine tool
JP2010099761A (en) * 2008-10-22 2010-05-06 Toshiba Mach Co Ltd Method of correcting thermal displacement for numerically controlled machine tool
KR101503178B1 (en) 2013-11-29 2015-03-16 현대위아 주식회사 Apparatus for compensating thermal deformation in machine tool and method for driving the same
JP2016087777A (en) * 2014-10-29 2016-05-23 オークマ株式会社 Temperature adjustment system control method in machine tool
JP2018103274A (en) * 2016-12-22 2018-07-05 オークマ株式会社 Machine tool temperature estimation method and thermal displacement correction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174380A (en) * 1994-06-16 1996-07-09 Hitachi Seiki Co Ltd Method and device for correcting thermal displacement for machine tool
JPH08215983A (en) * 1995-02-12 1996-08-27 Hitachi Seiki Co Ltd Thermal displacement correcting method of machine tool and device thereof
JPH08300242A (en) * 1995-05-07 1996-11-19 Hitachi Seiki Co Ltd Thermal displacement compensating method of machine tool and device therefor
JPH09225781A (en) * 1996-02-19 1997-09-02 Okuma Mach Works Ltd Method for estimating thermal displacement of machine tool
JPH1158183A (en) * 1997-08-19 1999-03-02 Okuma Mach Works Ltd Thermal displacement estimating method of machine tool
JPH11347889A (en) * 1998-06-04 1999-12-21 Okuma Corp Thermal displacement estimating method for machine tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174380A (en) * 1994-06-16 1996-07-09 Hitachi Seiki Co Ltd Method and device for correcting thermal displacement for machine tool
JPH08215983A (en) * 1995-02-12 1996-08-27 Hitachi Seiki Co Ltd Thermal displacement correcting method of machine tool and device thereof
JPH08300242A (en) * 1995-05-07 1996-11-19 Hitachi Seiki Co Ltd Thermal displacement compensating method of machine tool and device therefor
JPH09225781A (en) * 1996-02-19 1997-09-02 Okuma Mach Works Ltd Method for estimating thermal displacement of machine tool
JPH1158183A (en) * 1997-08-19 1999-03-02 Okuma Mach Works Ltd Thermal displacement estimating method of machine tool
JPH11347889A (en) * 1998-06-04 1999-12-21 Okuma Corp Thermal displacement estimating method for machine tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005676A1 (en) 2007-01-29 2008-08-21 Okuma Corporation Thermal displacement estimation method for machine tool involves applying compensation amount calculated from correction coefficient and elapsed time after main-shaft rotational speed change to temperature-considerable emitted heat amount
US7778725B2 (en) 2007-01-29 2010-08-17 Okuma Corporation Method for estimating thermal displacement in machine tool
DE102008005676B4 (en) * 2007-01-29 2013-12-12 Okuma Corporation Method for estimating thermally induced displacements in a machine tool
JP2009248209A (en) * 2008-04-02 2009-10-29 Okuma Corp Method of estimating thermal displacement of machine tool
JP2010099761A (en) * 2008-10-22 2010-05-06 Toshiba Mach Co Ltd Method of correcting thermal displacement for numerically controlled machine tool
KR101503178B1 (en) 2013-11-29 2015-03-16 현대위아 주식회사 Apparatus for compensating thermal deformation in machine tool and method for driving the same
JP2016087777A (en) * 2014-10-29 2016-05-23 オークマ株式会社 Temperature adjustment system control method in machine tool
JP2018103274A (en) * 2016-12-22 2018-07-05 オークマ株式会社 Machine tool temperature estimation method and thermal displacement correction method

Also Published As

Publication number Publication date
JP4658531B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4891104B2 (en) Thermal displacement estimation method for machine tools
JP3151655B2 (en) Estimation method of thermal displacement of machine tools
CN100436049C (en) Method and apparatus for correcting thermal displacement of machine tool
JP3136464B2 (en) Thermal displacement compensation method for machine tools
ITMI20072282A1 (en) METHOD TO REVEAL AN ANOMALY OF A TEMPERATURE SENSOR IN A MACHINE TOOL
JP3413068B2 (en) Estimation method of thermal displacement of machine tools
JP2002086329A (en) Method and apparatus for calculating thermal displacement correction quantity of machine tool
JP2018103274A (en) Machine tool temperature estimation method and thermal displacement correction method
JP4505385B2 (en) Thermal displacement estimation method for machine tools
JP4658531B2 (en) Thermal displacement estimation method for machine tools
JP4880634B2 (en) Thermal displacement estimation method for machine tools
JP4242760B2 (en) Machine tool thermal displacement compensation method
JP3422462B2 (en) Estimation method of thermal displacement of machine tools
JP4469681B2 (en) Method for correcting machining errors of machine tools
JP6561003B2 (en) Machine tool thermal displacement correction method, machine tool
JP6656945B2 (en) Compensation method for thermal displacement of machine tools
JP3805932B2 (en) Thermal displacement estimation method for machine tools
JP4358705B2 (en) Method for correcting thermal deformation error of machine tool
JP2008146411A (en) System for stabilizing thermal displacement decay time constant of machine tool
JP2001269840A (en) Thermal displacement estimating method of machine tool
JP3495255B2 (en) Estimation method of thermal displacement of machine tool
JP6553907B2 (en) Machine Tools
JP2004195594A (en) Machining method of machine tool
JP2002301637A (en) Method for correcting thermal displacement for machine tool
JP2007331160A (en) Control device of electromotive injection molding machine and pressure detection method of electromotive injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees