JP2006014595A - 電動及び発電システム - Google Patents

電動及び発電システム Download PDF

Info

Publication number
JP2006014595A
JP2006014595A JP2005227191A JP2005227191A JP2006014595A JP 2006014595 A JP2006014595 A JP 2006014595A JP 2005227191 A JP2005227191 A JP 2005227191A JP 2005227191 A JP2005227191 A JP 2005227191A JP 2006014595 A JP2006014595 A JP 2006014595A
Authority
JP
Japan
Prior art keywords
power
power generation
motor
function
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005227191A
Other languages
English (en)
Inventor
Yukio Kinoshita
幸雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INP INST OF TECHNOLOGY CO Ltd
INP INSTITUTE OF TECHNOLOGY CO Ltd
Original Assignee
INP INST OF TECHNOLOGY CO Ltd
INP INSTITUTE OF TECHNOLOGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INP INST OF TECHNOLOGY CO Ltd, INP INSTITUTE OF TECHNOLOGY CO Ltd filed Critical INP INST OF TECHNOLOGY CO Ltd
Priority to JP2005227191A priority Critical patent/JP2006014595A/ja
Publication of JP2006014595A publication Critical patent/JP2006014595A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

【課題】電動機を応用して、その付加した動力用電動機や内燃機関等を活用して発電機能を持たせること。
【解決手段】産業界や民生にて電力系統1に接続して使用されている各種の電動機10、10aを利用して、電動機の外部に内燃機関などの原動機40を付加したり、新たに一体型電動発電機を機械に敷設し、在来の電動力応用のみにとどまらず、発電機10’、10a’として発電機能を併せ持つようにする。特に羽根や流体流路の変更にて外部のエネルギー、たとえば風力や水力を動力にする。さらに健康器具等で手回しや足踏み等の人力を用いる。
【選択図】図1

Description

発明の詳細な説明
工場や民生の動力は一般には動力のみの単一機能で運転されている。これらの単一機能の機器で本来の動力機能以外にその機器をそのまま使って、他の電動機や内燃機関、風力水力及び人力などを動力源として発電を行わせる電動及び発電システム分野。また、これらシステム等に用いる誘導電機や同期電機等の回転電機及び電磁石の構造の分野。さらに健康を目的とした運動中の人力などを動力源として発電を行わせる電動及び発電システム分野。
現在工場や民生の回転電機を用いる動力分野やポンプによる流体の輸送、茶畑の送風による霜取りなど、通常動力やポンプや送風機能のみの単一機能で運転されているのが一般的である。これら動力に使っている電動機を本格的に発電に活用しているものはない。又健康を目的とした運動中の人力を使った発電機能を持った機器はなく、さらに、電力系統と直接エネルギーのやい取りをしているものは全くない。
交通機関で電動機を駆動に使っているものに、停止や傾斜地の降下時に回生制動として使っているに過ぎない程度である。
また、誘導電機の回転子構造は駕籠型や巻線型など従来から一般的に用いられているもので、特に発電機分野においては特徴的なものは殆どない。また、磁石を用いる電動機や発電機においては磁石の配置が円筒状、円盤状の材料に着磁して磁石を形成したり、分離した磁石を円周状に配置して使用いている為、磁石そのものの磁力に空隙の磁界が左右され、自ずと其の出力、効率が決まっていた。
省資源、省エネルギー時代にはより高効率、省資源が電動機や発電機分野にも例外なく強く要望されているが満足のできるものになっていない。また最近脚光を浴びているネオジュウム磁石等に代表される強力な磁石はフエライト磁石に比べ非常に高く、用途に限界が有ると同時に資源にも限りがあり、問題である。磁石のみの回転子だと磁界の強さが固定化され、変動動力の発電機等では発生電圧が回転数に比例して変動し、定電圧を得るのに別途制御回路で複雑な制御を必要とした。
現在使われている固定子巻線は打ち抜き鉄心に複雑な巻線を施しているため生産性の改善が長年の懸案となっている。
発明が解決しようとする課題
▲1▼ 動力単独機能電動機を応用して、その付加した電動機や内燃機関や外部からの自然の風力や水力を利用したり、さらに健康機器等にて手回しや足踏みなどの運動に伴う人力等を活用して発電機能をも持たせること。
▲2▼ 電動機を発電単独機能のみに利用する場合においては発電機能への立ち上げをスムーズに行い、さらに電動発電複合機能の場合は単一、複数台の電動−発電相互の切り換えなど運転制御に適した経済的なシステムとすること。
▲3▼ 流体機械に適用する場合電動−発電相互の切り換えを電気制御系のシステムを変更せずに、羽根や流体移送機構などの機械構造系を変えるのみで行うこと
▲4▼ 流体機械に適用する場合電動−発電相互の切り換えを機械構造系のシステムを変更せずに、電気制御のみで実現すること
▲5▼ 発電して余剰な電力を蓄積したり、システムの発電量が不足したりした場合の補助電源として寿命的に長く、安定な蓄電及びエネルギー蓄積装置を設けること。
▲6▼ 複数台で発電システムを構成する場合に単純で安価な運転システムを実現すること。
▲7▼ 発電システムにおいて、負荷、周囲環境や外部動力の状況により、経済的に運用するための制御方法を実現すること。
▲8▼ 複数台にて構成した電動発電システムにおいて、発電、電動及び複合運転を含めた経済的な方策を実現すること。
▲9▼ 電力系統が来ていない地域、設置が困難な場所や交通機関などで、独自にその場所や機械にあった簡単、適切な構成にて電動発電システムを実現すること。
▲10▼ 電動発電システムとして用いる誘導電機において、システムに適合し、電動発電特性、制御性に卓越した特性を有するものを実現することなど。
▲11▼ 電動機や発電機の回転子と固定子の空隙部の磁束密度の向上が性能向上や出力調整に直接関係することに着目して、空隙の磁束増加のための磁石の配置、磁束の空隙への集中、磁石と電磁石の併用、固定子巻線及び巻線型回転子巻線の生産性などの課題を解決することを目的とする。
課題を解決するための手段
▲1▼ 通常、工場や民生では一般的になっている単一動力機能機器を応用して追加した電動機や内燃機関及び風力や水力を利用したり、さらに健康機器等にて人力を活用して発電機能をも持たせるため、これら機器を同一電力系統に接続して電動−発電システムとして構成し、従来から利用していた電動機を動力としてのみでなく発電機としても活用し、新たにシステムに追加付加する発電機を含め省資源時代にマッチした、エネルギー発生システムを構築することができる。
▲2▼ 動力から発電機への切り換えをスムーズに行い、さらに単一、複数台の運転に関係なく電圧変動のない電動−発電システムとするには、最も単純な方法の例として電動機に誘導電動機を使用し、同期速度以下では本来の動力機能として働かせ、さらに発電機として使用する場合は同期速度以上で外部からの動力にて誘導発電機として機能させるようにする。この場合交流の電源か電力系統が設置場所にあれば、電動機の接続はそのまま系統に接続して行うか、発電の際、動力として使用の場合の逆の回転方向で行う必要のある時は、多相交流の電源の場合は相順のみの変更で、また、単相交流の電源の場合は主巻線か補助巻線の極性を反転したり、コンデンサー駆動のものであればコンデンサーの接続端子を切り替える等して行う。誘導発電機の場合発電電圧が電力系統の電圧そのものとなり殆ど一定で、発電量は電流にて系統に供給するようになり、発電時の電圧調整やエネルギー蓄積装置や過負荷調整負荷など一切不要となり非常にシンプルで安価な電動−発電の複合機能システムが実現出来る。勿論、他の磁石発電機や同期発電機などを用いてもシステムが複雑にはなるが可能であることはいうまでもない。
▲3▼ 流体機械に適用する場合,電動−発電相互の切り換えを電気制御系のシステムを変更せずに、羽根や移送機構などの機械構造系を変えるのみで行うには,例えばプロペラを用いた流体機械の場合に電気制御系を変更せずに、プロペラを可変ピッチ構造にして、移送と発電機能の切り換えは羽根のひねり角度を逆にして行う。又遠心羽根の場合は機器によって異なるが、移送と発電機能の切り換えは流体の取り入れ口を変更して、すなわち吸い込み側を排出側に切り替えたり、換気装置などで全周から風を取り入れるある種のものの場合にその外周に風向ガイドを設けて風の方向に関係なく行うことなどで実現可能となる。
▲4▼ 流体機械に適用する場合電動−発電相互の切り換えを機械構造系のシステムを変更せずに、電気制御のみで実現するには、システムが単純な誘導電機について伸べると、交流の電源か電力系統が来ていれば電動機の接続は、多相交流の電源の場合相順のみの変更で、単相交流の場合は主巻線か補助巻線の極性を反転するなどして回転方向を変えて行えば実現可能となる。
▲5▼ 設置場所に電力系統がなかったり、回転電機に誘導電機を使用しない場合は、発電電力を蓄積したり、システムの発電量が不足したりした場合の補助電源として寿命的に長い蓄電装置が必要であるが、自動車や電話回線等に用いられている一般の蓄電池などは電解液と電極との電荷のやり取りの際に金属イオンが電極に付着したり、電極から電解液に溶解を繰り返す為,電極が破損して寿命に至る。又急速な充放電が機構上不可能となっている。これに対しクロームやバナジウムの電解液を用いたレドックス電池は金属イオンと電極とのやり取りは一切なく、電荷のやり取りのみで蓄電池が出来ており、急速な充電が必要な場合にも陰・陽極側の電解液をそれぞれ取り替えるだけで充電の必要がない画期的な蓄電池である。陰・陽電極にはカーボン繊維を編んだものが使われており、化学的に安定で蓄電池が機械的破損や容器の腐食など構造的に壊れるまで半永久的に寿命があり非常に優れたものである。これを自動車等に使用する場合は液の取り替えが必要であるが本発電機システムに使用する場合は液の取り替えは不要となる。尚、この電解液は放電後充電さえすれば液は何回でも使用可能でリサイクル性に優れたものである。この他、クリーンなエネルギー蓄積装置は水電解による水素製造及び貯蔵システムや氷蓄熱など多くあり、この中よりシステムに適するものを選ぶことになる。
▲6▼ 複数台で発電システムを構成する場合に単純で安価な方策を実現するにはまず主要な構成機器である回転電機に誘導電機を用いることである。電源には汎用の電力系統がある場合にはそれを用い、ない場合にはシステム運用上容量的に十分な特設の交流発電機かインバーターなどの交流電源を用いる。これらの電源に複数台の誘導電機を接続し、本来機能の動作の場合は電動機として運転し、発電システムとして働かせる場合、必要に応じ接続回路を変更などして、例えば電気回路が多相交流時は相順を変え、単相の場合は主巻線の極性等を切り替え回転方向を逆転して、同期速度以上にて発電状態に移行し、電力は系統へそれぞれの機器の発電量に応じてランダムに供給する極めて単純明快なシステムを実現出来る。
▲7▼ 数台にて構成した電動発電システムを負荷、周囲環境や外部動力の状況により、経済的に運用するための制御方法を実現するには、それぞれの外部動力の状況、負荷の状況、流体の速さ、環境などの温度及び湿度などのを各々のセンサーにてピックアップして自動的・効率的に運転制御できるようにし、それぞれの機器の電動機能や発電機能を最適且つ経済的に行うことで実現することができる。
▲8▼ 複数台にて構成した発電システムを複合運転を含めた経済的な方策を実現するには、システムを複数台にて構成し、例えば流体輸送機械の場合、それぞれの機器の設置場所の風や水などの流体の速さや温度・湿度など必要に応じて、必要な流体移送機械の運転数をリアルタイムで決定し、残りの台数にて発電を自動的に行わせるようにして、システム全体を効率的に運転することが可能となる。
▲9▼ 電力系統が来ていない地域、設置が困難な場所や交通機関などで、独自に電動発電システムを簡単に構成実現するには、蓄電池・インバーターによる交流電源や励磁用の交流同期発電機を用いて電圧や周波数を自由に変更出来る系統の電源を設け、独自に、しかも特に電動発電機には二次抵抗の調整可能な誘導電機や回転数の調整に便利な回転子励磁式の非同期電機などにて構成し、系統の電圧変動が小さく、安定なシステムが単数または複数台にて行えるようにすると同時に、さらに必要に応じ電力系統に適した電圧や周波数にて運行し、進相コンデンサーや誘導負荷を用いて系統全体の負荷をバランスさせることにより、独自の安価で安定的な電動発電システムが構築出来る。また、汎用の電力系統がある場合にも、原動機の出力や回転数にあわせて、それに適した電圧や周波数で運行することも可能である。
▲10▼ 動発電システムとして用いる誘導電機において、システムに適合した優れた特性を有するものを実現するには、回転子の構造及び構成を在来のものにはない、起動や同期速度以上の発電特性改善に回転子導体に流れる電流の周波数が同期回転数より離れるに従い大きくなるのを利用して、リアクタンスが大きくなるように、導体板や鉄心内径奥深くに配したローターバー、さらに、それら導体板、ローターバー及びエンドリングの側壁や近傍に鉄心よりも強い強磁性体にて包囲するなどして解決する。又ローターバーと巻き線導体の組み合せや在来のローターバー回転子の側壁に電磁コイルを配したり、回転子や固定子鉄心の幅をそれぞれ固定子や回転子鉄心より大きくしてはみ出し効果を持たせ、効率の向上、特性の改善及び制御幅を持たせてシステムにあった誘導電機を実現する。さらに、発電機の場合に高速回転にて使用されるケースが多くなることを考え、分割鉄心にした場合などに、遠心力対策に適したピンやリングとそれらと系合する孔や溝を用いた回転子構造を実現している。また、固定子や回転子の巻線にスロットレス円筒状鉄心にコイルを接着剤等で固着して、コギングを少なくして起動トルクを小さくしたり、効率を改善したりする回転電機で、固着したコイルが回転時に変形したり、はがれたりしないように円筒状の保持具にて確実に固着し、巻線や電工作業を簡単にし、信頼性をより高めるために、イメージコイルにてコイル数を1/2に減らし、作業性を一段と向上すると同時に、固着剤の中に磁性体の粉末を含浸させて、磁束の不足を補って特性を改善している。さらに、円筒状の保持具の代わりに、積層鉄心にして、スロットやスキューを付けたりして、容量の大きい機器に対応することも可能である。
▲11▼ 隙の磁束増加のための磁石の配置について、空隙の磁束増加のため、極毎に単一磁石で行う場合と複数の磁石を組み合わせて行う場合がある。まず単一磁石について説明すると、各極鉄心に磁石を挿入する放射状のスロットを設け磁石が放射方向に長さを調整できる様にし、特に磁束を強くする時は強い磁石やスロットいっぱいの磁石を使うようにする。又着脱自在の構造にすることにより、電動機や発電機の特性の変更や調整を容易にすることが可能となる。次に、単一の磁石では構造、磁力に限界があり、さらに空隙の磁力を強くしたい場合に極ごとに複数の磁石を用いたり、固定子の軸方向の長さより長くしたり、その他の活用できる空きスペースを利用して、より効果的な磁束の増加が可能である。また、空きスペースに限りが有る場合には磁極の立体空間を有効に活用し、全面又は一部の面に磁石を有機的に配置して空隙部に磁束が集中するようにすることも可能で有る。この場合磁石の1つ又は複数に代えて相互に磁束の漏洩短絡のない電磁石に置き換えて配置し、空隙の磁束の増減・磁極の極性の反転・停止等を自在に調整出来るようにする。
次に磁束の空隙への集中について、各極鉄心に磁石を挿入する放射状のスロットを設ける場合空隙部の一極当たりの円周方向の長さに対しスロットの放射方向の長さを長くしたり、固定子の軸方向の長さより磁石を挿入する鉄心の長さを長くする等して自身の持つ磁力をより強くすることが可能になる。すなわち、一極当たりの固定子の回転子対峙面積より磁石の磁束発生側面積が1/2以上になるように軸方向長さを長くする必要が有る。それには各極の鉄心を分離構造又は機械的に必要最小限の結合にとどめたり、結合を非磁性体にすること等により空隙以外に磁束が出来るだけ漏れないようにすることが肝要となる。鉄心以外を殆ど全て非磁性体の材料で纏めるのも一つの方法である。又置換可能な電磁石を併用することにより、磁束集中や磁束の時間的調整も可能となり、出力や電圧の理想的な制御を可能にする。
さらに、磁石と電磁石の併用について、磁石と電磁石の併用を可能にするには、電磁石の構造を磁石と置換出来る構造にする必要がある。単純な構造で置換が容易な構造を考案してこれを可能にした。内外徑及び左右の方向に、如何なる極数でも磁極を簡単に形成出来、どのような配置結合もできる。さらに、同じ方向の電磁石を分割して構成時に合体して目的のサイズにして量的生産性を上げることも可能になる。
また、固定子巻線と生産性について、現在型の電動機や発電機の固定子巻線や巻線型回転子巻線は多少の合理化はされているものの生産性では最大のネックになっている。そこで本考案のボビン型電磁石構造は生産性・コスト・電工作業の安定性や信頼性に抜群の効果がある。単相は勿論多相の電機用にも同一電磁石を相数個位相角に合わせて角度をかえ、組み合わせるだけで可能となる。この電磁石に用いる鉄心は交流磁界による渦電流損の少ない例えば焼結材、微細な鉄粉を樹脂等の結合剤で結合形成したものや積層した電磁鋼板と焼結材、薄い鋼板やスリットを設けるなどして損失を少なくした厚い鋼板を絞る等して成形した磁極部の組み合せ品などを用いる。多相の場合に各相単独ではなく隣り合わせの磁極を一体で製作することにより、相毎に作るより少ない製作工具で磁極製作が可能となる。例えば焼結材で製作する場合単一(各相製作の場合少なくとも2個必要)の工具で間に合う。又大型機か特殊な誘導電動機にしか用いられていなかった巻線型回転子を本案のボビン電磁石を用いて中小型機にも容易に応用可能となり一層の特性改善がはかれる。
実施の形態
以下、この発明の実施の形態を図面を参照して説明する。図1は在来の電動主体のシステムと本案の電動発電システムを比較した説明図で、図1aは在来の電力系統1に接続された電動機10、10aを応用したシステムの例を示す説明図で、工作機20と圧縮機21の動力として使われている例を示している。このように工場や民生の現場では電動機は単なる動力としてのみに使われているのが一般的である。これらの電動機10、10aや工作機20,圧縮機21は制御盤30及び30aにてコントロールされる。これに対し、図1bに示す本案の電動発電システムでは在来の動力としてのみ利用していた電動機を外部に付加的に原動機を敷設したり、一体の電動発電機と置き換えたりして発電機としても活用しようとするもので、省資源時代にマッチした電動発電機システムを提供しようとするものである。在来の電動機による発電システムでは発電量が不足の場合は、新たな発電機専用の内燃機関40aや電動機11aに接続された発電機10b,10cを付加することは勿論差し支えない。
電力系統1に接続されていた電動機10、10aの外部に原動機としての内燃機関40と電動機11が付加され在来システムでは電動機として使用されていた電動機10、10aを発電機、10’10a’としても使用しようとするものである。これらは制御盤30b及び30cにてコントロールされる。新しく付加された発電機10b,10cは制御盤30d及び30eにてコントロールされる。余剰電力を蓄積したり、電力不足時の電力補給に蓄電や蓄エネルギーを目的とした蓄電池60を備え、インバーター50を介して電力系統1との電力のやり取りが出来るようになっている。これら発電システムにおいて、電動機に誘導電動機以外のものを使用する場合は電力系統1との間に複雑高価な電圧調整器、周波数調整器及び電力変換器がそれぞれの機器に必要になる。
図2は図1にて説明したシステムを出来るだけシンプルに構築するため、新旧のシステムの電動機に誘導電機にて構築した例を示す説明図で、図2aは電力系統1aに接続された誘導電動機12、12a及び12bを応用した在来のシステムの例を示す説明図である。流体機器を代表して誘導電動機12には羽根70を取り付けて送風機として運転され、誘導電動機12a,12bはそれぞれポンプ水車22と圧縮機23の動力として使われている。このように工場や民生の現場では電動機は単なる動力としてのみに使われているのが一般的である。これらの誘導電動機12、12a、12bやポンプ水車22,圧縮機23は制御盤31、31a及び31bにてコントロールされている。
これに対し、図2bに示す本案の電動発電システムでは在来では誘導電動機12に羽根70を取り付けて送風機として運転されていたものを、そのままにて電気回路を変更するのみで発電機12’として活用したり、または発電機12a’は外部からの水等を動力としたり、一体の電動発電機13と置き換えたりして発電機としても活用しようとするもので、電力系統1aとの間に複雑高価な電力変換装置や電圧調整装置などが不要な、省資源時代にマッチした廉価で安定な電動発電システムを提供しようとするものである。在来の誘導電動機12’、12a’及び13による発電機のみでは発電量が不足の場合は、新たな発電機専用の内燃機関41a、電動機12eや人力28にて駆動される発電機12c,12d,12fを付加することは勿論差し支えない。
12’、12a’及び13による発電機は制御盤31c,31d及び31eにてコントロールされ、新しく付加されたた発電機12c,12d、12fは制御盤31f、31g、31hにてコントロールされる。また余剰電力を蓄積したり、電力不足時の電力補給に,蓄電や蓄エネルギーを目的とした蓄電池61等のエネルギー備蓄装置を備え、インバーター51などを介して電力系統1aとの電力のやり取りが出来るようになっている。
誘導電動機を発電機として利用する場合に誘導発電機や非同期発電機など制御に適した回転子を巻線型にしたり、深溝型などにして、12’、12a’及び13による発電機システムに適したものを優先的に活用するのは勿論である。
図3は送風機やポンプに代表される流体機械の発電機への応用例の説明図で、図3a1、図3a2は送風機として運転している場合を示し、電力系統1bに接続され、羽根71と電動機14にて構成されている送風機で、電動機14は制御盤32にて羽根71を回転し、図示の矢印の方向に風を出すようになっている。図3a2は羽根71の回転軸心から,ある半径の所の円周上を断面して展開した断面図を示し、黒い矢印の回転方向に回転することにより、風を矢印の方向に送り出すようになっている。
図3b1及び図3b2は図3a1、図3a2の送風機を羽根71などの機械的変更は一切行わずに、電気的に多相機の場合は相順を変え、単相機の場合は主巻線の極性などを変えて、送風機の回転方向をかえるのみにて送風方向とは逆の外風を受けて発電を行うようにしている。この場合わずかな外風でも発電出来るように電動機14aにて同期速度近辺まで回転数を上げておき、風力の大きさに見合った同期速度より大きな回転数にて発電を行い、電圧は系統1bの電圧にて発電量に見合う電流を系統1bに供給する。この送風機の制御は制御盤32aにて行っている。図3b2は図3a2と全く同じ羽根71の断面を示している。
図3c1及び図3c2は図3a1、図3a2の送風機を図3b1、図3b2とは逆に、電気的な回路変更などは一切行わずに、羽根71などのひねり角度を逆にした羽根71aを使用したり、遠心羽根の場合は流路などの機械的変更によるのみにて、送風方向と逆の外風を受けて発電を行うようにしている。この場合わずかな外風でも発電出来るように電動機14bにて同期速度近辺まで送風時と同じ回転方向に回転数を上げておき、風の力の大きさに見合った同期速度より大きな回転数にて発電を行い、電圧は系統1bの電圧にて発電量に見合う電流を系統1bに供給する。この送風機の制御は制御盤32bにて行っている。図3c2は図3a2と全く逆のひねり角の羽根71aの断面を示している。
図4a及び図4bは本案の複数台の流体機械を用いた電動発電システムの中で、電動、発電、負荷状態及び環境状態を各種センサー91、91a及び91bによりピックアップし、運転状態を把握した上で、中央コントローラー82、83にてシステム全体の制御を行い、効率的な運行を行うようにしたもので、図4aは電動か発電かをシステム全体で同時に切り替えるようにした例を示し、図4bは電動発電システム中の送風機の全台数の内から発電か電動かの、それぞれの運転台数を決定し、同時に発電・電動の複合運転を行わせるようにしたシステムの例を示している。
図4aおよび図4b中 17、17a,17b,は電動発電機、72、72a及び72bは羽根を示し、34、34a,34b,34c34d及び34eはそれぞれの送風機を制御する制御盤を示している。63は蓄電池などのエネルギー蓄積装置を示し、53はインバーターなどのエネルギー変換装置を示している。
図5は電力系統がない場所や自動車などの交通機関等に、本案電動発電システムを構築する場合の例を示す説明図で、系統1dの電圧及び周波数はシステムに最適なものを選べるようになっている。系統1dに供給する電源として蓄電装置64とインバーター54か交流同期発電機18dを内燃機関等の原動機43bで駆動して発電する系統を示している。系統1dに接続した電動発電部は前述の内容になっており、詳しい説明は省略する。18、18aは電動発電機,18b,18c,18dは発電機を示し、19aは発電機18cの駆動用電動機を示している。26はポンプ水車を示し、43aおよび43bは駆動用内燃機関等の原動機を示す。100は系統負荷の力率改善や発電波形調整用のコンデンサーで、101は系統1dにて電力を供給している総合負荷器を示している。
図6は送風機に空気を磁石104にて動かすエレメントを装着した例を示す説明図で、図6aは一個、図6bは複数個装着した場合を示している。Hは磁界が風の流れの方向に強くなるようにしした傾斜孔で、空気中の酸素が常磁性体であるのを利用してエネルギー無しに動かし、送風機の性能アップに資する用にしたものである。ちなみに磁界1テスラで0。6m/sの風速が得られる。図6bは磁石105エレメントを複数にした例を示し、より空気の移動をエネルギー無しにアップさせることを狙っている。15は電動機、74は羽根、102、及び103はフレームを表している。磁石に電磁石を用いても同じ効果が得られるのは勿論よい。
図7は全周より風を受けて発電する風力発電機を示し、遠心羽根75の周囲に風向ガイド107を配し、何れの方向の風にても風が羽根に有効に働くように工夫されている。図7aは全体断面図をあらわし、図7bは羽根75と風向ガイド107の関係を示す断面図である。15aは発電機を示している。風向ガイドは発電効率を上げるのみでなく、羽根回転の安全カバーを兼ねるとどう時に、プロペラ式発電機の回転による不安感を無くする効果も狙っている。また、小型コンパクトにまとまっているので、強風や落雷等に対する防御の点でもプロペラ型より勝れている。
図8は内転型の誘導電機で図8aローターバー111にて形成した回転子113単独や電磁石120との組み合せにて構成した回転子113を有する誘導電機の断面構造を示し、図8bは従来のローターバー回転子113′を用いた誘導電機の断面構造を示す。コード119、119’より固定子112、112’に巻き込んでいるコイルに通電すれば回転磁界が発生し、それにより回転子113、113′に発生した電流との間に電磁力が発生し電動機として働く。又、回転子113は動力源により外から駆動され、固定子112、112’に巻き込んでいるコイル115に電源にて通電状態にしておき、同期速度以上で固定子112、112’に巻き込んでいるコイル115等に回転数に応じた電圧が発生し、電気取り出しコード119、119’に抵抗等負荷をつなげば電流が流れ電力を供給する。コイルの発生電圧は固定子と回転子との空隙の磁束密度に比例し、又回転数にも比例する。本発明は回転子113の構造や電磁石120の組み合せ等の改善により、発電システムとしても適切なものとなっている。
次に本発明の回転子について、その鉄心構造・導体板・ローターバーや巻線構成等について以下図面に基ずき説明する。図9は回転電機に用いられる本案回転子の説明図で、図9a1,図9a2及び図9a3は外周に切り欠き部Cを設け、ローターバー111aを流れてきた電流Iが外周を切り欠いた導体板126や外周部の電気抵抗を大きくした円盤状導体板126’の内周部を流れ、起動や出力特性を改善した誘導電機の例を説明している。これにより導体板126、円盤状導体板126’の両側壁に配した強磁性体140や鉄心124aに囲まれて磁気抵抗を増し、周波数の高さに応じて電流を制限するようにして起動特性や回転数に対する出力特性を改善している。鉄心内周部に配したローターバー125も導体板126、円盤状導体板126’と同様な作用をもち、近傍に強磁性体141を配してその効果を増す構造になっている。回転子鉄心124aの軸方向の幅は固定子鉄心112aの軸方向幅より大きくして、磁束密度の低減を計り、ローターバー中の電気抵抗を小さくするため回転子鉄心124aの中央部に配した導体板126、円盤状導体板126’とエンドリング123aとの間で電気回路が出来るだけ短く形成出来るようにして、出力向上や効率アップに改善を加えている。115aは固定子巻線、118aはシャフトを示している。127aは導体板126、円盤状導体板126’の外周部に設けた貫通孔でローターバー111aが貫通するようになっている。128は導体板126、円盤状導体板126’の内周部に設けた貫通孔でローターバー125が貫通するようになっている。129aはシャフト118aの貫通孔を示している。また、図9b1,図9b2及び図9b3は本案のローターバー111b,エンドリング123b及び回転子鉄心124bにより構成される回転子の両側面に電磁コイル120bを配して、この電磁コイルに流す直流で直流磁界をつくったり、単相や多相の交流により回転磁界をつくりして、回転電機の起動や出力特性の改善を行わせているものである。112bは固定子鉄心、115bは固定子巻線及び118bはシャフトを示す。123bはエンドリングで、127bはローターバー111bの貫通孔で、129bはシャフト118bの貫通孔を示す。勿論、鉄心124a,124bに磁石を挿入する磁石をスリットを設けて磁石を付加して磁石式回転電機の回転子として用いてもよい。
図10は図9b1に示した駕籠型回転子と本案コイル導体とを種々組み合わせて、回転電機に要求される特性を実現する為の数例を示している。図10a1は図9b1と全く同一で説明は割愛する。
図10a2は回転子鉄心124c内周深くコイル130を配し、外周部にローターバー111cを配して構成した回転子を示し、起動や発電機特性はコイル130にて大幅調整や微調整に対処して、これを用いた誘導電機の例として説明すると出力特性で図12aに示すグラフの如く回転数特性を大幅に変えるのに用いる等。112cは固定子鉄心、115cは固定子巻線及び118cはシャフトを表している。図10a3は回転子鉄心124c内周深くローターバー125aを配し、外周部にコイル130aを配して構成した回転子を示し、起動や発電機特性はロ−ターバー125aにて対処し、コイル130aは主に同期速度近辺の特性を図12cに示すグラフの如く大幅に変えるのに用いる等。112dは固定子鉄心、115dは固定子巻線及び118dはシャフトを示している。図10a4は図10a3と同じ構成にて、回転子鉄心124dの積厚を固定子鉄心112eの積厚よりました例を示し、同期速度近辺の特性をコイル130bにて図12cに示すグラフの如く大幅に変えるのと同時に、鉄心のはみ出し効果を狙ったもので、出力特性の全体のアップや効率改善を狙っている。
112eは固定子鉄心、115eは固定子巻線、118eはシャフト及び125bはローターバーを示している。
図10a5,図10a6はそれぞれ図10a3、図10a4と回転子鉄心124e,124fの内周近辺に配したローターバー125c,125dと併置した単数又は複数の導体板126b,126cとの相乗効果を狙った他はほぼ同じ構成であるが、起動や出力特性の大幅な改善を図っている例を示している。112f,112gは固定子鉄心、115f,115gは固定子巻線、118f,118gはシャフト及び130c,130dはコイルを示している。また、図10a2〜図10a6において、ローターバーの代わりにコイルに置き換えることは勿論可能である。これらのコイル中に回転子2次誘起電圧と90度位相の異なる電圧を印加して、任意に誘導発電機の力率を変えることができるので系統に繋がっている負荷に応じて力率バランスを取るのに有効である。また、コイルに直流を流して直流電磁石として、同期電機やブラシレス電機、リニア電機、パンケーキタイプの電機等に用いることが出来る。
図11は回転子鉄心を磁石を挿入する為等に分割して構成する場合に、回転に伴い鉄心に働く遠心力による変形や飛び出しを防止するため回転子構造の1例を示す説明図で、図11aは本案を適用した回転電機の固定子と回転子の断面図を示している。112hは固定子鉄心、115hは固定子巻線を示している。回転子は回転子鉄心124hは導体板126dや補強板にて中央で分断され、回転子鉄心124hの両側面には導体と補強を兼ねたエンドリング123cを,外周部にはローターバー111dを配して構成されている。図11bはエンドリング123cにリング状の突起131などを設け、鉄心124hに突起131と系合するリング状の溝135が設けられている。エンドリング123cと鉄心124hそれぞれに設けたリング状の突起と溝は、それぞれ逆に設けて構成してもよいことは勿論である。127cはローターバー111dが貫通する分割鉄心124hに設けた孔で、134は分割鉄心124hを支えて固定するスペーサーである。図11cは分割鉄心124hを分断して構成している導体板126dを遠心力による変形や飛び出しを防止するために補強板としても利用した例を示し、導体板126dの両面に突起ピン136を設け、分割鉄心124hには、これらピン136と系合する孔133が多数設けている。導体板126dと鉄心124hそれぞれに設けたピン状の突起と孔はそれぞれ逆に設けて構成してもよいことは勿論である。127dは導体板126dに設けたローターバー111dが貫通する孔である。
図12は各種誘導発電機の特性の変化を示すグラフで、図12aは回転子の導体の抵抗変化による発電機の特性変化を示している。グラフc1からc5にいくに従い抵抗が大きくなっている。特に巻線型の回転子の場合に特性を大きく変化出来ることになる。図12bは励磁用の電源の周波数を変えた場合の特性を示すグラフで、発電特性を回転数に対し平行に移動し、固定子巻線に印加する電源の周波数をかえて同期速度を変え、特性を大きく変化させる場合に用いる。グラフc6からc8に向かって電源周波数が大きくなっている。
図12cは回転子巻線に入れる励磁用の電源の電圧を変えた場合の特性の変化を示すグラフで、同期速度近辺の特性を大幅に変える場合に用いる。グラフc10は特性を変える前の状態で、c9は回転子巻線に流れる電流と逆位相の電圧を加えた時のグラフで、変更前の回転数を下げた状態で特性を平行に移動できる。c11は回転子巻線に流れる電流と同位相の電圧を加えた時のグラフで、変更前の回転数を上げた状態で特性を平行に移動できる。
図13は固定子鉄心112i,112jの軸方向の幅より回転子鉄心124i,124j,124mの幅を伸ばし、はみ出し部のローターバー111eや巻線130eを有効に使って、性能向上や効率アップなどの特性改善を図ろうとしたものである。すなわち、エンドリング123dや回転子巻線130eのコイルエンドEを出来るだけ直径を小さくし、回転子外径の1/3以下程度、シャフト118i,118jの近傍に形成し、図13a2の如くローターバー内を流れる電流により形成される磁界が、空隙部の磁界を増加させるように構成している。この磁界形成をより確実にするため焼結や積層で出来た鉄心124j、124k及び124nを設けている。電流Iによって出来た磁束は一端外部の方にぬけ、回転子側壁に設けた焼結材等で出来た鉄心124kや124nの中を通って隣の極の鉄心より空隙に戻っていくことになる。この磁界を強めるためコイル状に数ターンまいたエンドコイルを付加したり、鉄心124j,124k及び124nに窒化鉄等の強力な磁性焼結体を使うことも可能である。エンドリング123dは鉄心の奥深く形成されており、ローターバーの深溝効果を発揮させることが可能となり、起動特性の改善、発電機の特性改善及び特性調整の効果も有する。115i,115jは固定子巻線で、126eは前述の深溝ローターバーやエンドリング123dと同じ働きをする導体板である。
図14は固定子鉄心112k,112mを回転子鉄心124o,124rの軸方向長さを長くして特性向上や効率向上を狙ったもので、動作はローターバー111fのはみ出し端部やエンドリング123eの作用など図13と全く同じである。図14a1,図14a2ははみ出しローターバー111fいっぱいに固定子鉄心112kを伸ばし、はみ出しバーを流れる電流Iと固定子巻線115kとの間での付加的作用による特性アップを狙うと同時に、端部は図13での効果も狙っている。図14b1,図14b2は図13にて説明した、回転子鉄心124r,巻線130f、鉄心124s及びシャフト118mにて構成される、はみ出し巻線回転子と鉄心112mとコイル115mからなるボビン式固定子とを組み合わせ、固定子のはみ出し効果をより確実にするのを狙った構成になっている。特にコイルエンドEなども有効に作用させ、確実に特性向上に寄与させるようにした画期的なものである。124p,124qは焼結材などを使用した渦損失の少ない鉄心でつくられ、はみ出し部の効果を有効に引き出すように構成されている。118kはシャフト、126fは導体板である。
図15は固定子や回転子の巻線にスロットレス円筒状鉄心112n,124uにコイル115n、130fを接着剤等で固着して、コギングを少なくして起動トルクを小さくしたり、効率を改善したりする回転電機で、固着したコイル115n、130fが回転時に変形したり、はがれたりしないように円筒状の保持具150、150aに設けている締結突起151にて円筒鉄心112n,124uに設けた孔等で確実に固着し手いる。また、巻線や電工作業を簡単にし、信頼性をより高めるために、イメージコイルにてコイル数を本来の1/2に減らし、作業性を一段と向上すると同時に、固着剤160の中に磁性体の粉末160aを含浸させて、磁束の不足を十分に補って特性大幅に改善している。さらに、円筒状の保持具150、150aの代わりに、積層鉄心にして、スロットやスキューを付けたりして、容量の大きい機器に対応出来るようにしている。図15a1は固定子にスリットレス鉄心を適用した例の説明図で図15a2は回転子鉄心に適用した例を示している。111gは駕籠型回転子のローターバーを示し、123sは駕籠型回転子のエンドリングを示す。118n、118oはシャフト、112oは固定子鉄心、115oは固定子コイルを示している。図15a3は巻線を円周方向に展開した図で、イメージコイルで集中巻した例を示している。図15a4は図15a3を側面より見た断面図で円筒鉄心112とコイル115n及び保持具150、締結突起151の関係を示している。
図16は外転型の発電機で図16aが本発明の磁石214又は電磁石242、243及びこれらの組み合せにて構成した回転子202を有する発電機の断面構造を示し、図16bは従来の円筒型磁石回転子202’を有する発電機の断面構造を示す。回転子を動力源により外から駆動されると固定子に巻き込んでいるコイルに回転数に応じ電圧が発生し、電気取り出しコード207に抵抗等負荷をつなげば電流が流れ電力を供給する。コイルの発生電圧は固定子と回転子との空隙の磁束密度に比例し、又回転数にも比例する。空隙の磁束密度をいかに高めるかが発電機の性能向上、効率向上に大きく関係していることに着目して、本発明は特性を飛躍的に向上出来る構造を考案した。また、回転子磁石の軸方向長さを長くしたり、電機内部の空き空間を可及的に活用して、安価な弱い磁石や電磁石及びこれら組み合せにても回転子外径をあまり大きくせずに、強力な磁石を用いた場合と同じく特性を飛躍的に向上出来る経済的(約1/3)構造を考案した。
次に磁石による空隙の磁束密度向上策について図17及び図18にて説明する。図17は外転型発電機、図18は内転型発電機の実施例を示す。外転型発電機断面図17aにおいて、回転子材質が非磁性体の動力伝達外枠210、6個の分割鉄心(本例では6分割)213及び6個の磁石214より構成されている。この際磁石の固定子及び側外枠のa,b部と外枠210と鉄心213に挟まれた空間216は空気か非磁性体で構成されているか、回転子構成上鉄心や側板(強磁性体で構成せざるを得ない場合)の一部でこの部分を構成せざるを得ない場合も極力、磁束の漏洩がない様に磁気抵抗を大きくして、磁石端部からの磁束の漏洩をふせぐ構成になっている。磁石214の半径方向の長さの2倍が鉄心213の空隙部の一極あたりの円周方向の長さより大きくすることにより磁石214の磁束より空隙部の磁束を大きく出来ることになる。また、同様に外径が大きくできない場合や弱い磁石で強い空隙磁束を得ようとする場合磁石鉄心の軸方向長さを長くしたり空き空間を活用して磁石の有効面積を空隙部の面積より大きくして、いわゆる本案の磁束集中効果が達成でき,発電機の飛躍的性能アップに繋がるわけである。磁石214の極性は一つの鉄心213に対し図面に示す如く同極に対峙するように隣合わせの2つの鉄心213により形成されるスリットに着脱自在に殆ど鉄心213とのギャップが生じないように挿入されている。また工作上やむおえずギャップが生じる場合は強磁性体の調整板や粉末状の磁性体(液状の磁性流体でもよい)で磁気抵抗を極力小さくする。ちなみにa,b部に鉄等の強磁性体が有、無の性能差は発電機の一例ではあるが2〜3倍の出力差のデータがある。ちなみに、有りの場合600wであったものが無の場合で1800wに向上した。又空間216も大いに磁束集中に一役かっている。磁石部の着脱自在構造にすることにより、磁力の同じものは半径方向の長さを変え、長さの同じものは磁力の強さや軸方向の長さを変えて容易に特性の変更や調整が出来るようになる。図18bは強さの異なる磁石214a,bをスリットに入れた例で空隙の磁束分布の変化やより磁力を強くするのに有効である。図18cは空隙の磁束分布を均質にするのに有効で断面が台形になっている。図18dは強さの同じ磁石を一極当たり2枚に増し空隙の一層の磁力アップに有効で、さらに飛躍的な性能向上が期待出来る。図18eは2種類の磁石で主体は214a’で空隙の磁界は決定し、214b’で磁界の微調整をおこなう。図18fは従来の円筒磁石に本案の磁石を組み合わせることにより強力な空隙磁界を期待出来る構成例である。これは弱い磁石の組み合わせで強力な空隙磁束を得るのに有効で、軸方向長さや空き空間等を組み合わせるとさらに強い経済性に優れた磁石構造を提供できる。
図18a〜fは内転型発電機のものであるが、図17の外転型発電機の反転構造となっていて基本的には同じなので説明は割愛する。又説明は発電機を例に行なったが同じ技術はそのまま電動機にも当然適用可能であることはいうまでもない。又この磁力集中の原理は他の磁石を用いるあらゆる電機に適用出来るのはいうまでもない。例えばパンケーキタイプ電機、リニアーモーター、磁石機器
等。
図19は前述の外転型発電機の回転子の分割鉄心部の一例で平面図を示しているが、固定子との空隙に面してスロット(図では3個)231を設けてある。これは同期電動機や推力型プロペラを使用する風車発電機などに磁石回転子を使う場合、複雑高価な電子回路を使わなくても、自力で起動出来るようにするため、簡単な誘導電動機等に使用されている駕篭型ローターや巻線型ローターを形成するためのものである。起動を単相または多相誘導電動機として起動させる。起動トルクを上げるためにスロットの形状を種々変えて、例えば深溝スロットなど必要に応じた対応も可能である。
図20は図19aを用いて外転型発電機に駕籠型ローターを形成した例で、駕籠型ローター部の構成は図20b、cのようになっており、アルミや黄銅等の導体で作られ、2枚の側板218と複数のバー219によりカシメやダイキャストなどでローターの一体化を図っている。ローターバーをスキュウさせて起動特性を改善したり、固定子をスキュウさせて改善することも当然可能である。本考案の磁石を軸方向に伸ばした場合に図20bの場合、鉄心を側板218にて分断することになるが、図20cの如く側板218の半径方向の長さをできるだけ少なくし、図20cのように其の断面積を同じくして軸方向に伸ばし、磁石鉄心の内周面に(内転型の場合外周面に)配置して、両側に延長した磁石214や電磁石242,243からの磁束が固定子空隙に集中するように、固定子端面からの漏洩を防止するため設けている回転子鉄心の段差部232に配置するようにすることで磁路への影響を少なくしている。図20dは回転子の軸方向に磁石214のみを延長した場合を示し、図20eは固定子212に対峙している回転子磁石214の両側に電磁石242、243を付加した場合を示している。この場合電磁石242の磁束漏洩防止ギャップ252及び電磁石243の磁束漏洩防止ギャップ253が固定子への磁束の短絡防止に有効に働くように設けている。
図21は図17fの例などで電動機や発電機などで磁極配置の空間に限りが有る場合に、限られた磁極空間を有効に活用して、立体面の全面または一部に磁石を有機的に配置し、空隙部に磁束が最大限集中するようにした実施例である。組み合わせ磁石は一部構造的に可能であれば一体構造にしてもよい。例えば磁石214a″と軸方向の磁極面に配置した磁石214dをリング状に形成したりして一体構造にして生産性を上げてもよいわけである。さらに磁石214cまたは214b″と組み合せてキャップ状にしてもよい。214cは磁極の外周部に配置した円筒状磁石で、その外周に磁束の磁路形成の鉄心213aが配置されている。また、磁石214dの外側に同じく鉄心213bが配置されており、磁石214dが有効に働くようにしている。これらの磁石は全て空隙部に磁束が集中するように各磁石の極性が図示のN,Sのように設定配置されている。また、各磁石が磁束の短絡や漏洩が最少になるように非磁性空間を適切に設けることは当然の手段として行っている。
図22、23は本発明の他の磁石や電磁石と結合可能なドーナツ構造をした電磁石の構造説明図で、図22は磁極が2極の例を、図23は6極の例を示している。次にこれら電磁石の詳細な説明を図22にて行う。図22a,bは外周にN、S 2極の磁極が形成され、これを回転子として用いる場合は内転型に適用される。又他の磁石や電磁石と結合する場合は相手の磁極と整合させてこの外周面で行うことになる。磁極の整合はコイル260aの端子a,bより直流電源の極性を変えて行う。250は磁界形成時にN、S 両極の磁束の短絡を防止するギャップでその寸法は使用状況により漏洩がない様に設定する。
磁極の材質は直流電磁石の場合は鉄等の強磁性体であればよい。しかし交流電磁石として使用する場合は交番磁界による渦電流の発生の少ない鉄等の強磁性体の焼結材か微細な鉄粉を結合材で成形した鉄心などを用いる。又珪素鋼板等の電磁鋼板を積層したり、複雑な形状の部分は焼結材等と組み合わせて鉄心を形成してもよい。図22bに示すカット部電気角度は次式により求められ、
カット部の電気角=180度−{2π×励磁しようとする相数/回転子の極数×電動機の相数}度
回転子の回転に伴なうコイル中に発生する電気の極性変換に伴なう変換損失を最少にして電機の出力効率の向上に寄与するもので、この機能を電子制御で行わせようとした場合大幅なコスト高になるばかりではなく、極数が増した場合にこれに比例して回路が複雑になり、信頼性の大幅な低下を招く。本案は簡単な鉄心構造のみで実現出来非常に効果的方法といえる。ちなみに、カット部の有無による効率の差は、500Wの発電機の例で7%あった。図22c、dは内周面に磁極を有するもので構造は図22a,bの外周面磁極の電磁石の反転構造となっている。機能的には同じである。図22e,fは右面が磁極になっており、また図22g,hは左面が磁極になっている。これら4っのタイプの電磁石で、他の磁石や電磁石と内外左右のいかなる方向でも結合が可能となり、種々の磁石結合により多種多様の磁石構造が可能となる。図23は6極の4種類の電磁石の例であるが、構造上の特徴から、在来の構造では実現不可能な多極のものが、本発明の電磁石構造では従来のものより多い多極のものが容易に実現出来、しかもコスト的に殆どアップすることなく出来る画期的なものである。図24は内転及び外転回転子の磁石を形成する場合の組み合せを分かり易くするため、6極電機の4種類の電磁石と内外転回転子用の磁石の略図を示している。略図1は外周磁極型電磁石、略図2は内周磁極型電磁石、略図3は右面磁極型電磁石、略図4は左面磁極型電磁石を示している。また、略図5は外転回転子用の磁石、略図6は内転回転子用磁石を示す。
図25は内転回転子用の磁石と電磁石の組み合せの例を示し、図26は外転回転子用の磁石と電磁石の組み合せの例を示す。ここでは図26について説明する。図26aは外周磁極型電磁石一個のみにて磁極を形成した例である。図26bは内部に電磁石1個とその外部に磁石1個で形成されている。図26cは磁石と左面磁極型電磁石との組み合せ例であるが、右面磁極型電磁石を磁石左面に結合してもよい。図26d,iは電磁石2個と3個の組み合せの例である。図26e,jは前述のd,iの電磁石の外面に磁石を組み合わせた例であるが,磁石の側面に電磁石を結合してもよい。図26f,g,hは一個の磁石又は電磁石に2個の他の磁石又は電磁石を組み合わせた例である。このように多種の組み合せ例について説明したが、其の外にも考えられる。いずれにせよ目的に応じて、それに合った結合を採用すればよい。いずれも電磁石が必ず入っており、空隙部の磁束の調整や磁束の制御がリアルタイムで可能となり、必要な特性を自在に達成可能となる。例えば風力発電機等風の強さや負荷により回転数が大幅に変動し、発生電圧が大きく変わる場合、その電圧を一定に保つ必要がある場合等電磁石により、その時々の状況にあった制御が理想的に行えるようになる。
図27、28は2極及び6極の内外周磁極型電磁石を3個用いた3相電機の固定子を形成した例を示す。図27a,bは外転型回転子の交流2極の電機の固定子に適用するもので、図27aは固定子を示し、図27bは各相の結合時の電磁石の位置関係を示し、電気角で120度ずつずらしている。図27c,dは内転型回転子の電機の固定子に適用するものである。また、図28は3相6極の電機の固定子に適用するもので、図28aは固定子を示し、図28bは各相の結合時の電磁石の位置関係を示し、2極同様電気角で120度ずつずらしている。図28c,dは内転型回転子の電機の固定子に適用するものである。図27、28では交流三相の電機の固定子の各相一個の電磁石にて構成した例を示したが、各相複数個の電磁石で形成してもよい。その場合各相の電磁石は集中又は分散の何れの構成でもよい。又固定子についてその適用を伸べたが、大型機に多い巻線型の回転子ばかりでなく、コスト的に適用が困難な中低容量の電機にも適用することが可能となる。その場合図16に示す、外部より電磁石に給電するスリップリング240が必要になる。
図29は二極の電磁石鉄心の構造に関する説明図で、製作工具1個にて製作出来る鉄心の構造を示している。図29a,bと図29c、dは1つの巻線用でそれぞれ外周磁極と内周磁極の鉄心を示している。鉄心272が外周磁極形、鉄心273が内周磁極形となっている。また、図29e,f,gと図26h,i,jは二つの巻線用でそれぞれ外周磁極と内周磁極の鉄心を示している。二つの鉄心は一体構造となっていて電気角で120度回転方向にずらした構造となっている。説明図は二極の例を示しているが、多極の鉄心にも同じく応用出来、在来のものと比べ多極になればなるほど生産性の優れた構造となっている。又図29e,f,gと図29h,i,jは三相の電機用として活用すると非常に有効である。ここでは異相の鉄心の例を説明しているが、同相にも二つの鉄心を対象構造にすることにより、当然応用出来る。鉄心274が外周磁極形、鉄心275が内周磁極形となっている。
図30は交流電磁石の渦電流損を少なくする為の鉄心構造に関する説明図である。図30a,bは焼結や鉄粉を結合材で固めた鉄心構造を示している。形状は複雑な形状でも対応出来る。図30c,dは電磁鋼板281bと磁極の複雑な構造に十分対応出来る焼結や鉄粉を結合材で固めた鉄心281aとの組み合せ構造になっている。図30e,fは電磁鋼板282bと磁極の複雑な構造に十分対応出来る渦電流損を減らす為設けたスリット283を有する厚い鉄板(薄い鋼板の積層でも可)の絞り構造をした鉄心282aとの組み合せ構造になっていっる。交流の固定子や巻線形回転子の鉄心として応用可能な鉄心を提供出来ると同時に、抜群の生産性を持つ巻線と併用すれば画期的なコスト安の回転電機のキー部品を提供できる有効な交流用鉄心である。
発明の効果
産業界や民生には電力系統に接続して使用されている各種の電動機が無数に有り、又今後新たに敷設されるものを考えると膨大な数になる。これら電動機に内燃機関などの原動機を付加したり、新たに一体型電動発電機としてあらゆる機械に敷設しておけば在来の電動力応用のみにとどまらず、発電機能を併せ持つことになり、電力会社に殆ど頼っている電力を独自で持つことが出来、電気料の低減、電力ピーク問題の解消、さらには社会全体の発電能力の大幅なアップ等その効果は甚大なものがある。
電動発電機に誘導電動機を使用すれば電圧、周波数の変動がなく系統との電力のやり取りが系統に繋がっている電動機や発電機に関係なく個々に、独立して電力のやり取りができ、しかも電圧調整器、周波数調整器、蓄電装置及びエネルギー変換装置などを必要とせずシステムが構築でき、省資源効果抜群な発電システムが実現できる。
風力や水力の自然のエネルギーを活用する場合に単数で大型の機器で行う場合には製造が一品生産となり、高価で、設置、輸送、運転中の騒音、強風時などの運転停止や保護装置の設置等問題点が多く存在するのに対し、本システムを利用して、小型複数機にてシステムを構築すれば量産性が抜群にあがり、コストが大幅に下げられ、設置、輸送、運転中の騒音等に大幅な改善が実現出来ると同時に、電圧調整器、周波数調整器、蓄電装置及びエネルギー変換装置などが不要で経済効果大なるシステムの構築ができる。
また、レドックス電池はこれからの蓄電装置として活用すれば寿命的に半永久的に持ち、民生や産業界に普及すれば余剰エネルギーの蓄積や負荷アンバランスの是正など、エネルギー有効利用の見地からその経済的効果は大いに期待できる。
本システムに有効な電機として誘導電機等の回転電機の特性改善や制御性に勝れた固定子や回転子の数々の構造の考案を行っており、システムを効果的、経済的に実現するのに威力を発揮出来る。
さらに、本発明は磁石式回転子の磁石及び結合可能な内外周及び左右面に磁極を有する4種類の電磁石との組み合せにより空隙の磁束を大幅に向上すると同時に出力や電圧等の特性の調整や制御が容易に出来る技術を提供出来る。また、特に外形が制限されている小型機器や磁極配置空間に限りが有る場合等で、安価で資源的に豊富なフエライト磁石等を用いて、キド類磁石に代表されるネオジウウム等の強力な磁石並みの性能や効率を達成できる経済的な発電機や電動機を提供できる。又本発明の電磁石を組み合わせて生産性抜群の固定子や回転子が相数に関係なくコストフリーで実現できる画期的考案である。。
本発明の電動発電システムの一実施例を示す説明図と在来の電動主体のシステムの例の説明図 本発明の電動発電システムを単純化のため誘導電機を用いた一実施例を示す説明図と在来の電動主体システムも誘導電機を用いた例の説明図 送風機やポンプに代表される流体機械の発電機への応用例の説明図 本案の複数台の流体機械を用いた電動発電システムで、流速や温度などのセンサー群にて各個別の運転状態を把握、制御するようにした例の説明図 本案電動発電システムを構築する場合、電力系統がない場所などに構築した例を示す説明図 本案磁石による空気の加速エレメントの例を示す説明図 本案全周より風を吸い込み発電する風力発電機の構造の例の説明図 本案の回転電機の回転子構造の例と在来の回転子構造を示す説明図 本案の回転電機の回転子構造の内、導体板の機能を示す説明図 本案の巻線型と駕籠型導体を種々組み合わせた例を示す説明図 本案の分割鉄心構造にて遠心力強度をました例を説明する図 本案の誘導発電機の各種特性を示す図 本案の回転子鉄心の固定子鉄心よりはみ出した場合の効果についての説明図 本案の固定子鉄心の回転子鉄心よりはみ出した場合の効果についての説明図 本案のスロットレス鉄心構造を持つ回転電機の本案改善例を示す図 本案の軸方向に磁石や電磁石を伸ばして回転子を形成した一実施例を示す発電機の構造図と従来の発電機の構造説明図 本案の外転型発電機の磁石式回転子の断面説明図で、空隙の磁束集中の説明図で6通りの実施例を示めす図。 本案の内転型発電機の磁石式回転子の断面説明図で、空隙の磁束集中の説明図で6実施例を示めす図。 本案の外転型発電機の磁石式回転子の分割鉄心構造の実施例を示す図。 本案の外転型発電機の駕籠型回転子を形成した例を示す図。 本案の外転型発電機の磁石式回転子の分割鉄心の立体面全てに磁石を配した例を示す図 本案の他の磁石と結合可能なドーナツ構造をした磁極が二極の電磁石の説明図 本案の他の磁石と結合可能なドーナツ構造をした磁極が六極の電磁石の説明図 本案の磁石と電磁石の組み合せの理解のため、六極電機の回転子の4種類の電磁石と2種類の磁石の略記号説明図 本案の内転型回転子用の磁石と電磁石の組み合わせ例を示す説明図 本案の外転型回転子用の磁石と電磁石の組み合わせ例を示す説明図 本案の内外周磁極型電磁石を3個用いて3相2極電機の固定子を形成した例を示す図 本案の内外周磁極型電磁石を3個用いて3相6極電機の固定子を形成した例を示す図 本案の二極の電磁石鉄心の生産性を向上した構造に関する説明図 本案の交流電磁石の渦電流損を少なくする為の鉄心構造に関する説明図
符号の説明
1,1a,1b,1c,1d :電力系統
10,10a,11,11a,12,12a,12b,12e,14,15、15
a :電動機
10b,10c,10’,10a’,12’,12a’12c,12d,12f,1
4a,14b,18b,18c、18d :発電機
13,17,17a,17b,18,18a
:電動発電機
20,22,24,26 :ポンプ水車
21,23,25,27 :圧縮機
28 :人力
30,30a,30b,30c,30d,30e,31,31a,31b,
31c,31d,31e,31f,31g,31h,32,32a,32b,
34,34a,34b,34c,34d,34e35,35a,35b,35c,
35d :制御盤
40、40a ,41,43a,43b
:内燃機関
50,51,53,54 :インバーター
60,61 ,63,64 :蓄電池
70,71,71a,72,72a,72b,73,74,75 :羽根
82,83, :中央コントローラー
91,91a,91b :センサー
100 :コンデンサー
101 :総合負荷器
102,103 :フレーム
104,105,106 :磁石
107 :風向ガイド
H :加速孔
111,111a,111b,111c,111d,111e,111f,11
1g,125,125a,125b,125c,125d
:ローターバー
112,112a,112c,112d,112’,112e,112f,112
g,112h,112i,112j,112k,112m,112n,112
o :固定子鉄心
113,113’ :回転子
114,114’ :ハウジング
115,115a,115c,115d,115e,115f,115g,11
5h,115i,115j,115k,115m,115n,115o,11
5’ :固定子巻線
116,116’ :エンドブラケット
117,117’ :軸受け
118,118a,118,128b,118c,118d,118e,118
f,118g,118i,118j,118k,118m,118n,118
o :シャフト
119,119’ :コード
120 :電磁石
121,121’ :ベース
C :切り欠き部
I :電流
E :コイルエンド
123a,123b,123c,123d,123e,123f
:エンドリング
124,124a,124b,124c,124d,124e,124f,12
4h,124i,124j,124k,124m,124n,124o,124
p,124q,124r,124s,124t、124u :回転子鉄心
126,126’,126b,126c,126d,126e,126f
:導体板
127a,127b,127c,127d、128,129a,129
b :貫通孔
130,130a,130b,130c,130d,130e,130f
:回転子コイル
131 :リング状突起
133 :孔
134 :スペーサー
135 :リング状溝
136 :ピン
140,141 :強磁性体
150,150a :保持具
160 :固着剤
160a :磁性粉
201,201’ :回転子
202 :磁石回転子
202’ : 円筒型磁石回転子
203、203’ : 固定子
204、204’ : シャフト
205、205’ : 軸受け
206、206’ : 軸受け保持パイプ
207、207’ : 電源コード
208、208’ : エンドブラケット
210 : 外枠
212 : 固定子
213,213a,213b : 分割鉄心
214、214’,214a,214b,214c,214d,214a’,214b’,214a”,214b” :磁石
215 : シャフト
216,a,b:非磁性空間
218 : 側板
219 : バー
N,S : 磁石の極性
220 : ハウジング
221 : 非磁性ホルダー
222 : 固定子
223 : 分割鉄心
224、224’,224a,224b,224a’,
224b’,224a”,224b” :磁石
225 : シャフト
226、a,b:非磁性空間
230 : 分割鉄心
231 : スロット
232 : 鉄心切り欠き部
240 : スリップリング
241 : 電磁石電源線
242、243、 : 電磁石
244、245、246、247、244’、245’,246’,
247’、248、249、270、271,272,273,
274,275,280,281a,281b,282a,282b: 電磁石鉄心
250,251,252,253,254,255,250’,258、259、278、279,251’,252’,253’, : 磁束漏洩防止ギャップ
260a,260c,260e,260g 、260a’,260c’,
260e’,260g’260f,260h,260i,260j、
260k,260l,260m,260n,260r,260s,:電磁石コイル
283: スリット

Claims (10)

  1. 一般の産業や民生にて、動力源として電動機を用いて構成され、同一電力系統にて使われる各種機械において、回転電機を一体または分離した電動発電機と置き換えたり、内燃機関などの原動機を電動機の外部に付設したり.特に羽根や流体流路の変更にて外部流体のエネルギー、たとえば風力や水力を動力にして発電機能を持たせるようにし、さらに健康機器等で手回しや足踏み等の人力にても発電機能を持たせるようにしたことを特徴とする電動及び発電システム。
  2. 一般の産業や民生にて、動力源として電動機を用いて構成され、同一電力系統にて使われる各種機械において、発電単一機能の場合は停止時から、電動発電複合機能の場合はその動力機能を止めて、外部からの動力にて発電機能を持たせるようにしたシステムにおいて、単一または複数台を同時に、発電体制へスムーズに移行させるため、発電単一機能の場合は、まず電動機や流体などの外部動力などで起動させ,わずかな外部動力にても発電状態に移れるようにし、また電動発電複合機能の場合は電動機として運転中からの場合は一端無負荷状態とし、停止中からの場合は一端電動機として起動させ、わずかな外部からの動力にても発電状態に移れるようにし、運転台数に関係なく並列運転にて、それぞれの発電出力に応じて、電圧変動や周波数変動を伴わずに出力できるように、これらを電力系統または安定な交流電源にて励磁した誘導電機にて構成し、低速から高速時までの広範囲の発電に適するようにしたことを特徴とする電動及び発電システム。
  3. 羽根や水車等と回転電機にて構成される一般の産業や民生に使われる流体機械において、プロペラ機器の場合羽根の可変ピッチ等でひねり角度を逆にして、また遠心機器の場合に流体の取り入れ口を吸入側から排気側に切り替えたり、風向に関係なく全周に設置した風向ガイドにて、制御回路など変更することなく流体機械本来の送風やポンプなどの流体移送機能から発電システムに切り替えるようにしたことを特徴とする流体発電システム。
  4. 充放電に半永久的に耐える多イオン価をもつクロームやバナジウムなどの電解液にて構成した設置型に適したレドックス蓄電池や電気分解による水素発生装置と水素吸蔵合金などのエネルギー蓄積装置をシステムの中に持ち、夜間電力、燃料電池及び内燃機関等による発電及びこのエネルギーを使う負荷の変動などに十分対処でき、しかもクリーンなコウゼネを狙ったことを特徴とする請求項1から3の発電システム。
  5. 電動力として用いられる回転電機にて構成きれる一般の産業や民生に使われる各種機械において、その動力機能を止めて、外部からの動力にて発電機能を持たせるようにしたシステムにおいて、発電単一機能の場合及び電動発電複合機能の場合のいずれにおいても、停止や動力機能から発電システムに切り替える際に、負荷の状況、流体などの流速、温度、湿度などの外部動力の状態,外部発電機の発電状況その他制御に必要なデータなどをそれぞれに適した把握センサーにて検知し、そのデータに基づき自動的・効率的及び経済的で切り換え電流を最少にして安全にシステム全体を運転制御できるようにしたことを特徴とする電動発電システム。
  6. 電動力として用いられる回転電機にて構成される一般の産業や民生に使われる各種機械において、発電単一機能の場合は停止時から、電動発電複合機能の場合はその動力機能を止めて、外部からの動力にて発電機能を持たせるようにしたシステムにおいて、単一または複数台にて構成し、停止時や動力機能から発電システムに切り替える際に、負荷の状況などの把握センサーにて、単一の場合はその運転状態を制御し、複数台の場合は必要な動力機械の運転数を決定し、残りの台数にて発電を自動的に行わせるようにし、システム全体を効率的・経済的に運転するようにしたことを特徴とする電動発電システム。
  7. 汎用の電力系統はいうに及ばず、汎用の電力系統がない場所や自動車などの交通機関等で、蓄電池・インバーターによる交流電源や励磁用の交流同期発電機を用いて電圧や周波数を自由に変更出来る系統の電源を設け、特に電動発電機には二次抵抗二次リアクタンスの調整可能な巻線型や深溝型回転子を有する誘導電機や回転数の調整に便利な回転子励磁式の非同期電機などにて構成し、系統の電圧変動が小さく、安定的なシステムが単数または複数台にて行えるようにすると同時に、さらに必要に応じ電力系統や原動機の出力や回転特性に適した電圧や周波数にて運行し、進相コンデンサーや誘導負荷を用いて系統全体の負荷をバランスさせ、安価で安定なシステムが実現出来るようにしたことを特徴とする電動発電システム。
  8. 羽根を用いる送風や全方向から風を取り入れ風力発電を行わせる電動発電システムで、全周からの風等を効率よく羽根に風を導く風向ガイドを取付け、単数又は複数機を有機的に構成し、ビルや一般住宅の屋上、電柱の上部、櫓や橋或いは道路際の建造物などにも簡単に単数又は複数台設置運転出来、しかも安定した電力系統さえあれば、これらで発電した電力を電圧調整器、周波数調整器、電力変換装置や蓄電装置を運転台数や発電状態に関係なく、必要としないように、主電機に誘導電機を用いたことを特徴とする風力発電システム。
  9. 羽根を用いる送風や風力発電を行わせる電動発電システムで、流路に単数又は複数個の永久磁石や電磁石にて傾斜磁界を形成し、空気中の酸素とこの傾斜磁界により常に空気を動かし、1テスラの磁場の単一の永久磁石を用いた場合にもエネルギーを使わずに最大0.6m/秒の風をおこし、又電磁石を用いても磁場を作るのみのほんのわずかなエネルギーで1段又は数段で空気を重畳的に加速し、自然の風のエネルギーにプラスして、起動や送風及び発電を効率的に行わせるようにしたたことを特徴する風力発電システム。
  10. 羽根や水車等と回転電機にて構成される一般の産業や民生に使われる流体機械において、発電単一機能の場合は停止時から、電動発電複合機能の場合は流体移送機能を止めて外部からの流体を動力として発電機能を持たせるようにしたシステムにおいて、プロペラ羽根や遠心羽根などの機械的システムは一切変えずに、発電単一機能の場合は電動機として起動させて同期回転数近くまで上げ、わずかな外部流体にても発電状態に移れるようにし、また電動発電複合機能の場合は回転電機の回転方向を、多相機器においては相順変更により、単相機器においては主巻線か補助巻線の極性変更やコンデンサー駆動の場合はコンデンサー端子の切り換えなど、電気的に回転磁界の方向を変更するのみにて変え、まず起動の上わずかな外部流体の動力にても発電システムに簡単に移行可能にしたことを特徴とする流体発電システム。
JP2005227191A 2000-05-19 2005-07-08 電動及び発電システム Pending JP2006014595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227191A JP2006014595A (ja) 2000-05-19 2005-07-08 電動及び発電システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000147872 2000-05-19
JP2000313006 2000-10-13
JP2005227191A JP2006014595A (ja) 2000-05-19 2005-07-08 電動及び発電システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001147250A Division JP2002191123A (ja) 2000-05-19 2001-05-17 電動及び発電システム

Publications (1)

Publication Number Publication Date
JP2006014595A true JP2006014595A (ja) 2006-01-12

Family

ID=35781130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227191A Pending JP2006014595A (ja) 2000-05-19 2005-07-08 電動及び発電システム

Country Status (1)

Country Link
JP (1) JP2006014595A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172073A (ja) * 2009-01-21 2010-08-05 Mycom Inc 軸同期回転装置
CN103501062A (zh) * 2013-09-25 2014-01-08 于波 高效电动发电机
CN112338632A (zh) * 2019-08-07 2021-02-09 发那科株式会社 机床系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172073A (ja) * 2009-01-21 2010-08-05 Mycom Inc 軸同期回転装置
CN103501062A (zh) * 2013-09-25 2014-01-08 于波 高效电动发电机
CN112338632A (zh) * 2019-08-07 2021-02-09 发那科株式会社 机床系统

Similar Documents

Publication Publication Date Title
KR100780018B1 (ko) 전동 및 발전 기능을 복합 구비한 시스템
CA2881979C (en) A dc motor/generator with enhanced permanent magnet flux densities
CN101772876B (zh) 带有混合励磁转子的电机
US6177746B1 (en) Low inductance electrical machine
US8288916B2 (en) Composite electromechanical machines with uniform magnets
CN101882821B (zh) 交流爪极电机
CN108964396B (zh) 定子分区式交替极混合励磁电机
CN110601482B (zh) 轴向磁场飞轮脉冲同步发电机系统
WO2009056879A1 (en) Permanent magnet reluctance machines
US10312782B2 (en) Double stator permanent magnet machine
CN110504789B (zh) 模块化飞轮脉冲发电机系统
JP2002369473A (ja) 永久磁石を使用したシンクロナスモーター
KR101091436B1 (ko) 영구자석 모터
JP5543185B2 (ja) スイッチドリラクタンスモータ駆動システム
CN105576929A (zh) 一种集中绕组交流无刷电励磁起动发电机
CN109038990A (zh) 高转矩密度容错型混合磁通永磁电机
CN201956845U (zh) 一种新型结构的永磁式交流同步发电机
JP2002191123A (ja) 電動及び発電システム
KR910006289B1 (ko) 솔레노이드 형 발전기
WO2016067634A1 (ja) 定電流制御によるモータ駆動システム
JP2006014595A (ja) 電動及び発電システム
SK50382015A3 (sk) Spôsob budenia a rekuperácie jednosmerného motora a jednosmerný motor s rekuperáciou
CN210405045U (zh) 轴向并列复合电机
CN108418375B (zh) 一种电动汽车用多段轮辐交错转子永磁同步电机及其方法
CN109256879A (zh) 一种内外层永磁体错位的双定子电机

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060626