JP2006012800A - Refraction-condensing plate for backlight - Google Patents

Refraction-condensing plate for backlight Download PDF

Info

Publication number
JP2006012800A
JP2006012800A JP2005156454A JP2005156454A JP2006012800A JP 2006012800 A JP2006012800 A JP 2006012800A JP 2005156454 A JP2005156454 A JP 2005156454A JP 2005156454 A JP2005156454 A JP 2005156454A JP 2006012800 A JP2006012800 A JP 2006012800A
Authority
JP
Japan
Prior art keywords
light
lens
central axis
backlight
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005156454A
Other languages
Japanese (ja)
Other versions
JP4572743B2 (en
Inventor
Yoshiharu Kanetani
吉晴 金谷
Yukio Shimamura
幸男 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntech Co
Original Assignee
Suntech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntech Co filed Critical Suntech Co
Priority to JP2005156454A priority Critical patent/JP4572743B2/en
Publication of JP2006012800A publication Critical patent/JP2006012800A/en
Application granted granted Critical
Publication of JP4572743B2 publication Critical patent/JP4572743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refraction-condensing plate for a backlight which can obtain full condensing effect, by aligning two-dimensional synchrotron emitted from a light source in parallel with the lateral width direction and the vertical direction, and which can acquire full condensing effect. <P>SOLUTION: The refraction condensing plate for the backlight is made, by combining a first lens 1 which controls an incident light in the vertical direction and a second lens 2 which controls the incident light in the lateral width direction. Moreover, the refraction condensing plate for the backlight is a refraction condensing plate for aligning the central axis of the thickness direction of itself in the direction of the two-dimensional synchrotron radiation emitted from the light source. It is preferable that the first lens 1 which make the incident light converge to the first central axis surface which passes along the central axis, and a second lens 2 which makes the incident light converge to the second central axis surface (different from the first central axis surface) which passes the central axis is located in the incident light side and the exiting light side, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、バックライトの光源から出た光の方向をそろえるための屈折集光板に関するものである。   The present invention relates to a refractive condensing plate for aligning the direction of light emitted from a light source of a backlight.

従来、特許文献1に記載のような、液晶表示装置のバックライトとしての照明装置において、光源(LED光源)と、液晶表示パネルをその裏面から照明する導光体の入射面との間に、フレネルレンズ状の屈折面を有する屈折集光板を配置し、この屈折集光板により、光源から放射状に出射した二次元放射光(交差する2平面内でいずれも平行な光ではないもの、例えば、平面視及び側面視でいずれも光源から放射状となる光)を入射光として屈折集光させ、導光体の入射面に入射させるようにしたものがあった。   Conventionally, in an illuminating device as a backlight of a liquid crystal display device as described in Patent Document 1, between a light source (LED light source) and an incident surface of a light guide that illuminates a liquid crystal display panel from its back surface, A refraction condensing plate having a Fresnel lens-like refraction surface is arranged, and this refraction condensing plate emits two-dimensional radiation radially emitted from a light source (one that is not parallel light in two intersecting planes, for example, a plane There is a light that is refracted and collected as incident light and incident on the incident surface of the light guide.

前記照明装置においては、屈折集光板のフレネルレンズ状の屈折面により、光源から出射した二次元放射光が、横幅方向に平行にそろうものの、上下方向に平行にそろうようになってはいなかった。   In the illuminating device, the two-dimensional emitted light emitted from the light source is aligned in parallel in the horizontal width direction but not in parallel in the vertical direction due to the Fresnel lens-shaped refracting surface of the refractive condensing plate.

そのため、十分な集光効果を得ることができず、発光ロスが多かった。
特開2002−289023号公報
For this reason, a sufficient light collecting effect cannot be obtained, and the light emission loss is large.
JP 2002-289023 A

そこで、この発明は、光源から出射した二次元放射光を、横幅方向、上下方向のいずれにも平行にそろうようにし、十分な集光効果を得ることができるバックライト用屈折集光板を提供することを課題とする。   Accordingly, the present invention provides a refracting light concentrating plate for a backlight that can obtain a sufficient light condensing effect by aligning two-dimensional emitted light emitted from a light source in parallel in both the horizontal width direction and the vertical direction. This is the issue.

上記課題を解決するために、下記(1)ないし(3)の手段を採用する。
(1)この発明のバックライト用屈折集光板は、入射光を上下方向にコントロールする第一のレンズ部1と、入射光を横幅方向にコントロールする第二のレンズ部2とを組み合わせてなるものとしている。
In order to solve the above problems, the following means (1) to (3) are adopted.
(1) The refracting light concentrating plate for backlight according to the present invention is a combination of a first lens unit 1 for controlling incident light in the vertical direction and a second lens unit 2 for controlling incident light in the lateral width direction. It is said.

(2)また前記バックライト用屈折集光板は、光源から出た二次元放射光の方向を、それ自体の厚さ方向の中心軸にそろえるための屈折集光板であって、前記中心軸を通る第一の中心軸面に対して入射光を収束させる第一のレンズ部1と、前記中心軸を通る(前記第一の中心軸面と異なる)第二の中心軸面に対して入射光を収束させる第二のレンズ部2とを、それぞれ入射光側及び出射光側に位置するように組み合わせてなることが好ましい。   (2) The backlight refracting condensing plate is a refracting condensing plate for aligning the direction of the two-dimensional emitted light emitted from the light source with the central axis in the thickness direction of the backlight, and passes through the central axis. A first lens unit 1 that converges incident light with respect to a first central axis surface, and incident light with respect to a second central axis surface that passes through the central axis (different from the first central axis surface). It is preferable that the second lens unit 2 to be converged is combined so as to be positioned on the incident light side and the outgoing light side, respectively.

