JP2006013296A - Cooler for semiconductor element - Google Patents

Cooler for semiconductor element Download PDF

Info

Publication number
JP2006013296A
JP2006013296A JP2004190947A JP2004190947A JP2006013296A JP 2006013296 A JP2006013296 A JP 2006013296A JP 2004190947 A JP2004190947 A JP 2004190947A JP 2004190947 A JP2004190947 A JP 2004190947A JP 2006013296 A JP2006013296 A JP 2006013296A
Authority
JP
Japan
Prior art keywords
semiconductor element
heat
fin
cooling body
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190947A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamamoto
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004190947A priority Critical patent/JP2006013296A/en
Publication of JP2006013296A publication Critical patent/JP2006013296A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently diffuse heat from a semiconductor element or the like and suppress a rise in temperature as much as possible. <P>SOLUTION: A semiconductor element 2 is joined with one of surfaces of a metallic base (fin base) 1, and a grid-like heat dissipation (cooling) fin 3 is provided on the other surface. A heat conductive plate 11 thicker than a longitudinal thickness of the fin 3 is provided in a region opposite to the mounting surface of the element 2, thereby averaging a temperature gradient of the fin base 1. Thus, the rise in temperature of the element 2 can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、冷却体および発熱体の冷却構造に関する。より具体的には、冷却体ベース板に多数の格子状の放熱フィンを接合し、ファン等により誘起した冷却風をフィン間に流通させることにより、パワートランジスタを含む半導体素子の発熱を除去する冷却体の構造に関する。   The present invention relates to a cooling structure for a cooling body and a heating element. More specifically, the cooling body base plate is joined with a large number of grid-like heat radiation fins, and cooling air induced by a fan or the like is circulated between the fins to remove heat generated from the semiconductor element including the power transistor. Concerning body structure.

インバータや無停電電源装置等に代表される電気機器で用いられる半導体素子を冷却するために、素子を金属ベース板に密着させ、ベース板内で熱を拡散させた後、放熱フィンより外気へ熱を発散させる方法が従来から一般的に用いられている。
特に、素子からの発熱量が大きな装置では、各フィンの間にファン等により強制的に冷却風を送り、放熱能力を高めることで素子の温度上昇を動作限界温度以下に抑えるようにしている。
In order to cool semiconductor elements used in electrical equipment such as inverters and uninterruptible power supplies, the elements are brought into close contact with a metal base plate, heat is diffused in the base plate, and then heat is released from the radiation fins to the outside air. Conventionally, a method of diverging is generally used.
In particular, in a device that generates a large amount of heat from the element, cooling air is forcibly sent between the fins by a fan or the like to increase the heat dissipation capability, thereby suppressing the temperature rise of the element below the operating limit temperature.

高発熱素子用冷却体の従来例について、図6,図7を参照して説明する。なお、図6は例えば特許文献1に、図7は特許文献2にそれぞれ開示されている。
図6では、冷却体のベース板1の片面には半導体素子2が、一般的には熱伝導率の高いグリース等を介して取付けられる。ベース板1はアルミニウムや銅等の熱伝導率の高い金属材料にて構成され、ベース板1のもう一方の面には、放熱フィン3がロウ付け等によりほぼ均一なピッチPで多数取り付けられている。素子2から発生した熱は、この放熱フィン3の長さ方向に、図示されない冷却ファン等を用いて冷却風を流すことにより、外部冷却風へと放散される。
A conventional example of a cooling element for a high heating element will be described with reference to FIGS. 6 is disclosed in, for example, Patent Document 1, and FIG. 7 is disclosed in Patent Document 2.
In FIG. 6, the semiconductor element 2 is generally attached to one surface of the base plate 1 of the cooling body via grease having a high thermal conductivity. The base plate 1 is made of a metal material having high thermal conductivity such as aluminum or copper, and a large number of radiating fins 3 are attached to the other surface of the base plate 1 with a substantially uniform pitch P by brazing or the like. Yes. The heat generated from the element 2 is dissipated into the external cooling air by flowing cooling air in the length direction of the radiation fins 3 using a cooling fan (not shown).

上記のような冷却体を構成する放熱フィンには、冷却風の圧力損失を最小限に抑えながら放熱面積を増大させることが要求される。
そこで、例えば図7に示すように、複数の横フィン4と縦フィン5からなる格子状のフィンユニットをベース板にロウ付けすることで、冷却風の流れを乱さずに表面積を拡大する冷却体が実用化されている。
The heat dissipating fins constituting the cooling body as described above are required to increase the heat dissipating area while minimizing the pressure loss of the cooling air.
Therefore, for example, as shown in FIG. 7, a cooling body that enlarges the surface area without disturbing the flow of cooling air by brazing a lattice-like fin unit composed of a plurality of horizontal fins 4 and vertical fins 5 to the base plate. Has been put to practical use.

特開2003−086742号公報(第3−4頁、図1−3)JP 2003-086742 A (page 3-4, Fig. 1-3) 特開2004−047789号公報(第6頁、図10)Japanese Patent Laying-Open No. 2004-047789 (page 6, FIG. 10)

ところで、近年は半導体素子の大容量化と小型化が進められる一方、インバータ装置等では大容量素子を多数使用し、装置容量を増大化させる傾向にある。これに伴い、冷却体の放熱性能の向上が必要不可欠となり、これまでにも、1)冷却体の寸法を拡大して放熱表面積を大きくする、2)ファンの個数または出力を増すことにより冷却風量を増加させ、空気への熱放散を促進する、3)冷却体のベース板を厚くしたり、銅等の熱伝導率の高い材料を使用する、などにより熱伝導による熱拡散を促進して素子の発熱量増大に対処するようにしている。   By the way, in recent years, the capacity and size of semiconductor elements have been increased. On the other hand, in an inverter device or the like, a large number of large capacity elements are used and the device capacity tends to increase. As a result, it is essential to improve the heat dissipation performance of the cooling body. To date, 1) the size of the cooling body is increased to increase the heat dissipation surface area, and 2) the cooling air volume is increased by increasing the number or output of fans. 3) Increase the heat dissipation and promote heat dissipation to the air 3) Thicken the base plate of the cooling body or use a material with high thermal conductivity such as copper to promote thermal diffusion due to heat conduction, etc. To deal with the increase in heat generation.

しかしながら、冷却体の寸法拡大やベース板の板厚増加,銅ベースの採用により質量が増加するだけでなくコストが増加するという問題がある。また、冷却風量を増加させるべく高出力のファンを使用すると、騒音が増大するという問題が生じる。
したがって、この発明の課題は、素子の熱拡散性に優れ、温度上昇を抑制でき、大容量半導体素子の冷却体として有用な冷却体を提供するにある。
However, there is a problem that not only the mass is increased but also the cost is increased by increasing the size of the cooling body, increasing the thickness of the base plate, and adopting the copper base. Further, when a high-power fan is used to increase the cooling air volume, there is a problem that noise increases.
Accordingly, an object of the present invention is to provide a cooling body that is excellent in the thermal diffusibility of the element, can suppress an increase in temperature, and is useful as a cooling body for a large-capacity semiconductor element.

このような課題を解決するため、請求項1の発明では、金属ベースの片面には半導体素子を接合し、もう一方の面には格子状の放熱フィンを設置した半導体素子冷却用の冷却体において、
前記半導体素子の取付面と対向する面に、格子状フィンの縦フィン厚よりも板厚の厚い熱伝導板を設置したことを特徴とする。
In order to solve such a problem, in the invention of claim 1, in a cooling body for cooling a semiconductor element, a semiconductor element is bonded to one side of a metal base, and a lattice-shaped heat radiation fin is installed on the other side. ,
A heat conduction plate having a thickness greater than the vertical fin thickness of the lattice fins is provided on a surface facing the mounting surface of the semiconductor element.

上記請求項1の発明においては、記前格子状フィンの縦フィンを、前記熱伝導板の両側面に当接するように設置することができる(請求項2の発明)。
また、上記請求項1または2の発明においては、前記熱伝導板の前縁部または後縁部の少なくとも一方に、テーパーを形成することができる(請求項3の発明)。
さらに、前記請求項1〜3のいずれかに記載の発明においては、熱伝導板に、前記金属ベースよりも熱伝導率の高い材料を用いることができる(請求項4の発明)。
In the first aspect of the invention, the vertical fins of the grid-like fins can be installed so as to contact both side surfaces of the heat conducting plate (invention of the second aspect).
Moreover, in the said invention of Claim 1 or 2, a taper can be formed in at least one of the front edge part of the said heat conductive board, or a rear edge part (Invention of Claim 3).
Furthermore, in the invention according to any one of the first to third aspects, a material having a higher thermal conductivity than the metal base can be used for the heat conductive plate (the invention of claim 4).

この発明によれば、素子取付面と対向する領域に、格子状フィンの縦フィン厚よりも板厚の厚い熱伝導板を設置するようにしたので、冷却体ベース(フィンベース)板の温度勾配を平均化でき、素子温度を低減することができる。この発明による冷却体は、特にフィンベース板で温度勾配が大きくなる大容量素子の冷却に有利である。   According to the present invention, since the heat conduction plate having a thickness larger than the vertical fin thickness of the lattice fins is installed in the region facing the element mounting surface, the temperature gradient of the cooling body base (fin base) plate Can be averaged, and the element temperature can be reduced. The cooling body according to the present invention is particularly advantageous for cooling a large-capacity element having a large temperature gradient on the fin base plate.

図1はこの発明の第1の実施の形態を示す構成図である。
ベース板1の片面(ここでは下面)には半導体素子2が設置され、ベース板1のもう一方の面(ここでは上面)には、例えば押出成型にて作製された格子状の放熱フィン3が互いに当接された状態で配置され、ベース板1にロウ付け等により接合されている。
また、一般に温度上昇がピーク位置となる半導体素子取付面と対向する領域には、複数の熱伝導板11を接合している。
FIG. 1 is a block diagram showing a first embodiment of the present invention.
The semiconductor element 2 is installed on one surface (here, the lower surface) of the base plate 1, and on the other surface (here, the upper surface) of the base plate 1, for example, lattice-shaped radiating fins 3 made by extrusion molding. They are arranged in contact with each other, and are joined to the base plate 1 by brazing or the like.
Further, a plurality of heat conducting plates 11 are joined to a region facing the semiconductor element mounting surface where the temperature rise is generally at a peak position.

熱伝導板11により、素子からの発熱は熱伝導板11内を伝導してフィン先端まで伝熱された後、隣接する格子状フィンに熱移動が行なわれるため、素子から格子状フィンへ至る伝熱経路での熱抵抗が低減され、冷却体全体の放熱効率が改善される。
なお、図2のように、素子内部に発熱源となるチップ21が複数配置される場合は、チップ21に対向する位置に熱伝導板11を配置することにより、素子冷却がより効果的に行なわれる。
The heat conduction plate 11 conducts heat from the element through the heat conduction plate 11 and is transferred to the tip of the fin, and then heat is transferred to the adjacent lattice fins. The thermal resistance in the heat path is reduced, and the heat dissipation efficiency of the entire cooling body is improved.
As shown in FIG. 2, when a plurality of chips 21 serving as heat sources are arranged inside the element, the element cooling is performed more effectively by arranging the heat conduction plate 11 at a position facing the chip 21. It is.

図3はこの発明の第2の実施の形態を示す構成図である。
この例は、熱伝導板11の側面両側に格子状フィンの縦フィンを当接させた点が特徴である。格子状フィンをこのように配置することにより、熱伝導板と隣接する格子状フィンとの接合面積が増加し、熱抵抗が低減されることになる。このとき、熱伝導板と格子状フィンとの間をロウ付け等により金属的に接合すれば、素子から格子状フィンに至るまでの熱抵抗がより一層低減され、冷却体の放熱性能がさらに向上する。
FIG. 3 is a block diagram showing a second embodiment of the present invention.
This example is characterized in that vertical fins of lattice fins are brought into contact with both side surfaces of the heat conducting plate 11. By arranging the grid fins in this manner, the bonding area between the heat conductive plate and the adjacent grid fins is increased, and the thermal resistance is reduced. At this time, if the heat conduction plate and the lattice fin are joined metallically by brazing or the like, the thermal resistance from the element to the lattice fin is further reduced, and the heat dissipation performance of the cooling body is further improved. To do.

図4はこの発明の第3の実施の形態を示す構成図である。
この例は、熱伝導板11の冷却風41に対する前縁42,後縁43のそれぞれに、テーパーを付けた点が特徴である。こうすることにより、熱伝導板11の両側面のフィン流路に流れる冷却風量が増加し、素子2の冷却効率がさらに改善される。
また、図5に示すように、熱伝導板11の設置位置を長さ方向の素子2の近傍のみに限定すれば、素子2の冷却効率を改善しつゝ、熱伝導板による質量増加を最小限に抑えることができる。
FIG. 4 is a block diagram showing a third embodiment of the present invention.
This example is characterized in that each of the front edge 42 and the rear edge 43 with respect to the cooling air 41 of the heat conducting plate 11 is tapered. By doing so, the amount of cooling air flowing through the fin channels on both sides of the heat conducting plate 11 is increased, and the cooling efficiency of the element 2 is further improved.
Further, as shown in FIG. 5, if the installation position of the heat conduction plate 11 is limited to the vicinity of the element 2 in the length direction, the cooling efficiency of the element 2 can be improved and the increase in mass due to the heat conduction plate can be minimized. To the limit.

なお、図5ではテーパーを熱伝導板11の後縁にも設けるようにしてもよく、または熱伝導板11の冷却風41に対する前縁42のみ、または後縁43のみに設けるようにしても良い。
また、熱伝導板の材質として、フィンベースより熱伝導率の高い材料を用いれば、冷却体全体の僅かな質量増加のみで、素子温度を効果的に低減することが可能となる。
In FIG. 5, the taper may be provided at the rear edge of the heat conducting plate 11, or may be provided only at the front edge 42 or the rear edge 43 of the heat conducting plate 11 with respect to the cooling air 41. .
If a material having higher thermal conductivity than the fin base is used as the material of the heat conduction plate, the element temperature can be effectively reduced with only a slight increase in mass of the entire cooling body.

この発明の第1の実施の形態を示す構成図The block diagram which shows 1st Embodiment of this invention 図1の変形例を示す構成図Configuration diagram showing a modification of FIG. この発明の第2の実施の形態を示す構成図The block diagram which shows 2nd Embodiment of this invention この発明の第3の実施の形態を示す構成図The block diagram which shows 3rd Embodiment of this invention 図4の変形例を示す構成図The block diagram which shows the modification of FIG. 従来例を示す構成図Configuration diagram showing a conventional example 図6で用いられるフィンの一例を示す拡大図The enlarged view which shows an example of the fin used in FIG.

符号の説明Explanation of symbols

1…フィンベース(金属ベース)、2…素子、3…放熱(冷却)フィン、4…横フィン、5…縦フィン、11…熱伝導板、21…チップ、41…冷却風、42…熱伝導板前縁部、43…熱伝導板後縁部。

DESCRIPTION OF SYMBOLS 1 ... Fin base (metal base), 2 ... Element, 3 ... Radiation (cooling) fin, 4 ... Horizontal fin, 5 ... Vertical fin, 11 ... Heat conduction plate, 21 ... Chip, 41 ... Cooling air, 42 ... Heat conduction Plate front edge part, 43 ... Heat conduction plate rear edge part.

Claims (4)

金属ベースの片面には半導体素子を接合し、もう一方の面には格子状の放熱フィンを設置した半導体素子冷却用の冷却体において、
前記半導体素子の取付面と対向する面に、格子状フィンの縦フィン厚よりも板厚の厚い熱伝導板を設置した半導体素子の冷却体。
In a cooling body for cooling a semiconductor element in which a semiconductor element is bonded to one side of a metal base and a lattice-shaped heat radiation fin is installed on the other side,
A cooling body for a semiconductor element, wherein a heat conduction plate having a thickness greater than the thickness of the vertical fins of the lattice fins is installed on a surface facing the mounting surface of the semiconductor element.
前記格子状フィンの縦フィンを、前記熱伝導板の両側面に当接するように設置した請求項1に記載の半導体素子の冷却体。   The semiconductor element cooling body according to claim 1, wherein the vertical fins of the lattice fins are disposed so as to contact both side surfaces of the heat conductive plate. 前記熱伝導板の前縁部または後縁部の少なくとも一方に、テーパーを形成した請求項1または2に記載の半導体素子の冷却体。   The semiconductor element cooling body according to claim 1, wherein a taper is formed on at least one of a front edge portion or a rear edge portion of the heat conduction plate. 前記熱伝導板に、前記金属ベースよりも熱伝導率の高い材料を用いた請求項1〜3のいずれかに記載の半導体素子の冷却体。

The semiconductor element cooling body according to claim 1, wherein a material having a higher thermal conductivity than the metal base is used for the heat conductive plate.

JP2004190947A 2004-06-29 2004-06-29 Cooler for semiconductor element Pending JP2006013296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190947A JP2006013296A (en) 2004-06-29 2004-06-29 Cooler for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190947A JP2006013296A (en) 2004-06-29 2004-06-29 Cooler for semiconductor element

Publications (1)

Publication Number Publication Date
JP2006013296A true JP2006013296A (en) 2006-01-12

Family

ID=35780148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190947A Pending JP2006013296A (en) 2004-06-29 2004-06-29 Cooler for semiconductor element

Country Status (1)

Country Link
JP (1) JP2006013296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143488A (en) * 2012-01-11 2013-07-22 Fanuc Ltd Servo amplifier with heat sink for heat radiation having two sets of orthogonal radiation fins
US9661780B2 (en) 2013-08-27 2017-05-23 Fujitsu Limited Heat-receiver, cooling unit and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143488A (en) * 2012-01-11 2013-07-22 Fanuc Ltd Servo amplifier with heat sink for heat radiation having two sets of orthogonal radiation fins
US9661780B2 (en) 2013-08-27 2017-05-23 Fujitsu Limited Heat-receiver, cooling unit and electronic device

Similar Documents

Publication Publication Date Title
JP5249434B2 (en) Servo amplifier with heat sink for heat dissipation having two sets of heat dissipation fins orthogonal to each other
JP5070014B2 (en) Heat dissipation device
EP2139036B1 (en) Semiconductor device
TWI722195B (en) Electronic device and heat radiation structure of electronic device
KR200448519Y1 (en) Heat sink for protrusion type ic package
WO2003061001A1 (en) Heat sink having high efficiency cooling capacity and semiconductor device comprising it
JP4402602B2 (en) Capacitor cooling structure and power conversion device
US6862183B2 (en) Composite fins for heat sinks
JP5057838B2 (en) Power semiconductor element cooling device
JP6595531B2 (en) Heat sink assembly
JP4438526B2 (en) Power component cooling system
JP2019114682A (en) Liquid-cooled cooler
JP2007141932A (en) Power module base
JP2006210611A (en) Heat sink equipped with radiation fin, and manufacturing method thereof
JP2016219560A (en) Heat dissipation structure for circuit board
JP2006013296A (en) Cooler for semiconductor element
US6636423B2 (en) Composite fins for heat sinks
JP2010093034A (en) Cooling device for electronic component
JP2005116578A (en) Heat dissipation structure
JP2004047789A (en) Heat sink
JP2006140390A (en) Power semiconductor equipment
JP4585881B2 (en) Heat sink for element cooling
JP2012023146A (en) Heat sink
JP2008089253A (en) Heat sink
JP6044157B2 (en) Cooling parts