JP2006015337A - Catalyst for hydrocracking wax-containing raw material oil - Google Patents

Catalyst for hydrocracking wax-containing raw material oil Download PDF

Info

Publication number
JP2006015337A
JP2006015337A JP2005161707A JP2005161707A JP2006015337A JP 2006015337 A JP2006015337 A JP 2006015337A JP 2005161707 A JP2005161707 A JP 2005161707A JP 2005161707 A JP2005161707 A JP 2005161707A JP 2006015337 A JP2006015337 A JP 2006015337A
Authority
JP
Japan
Prior art keywords
catalyst
wax
noble metal
raw material
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005161707A
Other languages
Japanese (ja)
Other versions
JP5027391B2 (en
Inventor
Akira Iino
明 飯野
Yukihiro Sakota
幸広 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005161707A priority Critical patent/JP5027391B2/en
Publication of JP2006015337A publication Critical patent/JP2006015337A/en
Application granted granted Critical
Publication of JP5027391B2 publication Critical patent/JP5027391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a catalyst for hydrocracking wax-containing raw material oil, which is used when the wax-containing raw material oil is hydrotreated and with which a kerosene/light oil fraction having excellent quality is obtained with high selectivity in high yield, and to provide a method for manufacturing the catalyst and a method for hydrocracking the wax-containing raw material oil effectively by using the catalyst. <P>SOLUTION: This catalyst for hydrocracking the wax-containing raw material oil is obtained by depositing a noble metal component on a carrier and has such a characteristic that the ratio A/B of the concentration degree A of the noble metal on the outside surface of this catalyst to that B of the noble metal in the center of this catalyst is 0.2-2 when the concentration distribution of the noble metal in the cross section of this catalyst is measured by an electron probe microanalysis (EPMA). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、含蝋原料油の水素化分解触媒及びその製造方法、並びに該触媒を使用する含蝋原料油の水素化分解方法に関する。   The present invention relates to a hydrocracking catalyst for wax-containing feedstock and a method for producing the same, and a hydrocracking method for wax-containing feedstock using the catalyst.

天然ガスから製造される合成ガス(CO、水素)、あるいは石炭、重質残渣油のガス化から生成するCO、水素を用い、フィッシャー・トロプシュ(FT)反応により合成するFT油、潤滑油の基油又はブレンド基材を製造するためのスラックワックス、石油精製及び石油化学のワックス含有留出油などはパラフィンを多く含有し、流動性、燃焼性等の品質に問題があり、そのまま輸送用、民生用石油系燃料機器に用いることはできない。そこで、上記FT油などの含蝋原料油を水素化処理する触媒で、灯軽油留分の選択率、収率が高く、かつ灯軽油留分の品質が良好である水素化分解触媒の開発が望まれている。
特許的には、「α−アルミナ等の不活性コア上にフッ化したγ−アルミナ上白金の外部シェルを含む触媒」が開示されている(特許文献1)。また、「酸性担体に担持された少なくとも1種の貴金属を含む触媒において、前記貴金属の分散度が20%未満であることを特徴とする前記触媒」が開示されている(特許文献2)。しかし、以上の特許文献1,2に開示されている触媒は、性能的に未だ改良の余地があった。
Base of FT oil and lubricating oil synthesized by Fischer-Tropsch (FT) reaction using synthetic gas (CO, hydrogen) produced from natural gas, CO, hydrogen generated from gasification of coal and heavy residual oil Slack wax, oil refinery and petrochemical wax-containing distillate for producing oil or blend base material contains a lot of paraffin, and there are problems in quality such as fluidity and flammability. It cannot be used for petroleum fuel equipment. Therefore, a hydrocracking catalyst that hydrotreats wax-containing raw material oils such as the above-mentioned FT oil, has a high selectivity and yield for the kerosene oil fraction, and has good quality for the kerosene oil fraction. It is desired.
Patentally, “a catalyst including an outer shell of platinum on γ-alumina fluorided on an inert core such as α-alumina” is disclosed (Patent Document 1). Further, “a catalyst containing at least one kind of noble metal supported on an acidic carrier, wherein the degree of dispersion of the noble metal is less than 20%” is disclosed (Patent Document 2). However, the catalysts disclosed in Patent Documents 1 and 2 still have room for improvement in performance.

特開平5−230472号公報JP-A-5-230472 特開2000−334300号公報JP 2000-334300 A

本発明は、このような状況下でなされたもので、含蝋原料油を水素化処理する際に用いられ、灯軽油留分の選択率、収率が高く、かつ灯軽油留分の品質が良好である水素化分解触媒及びその製造方法、並びに該触媒を使用する含蝋原料油の効果的な水素化分解方法を提供することを目的とするものである。   The present invention has been made under such circumstances, and is used when hydrotreating a wax-containing raw material oil. The selectivity and yield of the kerosene oil fraction are high, and the quality of the kerosene oil fraction is high. It is an object of the present invention to provide a hydrocracking catalyst that is good and a method for producing the same, and an effective hydrocracking method for wax-containing feedstock using the catalyst.