(3)また、第一のレンズ部及び第二のレンズ部が、それ自体の片面に、表面を(それぞれ第一及び第二の)屈折面とする複数の山型アレイを具備してなると共に、前記山型アレイを具備するそれぞれの片面が、互いに相反する方向を向くように組み合わされることが好ましい。   (3) In addition, the first lens unit and the second lens unit are provided with a plurality of chevron arrays each having a surface (first and second) as a refracting surface on one side thereof. In addition, it is preferable that the respective one surfaces including the mountain array are combined so as to face opposite directions.

この発明のバックライト用屈折集光板は、上述のような構成を有しており、入射光を上下方向(所定の中心軸を通る第一の方向)にコントロールする第一のレンズ部1と、横幅方向(前記所定の中心軸を通り第一の方向と異なる第二の方向)にコントロールする第二のレンズ部2との組み合わせにより、光源から出射した光を、横幅方向、上下方向のいずれに関しても方向がそろうようにしているので、高い集光効果を得ることができ、発光ロスを少なくすることが可能である。   The backlight refracting light concentrating plate of the present invention has the above-described configuration, and the first lens unit 1 that controls the incident light in the vertical direction (first direction passing through a predetermined central axis); By combining with the second lens unit 2 controlling in the lateral width direction (second direction different from the first direction passing through the predetermined central axis), the light emitted from the light source can be transmitted in either the lateral width direction or the vertical direction. Since the directions are aligned, a high light condensing effect can be obtained and the light emission loss can be reduced.

この発明のバックライト用屈折集光板は、入射光を上下方向にコントロールするレンズ部1と、入射光を横幅方向にコントロールするレンズ部2とを組み合わせてなるものである。   The refracting light concentrating plate for a backlight according to the present invention is formed by combining a lens unit 1 that controls incident light in the vertical direction and a lens unit 2 that controls incident light in the horizontal width direction.

以下、この発明の好適な実施形態を、各実施形態を示す図面を参照して説明する。図1ないし図6は、本発明の実施例1の形態を示し、図7及び図8はそれぞれ図5、図6における入射角とレンズ頂角の関係を示す。また図9は、本発明の実施例2の形態を示す。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings illustrating the embodiments. FIGS. 1 to 6 show the first embodiment of the present invention, and FIGS. 7 and 8 show the relationship between the incident angle and the lens apex angle in FIGS. 5 and 6, respectively. Moreover, FIG. 9 shows the form of Example 2 of this invention.

図1は、この発明の実施例1のバックライト用屈折集光板を用いたバックライトの構成を示した斜視分解説明図である。本発明のバックライト用屈折集光板は、斜線で示されるように、光源3と導光体4の間に配置される。   FIG. 1 is an exploded perspective view showing a configuration of a backlight using a backlight refracting light collecting plate according to Embodiment 1 of the present invention. The refractive light collecting plate for backlight of the present invention is disposed between the light source 3 and the light guide 4 as indicated by the oblique lines.

図2は、この発明の実施例1のバックライト用屈折集光板を用いたバックライトの構成を模式的に示した平面図である。図中の矢印は光の進行方向を示している。このバックライト用屈折集光板は、図示したように、液晶表示装置のバックライトにおいて、光源3(LED光源)と導光体4の入射面との間に配置されるものとしている。   FIG. 2 is a plan view schematically showing a configuration of a backlight using the backlight refracting light collecting plate of Example 1 of the present invention. The arrows in the figure indicate the traveling direction of light. As shown in the figure, the backlight condensing condensing plate is arranged between the light source 3 (LED light source) and the incident surface of the light guide 4 in the backlight of the liquid crystal display device.

(第一のレンズ部1、第二のレンズ部2)
実施例1のバックライト用屈折集光板は、それぞれフレネルレンズ状とした、第一のレンズ部1、第二のレンズ部2という2つのレンズ部を、互いに相反する方向へ重ねあわせてなるものとしている。つまり、第一のレンズ部1と第二レンズ部2は、それぞれ両側面の外側を向いて、表裏の両面(図4における正面及び背面)に、その屈折面5(51、52)が形成される。2つのレンズ部1、2によって、光源から出た二次元放射光の方向を、それ自体の厚さ方向の中心軸Aに収束させるものとしている。更に言えば、中心軸Aを通る第一の中心軸面Fに対して入射光を収束させる第一のレンズ部1と、前記中心軸を通る第二の中心軸面Fに対して入射光を収束させる第二のレンズ部2とを、それぞれ入射光側及び出射光側に位置するように組み合わせてなる。ここで、前記第一の中心軸面Fと第二の中心軸面Fとは異なる面であり、互いに中心軸Aで交わる。実施例では直交する。
(First lens part 1, second lens part 2)
The backlight refracting light concentrating plate of Example 1 is formed by superposing two lens parts, a first lens part 1 and a second lens part 2, in a Fresnel lens shape, in opposite directions. Yes. That is, the first lens unit 1 and the second lens unit 2 face the outside of both side surfaces, and the refracting surfaces 5 (51, 52) are formed on both front and back surfaces (front and back in FIG. 4). The The two lens portions 1 and 2 converge the direction of the two-dimensional emitted light emitted from the light source on the central axis A in the thickness direction of the light source itself. More specifically, the first lens unit 1 converges the incident light on the first central axis surface F 1 passing through the central axis A, and the second central axis surface F 2 passing through the central axis. The second lens unit 2 for converging the light is combined so as to be positioned on the incident light side and the outgoing light side, respectively. Here, the first central axial plane of the F 1 and a second surface different from the central axial plane F 2 of the intersect the central axis A from one another. In the embodiment, they are orthogonal.

また、第一のレンズ部1及び第二のレンズ部2が、それ自体の片面に、表面をそれぞれ第一及び第二の屈折面51、52とする複数の山型アレイを具備してなる。前記山型アレイを具備するそれぞれの片面が、互いに相反する方向を向くように組み合わされる。   Further, the first lens unit 1 and the second lens unit 2 are each provided with a plurality of mountain-shaped arrays whose surfaces are first and second refractive surfaces 51 and 52, respectively. The respective surfaces having the mountain array are combined so as to face opposite directions.

両レンズ部1、2は板状で、その片側を屈折面5、他方の側をフラット面6としている。前記屈折面5は、入射した光が屈折するようにした複数の傾斜面を平行に並べたものとしている。   Both lens portions 1 and 2 are plate-shaped, and one side is a refracting surface 5 and the other side is a flat surface 6. The refracting surface 5 includes a plurality of inclined surfaces arranged in parallel so that incident light is refracted.

具体的には、光源4側に位置する第一のレンズ部1は、入射角度θが大なる入射光を、その片面に設けた複数の山型アレイの第一の屈折面51から入射させ、第一の中心軸面Fに対して収束させる。また、第二のレンズ部2は、前記第一のレンズ部1よりも光源4側と反対側の導光体5側に位置し、入射角度θが小なる入射光を、その片面に設けた複数の山型アレイの底面たる第二のフラット面62から入射させ、第二の中心軸面Fに対して収束させる。 Specifically, the first lens unit 1 positioned on the light source 4 side, light is incident to the incident angle theta L is made large, from the first refractive surface 51 of the plurality of mountain-shaped array provided on one side thereof converges to the first central axial plane F 1. The second lens unit 2, the located opposite the light guide 5 side to the light source 4 side than the first lens unit 1, the incident light incident angle theta L becomes small, provided on one side thereof It is incident from the serving bottom of a plurality of mountain-shaped array second flat surface 62 converges with respect to the second central axial plane F 2.

第一の山型アレイの頂部によって第一の稜線が形成され、第二の山型アレイの頂部によって第二の稜線が形成される。正面視にて、第一の稜線と第二の稜線とは、互いに交わる。実施例において、各山型アレイの断面は直角三角形であり、隣同士で傾斜面側へ順に大きくなる(図4参照)。その斜辺が屈折面5(第一の屈折面51、第二の屈折面52)であると共に、その底辺がフラット面6と平行な面(第一のフラット面61、第二のフラット面62)である。   A first ridge line is formed by the top of the first chevron array, and a second ridge line is formed by the top of the second chevron array. In the front view, the first ridge line and the second ridge line intersect each other. In the embodiment, the cross-section of each mountain array is a right triangle, and increases in order toward the inclined surface side next to each other (see FIG. 4). The hypotenuse is the refracting surface 5 (first refracting surface 51, second refracting surface 52), and the base is parallel to the flat surface 6 (first flat surface 61, second flat surface 62). It is.

また、断面斜辺たる屈折面5と、断面底辺と同一角度のフラット面(断面底辺たる第一のフラット面61、第二のフラット面62と同義)とで形成される角を、山型アレイのレンズ頂角θとしている。 In addition, the angle formed by the refracting surface 5 which is the oblique side of the cross section and the flat surface having the same angle as the base of the cross section (synonymous with the first flat surface 61 and the second flat surface 62 which are the cross section base) is The lens apex angle θ 1 is set.

第一のレンズ部1と第二のレンズ部2とは、前記屈折面5の傾斜面の並ぶ方向が互いに直交するように組み合わされており、第一ののレンズ部1は、入射光を上下方向(図中奥行き方向)にコントロールする(そろえる)ようにし、図中右側のレンズ部2は、入射光を横幅方向(図中左右方向)にコントロールするようにしている。   The first lens unit 1 and the second lens unit 2 are combined so that the directions in which the inclined surfaces of the refractive surface 5 are arranged are orthogonal to each other, and the first lens unit 1 moves incident light up and down. The lens unit 2 on the right side in the figure controls incident light in the lateral width direction (left and right direction in the figure).

この構成により、光源3から出射した放射状の光は、第一のレンズ部1たるフレネルレンズにより上下方向に平行にそろい、そして第二のレンズ部2たるフレネルレンズにより横幅方向に平行にそろい、横幅方向及び上下方向のいずれにも平行にそろった状態で導光体4に入射するようになっている。   With this configuration, the radial light emitted from the light source 3 is aligned in parallel in the vertical direction by the Fresnel lens as the first lens unit 1, and is aligned in parallel in the horizontal direction by the Fresnel lens as the second lens unit 2. The light is incident on the light guide 4 in a state aligned in both the vertical direction and the vertical direction.

なお、入射光を第一のレンズ部1により横幅方向に平行にそろうようにし、第二のレンズ部2により上下方向に平行にそろうようにしてもよい。   In addition, incident light may be aligned in the horizontal width direction by the first lens unit 1 and aligned in the vertical direction by the second lens unit 2.

(図3及び図4の説明)
図3は、図1の一部を拡大した配置説明斜視図であり、光源3と本発明のバックライト用屈折集光板と導光体4との位置関係、及び、本明細書において仮想する中心軸Aと中心軸面F(F、F)の位置関係を示すものである。図4は、図3を平面図及び側面図で表した配置説明図である。
(Explanation of FIGS. 3 and 4)
FIG. 3 is an exploded perspective view of a part of FIG. 1, showing the positional relationship between the light source 3, the refractive light collecting plate for backlight of the present invention, and the light guide 4, and the virtual center in this specification. This shows the positional relationship between the axis A and the central axis plane F (F 1 , F 2 ). FIG. 4 is a layout explanatory diagram showing FIG. 3 in a plan view and a side view.

中心軸Aは、光源3の中心を通り、光源3と導光体4とを結ぶ方向の軸(実施例では水平軸)である。本発明の本発明のバックライト用屈折集光板の厚さ方向を向く。第一の中心軸面Fと第二の中心軸面Fは共に中心軸Aを通り、且つ中心軸Aで90度に交わる。 The central axis A is an axis (horizontal axis in the embodiment) in a direction passing through the center of the light source 3 and connecting the light source 3 and the light guide 4. It faces the thickness direction of the refractive light collecting plate for backlight of the present invention. A first central axis plane F 1 is the second central axial plane F 2 together through the center axis A, and the central axis A intersects the 90 degrees.

光源3は、二次元放射光を発するLED光源であり、平面視幅方向へ等間隔に複数個設置される(図1参照)。各光源3は、箱型の有色樹脂(図4の実線で示す扁平直方体、図では白色樹脂)内に、一回り小さい透明樹脂(図4の実線で示す扁平直方体)が埋設され、更にこの透明樹脂内に、更に小さいLEDチップが埋設されてなる。透明樹脂の、導光体4側にある背面側の一面は、光源3の放射面として露出する。この放射面から見た透明樹脂の底面(側方向面)にLEDチップが貼り付けられて埋設される(図4参照)。この透明樹脂の直方体の幅W、奥行D、高さHは、光源3の単位毎の二次元放射光の広がり、大きさ及び光量を規定するものであり、後述するように、レンズ頂角θを設定する際に必要な値となる。 The light sources 3 are LED light sources that emit two-dimensional emitted light, and a plurality of light sources 3 are installed at equal intervals in the planar view width direction (see FIG. 1). Each light source 3 is embedded in a box-shaped colored resin (flat rectangular solid indicated by a solid line in FIG. 4, white resin in the figure), and a transparent resin (flat rectangular solid indicated by a solid line in FIG. 4) is embedded. Smaller LED chips are embedded in the resin. One surface of the transparent resin on the back surface side on the light guide 4 side is exposed as a radiation surface of the light source 3. An LED chip is affixed and embedded in the bottom surface (side surface) of the transparent resin viewed from the radiation surface (see FIG. 4). The width W, depth D, and height H of the rectangular parallelepiped of the transparent resin define the spread, size, and amount of light of the two-dimensional radiated light for each unit of the light source 3, and as will be described later, the lens apex angle θ This is a required value when 1 is set.

(図5及び図7の説明)
図5は、図4の側面図に示す第二のレンズ部2について、第二の屈折面52(屈折面5)付近を拡大したものである。図5の三角形は、斜辺が第二の屈折面52(屈折面5)、水平な底辺がフラット面6(水平な点線で示されるもの)と平行な第二のフラット面62を示す。
(Explanation of FIGS. 5 and 7)
FIG. 5 is an enlarged view of the vicinity of the second refractive surface 52 (refractive surface 5) of the second lens unit 2 shown in the side view of FIG. The triangle of FIG. 5 shows a second flat surface 62 whose hypotenuse is parallel to the second refracting surface 52 (refracting surface 5) and whose horizontal base is parallel to the flat surface 6 (shown by a horizontal dotted line).

図5に示されるように、光源からの放射光の中心軸Aに対する出射角θ(θL2)と、同放射光の中心軸Aに対するレンズ入射角θとは錯角のため等しい。レンズ入射角θで入射した第二のフラット面62への入射光がレンズ屈折によりフラット面出射角θとなり、屈折面52へ屈折面入射角θで入射する。さらに屈折面52への入射光は屈折面に対するレンズ出射角θで出射する。このとき、屈折率n、底辺のレンズ頂角θを含めて下記関係が成り立つ。 As shown in FIG. 5, the emission angle θ LL2 ) of the emitted light from the light source with respect to the central axis A is equal to the lens incident angle θ 2 with respect to the central axis A of the emitted light because of the complex angle. The second flat surface emission angle theta 3 becomes the incident light lens refraction to a flat surface 62 which is incident in the lens incident angle theta 2, enters the refractive surface incident angle theta 4 to the refractive surface 52. Further, light incident on the refracting surface 52 is emitted at a lens exit angle θ 5 with respect to the refracting surface. At this time, the following relationship is established including the refractive index n and the bottom lens apex angle θ 1 .

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

出射光が中心軸Aに平行になる条件は、下記の関係が成り立つことである。   The condition that the emitted light is parallel to the central axis A is that the following relationship is established.

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

このとき、光源の出射角θ=θとレンズ頂角θの関係は以下のようになる。 At this time, the relationship between the emission angle θ L = θ 2 of the light source and the lens apex angle θ 1 is as follows.

Figure 2006012800
Figure 2006012800

上記数式7に示される「出射光が中心軸に平行になる条件」を、レンズの頂角部すなわち中心軸に最も遠いところに設定すすることが望ましい。このようなものであれば、中心軸に近づくに従って、レンズへの入射光角度が小さくなることから、出射角は中心軸へ向かって集光(収束)する。   It is desirable to set “the condition under which the emitted light is parallel to the central axis” expressed by the above formula 7 at the farthest corner of the lens, that is, the central axis. In such a case, since the incident light angle to the lens becomes smaller as it approaches the central axis, the outgoing angle is condensed (converged) toward the central axis.

図7は上記数式7に基づいて、出射光が中心軸に平行になる入射光角θL2(θ)(縦軸)と、レンズ頂角θ(横軸)との関係を示したものである。この曲線よりも下の領域にあれば、出射光が中心軸に向かって収束することとなる。逆にこの曲線よりも上の領域にあれば、出射光が中心軸から離れていくこととなる。すなわち、第二のフラット面62(フラット面6)から入射される出射光は、下記式の条件によってそれぞれ収束、平行、発散に分類される。 FIG. 7 shows the relationship between the incident light angle θ L2L ) (vertical axis) and the lens apex angle θ 1 (horizontal axis) based on Equation 7 above. It is. If it is in a region below this curve, the emitted light will converge toward the central axis. On the contrary, if it exists in the area | region above this curve, emitted light will leave | separate from a central axis. That is, the outgoing light incident from the second flat surface 62 (flat surface 6) is classified into convergence, parallel, and divergence, respectively, according to the conditions of the following equations.

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

光源4からの放射光の入射角に応じて、図7の下の領域にある(つまり数式8が成り立つ)ように設定することで、レンズ頂角θを設定することが出来る。すなわち図7の下の領域ないし数式8を用いることによって、入射角に対応した頂角を、収束機能を確実に発揮するレンズのものとして容易に設定することができる。また既存のバックライト屈折集光板についても、配置状況やバックライト屈折集光板の形状、光源の種類に基づき、好ましいものを容易に判別することができる。 The lens apex angle θ 1 can be set by setting so as to be in the lower region of FIG. 7 (that is, Formula 8 is satisfied) according to the incident angle of the radiated light from the light source 4. That is, by using the lower area in FIG. 7 or Expression 8, the apex angle corresponding to the incident angle can be easily set as that of a lens that reliably exhibits the convergence function. In addition, regarding the existing backlight refracting / condensing plate, a preferable one can be easily determined based on the arrangement state, the shape of the backlight refracting / condensing plate, and the type of light source.

(図6及び図8の説明)
図6は、図4の平面図に示す第一のレンズ部1について、第一の屈折面51(屈折面5)付近を拡大したものである。図6の三角形は、斜辺が第一の屈折面51(屈折面5)、水平な底辺がフラット面6(水平な点線で示されるもの)と平行な第一のフラット面61を示す。図6内に、屈折率n、底辺(第一のフラット面61)と斜辺(第一の屈折面51)で構成される底角のレンズ頂角θ、レンズへの入射角(中心軸Aに対する入射角θ(θL1)、第一の屈折面51への入射光に対する入射角θ)及び斜辺(第一の屈折面51)に対する反射角θを示す。
(Explanation of FIGS. 6 and 8)
FIG. 6 is an enlarged view of the vicinity of the first refractive surface 51 (refractive surface 5) of the first lens unit 1 shown in the plan view of FIG. The triangle in FIG. 6 shows a first flat surface 61 whose hypotenuse is parallel to the first refracting surface 51 (refracting surface 5) and whose horizontal base is parallel to the flat surface 6 (shown by a horizontal dotted line). In FIG. 6, the refractive index n, the base angle of the base angle θ 1 composed of the base (first flat surface 61) and the hypotenuse (first refracting surface 51), and the incident angle (center axis A) to the lens. Is an incident angle θ LL1 ) with respect to, an incident angle θ 2 with respect to light incident on the first refracting surface 51, and a reflection angle θ 3 with respect to the hypotenuse (first refracting surface 51).

図6に示されるように、(光源からの放射光の中心軸Aに対する出射角θ)と、(入射角θ及び反射角θの差)とは、錯角のため等しい。図6の矢印で示す放射光の進行方向順に説明すると、中心軸に対してレンズ入射角θの傾斜角度で入射した第一の屈折51への入射光が、レンズ屈折により屈折面に対する出射角θとなる。そして、第一のフラット面61へ出射する。このとき図6に示すように、出射光が中心軸と同じ方向(角度ゼロ)すなわち第一のフラット面61と垂直な方向となるには、下記関係が成り立つことが必要である。 As shown in FIG. 6, (the exit angle θ L with respect to the central axis A of the emitted light from the light source) and (the difference between the incident angle θ 2 and the reflection angle θ 3 ) are equal because of the complex angle. Describing in order of the traveling direction of the radiated light indicated by the arrows in FIG. 6, the incident light to the first refraction 51 incident at an inclination angle of the lens incident angle θ 2 with respect to the central axis is an exit angle with respect to the refracting surface by lens refraction. the θ 3. Then, the light is emitted to the first flat surface 61. At this time, as shown in FIG. 6, in order for the emitted light to be in the same direction (zero angle) as the central axis, that is, in the direction perpendicular to the first flat surface 61, the following relationship must be satisfied.

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

上記数式13の入射角θL1とレンズ頂角θの関係を、それぞれ横軸、縦軸として図示した曲線を、図8に示す。この曲線上では、レンズ出射光と中心軸Aとが平行になる。図8において同曲線より下の領域であれば、レンズ出射光が中心軸A方向へ収束し、逆に同曲線より上の領域であれば発散(拡散)する。すなわち、第二のフラット面62(フラット面6)から入射される出射光は、下記式の条件によってそれぞれ収束、平行、発散に分類される。 FIG. 8 shows curves illustrating the relationship between the incident angle θ L1 and the lens apex angle θ 1 in Equation 13 as the horizontal axis and the vertical axis, respectively. On this curve, the lens output light and the central axis A are parallel. In FIG. 8, if it is an area below the same curve, the light emitted from the lens converges in the direction of the central axis A. Conversely, if it is an area above the same curve, it diverges (diffuses). That is, the outgoing light incident from the second flat surface 62 (flat surface 6) is classified into convergence, parallel, and divergence, respectively, according to the conditions of the following equations.

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

光源4からの放射光の入射角θに応じて、図8の下の領域にある(つまり数式14が成り立つ)ように、本発明のバックライト用屈折集光板の配置や光源3の透明樹脂形状(幅W、奥行D、高さH)の調整を行い、また、レンズ頂角θを設定することが出来る。すなわち図8の下の領域ないし数式14を用いることによって、入射角に対応した頂角を、収束機能を確実に発揮するレンズのものとして容易に設定することができる。また既存のバックライト用屈折集光板についても、配置状況やバックライト用屈折集光板の形状、光源の種類に基づき、好ましいものを容易に判別することができる。 According to the incident angle θ L of the radiated light from the light source 4, the arrangement of the refractive light collecting plate for the backlight of the present invention and the transparent resin of the light source 3 as shown in the lower region of FIG. shape (width W, depth D, height H) to adjust the, also, it is possible to set the lens apex angle theta 1. That is, by using the lower region in FIG. 8 or Expression 14, the apex angle corresponding to the incident angle can be easily set as that of a lens that reliably exhibits the convergence function. In addition, regarding the existing backlight refracting light collecting plate, a preferable one can be easily determined based on the arrangement state, the shape of the backlight refracting light collecting plate, and the type of the light source.

(図7と図8の比較)
図7と図8により、屈折面5(51、52)とフラット面6(61、62)それぞれへの入射角を比較すると、図7のようなフラット面6からの入射と、図8のような屈折面5からの入射が、共に同じレンズ頂角θとした場合、屈折面入射角はフラット面入射角よりも大きい。これは、図7の曲線と図8の曲線を重ねた場合、図8の曲線のほうが下側に位置し、平行となるレンズ頂角θの値が下回ることによる。
(Comparison of FIG. 7 and FIG. 8)
7 and FIG. 8, when the incident angles to the refracting surfaces 5 (51, 52) and the flat surfaces 6 (61, 62) are compared, the incidence from the flat surface 6 as shown in FIG. When the incident from the refracting surface 5 is the same lens apex angle θ 1 , the refracting surface incident angle is larger than the flat surface incident angle. This is because when the curve of FIG. 7 and the curve of FIG. 8 are overlapped, the curve of FIG. 8 is located on the lower side, and the value of the parallel lens apex angle θ 1 is lower.

具体的には、レンズ頂角θが10°、20°、30°の場合、屈折面入射角θL1(図8)はそれぞれ、15.6°、32.0°、50.8°であり、フラット面入射角θL2(図7)はそれぞれ、5.5°、11.0°、16.6°である。このことから、同レンズ頂角θの条件下で、屈折面入射角θL1(図8)はフラット面入射角θL2(図7)の約3倍もの臨界値(収束領域から発散領域へ移行する臨界値)となる。これは、屈折面入射(図6)のの方が、より広角レンズ機能に優れることを意味する。 Specifically, when the lens apex angle θ 1 is 10 °, 20 °, and 30 °, the refractive surface incident angle θ L1 (FIG. 8) is 15.6 °, 32.0 °, and 50.8 °, respectively. The flat surface incident angle θ L2 (FIG. 7) is 5.5 °, 11.0 °, and 16.6 °, respectively. From this, under the condition of the same lens apex angle θ 1 , the refractive surface incident angle θ L1 (FIG. 8) is about three times the critical value (from the convergence region to the diverging region) of the flat surface incident angle θ L2 (FIG. 7). Critical value to be transferred). This means that refracting surface incidence (FIG. 6) is more excellent in wide-angle lens function.

(具体例)
一般的に光源3がLED光源の場合、上記(図3及び図4の説明)のようにやや横長扁平の透明樹脂を具備する。このように、一般的には、二次元放射光は、中心軸Aで交わる2面(すなわち、側面視、平面視の2面)それぞれで見た場合、放射角度すなわち屈折集光板への入射光の最大傾斜角度が2面で異なる。つまり、扁平放射する二次元放射光である。この扁平放射する二次元放射光のそれぞれの面に対応して、図5および図6の向きのレンズを設けることで、放射光を各面いずれとも効率的に収束させることができる。この様にしてレンズ面を形成したものが実施例1のバックライト用屈折集光板であり、第一のレンズ部1および第二のレンズ部2を、互いに稜線が直交するように両面(互いに外側)を向いて形成したフレネルレンズとしている。
(Concrete example)
In general, when the light source 3 is an LED light source, a slightly horizontally long transparent resin is provided as described above (description of FIGS. 3 and 4). As described above, in general, when the two-dimensional radiation light is viewed on each of two surfaces intersecting with the central axis A (that is, two surfaces in a side view and a plan view), the radiation angle, that is, the incident light on the refractive light collecting plate. The maximum inclination angle is different between the two surfaces. That is, it is two-dimensional emitted light that radiates flatly. Corresponding to each surface of the two-dimensional radiated light that radiates in a flat manner, the radiated light can be efficiently converged on each surface by providing lenses in the directions shown in FIGS. The lens surface thus formed is the refractive light condensing plate for the backlight of Example 1, and the first lens portion 1 and the second lens portion 2 are disposed on both surfaces (outside of each other so that the ridge lines are orthogonal to each other). ).

LEDチップは、簡略化のため透明樹脂の奥行Dの位置で点光源であると考えるとき、幅W方向の出射角θLW、高さH方向の出射角θLHは、それぞれ下記式で表される。 When the LED chip is considered to be a point light source at the position of the depth D of the transparent resin for simplification, the emission angle θ LW in the width W direction and the emission angle θ LH in the height H direction are expressed by the following equations, respectively. The

Figure 2006012800
Figure 2006012800

Figure 2006012800
Figure 2006012800

例えば、nk=1.55、W=D、H=W/4とすると、幅W方向の出射角θLW=37.8°、高さH方向の出射角θLH=10.9°となる。これらの値と図7(或いは数式8)、図8(或いは数式14)を参照すると、光源4側の第一レンズ部1のレンズ頂角θ、導光体5側の第二レンズ部2の第二屈折面62のレンズ頂角θは、それぞれ24°以上、20°以上が最適であると判別することができる。 For example, when nk = 1.55, W = D, and H = W / 4, the emission angle θ LW in the width W direction is 37.8 °, and the emission angle θ LH in the height H direction is 10.9 °. . With reference to these values and FIG. 7 (or Formula 8) and FIG. 8 (or Formula 14), the lens apex angle θ 1 of the first lens unit 1 on the light source 4 side, and the second lens unit 2 on the light guide 5 side. It can be determined that the lens apex angle θ 1 of the second refracting surface 62 is optimally 24 ° or more and 20 ° or more, respectively.

本発明の他の実施形態として実施例2を図9に示す。前記実施例1では、図中左側のレンズ部1の屈折面5を形成した側を光源3側に向け、図中右側のレンズ部2の屈折面5を形成した側を導光体4側に向け、両レンズ部1,2のフラット面6,6どうしが対面するように組み合わされているのに対して、実施例2では、図中左側のレンズ部1の屈折面5を形成した側が図中右側のレンズ部2のフラット面6を形成した側に対面するように組み合わせたものとすることもできる。   Example 2 is shown in FIG. 9 as another embodiment of the present invention. In the first embodiment, the side of the lens unit 1 on the left side of the drawing in which the refractive surface 5 is formed faces the light source 3 side, and the side of the lens unit 2 on the right side of the drawing in which the refractive surface 5 is formed is on the light guide 4 side. In contrast, the flat surfaces 6 and 6 of the lens portions 1 and 2 are combined so that they face each other, but in Example 2, the side on which the refractive surface 5 of the left lens portion 1 is formed is shown in the drawing. The lens unit 2 on the middle right side may be combined so as to face the side on which the flat surface 6 is formed.

両レンズ部1,2間には間隔があってもよい。各レンズ部1,2は、PET樹脂製等のフィルム状ないしシート状物の片面を加工して屈折面5を形成して製造したり、インジェクション成形により製造したりすることができる。また、1枚の板の表裏にそれぞれ屈折面5を形成することにより、両レンズ部1,2を一体のものとすることもできる。   There may be a gap between the lens parts 1 and 2. Each of the lens portions 1 and 2 can be manufactured by processing one side of a film or sheet-like material such as a PET resin to form the refractive surface 5, or can be manufactured by injection molding. Further, by forming the refracting surfaces 5 on the front and back surfaces of one plate, both lens portions 1 and 2 can be integrated.

さらに、一方のレンズ部は、フレネルレンズ以外にも、プリズムレンズ、レンチキュラーレンズ等の適宜のレンズとすることができる。   Furthermore, one lens part can be an appropriate lens such as a prism lens or a lenticular lens, in addition to the Fresnel lens.

液晶表示装置のバックライトにおいて利用することが可能である。   It can be used in a backlight of a liquid crystal display device.

この発明の実施例1のバックライト用屈折集光板を用いたバックライトの構成を示した斜視分解配置説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view illustrating a configuration of a backlight using a backlight light-reflecting light collecting plate according to a first embodiment of the present invention. 実施例1のバックライト用屈折集光板を用いたバックライトの構成を模式的に示した配置説明平面図。FIG. 2 is an arrangement explanatory plan view schematically showing a configuration of a backlight using the backlight light-reflecting light concentrating plate of Example 1. 図1に示す実施例1のバックライト用屈折集光板を用いたバックライトの構成を示した斜視拡大説明図。FIG. 2 is a perspective enlarged explanatory view showing a configuration of a backlight using the backlight light converging plate of Example 1 shown in FIG. 1. 図3に示す実施例1のバックライト用屈折集光板を用いたバックライトの構成を模式的に示した平面図及び側面図。The top view and side view which showed typically the structure of the backlight using the refractive condensing plate for backlights of Example 1 shown in FIG. 図4に示す実施例1のバックライト用屈折集光板の第二のレンズ部を示した拡大側面図。The expanded side view which showed the 2nd lens part of the refractive light condensing plate for backlights of Example 1 shown in FIG. 図4に示す実施例1のバックライト用屈折集光板の第一のレンズ部を示した拡大平面図。The enlarged plan view which showed the 1st lens part of the refractive light condensing plate for backlights of Example 1 shown in FIG. 図4に示す実施例1のバックライト用屈折集光板の、第二のレンズ部のフラット面からの入射の場合の入射角とレンズ頂角の関係を示すグラフ。The graph which shows the relationship between the incident angle in the case of incidence from the flat surface of the 2nd lens part of the refractive condensing plate for backlights of Example 1 shown in FIG. 4 and a lens apex angle. 図4に示す実施例1のバックライト用屈折集光板の、第一のレンズ部の屈折面からの入射の場合の入射角とレンズ頂角の関係を示すグラフ。The graph which shows the relationship between the incident angle in the case of incidence from the refractive surface of the 1st lens part, and a lens vertex angle of the refractive condensing plate for backlights of Example 1 shown in FIG. この発明の他の実施形態(実施例2)のバックライト用屈折集光板の説明図。Explanatory drawing of the refractive condensing plate for backlights of other embodiment (Example 2) of this invention.

符号の説明Explanation of symbols

1 第一のレンズ部
2 第二のレンズ部
3 光源
4 導光体
5 屈折面
51 第一の屈折面
52 第二の屈折面
6 フラット面
61 第一のフラット面
62 第二のフラット面
A 中心軸
第一の中心軸面
第二の中心軸面
DESCRIPTION OF SYMBOLS 1 1st lens part 2 2nd lens part 3 Light source 4 Light guide 5 Refractive surface 51 1st refractive surface 52 2nd refractive surface 6 Flat surface 61 1st flat surface 62 2nd flat surface A Center Axis F 1 first central axis plane F 2 second central axis plane

Claims (3)

入射光を上下方向にコントロールする第一のレンズ部と、入射光を横幅方向にコントロールする第二のレンズ部とを組み合わせてなることを特徴とするバックライト用屈折集光板。   A backlight condensing condensing plate comprising a combination of a first lens unit for controlling incident light in a vertical direction and a second lens unit for controlling incident light in a horizontal width direction. 光源から出た二次元放射光の方向を、それ自体の厚さ方向の中心軸にそろえるための屈折集光板であって、前記中心軸を通る第一の中心軸面に対して入射光を収束させる第一のレンズ部と、前記中心軸を通る第二の中心軸面に対して入射光を収束させる第二のレンズ部とを、それぞれ入射光側、及び出射光側に組み合わせてなることを特徴とするバックライト用屈折集光板。   A refraction condensing plate for aligning the direction of two-dimensional radiation emitted from a light source with the central axis of its own thickness direction, and converging the incident light with respect to the first central axis plane passing through the central axis A first lens unit to be combined with a second lens unit for converging incident light with respect to a second central axis surface passing through the central axis on the incident light side and the outgoing light side, respectively. A refracting light collecting plate for backlight. 第一のレンズ部及び第二のレンズ部が、それぞれの片面に、表面を屈折面とする複数の山型アレイを具備してなると共に、前記山型アレイを具備するそれぞれの片面が、互いに相反する方向を向くように組み合わされることを特徴とする請求項2記載のバックライト用屈折集光板。   Each of the first lens portion and the second lens portion includes a plurality of mountain-shaped arrays whose surfaces are refracting surfaces on each side, and each of the single-side surfaces including the mountain-shaped array is mutually contradictory. The refraction condensing plate for a backlight according to claim 2, wherein the refraction condensing plates are combined so as to face the direction in which they are directed.
JP2005156454A 2004-05-28 2005-05-27 Refractive light collector for backlight Expired - Fee Related JP4572743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156454A JP4572743B2 (en) 2004-05-28 2005-05-27 Refractive light collector for backlight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004159698 2004-05-28
JP2005156454A JP4572743B2 (en) 2004-05-28 2005-05-27 Refractive light collector for backlight

Publications (2)

Publication Number Publication Date
JP2006012800A true JP2006012800A (en) 2006-01-12
JP4572743B2 JP4572743B2 (en) 2010-11-04

Family

ID=35779763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156454A Expired - Fee Related JP4572743B2 (en) 2004-05-28 2005-05-27 Refractive light collector for backlight

Country Status (1)

Country Link
JP (1) JP4572743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092006A (en) * 2008-10-09 2010-04-22 Samsung Electronics Co Ltd Apparatus and method for 2d and 3d image switchable display
JP2011233416A (en) * 2010-04-28 2011-11-17 Omron Corp Collimated light source, and plane light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166713A (en) * 1995-10-11 1997-06-24 Mitsubishi Rayon Co Ltd Back light
JPH11144515A (en) * 1997-09-08 1999-05-28 Kuraray Co Ltd Surface light source element and display device using the same
JPH11224518A (en) * 1997-12-01 1999-08-17 Hiroshi Inoue Light conductive lighting system
JP2005011539A (en) * 2003-06-16 2005-01-13 Nagano Kogaku Kenkyusho:Kk Surface light source device
JP2005135844A (en) * 2003-10-31 2005-05-26 Sony Corp Optical element and backlight device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166713A (en) * 1995-10-11 1997-06-24 Mitsubishi Rayon Co Ltd Back light
JPH11144515A (en) * 1997-09-08 1999-05-28 Kuraray Co Ltd Surface light source element and display device using the same
JPH11224518A (en) * 1997-12-01 1999-08-17 Hiroshi Inoue Light conductive lighting system
JP2005011539A (en) * 2003-06-16 2005-01-13 Nagano Kogaku Kenkyusho:Kk Surface light source device
JP2005135844A (en) * 2003-10-31 2005-05-26 Sony Corp Optical element and backlight device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092006A (en) * 2008-10-09 2010-04-22 Samsung Electronics Co Ltd Apparatus and method for 2d and 3d image switchable display
JP2011233416A (en) * 2010-04-28 2011-11-17 Omron Corp Collimated light source, and plane light source device

Also Published As

Publication number Publication date
JP4572743B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP6285783B2 (en) Light capture structure for light emitting applications
JP6074630B2 (en) Lighting device and automobile equipped with the lighting device
TWI615659B (en) Prism sheet and light source module using the same
JP2013161791A (en) Light source module
JP6207384B2 (en) Illumination device and optical member
JP2008117766A (en) Light guide plate, backlight unit adopting the same and display
JP2010045027A (en) Light guide plate and edge light type backlight module
TW201527148A (en) Vehicle headlight device
US7715132B2 (en) Prism sheet
JP2013187059A (en) Light guide plate, and planar light source device
JP2018536270A (en) Light emitting unit having Fresnel optical system, light emitting device and display system using the same
US20130063975A1 (en) Asymmetric serrated edge light guide film having elliptical base segments
US8491172B2 (en) Symmetric serrated edge light guide film having elliptical base segments
JP6850346B2 (en) Components with optoelectronic parts and how to manufacture components
JP4572743B2 (en) Refractive light collector for backlight
JP6763528B2 (en) Optical lens, backlight module and display device
TW201504699A (en) Light guide plate and backlight module incorporating the same
US20170045670A1 (en) Light guide plate assembly and display apparatus
US8469579B2 (en) Optical plate with micro-structures and backlight module using same
JP7320430B2 (en) Surface light source device and display device
US7978410B2 (en) Optical sheet
JP5614634B2 (en) Surface light source device, liquid crystal display device, and optical member
JP2016189299A (en) Surface light source device and display device
KR102464027B1 (en) Light emitting apparatus, backlight unit including the apparatus, and the display apparatus including the unit
WO2019039366A1 (en) Light emitting device, surface light source device, and luminous flux control member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees