JP2006010456A - Method for measuring diffusion speed of organic solvent from coating film - Google Patents
Method for measuring diffusion speed of organic solvent from coating film Download PDFInfo
- Publication number
- JP2006010456A JP2006010456A JP2004186808A JP2004186808A JP2006010456A JP 2006010456 A JP2006010456 A JP 2006010456A JP 2004186808 A JP2004186808 A JP 2004186808A JP 2004186808 A JP2004186808 A JP 2004186808A JP 2006010456 A JP2006010456 A JP 2006010456A
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- coating film
- emission rate
- measuring
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、塗膜からの有機溶剤成分の放散速度を測定する方法に関するものである。 The present invention relates to a method for measuring the diffusion rate of an organic solvent component from a coating film.
近年、住環境の問題より建材等に塗料を塗装後の塗膜から放散するVOC(揮発性有機化合物)の低減が求められている。塗料の場合、塗装後の塗膜から放散するVOCのほとんどは有機溶剤であるが、これらの有機溶剤成分の中でも特に第一種指定化学物質であるトルエン、エチルベンゼン及びキシレンを低減することが強く求められており、塗装後の塗膜から放散するこれら有機溶剤成分の放散速度がどの程度であるか確認するためにも、塗膜からの有機溶剤成分の放散速度を簡便に、且つ正確に測定できる方法の開発が必要であった。 In recent years, reduction of VOC (volatile organic compound) that diffuses from paint film after painting is applied to building materials due to problems of living environment. In the case of paints, most of the VOCs emitted from the paint film after coating are organic solvents. Among these organic solvent components, it is strongly required to reduce toluene, ethylbenzene and xylene, which are the first class designated chemical substances. In order to confirm how fast these organic solvent components are emitted from the coated film after coating, the organic solvent component emission rate from the coated film can be measured easily and accurately. It was necessary to develop a method.
現在、塗膜から放散する有機溶剤量の測定は、平成15年に制定されたJIS A1901「建築材料の揮発性有機化合物(VOC)、ホルムアルデヒド及び他のカルボニル化合物放散測定法−小形チャンバー法」を参考にしており、塗装した塗板を一定容積(例えば、20リットル)の容器に入れ、一定温度及び一定湿度に保持した空気を7日間流通させて、塗板から放散してくる有機溶剤成分を経時で捕集し、ガスクロマトグラフ質量分析計を用いて各有機溶剤成分を定量することにより、有機溶剤成分の放散速度を求めるという方法がとられている。しかしながら、この方法は多大で高価な測定設備を必要とするだけでなく、特殊な測定技法を用いるうえ、1サンプルの測定に対して1つの装置が7日間占有されてしまうため、多くのサンプルを処理する上では、非常に効率の悪い方法であることから、もっと簡便な測定方法の開発が求められている。 Currently, the amount of organic solvent emitted from the coating is measured according to JIS A1901, “Measurement Method for Emission of Volatile Organic Compounds (VOC), Formaldehyde and Other Carbonyl Compounds in Building Materials-Small Chamber Method” established in 2003. For reference, put the coated plate into a fixed volume (for example, 20 liters) container, circulate the air maintained at a constant temperature and constant humidity for 7 days, and remove the organic solvent component that diffuses from the coated plate over time. The method of collecting and quantifying each organic solvent component using a gas chromatograph mass spectrometer to determine the emission rate of the organic solvent component is employed. However, this method not only requires a large and expensive measuring equipment, but also uses a special measuring technique and occupies one device for seven days for measuring one sample. Since it is a very inefficient method for processing, development of a simpler measuring method is required.
測定装置を占有しない方法として、包装材からのVOC放散量の測定方法が開示されている(特許文献1等参照。)。しかしながら、この方法は、密閉系の包装材に対しては有効であるが、塗板に適用する場合、塗板を密閉した容器に保持する必要があるが、供給される空気の流量などによって結果が大きく変動するため、狭い容器では安定な値が得られず、容器を大きくすると測定効率が大幅に下がってしまう。 As a method that does not occupy the measuring device, a method for measuring the amount of VOC emission from the packaging material has been disclosed (see Patent Document 1, etc.). However, this method is effective for sealed packaging materials, but when applied to a coated plate, it is necessary to hold the coated plate in a sealed container, but the result is greatly affected by the flow rate of the supplied air. Since it fluctuates, a stable value cannot be obtained in a narrow container, and if the container is enlarged, the measurement efficiency is greatly reduced.
本発明の目的は、塗膜からの有機溶剤成分の放散速度を簡便に測定できる方法を提供することである。 An object of the present invention is to provide a method capable of easily measuring the rate of diffusion of an organic solvent component from a coating film.
本発明者らは、上記課題を解決するため鋭意検討を行なった結果、塗膜から放散した有機溶剤成分を捕集して定量分析するのではなく、塗膜側の残留有機溶剤成分を経時で定量分析することにより、容易にかつ効率的に有機溶剤放散速度を求めることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors did not collect and quantitatively analyze the organic solvent component released from the coating film, but instead analyze the residual organic solvent component on the coating film side over time. By quantitative analysis, it was found that the organic solvent emission rate can be determined easily and efficiently, and the present invention has been completed.
かくして本発明は、塗料を塗布した塗板を恒温恒湿室の直接空調用の風があたらない場所に置き、経時での塗膜中の残留有機溶剤量を有機溶剤成分毎にガスクロマトグラフィーにより測定して、乾燥日数と残存有機溶剤量の関係から各有機溶剤成分の塗膜からの放散速度を求めることを特徴とする塗膜からの有機溶剤放散速度の測定方法に関する。 Thus, according to the present invention, the coated plate is placed in a constant temperature and humidity chamber where direct air conditioning is not exposed to air, and the amount of residual organic solvent in the coating over time is measured by gas chromatography for each organic solvent component. In addition, the present invention relates to a method for measuring an organic solvent emission rate from a coating film, characterized in that a diffusion rate of each organic solvent component from the coating film is obtained from the relationship between the days of drying and the amount of the remaining organic solvent.
本発明の塗膜からの有機溶剤放散速度の測定方法を用いることにより、従来から用いられていた方法よりも極めて容易に、且つ効率的に有機溶剤成分の放散速度を求めることができ、極めて有用なものである。 By using the method for measuring the organic solvent emission rate from the coating film of the present invention, the organic solvent component emission rate can be obtained extremely easily and efficiently compared to the conventional methods, which is extremely useful. It is a thing.
本発明の塗膜からの有機溶剤放散速度の測定方法は、塗料を塗布した塗板を恒温恒湿室の直接空調用の風があたらない場所に置き、経時での塗膜中の残留有機溶剤量を有機溶剤成分毎にガスクロマトグラフィーにより測定して、乾燥日数と残存有機溶剤量の関係から各有機溶剤成分の塗膜からの放散速度を求めるものである。 The method for measuring the organic solvent emission rate from the coating film of the present invention is to place the coated plate coated with the paint in a place where the air for direct air conditioning in a constant temperature and humidity chamber is not exposed to air, and the amount of residual organic solvent in the coating film over time Is measured for each organic solvent component by gas chromatography, and the rate of emission from the coating film of each organic solvent component is determined from the relationship between the days of drying and the amount of residual organic solvent.
塗料を塗布する素材としては容易にカットすることができ、且つ素材から有機化学物質が排出されないような、例えばアルミニウム板等が適している。 For example, an aluminum plate that can be easily cut and does not discharge organic chemicals from the material is suitable as a material to which the paint is applied.
塗料をアルミニウム板等に、実際に使用される膜厚になるように塗装した後、一定の温度及び一定の湿度(例えば、温度28℃及び湿度50%RH)の条件に保たれた恒温恒湿室に入れて乾燥させる。塗板の大きさ、塗板を置く角度等は一定条件に決めておくことが好ましい。また、恒温恒湿室の空気の流れ方や他の塗板による影響をできるだけ受けないように恒温恒湿室の大きさ、隣接塗板との距離などに配慮することが必要である。また、空調用の風が直接塗板にあたるのは好ましくなく、塗板を置く場所を選んだり、空調空気の吹き出し口周辺や塗板の上などに風除けの覆いなどを置くのが好ましい。 After coating the paint on an aluminum plate or the like so as to have a film thickness that is actually used, the temperature and humidity are maintained at a constant temperature and a constant humidity (for example, a temperature of 28 ° C. and a humidity of 50% RH). Place in a room and dry. The size of the coated plate, the angle at which the coated plate is placed, and the like are preferably determined under certain conditions. In addition, it is necessary to consider the size of the constant temperature and humidity chamber, the distance from the adjacent coating plate, and the like so as not to be affected as much as possible by the air flow in the constant temperature and humidity chamber and other coating plates. In addition, it is not preferable that the air-conditioning wind directly hits the coating plate. It is preferable to select a place where the coating plate is to be placed, or to place a windshield covering around the air-conditioning air outlet or on the coating plate.
上記恒温恒湿の条件に所定の日数放置した後に塗板を取り出し、塗板の一部分を切り出して、その面積を測定する。次に、その切り出した塗板を瓶(例えば、容量約25mlのガラス瓶など)に入れて、そこへ適切な抽出用溶剤(例えば、二硫化炭素など)を加えて密封し、2日間程度室温で放置して塗膜に含まれる有機溶剤成分を抽出用溶剤に抽出した後、該抽出用溶剤に含まれる有機溶剤成分をガスクロマトグラフィーにより定量するか、または、塗板を入れた瓶に抽出溶剤を添加するのではなく、塗板を入れた瓶をそのまま加熱(例えば、200℃程度)し、気化した有機溶剤成分を直接ガスクロマトグラフィーにより定量する。 After leaving it for a predetermined number of days under the conditions of constant temperature and humidity, the coated plate is taken out, a part of the coated plate is cut out, and the area is measured. Next, put the cut-out coated plate into a bottle (for example, a glass bottle with a capacity of about 25 ml), add an appropriate extraction solvent (for example, carbon disulfide) to the bottle, and seal it for about 2 days at room temperature After extracting the organic solvent component contained in the coating film into the extraction solvent, the organic solvent component contained in the extraction solvent is quantified by gas chromatography, or the extraction solvent is added to the bottle containing the coated plate Instead, the bottle containing the coated plate is heated as it is (for example, about 200 ° C.), and the vaporized organic solvent component is directly quantified by gas chromatography.
得られた結果を、横軸に乾燥日数を取り、縦軸に溶剤残留量を取ってプロットする。プロットして得られた散布図に対して、回帰分析により累乗近似式または線形近似式を求め、累乗近似式又は線形近似式の微分係数より、それぞれの溶剤の放散速度(mg/m2・h)を求めることができる。 The obtained results are plotted by taking the drying days on the horizontal axis and the residual amount of solvent on the vertical axis. From the scatter diagram obtained by plotting, a power approximation formula or a linear approximation formula is obtained by regression analysis. From the differential coefficient of the power approximation formula or the linear approximation formula, the emission rate of each solvent (mg / m 2 · h ).
すなわち、近似式が、下記累乗近似式の場合、
y=axb
(y:塗膜中の溶剤残留量(mg/m2)、x:乾燥日数(days))
微分式は、
y’=abxb−1
となる。
That is, when the approximate expression is the following power approximate expression:
y = ax b
(Y: amount of residual solvent in the coating film (mg / m 2 ), x: days of drying (days))
The differential equation is
y ′ = abx b−1
It becomes.
従って、例えば、1日目の時間当たりの放散速度は、
−(ab/24) mg/m2・h
となり、3日目の放散速度は、
−(ab3b−1/24) mg/m2・h
となる。
Thus, for example, the dissipation rate per hour on day 1 is
-(Ab / 24) mg / m 2 · h
And the dissipation rate on the third day is
-(Ab3 b-1 / 24) mg / m 2 · h
It becomes.
また、近似式が、下記線形近似式の場合、
y=ax+b
微分式は
y’=a
となり、時間当たりの放散速度は、
−(a/24) mg/m2・h
となる。
If the approximate expression is the following linear approximate expression,
y = ax + b
The differential equation is y ′ = a
The dissipation rate per hour is
-(A / 24) mg / m 2 · h
It becomes.
通常、塗膜からの溶剤放散速度は、塗装直後が大きく、その後順次小さくなっていく。従って、累乗近似式を用いる方が実際に即しており、現在、建築材料に用いられているJIS A1901「建築材料の揮発性有機化合物(VOC)、ホルムアルデヒド及び他のカルボニル化合物放散測定法−小形チャンバー法」の方法を用いて得られる塗膜からの溶剤放散速度の値と比較的近い結果が得られる。 Usually, the solvent emission rate from the coating film is large immediately after coating and then gradually decreases. Therefore, it is more practical to use the power approximation formula, and JIS A1901 “Measurement method for emission of volatile organic compounds (VOC), formaldehyde and other carbonyl compounds in building materials—small type currently used for building materials. The result is relatively close to the value of the solvent emission rate from the coating film obtained using the “chamber method”.
しかしながら、塗膜からの溶剤放散速度は、塗装後2日目位から7日目位までを見るとそれほど大きくは変化しないため、簡易的に、塗装後2日目位から7日目位までの測定結果をもとに線形近似式から求めた放散速度を塗膜からの溶剤放散速度として規定することも考えられる。 However, since the solvent release rate from the coating film does not change so much from the 2nd day to the 7th day after painting, it is simply from the 2nd day to the 7th day after painting. It is also conceivable to define the emission rate obtained from the linear approximation equation based on the measurement result as the solvent emission rate from the coating film.
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。なお、以下、「部」及び「%」はいずれも重量基準によるものとする。ただし、実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Hereinafter, both “parts” and “%” are based on weight. However, the examples do not limit the present invention.
実施例1
重量と面積が既知である幅4cm×長さ15cmのアルミニウム板(厚さ0.26mm)に塩化ビニル樹脂系塗料(関西ペイント社製)を固形分量として50〜60g/m2になるようにして塗装し、温度23℃及び湿度50%の恒温恒温室に直接風があたらないように設置し、乾燥を行った。1日乾燥後、この塗板を幅約1cm×長さ約3.7cmの大きさに切り出し、その面積を正確に測定した後、瓶に切り出した塗板を3枚入れて、二硫化炭素2mlを加えて密封し、瓶を倒して試料塗板が完全に二硫化炭素に浸るようにし室温で1日間放置した。その後、検出器として水素炎イオン化検出器(FID)を、分離カラムにキャピラリーカラム(J&W社製DB−WAX)を用いてガスクロマトグラフィーにより塗膜中に残留している各溶剤の量を測定した。
Example 1
A vinyl chloride resin-based paint (manufactured by Kansai Paint Co., Ltd.) is applied to an aluminum plate (thickness 0.26 mm) having a width of 4 cm and a length of 15 cm having a known weight and area so that the solid content is 50 to 60 g / m 2. It was painted and placed in a constant temperature and constant temperature room at a temperature of 23 ° C. and a humidity of 50% so as not to be directly blown by air and dried. After drying for one day, this coated plate is cut into a size of about 1 cm in width and about 3.7 cm in length, the area is accurately measured, and then three coated plates are put into a bottle, and 2 ml of carbon disulfide is added. Then, the bottle was turned over so that the sample coating plate was completely immersed in carbon disulfide and left at room temperature for 1 day. Then, the amount of each solvent remaining in the coating film was measured by gas chromatography using a flame ionization detector (FID) as a detector and a capillary column (DB-WAX manufactured by J & W) as a separation column.
同様にして所定の乾燥日数経過後、逐次塗板を切り出し、同様に面積および残留している各溶剤量を求めた。表1に測定結果を示す。 Similarly, after a predetermined number of drying days, the coated plate was sequentially cut out, and the area and the amount of each remaining solvent were similarly determined. Table 1 shows the measurement results.
図1には乾燥日数1日目〜8日目における各溶剤の残留溶剤量を乾燥日数に対してプロットし、最小二乗法によって累乗近似式を求めて、図中に書き込んだものである。一方、図2は2日目〜8日目における各溶剤の残留溶剤量を乾燥日数に対してプロットし、最小二乗法によって線形近似式を求めて、図中に書き込んだものである。 In FIG. 1, the residual solvent amount of each solvent on the 1st to 8th days of drying is plotted against the number of drying days, and a power approximation formula is obtained by the least square method and written in the figure. On the other hand, FIG. 2 plots the residual solvent amount of each solvent on the 2nd day to the 8th day against the drying days, obtains a linear approximation formula by the least square method, and writes it in the figure.
累乗近似式の微分係数より各溶剤の放散速度を計算すると以下のようになる。 When the emission rate of each solvent is calculated from the differential coefficient of the power approximation formula, it is as follows.
また、累乗近似式から求めた各溶剤の放散速度式は、
トルエン z=18.8×x−1.5411
エチルベンゼン z=1.73×x−1.2264
キシレン z=6.57×x−1.1583
(z:放散速度(mg/m2・h)、x:乾燥日数(days))
のようになる。
In addition, the emission rate equation of each solvent obtained from the power approximation equation is
Toluene z = 18.8 × x −1.5411
Ethylbenzene z = 1.73 × x− 1.2264
Xylene z = 6.57 × x− 1.1583
(Z: Emission rate (mg / m 2 · h), x: Days of drying (days))
become that way.
一方、線形近似式から求めた各溶剤の放散速度は表3のようになる。 On the other hand, the diffusion rate of each solvent obtained from the linear approximation formula is as shown in Table 3.
実施例2
重量と面積が既知である幅4cm×長さ15cmのアルミニウム板(厚さ0.26mm)に塩化ビニル樹脂系塗料(関西ペイント社製)を固形分量として50〜60g/m2になるようにして塗装し、温度23℃及び湿度50%の恒温恒温室に直接風があたらないように設置し、乾燥を行った。1日乾燥後、この塗板を幅約1cm×長さ約3.7cmの大きさに切り出し、その面積を正確に測定した後、ヘッドスペース瓶に切り出した塗板を2枚入れ、密封した後、190℃に加熱し、気化した溶剤をガスクロマトグラフィーにより測定した。塗膜中の溶剤を気化させる装置としてヒューレットパッカード社製ヘッドスペース測定装置HP−7694を使用した。加熱してガスクロマトグラフィーにより測定した以外は、測定方法は実施例1と同様に行った。得られた結果を表4に示す。
Example 2
A vinyl chloride resin paint (manufactured by Kansai Paint Co., Ltd.) is applied to an aluminum plate (thickness 0.26 mm) having a width of 4 cm and a length of 15 cm having a known weight and area so that the solid content is 50 to 60 g / m 2. It was painted and placed in a constant temperature and constant temperature room at a temperature of 23 ° C. and a humidity of 50% so as not to be directly blown by air and dried. After drying for one day, this coated plate was cut into a size of about 1 cm in width and about 3.7 cm in length, the area was accurately measured, and then two coated plates cut into a headspace bottle were placed and sealed. The solvent evaporated after heating to ° C. was measured by gas chromatography. As a device for vaporizing the solvent in the coating film, a head space measuring device HP-7694 manufactured by Hewlett-Packard Company was used. The measurement method was the same as in Example 1 except that the measurement was performed by gas chromatography after heating. Table 4 shows the obtained results.
実施例1と同様にして上記結果を図にプロットし、累乗近似式を求めて、その微分係数より各溶剤の放散速度を計算すると下記表5のようになる。 The results are plotted in the figure in the same manner as in Example 1, the power approximation formula is obtained, and the emission rate of each solvent is calculated from the differential coefficient as shown in Table 5 below.
また、累乗近似式から求めた各溶剤の放散速度式は、
トルエン z=18.6×x−1.5478
エチルベンゼン z=2.43×x−1.2993
キシレン z=7.64×x−1.1753
(z:放散速度(mg/m2・h)、x:乾燥日数(days))
のようになる。
In addition, the emission rate equation of each solvent obtained from the power approximation equation is
Toluene z = 18.6 × x −1.5478
Ethylbenzene z = 2.43 × x− 1.2993
Xylene z = 7.64 × x −1.1753
(Z: Emission rate (mg / m 2 · h), x: Days of drying (days))
become that way.
一方、線形近似式から求めた各溶剤の放散速度は表3のようになる。 On the other hand, the diffusion rate of each solvent obtained from the linear approximation formula is as shown in Table 3.
比較例1
実施例1と同様に塗装した塗板を20Lチャンバーに入れてJIS A1901に基づいて、3日目および7日目の溶剤放散速度を測定した。
Comparative Example 1
The coated plate coated in the same manner as in Example 1 was placed in a 20 L chamber, and the solvent emission rates on the third and seventh days were measured based on JIS A1901.
Claims (5)
The method for measuring the organic solvent emission rate from the coating film according to any one of claims 1 to 4, wherein the organic solvent component for measuring the emission rate is at least one selected from the group consisting of toluene, ethylbenzene and xylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004186808A JP2006010456A (en) | 2004-06-24 | 2004-06-24 | Method for measuring diffusion speed of organic solvent from coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004186808A JP2006010456A (en) | 2004-06-24 | 2004-06-24 | Method for measuring diffusion speed of organic solvent from coating film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006010456A true JP2006010456A (en) | 2006-01-12 |
Family
ID=35777882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004186808A Pending JP2006010456A (en) | 2004-06-24 | 2004-06-24 | Method for measuring diffusion speed of organic solvent from coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006010456A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323369A (en) * | 2011-08-08 | 2012-01-18 | 宝钢集团新疆八一钢铁有限公司 | Gas chromatography determination method of benzene content in lean and rich oil |
CN103018353A (en) * | 2012-10-24 | 2013-04-03 | 宜昌人福药业有限责任公司 | Method for measuring residual solvents in bulk drug-pholcodine |
CN103852546A (en) * | 2014-03-10 | 2014-06-11 | 常熟市金申医化制品有限责任公司 | Method for analyzing residual quantities of residual solvents in sulfadoxine |
CN103926341A (en) * | 2014-04-14 | 2014-07-16 | 北京黎马敦太平洋包装有限公司 | Method for quantitatively measuring volatile organic compounds (VOCs) in ink for cartons and boxes of cigarettes |
CN105929045A (en) * | 2016-04-18 | 2016-09-07 | 上药东英(江苏)药业有限公司 | Method for detecting residual organic solvent in cis-atracurium besilate |
CN106770837A (en) * | 2017-01-19 | 2017-05-31 | 安徽瑞邦生物科技有限公司 | A kind of method that headspace sampling detects Residual Toluene in niacinamide |
-
2004
- 2004-06-24 JP JP2004186808A patent/JP2006010456A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323369A (en) * | 2011-08-08 | 2012-01-18 | 宝钢集团新疆八一钢铁有限公司 | Gas chromatography determination method of benzene content in lean and rich oil |
CN103018353A (en) * | 2012-10-24 | 2013-04-03 | 宜昌人福药业有限责任公司 | Method for measuring residual solvents in bulk drug-pholcodine |
CN103852546A (en) * | 2014-03-10 | 2014-06-11 | 常熟市金申医化制品有限责任公司 | Method for analyzing residual quantities of residual solvents in sulfadoxine |
CN103852546B (en) * | 2014-03-10 | 2016-01-20 | 常熟市金申医化制品有限责任公司 | The analytical approach of residual solvent residual quantity in sulfadoxine |
CN103926341A (en) * | 2014-04-14 | 2014-07-16 | 北京黎马敦太平洋包装有限公司 | Method for quantitatively measuring volatile organic compounds (VOCs) in ink for cartons and boxes of cigarettes |
CN105929045A (en) * | 2016-04-18 | 2016-09-07 | 上药东英(江苏)药业有限公司 | Method for detecting residual organic solvent in cis-atracurium besilate |
CN105929045B (en) * | 2016-04-18 | 2019-01-08 | 上药东英(江苏)药业有限公司 | A method of detection benzene sulphur is along organic solvent residual in atracurium |
CN106770837A (en) * | 2017-01-19 | 2017-05-31 | 安徽瑞邦生物科技有限公司 | A kind of method that headspace sampling detects Residual Toluene in niacinamide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Klenø et al. | Determination of ozone removal rates by selected building products using the FLEC emission cell | |
Markowicz et al. | Influence of relative humidity on VOC concentrations in indoor air | |
Nicolas et al. | Reactions between ozone and building products: Impact on primary and secondary emissions | |
Afshari et al. | Comparison of three small chamber test methods for the measurement of VOC emission rates from paint. | |
Won et al. | Validation of the surface sink model for sorptive interactions between VOCs and indoor materials | |
Seo et al. | Performance test for evaluating the reduction of VOCs in rooms and evaluating the lifetime of sorptive building materials | |
Schripp et al. | Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates | |
Kowalska et al. | Measurements of chlorinated volatile organic compounds emitted from office printers and photocopiers | |
Norbäck et al. | Occupational exposure to volatile organic compounds (VOCs), and other air pollutants from the indoor application of water-based paints | |
Spaulding et al. | Optimization of a mist chamber (cofer scrubber) for sampling water-soluble organics in air | |
JP2006010456A (en) | Method for measuring diffusion speed of organic solvent from coating film | |
Alapieti et al. | The effects of paints and moisture content on the indoor air emissions from pinewood (Pinus sylvestris) boards | |
Vallecillos et al. | Presence of emerging organic contaminants and solvents in schools using passive sampling | |
Arnanthigo et al. | Sniff-testing for indoor air contaminants from new buildings environment detecting by aspiration-type ion mobility spectrometry | |
Barhate et al. | Effect of aerosol sampling conditions on PM2. 5 sampling accuracy | |
Lin et al. | Texanol® ester alcohol emissions from latex paints: Temporal variations and multi-component recoveries | |
Roulet et al. | Effect of chemical composition on VOC transfer through rotating heat exchangers | |
Chang et al. | Evaluation of sink effects on VOCs from a latex paint | |
Beiner et al. | Oddy tests: Adding the analytical dimension | |
López-Aparicio et al. | Measurement of organic and inorganic pollutants in microclimate frames for paintings | |
Rowe et al. | Prediction of gas collection efficiency and particle collection artifact for atmospheric semivolatile organic compounds in multicapillary denuders | |
Andersen et al. | Gas–particle partitioning of odorants in a pig house measured by thermal desorption GC/MS | |
Chen et al. | Chemical characterization and formation of secondary organosiloxane aerosol (SOSiA) from OH oxidation of decamethylcyclopentasiloxane | |
Dahlin et al. | Size-Separated Sampling and Analysis of Isocyanates in Workplace Aerosols. Part I. Denuder—Cascade Impactor Sampler | |
Gallego et al. | Levels of volatile methyl siloxanes in outdoor air |