本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、活性金属の機能を効率的に発現させるために、触媒の全体に活性金属を均一に担持させることにより、分解活性が大きく向上した触媒が得られ、その目的を達成し得ることを見出した。本発明は、かかる知見に基いて完成したものである。
すなわち、本発明は、
(1)担体に貴金属成分が担持された触媒であって、エレクトロン・プローブ・マイクロ・アナリシス(EPMA)測定における該触媒断面の貴金属の濃度分布において、外表面の濃度高さAと中心の濃度高さBの比A/Bが0.2〜2の範囲にあることを特徴とする含蝋原料油の水素化分解触媒、
(2)前記比A/Bが0.8〜1.8の範囲にある上記(1)記載の含蝋原料油の水素化分解触媒、
(3)貴金属成分が白金成分及び/又はパラジウム成分である上記(1)又は(2)に記載の含蝋原料油の水素化分解触媒、
(4)担体がゼオライト、アルミナ又はアルミナと他元素酸化物との複合酸化物である上記(1)〜(3)のいずれかに記載の含蝋原料油の水素化分解触媒、
(5)複合酸化物がアルミナ−ボリアである上記(4)記載の含蝋原料油の水素化分解触媒、
(6)ゼオライトがY型ゼオライト、超安定Y型ゼオライト(USY)、及びβ−ゼオライトから選ばれる少なくとも一種のゼオライトである上記(4)記載の含蝋原料油の水素化分解触媒、
(7)担体に貴金属塩を担持するに際し、貴金属塩として、テトラアンミン硝酸塩又はテトラアンミン水酸塩を使用することを特徴とする上記(1)〜(6)のいずれかに記載の含蝋原料油の水素化分解触媒の製造方法、
(8)pH3〜14において、貴金属塩を担体に担持させる上記(7)記載の含蝋原料油の水素化分解触媒の製造方法、及び
(9)上記(1)〜(6)のいずれかに記載の水素化分解触媒を使用することを特徴とする含蝋原料油の水素化分解方法、
を提供するものである。
In order to achieve the above-mentioned object, the present inventors have conducted extensive research. As a result, in order to efficiently express the function of the active metal, the active metal is uniformly supported on the entire catalyst, so that the decomposition activity can be achieved. It has been found that a catalyst with greatly improved can be obtained and the object can be achieved. The present invention has been completed based on such knowledge.
That is, the present invention
(1) A catalyst in which a noble metal component is supported on a carrier, and in the concentration distribution of the noble metal in the cross section of the catalyst in the electron probe micro analysis (EPMA) measurement, the concentration height A on the outer surface and the concentration concentration on the center A hydrocracking catalyst for wax-containing feedstock, characterized in that the ratio A / B in the range B is in the range of 0.2-2;
(2) The hydrocracking catalyst for wax-containing feedstock according to (1), wherein the ratio A / B is in the range of 0.8 to 1.8,
(3) The hydrocracking catalyst for a wax-containing raw material oil according to (1) or (2), wherein the noble metal component is a platinum component and / or a palladium component,
(4) The hydrocracking catalyst for a wax-containing raw material oil according to any one of (1) to (3), wherein the carrier is zeolite, alumina, or a composite oxide of alumina and another element oxide,
(5) The hydrocracking catalyst for wax-containing raw material oil according to (4), wherein the composite oxide is alumina-boria,
(6) The hydrocracking catalyst for a wax-containing raw material oil according to (4), wherein the zeolite is at least one zeolite selected from Y-type zeolite, ultra-stable Y-type zeolite (USY), and β-zeolite,
(7) The wax-containing raw material oil according to any one of (1) to (6) above, wherein tetraammine nitrate or tetraammine hydrochloride is used as the noble metal salt when the noble metal salt is supported on the carrier. Production method of hydrocracking catalyst,
(8) The method for producing a hydrocracking catalyst for a wax-containing raw material oil according to (7) above, wherein a noble metal salt is supported on a carrier at pH 3 to 14, and (9) any one of (1) to (6) above A hydrocracking method for wax-containing feedstock characterized by using the hydrocracking catalyst described in the above,
Is to provide.

本発明によれば、含蝋原料油を水素化処理する際に用いられ、灯軽油留分の選択率、収率が高く、かつ灯軽油留分の品質が良好である水素化分解触媒及びその製造方法、並びに該触媒を使用する含蝋原料油の効果的な水素化分解方法を提供することができる。   According to the present invention, a hydrocracking catalyst used in hydrotreating a wax-containing raw material oil, having a high selectivity and yield of a kerosene oil fraction and a good quality of the kerosene oil fraction, and its It is possible to provide a production method and an effective hydrocracking method for a wax-containing raw material oil using the catalyst.

本願の第一発明は、担体に貴金属成分が担持された触媒であって、エレクトロン・プローブ・マイクロ・アナリシス(EPMA)測定における該触媒断面の貴金属の濃度分布において、外表面の濃度高さAと中心の濃度高さBの比A/Bが0.2〜2の範囲にあることを特徴とする含蝋原料油の水素化分解触媒である。
上記担体として、ゼオライト、アルミナ又はアルミナと他元素酸化物との複合酸化物が好適に使用される。
そして、ゼオライトとしては、X型ゼオライト、Y型ゼオライト、超安定Y型ゼオライト、ZSM−5、ZSM−22、ZSM−23、モルデナイト、フェリエライト、β−ゼオライト等が好適に挙げられる。中でもY型ゼオライト、超安定Y型ゼオライト(USYゼオライト)、β−ゼオライトが好ましく、特に、鉄を含有したUSYゼオライトが好ましい。アルミナとしては、α−アルミナ、γ−アルミナ、η−アルミナ、θ−アルミナが好適に使用される。アルミナと他元素酸化物との複合酸化物としては、アルミナ−ボリア、シリカ−アルミナ、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−トリア、アルミナ−イットリア、シリカ−アルミナ−ボリアなどが挙げられる。中でも、アルミナ−ボリア、シリカ−アルミナ、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシアが好ましく、アルミナ−ボリアがより好ましい。また、複合酸化物中のアルミナの量は60〜95質量%の範囲が好ましい。
さらに、貴金属成分の担持量は、触媒基準で、金属として、0.3〜3質量%の範囲が好ましい。上記貴金属成分として、白金成分及び/又はパラジウム成分が好適に使用されが、白金成分がより好ましい。
The first invention of the present application is a catalyst in which a noble metal component is supported on a support, and in the concentration distribution of the noble metal in the cross section of the catalyst in an electron probe micro analysis (EPMA) measurement, It is a hydrocracking catalyst for a wax-containing feedstock characterized in that the ratio A / B of the concentration height B at the center is in the range of 0.2-2.
As the carrier, zeolite, alumina, or a composite oxide of alumina and another element oxide is preferably used.
Preferred examples of zeolite include X-type zeolite, Y-type zeolite, ultrastable Y-type zeolite, ZSM-5, ZSM-22, ZSM-23, mordenite, ferrierite, and β-zeolite. Among these, Y-type zeolite, ultra-stable Y-type zeolite (USY zeolite), and β-zeolite are preferable, and iron-containing USY zeolite is particularly preferable. As alumina, α-alumina, γ-alumina, η-alumina, and θ-alumina are preferably used. Examples of composite oxides of alumina and other element oxides include alumina-boria, silica-alumina, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-tria, alumina-yttria, silica-alumina-boria and the like. It is done. Among these, alumina-boria, silica-alumina, alumina-titania, alumina-zirconia, and alumina-magnesia are preferable, and alumina-boria is more preferable. The amount of alumina in the composite oxide is preferably in the range of 60 to 95% by mass.
Further, the supported amount of the noble metal component is preferably in the range of 0.3 to 3% by mass as a metal based on the catalyst. As the noble metal component, a platinum component and / or a palladium component are preferably used, but a platinum component is more preferable.

本発明においては、上記担体に上記貴金属成分が担持された触媒であって、EPMA測定における該触媒断面の貴金属の濃度分布において、外表面の濃度高さAと中心の濃度高さBの比A/Bが0.2〜2の範囲にあることが必須である。この範囲を逸脱すると、担体上に貴金属成分が均一に担持されず、その結果触媒として分解活性が向上せず、灯軽油留分の収率が高くならない。該A/Bが0.8〜1.8の範囲にあるものが好ましい。   In the present invention, a catalyst in which the above-mentioned noble metal component is supported on the above-mentioned carrier, and the ratio A between the concentration height A of the outer surface and the concentration height B at the center in the concentration distribution of the noble metal in the catalyst cross section in the EPMA measurement It is essential that / B is in the range of 0.2-2. When deviating from this range, the precious metal component is not uniformly supported on the carrier, and as a result, the decomposition activity as a catalyst is not improved, and the yield of kerosene oil fraction does not increase. What has this A / B in the range of 0.8-1.8 is preferable.

次に、上記触媒の好ましい製造方法について説明する。
担体のゼオライト及びアルミナとしては、上記のいずれも使用することができるが、アルミナと他元素酸化物の複合酸化物については、第二成分のボリア、シリカ、チタニア等の溶液塩やスラリー、水酸化物、ゾル、ゲルをアルミナスラリーに混合捏和してもよく、第二成分の各塩の水溶液をアルミナに含浸させてもよい。
その後、60〜200℃程度、好ましくは80〜150℃で乾燥させる。乾燥時間は0.5〜20時間程度、好ましくは2〜12時間である。
次いで、空気の存在下、350〜800℃程度、好ましくは400〜550℃で焼成する。焼成時間は1〜8時間程度、好ましくは2〜6時間である。
Next, the preferable manufacturing method of the said catalyst is demonstrated.
As the support zeolite and alumina, any of the above can be used. For the composite oxides of alumina and other element oxides, solution salts and slurries such as boria, silica and titania as the second component, hydroxide The product, sol, and gel may be mixed and kneaded into an alumina slurry, or the alumina may be impregnated with an aqueous solution of each salt of the second component.
Then, it is made to dry at about 60-200 degreeC, Preferably it is 80-150 degreeC. The drying time is about 0.5 to 20 hours, preferably 2 to 12 hours.
Next, firing is performed at about 350 to 800 ° C., preferably 400 to 550 ° C. in the presence of air. The firing time is about 1 to 8 hours, preferably 2 to 6 hours.

次に、上記の担体に貴金属塩を担持する。貴金属塩としては、白金塩、パラジウム塩、ロジウム塩、ルテニウム塩、レニウム塩、オスミニウム塩が挙げられる。中でも白金塩及びパラジウム塩が好適に使用できる。白金塩としては、ヘキサヒドロキシ白金酸塩、テトラアンミン白金水酸塩、ヘキサアンミン白金水酸塩、テトラアンミン白金硝酸塩、ジニトロジアンミン白金硝酸塩、ジニトロジアンミン白金硫酸塩等が挙げられるが、テトラアンミン白金水酸塩、ヘキサアンミン白金水酸塩、ヘキサヒドロキシ白金酸塩、テトラアンミン白金硝酸塩を好適に使用することができる。また、パラジウム塩としては、硝酸パラジウム、テトラアンミンパラジウム硝酸塩、ジニトロジアンミンパラジウム硝酸塩が挙げられるが、テトラアンミンパラジウム硝酸塩が好適に使用できる。
これら貴金属塩を担体に担持させる際、貴金属塩の溶液としてpHが3〜14の条件で行うことが好ましく、6〜13の条件で行うことがより好ましい。また、担持方法として、混練法、常圧含浸法、真空含浸法、浸漬法、イオン交換法等があるが、常圧含浸法が簡易で好ましい。
さらに、貴金属塩は一種類のみを担体に担持してもよいが、二種以上の貴金属塩を担持してもよい。例えば、白金塩溶液にパラジウム塩溶液を混合して担体に共含浸してもよく、白金塩を担持した後、パラジウム塩をさらに担持してもよく、その逆でもよい。
また、貴金属塩とともに貴金属塩以外の金属塩を担持していてもよい。この場合、貴金属塩以外の金属塩としては、水素化分解活性を持つ金属塩が好ましいが、含蝋原料油の性状によっては脱硫活性、脱窒素活性、脱金属活性、異性化活性等の水素化分解活性以外の活性を持つものであってもよい。これらの金属塩としては、ニッケル、コバルト、鉄、マンガン、クロム等の金属塩が挙げられる。
担持後、60〜200℃程度、好ましくは80〜150℃で乾燥させる。乾燥時間は0.5〜20時間程度、好ましくは2〜12時間である。
次いで、空気の存在下、350〜800℃程度、好ましくは400〜550℃で焼成する。焼成時間は1〜8時間程度、好ましくは2〜6時間である。
Next, a noble metal salt is supported on the carrier. Examples of noble metal salts include platinum salts, palladium salts, rhodium salts, ruthenium salts, rhenium salts, and osmium salts. Of these, platinum salts and palladium salts can be preferably used. Examples of the platinum salt include hexahydroxyplatinate, tetraammineplatinum hydrochloride, hexaammineplatinum hydrochloride, tetraammineplatinum nitrate, dinitrodiammineplatinum nitrate, dinitrodiammineplatinum sulfate, and the like. Hexaammine platinum hydrochloride, hexahydroxyplatinate, and tetraammine platinum nitrate can be preferably used. Examples of the palladium salt include palladium nitrate, tetraammine palladium nitrate, and dinitrodiammine palladium nitrate. Tetraammine palladium nitrate can be preferably used.
When these noble metal salts are supported on the carrier, the noble metal salt solution is preferably carried out under the conditions of pH 3 to 14, more preferably 6 to 13. The supporting method includes a kneading method, a normal pressure impregnation method, a vacuum impregnation method, a dipping method, an ion exchange method, and the like, but the normal pressure impregnation method is simple and preferable.
Further, only one type of noble metal salt may be supported on the carrier, but two or more types of noble metal salts may be supported. For example, a palladium salt solution may be mixed with a platinum salt solution and co-impregnated on a support. After a platinum salt is supported, a palladium salt may be further supported, or vice versa.
Moreover, you may carry | support the metal salt other than a noble metal salt with a noble metal salt. In this case, the metal salt other than the noble metal salt is preferably a metal salt having hydrocracking activity, but depending on the properties of the wax-containing feedstock, hydrogenation such as desulfurization activity, denitrogenation activity, demetalization activity, isomerization activity, etc. It may have an activity other than the decomposition activity. Examples of these metal salts include metal salts such as nickel, cobalt, iron, manganese, and chromium.
After loading, the film is dried at about 60 to 200 ° C, preferably 80 to 150 ° C. The drying time is about 0.5 to 20 hours, preferably 2 to 12 hours.
Next, firing is performed at about 350 to 800 ° C., preferably 400 to 550 ° C. in the presence of air. The firing time is about 1 to 8 hours, preferably 2 to 6 hours.

上記の触媒を使用し水素化分解処理する含蝋原料油として、天然ガスから製造される合成ガス(CO、水素)、あるいは石炭、重質残渣油のガス化から生成するCO、水素を用い、フィッシャー・トロプシュ(FT)反応により合成するFT油、潤滑油の基油又はブレンド基材を製造するためのスラックワックス、石油精製及び石油化学のワックス含有留出油などが挙げられる。
反応形式は、特に限定されず、通常は、固定床、移動床、沸騰床、懸濁床等の種々のプロセスから選択できるが、反応器の設計、製造がより容易であり、かつ運転をより安定に実施しやすいという点から、固定床が好ましい。また、原料油の流通法については、ダウンフロー、アップフローの両形式で採用することができる。
As a wax-containing raw material oil to be hydrocracked using the above catalyst, synthetic gas (CO, hydrogen) produced from natural gas, or CO, hydrogen generated from gasification of coal and heavy residual oil, hydrogen is used. Examples include FT oils synthesized by the Fischer-Tropsch (FT) reaction, slack waxes for producing base oils of lubricating oils or blended base materials, and petroleum-containing and petrochemical wax-containing distillates.
The reaction type is not particularly limited, and can be selected from various processes such as fixed bed, moving bed, boiling bed, suspension bed, etc., but it is easier to design and manufacture the reactor and to operate more easily. A fixed bed is preferable because it is easy to carry out stably. Moreover, about the distribution | circulation method of raw material oil, it can employ | adopt with both a downflow and an upflow form.

反応条件については特に制限はないが、固定床を用いる場合には、通常、温度200〜480℃、好ましくは250〜380℃、反応圧力1.0〜15.0MPa・G、好ましくは4.0〜10.0MPa・G、水素/原料油比100〜2,000Nm3/kL、好ましくは200〜1,000Nm3/kL、液時空間速度(LHSV)0.1〜10hr-1、好ましくは0.3〜8hr-1で処理することができる。 The reaction conditions are not particularly limited, but when a fixed bed is used, the temperature is usually 200 to 480 ° C, preferably 250 to 380 ° C, the reaction pressure is 1.0 to 15.0 MPa · G, preferably 4.0. -10.0 MPa · G, hydrogen / feed oil ratio 100-2,000 Nm 3 / kL, preferably 200-1,000 Nm 3 / kL, liquid hourly space velocity (LHSV) 0.1-10 hr -1 , preferably 0 .3-8 hr −1 .

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

比較例1 触媒Iの調製
アルミナスラリー(20質量%濃度)と硼酸水溶液(10質量%濃度)を混合し、B23(ボリア)/Al23(アルミナ)の質量比で10/90となるように調整し、捏和器にて加熱捏和し、水分を調整した後、押出し成形機にて1/16インチの円柱状の押出し成形体を調製した。押出し成形体を110℃、12時間乾燥後、550℃、3時間焼成し、担体Iを得た。100gの担体Iにジニトロジアンミン白金硝酸酸性溶液(pH1.0)を白金として1.0質量%となるように含浸させ90℃、3時間乾燥後、500℃、3時間焼成し、触媒Iとした。その触媒IについてEPMAを測定したところ、A/B比は8.0であった。
Comparative Example 1 Preparation of Catalyst I Alumina slurry (20 mass% concentration) and boric acid aqueous solution (10 mass% concentration) were mixed, and the mass ratio of B 2 O 3 (boria) / Al 2 O 3 (alumina) was 10/90. Then, the mixture was heated and kneaded with a kneader to adjust the water content, and then a 1/16 inch cylindrical extruded body was prepared with an extruder. The extruded product was dried at 110 ° C. for 12 hours and then calcined at 550 ° C. for 3 hours to obtain carrier I. 100 g of carrier I was impregnated with 1.0% by mass of dinitrodiammine platinum nitrate acidic solution (pH 1.0) as platinum, dried at 90 ° C. for 3 hours, and calcined at 500 ° C. for 3 hours to obtain catalyst I. . When EPMA was measured for the catalyst I, the A / B ratio was 8.0.

実施例1 触媒IIの調製
比較例1における触媒Iの調製において、白金塩としてテトラアンミン白金硝酸塩水溶液(pH10.6)にしたこと以外は同様にして、触媒IIを調製した。その触媒IIについてEPMAを測定したところ、A/B比は1.67であった。
Example 1 Preparation of Catalyst II Catalyst II was prepared in the same manner as in preparation of Catalyst I in Comparative Example 1, except that a tetraammineplatinum nitrate aqueous solution (pH 10.6) was used as the platinum salt. When EPMA was measured for the catalyst II, the A / B ratio was 1.67.

実施例2 触媒IIIの調製
比較例1における触媒Iの調製において、白金塩としてテトラアンミン白金水酸化物溶液(pH13.0)にしたこと以外は同様にして、触媒IIIを調製した。その触媒IIIについてEPMAを測定したところ、A/B比は1.67であった。
Example 2 Preparation of Catalyst III Catalyst III was prepared in the same manner as in preparation of Catalyst I in Comparative Example 1, except that a tetraammine platinum hydroxide solution (pH 13.0) was used as the platinum salt. When EPMA was measured for the catalyst III, the A / B ratio was 1.67.

実施例3 触媒IVの調製
実施例1における触媒IIの調製において、白金として0.5質量%となるように含浸したこと以外は同様にして、触媒IVを調製した。その触媒IVについてEPMAを測定したところ、A/B比は1.50であった。
Example 3 Preparation of Catalyst IV Catalyst IV was prepared in the same manner as in the preparation of Catalyst II in Example 1, except that the catalyst was impregnated so as to be 0.5% by mass as platinum. When EPMA was measured for the catalyst IV, the A / B ratio was 1.50.

比較例2 触媒Vの調製
SiO2(シリカ)/Al23(アルミナ)モル比5.5、Na含量1.3質量%のNH4−Y型ゼオライトを580℃でスチーミング処理してスチーミングゼオライトを得た。1.0kgのスチーミングゼオライトに水を11.5L加え、スラリーとした後、75℃にて30分間攪拌した。次いで、このスラリーに10質量%硫酸6.37kgを添加し、さらに濃度0.57モル/Lの硫酸第二鉄水溶液1.15kgを添加し、30分間攪拌してろ過、洗浄後、鉄含有ゼオライトスラリーを得た。
アルミナスラリー(20質量%濃度)と10質量%の硼酸水溶液を混合し、B23(ボリア)/Al23(アルミナ)の質量比で15/85となるように調整した。この硼酸−アルミナスラリーに鉄含有ゼオライトを乾燥質量で5質量%となるように捏和混合した。水分を調整した後、押出し成形機にて1/16インチの円柱状の押出し成形体を調製した。押出し成形体を110℃、12時間乾燥後、350℃、3時間焼成し、担体IIを得た。100gの担体IIにジニトロジアンミン白金硝酸酸性溶液(pH1.3)を白金として1.0質量%となるように含浸し、乾燥後、500℃、3時間焼成し、触媒Vとした。EPMAを測定したところA/B比は6.0であった。
Comparative Example 2 Preparation of Catalyst V A NH 4 -Y zeolite having a SiO 2 (silica) / Al 2 O 3 (alumina) molar ratio of 5.5 and an Na content of 1.3% by mass was steamed at 580 ° C. A teaming zeolite was obtained. 11.5 L of water was added to 1.0 kg of steaming zeolite to form a slurry, which was then stirred at 75 ° C. for 30 minutes. Next, 6.37 kg of 10 mass% sulfuric acid was added to this slurry, and 1.15 kg of an aqueous ferric sulfate solution having a concentration of 0.57 mol / L was added, and the mixture was stirred for 30 minutes, filtered, washed, and then the iron-containing zeolite. A slurry was obtained.
Alumina slurry (20% by mass concentration) and 10% by mass boric acid aqueous solution were mixed and adjusted so that the mass ratio of B 2 O 3 (boria) / Al 2 O 3 (alumina) was 15/85. This boric acid-alumina slurry was kneaded with iron-containing zeolite so that the dry mass was 5% by mass. After adjusting the moisture, a 1/16 inch cylindrical extruded body was prepared with an extruder. The extruded product was dried at 110 ° C. for 12 hours and then calcined at 350 ° C. for 3 hours to obtain Carrier II. 100 g of carrier II was impregnated with 1.0% by mass of dinitrodiammine platinum nitrate acidic solution (pH 1.3) as platinum, dried, calcined at 500 ° C. for 3 hours, and used as catalyst V. When EPMA was measured, the A / B ratio was 6.0.

実施例4 触媒VIの調製
比較例2において、ジニトロジアンミン白金硝酸酸性溶液に替えてテトラアンミン白金硝酸塩水溶液(pH10.6)にした以外は同様にして触媒VIを調製した。EPMAを測定したところA/B比は1.33であった。
Example 4 Preparation of Catalyst VI A catalyst VI was prepared in the same manner as in Comparative Example 2, except that an aqueous tetraammineplatinum nitrate solution (pH 10.6) was used instead of the dinitrodiammineplatinum nitrate acidic solution. When EPMA was measured, the A / B ratio was 1.33.

比較例3,4及び実施例5〜8
触媒I〜VIについて、ノルマルヘキサンのパルス反応を行った。反応は以下の前処理条件、反応条件で行った。
・触媒量:30mgの触媒を粉砕し、粉末状とした。
・前処理条件:水素流量100cm3/min(0℃、0.1MPa換算)、室温より1時間昇温、400℃で1時間保持、260℃に降温した。
・反応条件:水素流量100cm3/min(0℃、0.1MPa換算)、温度280℃,320℃,360℃,380℃,400℃におけるパルス反応を実施した。パルス量は1μL/回とした。
ノルマルヘキサンが他の成分へ転化した割合を転化率として、結果を第1表に示す。
Comparative Examples 3 and 4 and Examples 5-8
The catalysts I to VI were subjected to normal hexane pulse reaction. The reaction was carried out under the following pretreatment conditions and reaction conditions.
Catalyst amount: 30 mg of the catalyst was pulverized into powder.
Pretreatment conditions: hydrogen flow rate 100 cm 3 / min (0 ° C., converted to 0.1 MPa), heated from room temperature for 1 hour, held at 400 ° C. for 1 hour, and cooled to 260 ° C.
Reaction conditions: A pulse reaction was carried out at a hydrogen flow rate of 100 cm 3 / min (0 ° C., 0.1 MPa conversion) at temperatures of 280 ° C., 320 ° C., 360 ° C., 380 ° C., and 400 ° C. The pulse amount was 1 μL / time.
The results are shown in Table 1 with the conversion ratio of normal hexane to other components as the conversion rate.

Figure 2006015337
Figure 2006015337

実施例9〜15
触媒IIを使用し、第2表に記載のFT油を原料とし、第3表に記載の反応条件で、固定床流通式反応装置で水素化分解反応を行った。結果を第3表に示す。
Examples 9-15
Using the catalyst II, the hydrocracking reaction was carried out in a fixed bed flow reactor under the reaction conditions shown in Table 3 using the FT oil listed in Table 2 as a raw material. The results are shown in Table 3.

Figure 2006015337
Figure 2006015337

Figure 2006015337
Figure 2006015337

*1 分解率(質量%)={1−(生成油中の350℃+留分(質量%))/(原料油中の350℃+留分(質量%))}×100
* 1 Decomposition rate (mass%) = {1- (350 ° C. in product oil + fraction (mass%)) / (350 ° C. in raw oil + fraction (mass%))} × 100

Claims (9)

担体に貴金属成分が担持された触媒であって、エレクトロン・プローブ・マイクロ・アナリシス(EPMA)測定における該触媒断面の貴金属の濃度分布において、外表面の濃度高さAと中心の濃度高さBの比A/Bが0.2〜2の範囲にあることを特徴とする含蝋原料油の水素化分解触媒。   A catalyst in which a noble metal component is supported on a carrier, and in the concentration distribution of the noble metal in the cross section of the catalyst in an electron probe micro analysis (EPMA) measurement, the concentration height A of the outer surface and the concentration height B of the center A hydrocracking catalyst for wax-containing feedstock, wherein the ratio A / B is in the range of 0.2-2. 前記比A/Bが0.8〜1.8の範囲にある請求項1記載の含蝋原料油の水素化分解触媒。   The hydrocracking catalyst for wax-containing feedstock according to claim 1, wherein the ratio A / B is in the range of 0.8 to 1.8. 貴金属成分が白金成分及び/又はパラジウム成分である請求項1又は2に記載の含蝋原料油の水素化分解触媒。   The hydrocracking catalyst for wax-containing feedstock according to claim 1 or 2, wherein the noble metal component is a platinum component and / or a palladium component. 担体がゼオライト、アルミナ又はアルミナと他元素酸化物との複合酸化物である請求項1〜3のいずれかに記載の含蝋原料油の水素化分解触媒。   The hydrocracking catalyst for a wax-containing raw material oil according to any one of claims 1 to 3, wherein the carrier is zeolite, alumina, or a composite oxide of alumina and another element oxide. 複合酸化物がアルミナ−ボリアである請求項4記載の含蝋原料油の水素化分解触媒。   The hydrocracking catalyst for wax-containing feedstock according to claim 4, wherein the composite oxide is alumina-boria. ゼオライトがY型ゼオライト、超安定Y型ゼオライト(USY)、及びβ−ゼオライトから選ばれる少なくとも一種のゼオライトである請求項4記載の含蝋原料油の水素化分解触媒。   The hydrocracking catalyst for wax-containing feedstock oil according to claim 4, wherein the zeolite is at least one zeolite selected from Y-type zeolite, ultra-stable Y-type zeolite (USY), and β-zeolite. 担体に貴金属塩を担持するに際し、貴金属塩として、テトラアンミン硝酸塩又はテトラアンミン水酸塩を使用することを特徴とする請求項1〜6のいずれかに記載の含蝋原料油の水素化分解触媒の製造方法。   The production of a hydrocracking catalyst for a wax-containing raw material oil according to any one of claims 1 to 6, wherein tetraammine nitrate or tetraammine hydrochloride is used as the noble metal salt when the noble metal salt is supported on the carrier. Method. pH3〜14において、貴金属塩を担体に担持させる請求項7記載の含蝋原料油の水素化分解触媒の製造方法。   The method for producing a hydrocracking catalyst for a wax-containing raw material oil according to claim 7, wherein a noble metal salt is supported on a carrier at a pH of 3 to 14. 請求項1〜6のいずれかに記載の水素化分解触媒を使用することを特徴とする含蝋原料油の水素化分解方法。




A hydrocracking method for a wax-containing feedstock characterized by using the hydrocracking catalyst according to any one of claims 1 to 6.




JP2005161707A 2004-06-01 2005-06-01 Hydrocracking catalyst for waxy feedstock Expired - Fee Related JP5027391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161707A JP5027391B2 (en) 2004-06-01 2005-06-01 Hydrocracking catalyst for waxy feedstock

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004162767 2004-06-01
JP2004162767 2004-06-01
JP2005161707A JP5027391B2 (en) 2004-06-01 2005-06-01 Hydrocracking catalyst for waxy feedstock

Publications (2)

Publication Number Publication Date
JP2006015337A true JP2006015337A (en) 2006-01-19
JP5027391B2 JP5027391B2 (en) 2012-09-19

Family

ID=35790043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161707A Expired - Fee Related JP5027391B2 (en) 2004-06-01 2005-06-01 Hydrocracking catalyst for waxy feedstock

Country Status (1)

Country Link
JP (1) JP5027391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204506A (en) * 2006-01-30 2007-08-16 Nippon Oil Corp Method for wax hydrocracking
JP2007289931A (en) * 2006-03-30 2007-11-08 Nippon Oil Corp Hydrocracking catalyst and method for manufacturing fuel base material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184558A (en) * 1992-12-19 1994-07-05 Cosmo Sogo Kenkyusho:Kk Hydrotreatment of heavy hydrocarbon
JP2000126602A (en) * 1998-10-28 2000-05-09 Nippon Mitsubishi Oil Corp Palladium-carrying zeolite formed catalyst and its production
JP2001104790A (en) * 1999-10-07 2001-04-17 Tonengeneral Sekiyu Kk Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil using it
WO2002070129A1 (en) * 2001-03-02 2002-09-12 Japan Energy Corporation Solid acid catalyst containing platinum group metal component and method for preparation thereof
WO2004033591A1 (en) * 2002-10-08 2004-04-22 Exxonmobil Research And Engineering Company Dual catalyst system for hydroisomerization of fischer-tropsch wax

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184558A (en) * 1992-12-19 1994-07-05 Cosmo Sogo Kenkyusho:Kk Hydrotreatment of heavy hydrocarbon
JP2000126602A (en) * 1998-10-28 2000-05-09 Nippon Mitsubishi Oil Corp Palladium-carrying zeolite formed catalyst and its production
JP2001104790A (en) * 1999-10-07 2001-04-17 Tonengeneral Sekiyu Kk Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil using it
WO2002070129A1 (en) * 2001-03-02 2002-09-12 Japan Energy Corporation Solid acid catalyst containing platinum group metal component and method for preparation thereof
WO2004033591A1 (en) * 2002-10-08 2004-04-22 Exxonmobil Research And Engineering Company Dual catalyst system for hydroisomerization of fischer-tropsch wax
JP2006502288A (en) * 2002-10-08 2006-01-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー Dual catalyst system for hydroisomerization of Fischer-Tropsch wax and waxy raffinate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204506A (en) * 2006-01-30 2007-08-16 Nippon Oil Corp Method for wax hydrocracking
JP2007289931A (en) * 2006-03-30 2007-11-08 Nippon Oil Corp Hydrocracking catalyst and method for manufacturing fuel base material

Also Published As

Publication number Publication date
JP5027391B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US7700818B2 (en) Process for producing liquid hydrocarbon with hydrocracking catalyst
CN100587039C (en) Extremely low acidity ultrastable Y zeolite catalyst composition and process
US6733657B2 (en) Hydrocracking catalyst having a unique silica-alumina substrate
US20050145541A1 (en) Hydrocracking catalyst and process of producing liquid hydrocarbon
US20160030934A1 (en) Hydroprocessing catalyst and hydroprocessing catalyst of making the same
JP5409775B2 (en) Process for producing alkylbenzenes and catalyst used therefor
US9387466B2 (en) Mild acidic catalyst for hydroprocessing of heavy crude oil and residue and its synthesis procedure
JP5345474B2 (en) Hydrocarbon hydrocracking catalyst support, hydrocracking catalyst using the support, and hydrocracking method of hydrocarbon oil using the catalyst
JP5547923B2 (en) Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same
JP5180427B2 (en) Hydrocracking catalyst for waxy feedstock
JP6001531B2 (en) Method for dewaxing hydrocarbon oil and method for producing base oil for lubricating oil
US20150159095A1 (en) Method for making a middle distillate
JP2011068728A (en) Production method for hydrocarbon oil and lubricant base oil
JP5027391B2 (en) Hydrocracking catalyst for waxy feedstock
US20090277817A1 (en) Method of hydrotreating wax and processes for producing fuel base and lubricating oil base
JP5537780B2 (en) Light oil composition
JP5480680B2 (en) Method for producing gasoline base material using highly aromatic hydrocarbon oil as raw material
EP1640434A1 (en) Hydrocracking process and catalyst composition
KR101600285B1 (en) Method for producing lubricating-oil base oil
KR101671545B1 (en) Integrated hydrocracking and dewaxing of hydrocarbons
JP2015193007A (en) Hydrocracking catalyst and manufacturing method of fuel base
JP5068299B2 (en) Paraffin hydrocarbon isomerization catalyst production method and isomerization method
JP2005349338A (en) Catalyst for isomerizing paraffin hydrocarbon
JP5298329B2 (en) Method for processing petroleum hydrocarbons
CA3182010A1 (en) Mtw-zeolite as support for second stage hydrocracking catalysts with improved selectivity and cold flow property of distillate products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees