JP2006010068A - Transmission belt and its manufacturing method - Google Patents

Transmission belt and its manufacturing method Download PDF

Info

Publication number
JP2006010068A
JP2006010068A JP2005148107A JP2005148107A JP2006010068A JP 2006010068 A JP2006010068 A JP 2006010068A JP 2005148107 A JP2005148107 A JP 2005148107A JP 2005148107 A JP2005148107 A JP 2005148107A JP 2006010068 A JP2006010068 A JP 2006010068A
Authority
JP
Japan
Prior art keywords
ethylene
olefin
rubber layer
weight
diene rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148107A
Other languages
Japanese (ja)
Other versions
JP4667956B2 (en
Inventor
Hiroyuki Shiriike
寛之 尻池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2005148107A priority Critical patent/JP4667956B2/en
Publication of JP2006010068A publication Critical patent/JP2006010068A/en
Application granted granted Critical
Publication of JP4667956B2 publication Critical patent/JP4667956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To to provide a transmission belt and its manufacturing method capable of dispensing with the blending of short fiber into a compressive rubber layer, or remarkably reducing its blending quantity when the short fiber is blended in the compressive rubber layer, reducing the noise in traveling by orienting short fiber in the longitudinal direction of the belt, and improving flexure fatigue resistance under high temperature environment, thus a flexion life of the transmission belt can be elongated. <P>SOLUTION: In this transmission belt wherein both of the compressive rubber layer 4 and an adhesive rubber layer 2 are composed of vulcanized substance of ethylene-α-olefin-diene rubber composition, and a core wire 3 is buried and adhered in the adhesive rubber layer, 0.9≤a/b≤1.2 is satisfied when the modulus of elongation of the compressive rubber layer in the belt longitudinal direction is (a), and that of the compressive rubber layer in the belt width direction is (b). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、伝動ベルトとその製造方法に関し、詳しくは、圧縮ゴム層に短繊維を配合することなく、又は圧縮ゴム層への短繊維の配合量を著しく低減し、従って、製造費用を低減しながら、走行時の発音性が小さく、しかも、高温環境下での耐屈曲疲労性にすぐれる伝動ベルトと、そのような伝動ベルトの製造方法に関する。   The present invention relates to a transmission belt and a method for manufacturing the same, and more particularly, without adding short fibers to the compressed rubber layer, or significantly reducing the amount of short fibers added to the compressed rubber layer, and thus reducing manufacturing costs. However, the present invention relates to a transmission belt that has low sound generation during running and excellent bending fatigue resistance in a high-temperature environment, and a method for manufacturing such a transmission belt.

従来、ローエッジタイプのVベルトやVリブドベルト等、主に自動車に用いられる伝動ベルトは、耐熱性、耐油性、耐磨耗性等にすぐれる点から、ゴム成分として、クロロプレンゴムや水添ニトリルゴムとクロロスルホン化ポリエチレンとの混合物を用い、これに短繊維を配合してなるゴム配合物の加硫物から形成されている。特に、このような伝動ベルトにおいて、短繊維をベルト幅方向に配向するように圧縮ゴム層に分散させて、ベルトの耐側圧性を高め、これによって、走行時のベルトの望ましくない変形を抑えて、伝動効率を高めると共に、プーリとの接触面を形成する圧縮ゴム層の表面に短繊維を突出させて、プーリとの摩擦による走行音(発音性)を小さくするために、そのゴム成分100重量部に対して、20重量部又はこれを越える量の短繊維が配合されている。しかも、自動車の走行時の静粛性の要求の高まりを背景として、上記短繊維の配合量も増加する傾向がみられる。   Conventionally, transmission belts mainly used for automobiles, such as low-edge type V belts and V-ribbed belts, have excellent heat resistance, oil resistance, wear resistance, etc., and as a rubber component, chloroprene rubber or hydrogenated nitrile rubber is used. It is formed from a vulcanizate of a rubber compound obtained by using a mixture of chlorosulfonated polyethylene and short fibers. In particular, in such a transmission belt, the short fibers are dispersed in the compressed rubber layer so as to be oriented in the belt width direction, thereby increasing the lateral pressure resistance of the belt, thereby suppressing undesirable deformation of the belt during running. In order to increase the transmission efficiency and to make the short fibers protrude on the surface of the compressed rubber layer forming the contact surface with the pulley, to reduce the running sound (sounding performance) due to friction with the pulley, the rubber component 100 weight 20 parts by weight or more of short fibers are blended with respect to part. Moreover, there is a tendency that the amount of the short fibers is increased against the background of increasing demand for quietness when the automobile is running.

例えば、圧縮ゴム層がエチレン含量60〜75重量%のエチレン−α−オレフィン−ジエンゴム100重量部に対して繊維長0.5〜3mmの短繊維を10〜30重量部配合してなるゴム配合物の加硫物からなり、上記短繊維をベルト幅方向に配向させた伝動ベルトが既に知られている(特許文献1参照)。   For example, a rubber composition comprising a compressed rubber layer containing 10 to 30 parts by weight of short fibers having a fiber length of 0.5 to 3 mm per 100 parts by weight of ethylene-α-olefin-diene rubber having an ethylene content of 60 to 75% by weight. A transmission belt made of a vulcanized product of which the above short fibers are oriented in the belt width direction is already known (see Patent Document 1).

このように、エチレン−α−オレフィン−ジエンゴムに短繊維を配合したゴム配合物の加硫物から圧縮ゴム層を形成し、上記短繊維をベルト幅方向に配向させた伝動ベルトは、走行時の発音性が小さく、耐屈曲疲労性にもすぐれて、好ましいものである。   Thus, a transmission belt in which a compressed rubber layer is formed from a vulcanized product of a rubber compound in which short fibers are blended with ethylene-α-olefin-diene rubber, and the short fibers are oriented in the belt width direction, It is preferable because it has low sound generation and excellent bending fatigue resistance.

しかしながら、短繊維を分散させた圧縮ゴム層を得るには、短繊維を予め、接着処理する工程のほか、このように接着処理した短繊維を圧縮ゴム層用の未加硫ゴム配合物に均一に練り込んだ後、圧延して、圧縮ゴム層用の未加硫ゴムシートの列理方向(ベルトの長手方向)に短繊維を配向させ、この後、得られる伝動ベルトにおいて、上記短繊維がベルト幅方向に配向するように、ベルトの製造に際して、成形ドラムの周面に巻き付けた接着ゴム層用の未加硫ゴムシートの上に圧縮ゴム用の未加硫ゴムシートをその列理方向が成形ドラムの円周方向(ベルトの長手方向)と直交するように巻き付ける工程が必要である。   However, in order to obtain a compressed rubber layer in which short fibers are dispersed, in addition to the step of bonding the short fibers in advance, the short fibers thus bonded are uniformly formed into an unvulcanized rubber compound for the compressed rubber layer. And then rolling to orient the short fibers in the direction of the uncured rubber sheet for the compression rubber layer (longitudinal direction of the belt). Thereafter, in the transmission belt obtained, the short fibers are When the belt is manufactured so that it is oriented in the belt width direction, the unvulcanized rubber sheet for compressed rubber is placed on the unvulcanized rubber sheet for the adhesive rubber layer wound around the peripheral surface of the molding drum. The process of winding so that it may orthogonally cross the circumferential direction (longitudinal direction of a belt) of a forming drum is required.

このように、短繊維を分散させた圧縮ゴム層を有する伝動ベルトを製造する工程は非常に煩雑であるうえに、工程数が多いことから、加工費用が嵩み、更に、短繊維も高価であるので、ベルトの製造費用が高くなるという問題がある。
特開2003−012871号公報
As described above, the process for producing a transmission belt having a compressed rubber layer in which short fibers are dispersed is very complicated, and since the number of processes is large, the processing cost is high, and the short fibers are also expensive. Therefore, there is a problem that the manufacturing cost of the belt becomes high.
JP 2003-012871 A

本発明は、圧縮ゴム層に短繊維を分散させると共に、その短繊維をベルト幅方向に配向させた従来の伝動ベルトにおける上述した問題を解決するためになされたものであって、圧縮ゴム層への短繊維の配合なしに、又は圧縮ゴム層に短繊維を配合する場合は、その配合量を著しく低減すると共に、得られる伝動ベルトにおいて、短繊維をベルト長手方向に配向させ、更に、ベルト長手方向の圧縮ゴム層の引張弾性率をaとし、ベルト幅方向の圧縮ゴム層の引張弾性率をbとするとき、0.9≦a/b≦1.2とすることによって、上述した従来の伝動ベルトの製造に比べて、製造工程を簡単化し、短縮して、製造費用を低減しながら、走行時の発音性、特に、前述したプーリとの摩擦音が少なく、しかも、高温環境下での耐屈曲疲労性にすぐれ、従って、屈曲寿命の長い伝動ベルトと、そのような伝動ベルトの製造方法を提供することを目的とする。   The present invention was made in order to solve the above-described problems in a conventional transmission belt in which short fibers are dispersed in a compressed rubber layer and the short fibers are oriented in the belt width direction. When the short fibers are not blended or when the short fibers are blended in the compressed rubber layer, the blending amount is remarkably reduced, and in the resulting transmission belt, the short fibers are oriented in the belt longitudinal direction. When the tensile elastic modulus of the compression rubber layer in the direction is a and the tensile elastic modulus of the compression rubber layer in the belt width direction is b, 0.9 ≦ a / b ≦ 1.2. Compared with the manufacture of power transmission belts, the manufacturing process is simplified and shortened to reduce manufacturing costs, while sounding during running, especially the frictional noise with the pulleys described above, is low, and it is resistant to high temperature environments. Immediate bending fatigue , Therefore, an object of a long transmission belt of bending life, to provide a method of manufacturing such a transmission belt.

本発明によれば、圧縮ゴム層と接着ゴム層とが共にエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記接着ゴム層内に心線が埋設、接着されている伝動ベルトにおいて、ベルト長手方向の圧縮ゴム層の引張弾性率をaとし、ベルト幅方向の圧縮ゴム層の引張弾性率をbとするとき、0.9≦a/b≦1.2であることを特徴とする伝動ベルトが提供される。   According to the present invention, in the power transmission belt, the compression rubber layer and the adhesive rubber layer are both made of a vulcanized product of an ethylene-α-olefin-diene rubber compound, and the core wire is embedded and bonded in the adhesive rubber layer. When the tensile elastic modulus of the compression rubber layer in the belt longitudinal direction is a and the tensile elastic modulus of the compression rubber layer in the belt width direction is b, 0.9 ≦ a / b ≦ 1.2 A transmission belt is provided.

本発明によれば、上記圧縮ゴム層のゴム成分である上記エチレン−α−オレフィン−ジエンゴムは、そのエチレン含量が55〜85重量%の範囲にあることが好ましく、60〜80重量%の範囲にあることがより好ましい。   According to the present invention, the ethylene-α-olefin-diene rubber, which is a rubber component of the compressed rubber layer, preferably has an ethylene content in the range of 55 to 85% by weight, and in the range of 60 to 80% by weight. More preferably.

本発明によれば、上記圧縮ゴム層は、短繊維を含むエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなってもよく、この場合には、上記エチレン−α−オレフィン−ジエンゴム配合物中の上記短繊維の含量は、上記エチレン−α−オレフィン−ジエンゴム100重量部に対して5重量部以下の範囲にあることが好ましい。   According to the present invention, the compressed rubber layer may consist of a vulcanizate of an ethylene-α-olefin-diene rubber blend containing short fibers, in which case the ethylene-α-olefin-diene rubber blend is The content of the short fiber is preferably in the range of 5 parts by weight or less with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber.

本発明によれば、一つの好ましい態様として、上記圧縮ゴム層が超高分子量ポリエチレンを含むエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55重量%以上であって、60重量%よりも少なく、上記配合物中の上記超高分子量ポリエチレンの含量が上記エチレン−α−オレフィン−ジエンゴム100重量部に対して1〜50重量部の範囲にある伝動ベルトが提供される。   According to the present invention, as one preferred embodiment, the compressed rubber layer comprises a vulcanized product of an ethylene-α-olefin-diene rubber blend containing ultrahigh molecular weight polyethylene, and the ethylene content of the ethylene-α-olefin-diene rubber. Is less than 60% by weight, and the content of the ultra high molecular weight polyethylene in the blend is in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. A transmission belt is provided.

更に、本発明によれば、円筒状の成形ドラムの外周面にゴム引き帆布と第1の接着ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が上記成形ドラムの円周方向と一致するように巻き付け、この上に心線を螺旋状にスピニングした後、第2の接着ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が上記成形ドラムの円周方向と一致するように巻き付け、この上に圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が上記成形ドラムの円周方向と一致するように巻き付けて、積層円筒体を形成し、これを加圧加熱して、上記第1と第2の接着ゴム層用未加硫ゴム配合物からなるシートと圧縮ゴム層用未加硫ゴム配合物からなるシートを加硫一体化する伝動ベルトの製造方法において、上記圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物のエチレン−α−オレフィン−ジエンゴムのエチレン含量が55〜85重量%の範囲にあり、好ましくは、60〜80重量%の範囲にあることを特徴とする伝動ベルトの製造方法が提供される。   Furthermore, according to the present invention, a sheet made of a rubber-drawn canvas and a first unvulcanized ethylene-α-olefin-diene rubber compound for an adhesive rubber layer is formed on the outer peripheral surface of a cylindrical molding drum in the longitudinal direction. The sheet was wound so as to coincide with the circumferential direction of the drum, and the core wire was spun into a spiral shape, and then a sheet made of the unvulcanized ethylene-α-olefin-diene rubber compound for the second adhesive rubber layer was formed in the longitudinal direction. The sheet is wound so that the direction coincides with the circumferential direction of the molding drum, and a sheet made of the unvulcanized ethylene-α-olefin-diene rubber compound for the compression rubber layer is wound on the circumferential direction of the molding drum. To form a laminated cylindrical body, which is heated under pressure, to form a sheet made of the unvulcanized rubber compound for the first and second adhesive rubber layers and the unvulcanized for the compressed rubber layer. Vulcanized rubber In the method for producing a transmission belt for vulcanizing and integrating a sheet made of a compound, the ethylene content of the unvulcanized ethylene-α-olefin-diene rubber blend for the compressed rubber layer is 55 to 85 There is provided a method for producing a transmission belt in the range of wt%, preferably in the range of 60-80 wt%.

本発明によれば、上記圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物は、上記エチレン−α−オレフィン−ジエンゴム100重量部に対して短繊維を5重量部以下の範囲で含んでいてもよい。   According to the present invention, the unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer contains short fibers in an amount of 5 parts by weight or less with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. You may go out.

このような伝動ベルトの製造方法において、一つの好ましい態様によれば、圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物が超高分子量ポリエチレンを含み、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55重量%以上であって、60重量%よりも少なく、上記配合物中の上記超高分子量ポリエチレンの含量が上記エチレン−α−オレフィン−ジエンゴム100重量部に対して1〜50重量部の範囲である方法が提供される。   In such a method for producing a transmission belt, according to one preferred embodiment, the unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer contains ultrahigh molecular weight polyethylene, and the ethylene-α-olefin-diene rubber is used. The ethylene content is 55% by weight or more and less than 60% by weight, and the ultra high molecular weight polyethylene content in the blend is 1 to 50% by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. A method is provided that is part of the scope.

本発明によれば、圧縮ゴム層に短繊維を配合せずに、又は短繊維の配合量を著しく低減し、従って、製造費用を低減しながら、走行時の発音性が小さく、しかも、高温環境下での耐屈曲疲労性にすぐれる伝動ベルトを得ることができる。   According to the present invention, the compression rubber layer is not compounded with short fibers or the amount of short fibers is remarkably reduced, and thus the production performance is reduced while the sounding performance during traveling is small and the high temperature environment is reduced. A transmission belt having excellent bending fatigue resistance can be obtained.

本発明において、伝動ベルトは、Vリブドベルト及びVリブドベルトを含むものとする。図1は、伝動ベルトの一例であるVリブドベルトの横断面図を示し、ベルトの上面は、単層又は複数層のゴム引き帆布1にて形成されており、これに隣接して、接着ゴム層2が積層されている。この接着ゴム層には、複数の心線3が間隔を置いてベルト長手方向に延びるように埋設されている。更に、この接着ゴム層に隣接して、圧縮ゴム層4が積層されている。この圧縮ゴム層には、ベルト長手方向に延びるように相互に間隔を有するリブ5を有する。本発明によれば、上記圧縮ゴム層には、前述したように、エチレン−α−オレフィン−ジエンゴム100重量部に対して0〜5重量部の範囲で短繊維(図示せず)が分散されていてもよい。   In the present invention, the transmission belt includes a V-ribbed belt and a V-ribbed belt. FIG. 1 shows a cross-sectional view of a V-ribbed belt which is an example of a transmission belt. The upper surface of the belt is formed of a single layer or multiple layers of rubberized canvas 1, and an adhesive rubber layer is adjacent to this. 2 are stacked. A plurality of core wires 3 are embedded in this adhesive rubber layer so as to extend in the longitudinal direction of the belt at intervals. Further, a compressed rubber layer 4 is laminated adjacent to the adhesive rubber layer. The compressed rubber layer has ribs 5 that are spaced from each other so as to extend in the longitudinal direction of the belt. According to the present invention, as described above, short fibers (not shown) are dispersed in the compressed rubber layer in the range of 0 to 5 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. May be.

本発明による伝動ベルトにおいては、圧縮ゴム層と接着ゴム層とが共にエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記接着ゴム層内に心線が埋設、接着されている。   In the transmission belt according to the present invention, the compression rubber layer and the adhesive rubber layer are both made of a vulcanized product of an ethylene-α-olefin-diene rubber compound, and a core wire is embedded and bonded in the adhesive rubber layer.

本発明においては、上記心線として、ポリエステル繊維、アラミド繊維、ガラス繊維等を素材とする高強度で低伸度のコードよりなるものが好ましく用いられる。このような心線は、通常、接着処理を施して用いられる。この接着処理は、通常、心線をレゾルシン−ホルマリン−ラテックス(RFL)に浸漬した後、加熱乾燥して、心線の表面に均一な接着処理層を形成する。必要に応じて、この接着処理の前に、心線を多官能イソシアネートや多官能エポキシ化合物の溶液に浸漬した後、加熱乾燥する前処理を施してもよい。   In the present invention, as the core wire, one made of a cord having high strength and low elongation made of polyester fiber, aramid fiber, glass fiber or the like is preferably used. Such a core wire is usually used after being subjected to an adhesive treatment. In this adhesion treatment, the core wire is usually immersed in resorcin-formalin-latex (RFL) and then dried by heating to form a uniform adhesion treatment layer on the surface of the core wire. If necessary, the core wire may be immersed in a solution of a polyfunctional isocyanate or polyfunctional epoxy compound, and then pretreated by heating and drying before the adhesion treatment.

本発明において、接着ゴム層と圧縮ゴム層を形成するためのゴム成分であるエチレン−α−オレフィン−ジエンゴムとしては、エチレンを除くα−オレフィンとエチレンとジエン(非共役ジエン)の共重合体からなるゴムが用いられ、上記エチレンを除くα−オレフィンとしては、好ましくは、プロピレン、ブテン、ヘキセン及びオクテンから選ばれる少なくとも1種が用いられる。なかでも、好ましいエチレン−α−オレフィン−ジエンゴムは、エチレン−プロピレン−ジエンゴムである。このようなエチレン−α−オレフィン−ジエンゴムにおいて、ジエン成分は、特に、限定されるものではないが、通常、1,4−ヘキサジエン、ジシクロペンタジエン又はエチリデンノルボルネン(ENB)等の非共役ジエンが適宜に用いられる。エチレン−α−オレフィン−ジエンゴムにおいて、このジエン成分は、通常、0.1〜5.0重量%の範囲である。   In the present invention, the ethylene-α-olefin-diene rubber, which is a rubber component for forming an adhesive rubber layer and a compressed rubber layer, is a copolymer of α-olefin, ethylene and diene (non-conjugated diene) excluding ethylene. The α-olefin excluding ethylene is preferably at least one selected from propylene, butene, hexene and octene. Among these, a preferable ethylene-α-olefin-diene rubber is ethylene-propylene-diene rubber. In such ethylene-α-olefin-diene rubber, the diene component is not particularly limited, but usually a non-conjugated diene such as 1,4-hexadiene, dicyclopentadiene or ethylidene norbornene (ENB) is appropriately used. Used for. In the ethylene-α-olefin-diene rubber, the diene component is usually in the range of 0.1 to 5.0% by weight.

本発明においては、接着ゴム層用のエチレン−プロピレン−ジエンゴムとしては、特に限定されるものではないが、通常、エチレン含量が50〜60重量%の範囲のものが用いられる。他方、本発明によれば、圧縮ゴム層用のエチレン−プロピレン−ジエンゴムとしては、エチレン含量が55〜85重量%の範囲にあるものが用いられ、特に、圧縮ゴム層への短繊維の配合をなくし、又は短繊維の配合量を著しく低減した伝動ベルトがその走行時、発音性が低いと共に、強度と硬度にすぐれるように、エチレン含量60〜80重量%の範囲のものが好ましく用いられる。   In the present invention, the ethylene-propylene-diene rubber for the adhesive rubber layer is not particularly limited, but those having an ethylene content in the range of 50 to 60% by weight are usually used. On the other hand, according to the present invention, as the ethylene-propylene-diene rubber for the compressed rubber layer, one having an ethylene content in the range of 55 to 85% by weight is used. In particular, blending of short fibers into the compressed rubber layer is used. A transmission belt having no ethylene fiber or a reduced amount of short fibers preferably has an ethylene content in the range of 60 to 80% by weight so that the sound generation performance is low during running and the strength and hardness are excellent.

しかし、圧縮ゴム層用のエチレン−α−オレフィン−ジエンゴムとして、エチレン含量が55重量%以上であって、60重量%よりも少ないものを用いるときは、圧縮ゴム層用のエチレン−α−オレフィン−ジエンゴムとして、エチレン含量が60重量%以上のものを用いる場合に比べれば、得られる伝動ベルトは、発音性が尚も、比較的高い。そこで、圧縮ゴム層用のエチレン−α−オレフィン−ジエンゴムとして、エチレン含量が55重量%以上であって、60重量%よりも少ないものを用いるときは、本発明に従って、そのようなエチレン−α−オレフィン−ジエンゴム100重量部に対して、超高分子量ポリエチレンを1〜50重量部、好ましくは、5〜20重量部の範囲で用いることが好ましい。   However, when an ethylene-α-olefin-diene rubber for a compressed rubber layer having an ethylene content of 55% by weight or more and less than 60% by weight is used, the ethylene-α-olefin- As compared with the case of using a diene rubber having an ethylene content of 60% by weight or more, the resulting transmission belt has a relatively high sounding performance. Therefore, when an ethylene-α-olefin-diene rubber for a compression rubber layer having an ethylene content of 55% by weight or more and less than 60% by weight is used in accordance with the present invention, such ethylene-α- It is preferable to use ultra high molecular weight polyethylene in an amount of 1 to 50 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight of the olefin-diene rubber.

このように、圧縮ゴム層用のエチレン−α−オレフィン−ジエンゴムとして、エチレン含量が55重量%以上であって、60重量%よりも少ないものを用いるとき、超高分子量ポリエチレンを併用することによって、得られる伝動ベルトの望ましい特性に有害な影響を与えることなく、エチレン含量が60重量%以上のエチレン−α−オレフィン−ジエンゴムを用いる場合とほぼ同等の水準にまで、得られる伝動ベルトの走行時の発音性を低下させることができる。このように、圧縮ゴム層用のエチレン−α−オレフィン−ジエンゴムとして、エチレン含量が55重量%以上であって、60重量%よりも少ないものに超高分子量ポリエチレンを併用する場合にも、エチレン−プロピレン−ジエンゴム100重量部に対して、短繊維を0〜5重量部の範囲で用いてもよい。ここに、超高分子量ポリエチレンとは、既によく知られているように、重量平均分子量が100〜500万程度のポリエチレンである。   Thus, when using ethylene-α-olefin-diene rubber for the compressed rubber layer having an ethylene content of 55% by weight or more and less than 60% by weight, by using ultra high molecular weight polyethylene in combination, Without adversely affecting the desired properties of the resulting transmission belt, the resulting transmission belt can be driven to a level almost equal to that obtained when ethylene-α-olefin-diene rubber having an ethylene content of 60% by weight or more is used. Pronunciation can be reduced. As described above, the ethylene-α-olefin-diene rubber for the compression rubber layer is an ethylene-α-olefin-diene rubber having an ethylene content of 55% by weight or more and less than 60% by weight even when ultrahigh molecular weight polyethylene is used in combination. You may use a short fiber in 0-5 weight part with respect to 100 weight part of propylene-diene rubbers. Here, the ultra-high molecular weight polyethylene is polyethylene having a weight average molecular weight of about 1 to 5 million, as is well known.

しかし、超高分子量ポリエチレンの配合量がエチレン−α−オレフィン−ジエンゴム100重量部に対して50重量部を越えるときは、そのような割合で超高分子量ポリエチレンを含むエチレン−α−オレフィン−ジエンゴム配合物は、これを圧延(シーティング)すれば、得られるシートの表面の平滑性が悪くなるおそれがあるほか、そのようなエチレン−α−オレフィン−ジエンゴム配合物から得られる圧縮ゴム層を有する伝動ベルトは耐屈曲疲労性に劣るものである。   However, when the blending amount of ultrahigh molecular weight polyethylene exceeds 50 parts by weight with respect to 100 parts by weight of ethylene-α-olefin-diene rubber, blending of ethylene-α-olefin-diene rubber containing ultrahigh molecular weight polyethylene in such proportion If the product is rolled (sheeted), the smoothness of the surface of the obtained sheet may be deteriorated, and a transmission belt having a compressed rubber layer obtained from such an ethylene-α-olefin-diene rubber compound Is inferior in bending fatigue resistance.

本発明においては、エチレン−プロピレン−ジエンゴムの加硫剤として、有機パーオキサイド(有機過酸化物)が好ましく用いられ、必要に応じて、共架橋剤が用いられる。この有機パーオキサイドとしては、例えば、ジアシルパーオキサイド、パーオキシエステル、t−ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン−3、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、1,1−ジブチルパーオキシ−3,3,5−トリメチルシクロヘキサン等を挙げることができる。このような有機パーオキサイドは、エチレン−α−オレフィン−ジエンゴム100重量部に対して、通常、1〜10重量部の範囲で用いられ、好ましくは、1.5〜5重量部の範囲で用いられる。   In the present invention, an organic peroxide (organic peroxide) is preferably used as a vulcanizing agent for ethylene-propylene-diene rubber, and a co-crosslinking agent is used as necessary. Examples of the organic peroxide include diacyl peroxide, peroxy ester, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane-3. 1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-dibutylperoxy-3,3,5-trimethylcyclohexane and the like. Such an organic peroxide is usually used in the range of 1 to 10 parts by weight, preferably in the range of 1.5 to 5 parts by weight, with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. .

また、上記共架橋剤としては、TAC、1,2−ポリブタジエン、不飽和カルボン酸金属塩、オキシム類、グアニジン、トリメチロールプロパントリメタクリレート、N,N−m−フェニレンビスマレイミド、硫黄等が用いられる。共架橋剤の使用量は、共架橋剤の種類にもよるので,一概に定めることはできないが、例えば、N,N−m−フェニレンビスマレイミドであれば、エチレン−α−オレフィン−ジエンゴム100重量部に対して、通常、0.2〜10重量部の範囲で用いられ、他方、硫黄の場合であれば、エチレン−α−オレフィン−ジエンゴム100重量部に対して、通常、0.01〜1重量部の範囲で用いられる。   Examples of the co-crosslinking agent include TAC, 1,2-polybutadiene, unsaturated carboxylic acid metal salt, oximes, guanidine, trimethylolpropane trimethacrylate, N, Nm-phenylene bismaleimide, sulfur, and the like. . The amount of co-crosslinking agent used depends on the type of co-crosslinking agent and cannot be determined in general. For example, in the case of N, Nm-phenylene bismaleimide, 100 wt.% Of ethylene-α-olefin-diene rubber is used. Is usually used in the range of 0.2 to 10 parts by weight with respect to parts, and in the case of sulfur, usually 0.01 to 1 with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. Used in the range of parts by weight.

本発明においては、加硫剤として硫黄も用いられる。この場合において、硫黄は、エチレン−α−オレフィン−ジエンゴム100重量部に対して、通常、1.5〜10重量部の範囲で用いられる。必要に応じて、加硫促進剤がエチレン−α−オレフィン−ジエンゴム100重量部に対して、1.5〜10重量部の範囲で用いられる。   In the present invention, sulfur is also used as a vulcanizing agent. In this case, sulfur is normally used in the range of 1.5 to 10 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. If necessary, the vulcanization accelerator is used in the range of 1.5 to 10 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber.

短繊維としては、ナイロン6、ナイロン66、ポリエステル、綿、アラミド等からなるものが用いられる。このような短繊維は、通常、繊維径が10〜100μm、好ましくは、20〜60μmの範囲にあり、繊維長が0.1〜5mm、好ましくは、0.5〜3mmである。本発明によれば、前述したように、圧縮ゴム層に短繊維を配合してもよく、この場合には、エチレン−α−オレフィン−ジエンゴム100重量部に対して、5重量部以下の範囲で用いられる。   As the short fibers, those made of nylon 6, nylon 66, polyester, cotton, aramid, or the like are used. Such short fibers usually have a fiber diameter in the range of 10 to 100 μm, preferably 20 to 60 μm, and a fiber length of 0.1 to 5 mm, preferably 0.5 to 3 mm. According to the present invention, as described above, short fibers may be blended in the compressed rubber layer. In this case, in the range of 5 parts by weight or less with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. Used.

圧縮ゴム層への短繊維の配合量がエチレン−α−オレフィン−ジエンゴム100重量部に対して5重量部を越えると共に、短繊維がベルト長手方向に配向せしめられているときは、得られる伝動ベルトにおいて、短繊維とゴムの弾性率が大幅に相違するので、ベルトの走行時、曲げ応力がベルトに加わるときに、短繊維とゴムの界面に応力が集中し、亀裂の起点となり、生じた亀裂が速やかに成長し、かくして、圧縮ゴム層に割れが生じるので、耐屈曲疲労性に劣り、得られる伝動ベルトは屈曲寿命が短い。   When the amount of the short fiber in the compressed rubber layer exceeds 5 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber and the short fiber is oriented in the longitudinal direction of the belt, the resulting transmission belt In this case, the elastic modulus of the short fiber and the rubber are greatly different, so when bending stress is applied to the belt during the running of the belt, the stress concentrates on the interface between the short fiber and the rubber and becomes the starting point of the crack. Grows rapidly and thus cracks occur in the compressed rubber layer, resulting in poor bending fatigue resistance, and the resulting transmission belt has a short bending life.

圧縮ゴム層に短繊維をベルト長手方向に配向、分散させてなる伝動ベルトにおいて、圧縮ゴム層へのこの短繊維の配合量は、得られる伝動ベルトの長手方向の圧縮ゴム層の引張弾性率をaとし、ベルト幅方向の圧縮ゴム層の引張弾性率をbとするとき、a/b比と相関しており、このa/b比は、得られる伝動ベルトの高温環境下での耐屈曲疲労性と相関している。即ち、本発明によれば、圧縮ゴム層への短繊維の配合量が増えるに従って、上記a/b比も大きくなり、ここに、このa/b比が所定の範囲にあるとき、即ち、0.9≦a/b≦1.2であるとき、得られる伝動ベルトは、発音性が低いと共に、耐屈曲疲労性にすぐれており、従って、長い屈曲寿命を有し、他方、a/b比が1.2を越えれば、圧縮ゴム層のベルト長手方向の引張弾性率がベルト幅方向の引張弾性率よりも著しく大きくなり、伝動ベルトが高温環境下での耐屈曲疲労性に劣ることとなる。   In a transmission belt in which short fibers are oriented and dispersed in the longitudinal direction of the belt in the compression rubber layer, the blending amount of the short fibers in the compression rubber layer determines the tensile elastic modulus of the compression rubber layer in the longitudinal direction of the transmission belt obtained. When a is a and the tensile elastic modulus of the compression rubber layer in the belt width direction is b, it is correlated with the a / b ratio. This a / b ratio is the bending fatigue resistance of the resulting transmission belt in a high temperature environment. Correlates with gender. That is, according to the present invention, as the amount of the short fiber added to the compressed rubber layer increases, the a / b ratio also increases. Here, when the a / b ratio is within a predetermined range, that is, 0 When .9 ≦ a / b ≦ 1.2, the resulting transmission belt has low sound output and excellent bending fatigue resistance, and thus has a long bending life, while the a / b ratio. If it exceeds 1.2, the tensile elastic modulus in the longitudinal direction of the belt of the compressed rubber layer becomes significantly larger than the tensile elastic modulus in the belt width direction, and the transmission belt is inferior in bending fatigue resistance in a high temperature environment. .

特に、本発明によれば、圧縮ゴム層がエチレン含量が60〜80重量%の範囲にあるエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、圧縮ゴム層に短繊維が配合されておらず、0.95≦a/b≦1.15であるとき、得られる伝動ベルトは、走行時、発音性が低いのみならず、圧縮ゴム層に短繊維を配合し、短繊維をベルト幅方向に配向させてなる従来の伝動ベルトよりも、一層、高温環境下での耐屈曲疲労性にすぐれ、従って、従来の伝動ベルトよりも、一層、長い屈曲寿命を有する。   In particular, according to the present invention, the compressed rubber layer is composed of a vulcanizate of an ethylene-α-olefin-diene rubber compound having an ethylene content in the range of 60 to 80% by weight, and short fibers are compounded in the compressed rubber layer. Otherwise, when 0.95 ≦ a / b ≦ 1.15, the resulting transmission belt not only has low sound output during running, but also contains short fibers in the compressed rubber layer, and the short fibers are mixed with the belt width. The conventional transmission belt is more excellent in bending fatigue resistance in a high temperature environment than the conventional transmission belt oriented in the direction, and thus has a longer bending life than the conventional transmission belt.

本発明によれば、接着ゴム層と圧縮ゴム層のための未加硫ゴム配合物からなる未加硫ゴムシートはいずれも、上述したようなエチレン−α−オレフィン−ジエンゴムに加硫剤のほか、必要に応じて、カーボンブラック、加硫促進剤、促進活性剤、軟化剤、老化防止剤等、通常の薬剤と、圧縮ゴム層のためのゴム配合物の場合には、必要に応じて、短繊維を混合して、ゴム配合物を調製し、これを適宜の混練手段、例えば、バンバリーミキサーにて混練した後、カレンダーロールで所要の厚みに圧延(シーティング)して得ることができる。   According to the present invention, the unvulcanized rubber sheet comprising the unvulcanized rubber compound for the adhesive rubber layer and the compressed rubber layer is not only a vulcanizing agent but also an ethylene-α-olefin-diene rubber as described above. If necessary, in the case of a rubber compound for a normal rubber and a compressed rubber layer, such as carbon black, vulcanization accelerator, accelerator activator, softener, anti-aging agent, etc. Short fibers are mixed to prepare a rubber compound, which is kneaded with an appropriate kneading means such as a Banbury mixer, and then rolled (sheeted) to a required thickness with a calender roll.

本発明において、圧縮ゴム層用未加硫ゴム配合物からなる未加硫ゴムシートが短繊維を含んでいるとき、上述したように、短繊維はその未加硫ゴム配合物の圧延方向、従って、得られる未加硫ゴムシートの長手方向に配向しており、この未加硫ゴムシートの長手方向は、得られる伝動ベルトの長手方向と同じである。即ち、本発明による伝動ベルトにおいて、圧縮ゴム層が短繊維を含んでいるとき、その短繊維は、ベルトの長手方向に配合している。   In the present invention, when the unvulcanized rubber sheet comprising the unvulcanized rubber compound for the compressed rubber layer contains short fibers, as described above, the short fibers are in the rolling direction of the unvulcanized rubber compound, and accordingly The unvulcanized rubber sheet is oriented in the longitudinal direction, and the longitudinal direction of the unvulcanized rubber sheet is the same as the longitudinal direction of the transmission belt to be obtained. That is, in the transmission belt according to the present invention, when the compressed rubber layer includes short fibers, the short fibers are blended in the longitudinal direction of the belt.

本発明による伝動ベルトは、上述したような圧縮ゴム層用未加硫ゴム配合物からなるシートを用いて、以下のようにして、得ることができる。即ち、表面が平滑な円筒状の成形ドラムの表面にゴム引き帆布と心線を埋設した接着ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるゴムシートを巻き付けた後、この上に上記圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるゴムシートをその長手(圧延)方向が上記成形ドラムの円周方向と一致するように巻き付けて、これら接着ゴム層と圧縮ゴム層用の未加硫ゴムシートを一体に加硫接着することによって、伝動ベルトを得ることができる。   The transmission belt according to the present invention can be obtained as follows using a sheet made of the unvulcanized rubber compound for a compressed rubber layer as described above. That is, after winding a rubber sheet made of an unvulcanized ethylene-α-olefin-diene rubber compound for an adhesive rubber layer in which a rubberized canvas and a core wire are embedded on the surface of a cylindrical molding drum having a smooth surface, A rubber sheet comprising the unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer is wound so that the longitudinal (rolling) direction thereof coincides with the circumferential direction of the molding drum, A transmission belt can be obtained by integrally vulcanizing and bonding an unvulcanized rubber sheet for a compressed rubber layer.

より詳細には、例えば、Vリブドベルトに例をとれば、上述したような円筒状の成形ドラムの周面に1枚又は複数枚のゴム引き帆布を巻き付け、この上に第1の接着ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートをその長手(圧延)方向が上記成形ドラムの円周方向と一致するように巻き付けた後、この上に心線を螺旋状にスピニングし、更に、その上に第2の接着ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートをその長手(圧延)方向が上記成形ドラムの円周方向と一致するように巻き付けた後、圧縮ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートをその長手(圧延)方向が上記成形ドラムの円周方向と一致するように巻き付けて積層体とし、これを加硫缶中にて加熱加圧し、加硫して、環状物を得る。   More specifically, for example, in the case of a V-ribbed belt, one or a plurality of rubberized canvases are wound around the circumferential surface of the cylindrical forming drum as described above, and the first adhesive rubber layer is wound thereon. After winding a sheet made of an unvulcanized ethylene-propylene-diene rubber compound so that its longitudinal (rolling) direction coincides with the circumferential direction of the molding drum, the core wire is spun into a spiral shape, Then, a sheet made of the unvulcanized ethylene-propylene-diene rubber compound for the second adhesive rubber layer is wound thereon so that the longitudinal (rolling) direction thereof coincides with the circumferential direction of the molding drum, and then compressed rubber A sheet made of an unvulcanized ethylene-propylene-diene rubber compound for a layer is wound so that the longitudinal (rolling) direction thereof coincides with the circumferential direction of the molding drum to form a laminate, and this is vulcanized Heating and pressing, by vulcanizing Te to obtain a cyclic compound.

次に、この環状物を駆動ロールと従動ロールとの間に掛け渡して、所定の張力の下で走行させながら、これに研削ホイールにて表面に複数のリブを形成する。この後、この環状物を更に別の駆動ロールと従動ロールとの間に掛け渡して走行させながら、所定の幅に裁断すれば、製品としてのVリブドベルトを得ることができる。   Next, the annular member is stretched between a driving roll and a driven roll, and a plurality of ribs are formed on the surface by a grinding wheel while running under a predetermined tension. Then, if this annular material is further cut between a driving roll and a driven roll and cut into a predetermined width while running, a V-ribbed belt as a product can be obtained.

これに対して、従来の短繊維を配合した未加硫ゴム配合物からなるシートを用いて圧縮ゴム層を形成する場合には、上記未加硫ゴム配合物からなる未加硫ゴムシートは、その圧延(長手)方向に強い列理を有し、前述したように、圧縮ゴム層において短繊維がベルトの幅方向に配向するように、円筒状の成形ドラムの表面にゴム引き帆布と心線を埋設した接着ゴム層用ゴムシートを巻き付けた後、この上に圧縮ゴム層用ゴムシートをその列理(圧延)方向が成形ドラムの円周方向と直交するように巻き付けて、圧縮ゴム層を形成することが必要である。   On the other hand, when forming a compressed rubber layer using a sheet made of an unvulcanized rubber compound containing conventional short fibers, the unvulcanized rubber sheet made of the unvulcanized rubber compound is: It has a strong arrangement in the rolling (longitudinal) direction, and as described above, a rubberized canvas and a cord on the surface of the cylindrical molding drum so that the short fibers are oriented in the width direction of the belt in the compressed rubber layer. After winding the rubber sheet for the adhesive rubber layer embedded in the rubber sheet, the rubber sheet for the compressed rubber layer is wound on the rubber sheet so that the orientation (rolling) direction thereof is perpendicular to the circumferential direction of the molding drum. It is necessary to form.

このように、本発明による伝動ベルトは、その製造において、従来の圧縮ゴム層に短繊維を分散させた伝動ベルトの製造の場合と異なり、圧縮ゴム層用未加硫ゴムシートをその長手(圧延又は列理)方向と直交する方向に巻き付ける必要がない。   As described above, the transmission belt according to the present invention is different from the conventional transmission belt in which short fibers are dispersed in the compressed rubber layer in the production of the unvulcanized rubber sheet for the compressed rubber layer. Or, it is not necessary to wind in a direction perpendicular to the direction).

前述したように、本発明においては、圧縮ゴム層用未加硫ゴム配合物からなるシートが短繊維を含んでいるとしても、その配合量は限られているので、そのような圧縮ゴム層用未加硫ゴム配合物からなるシートを用いて得られる本発明による伝動ベルトにおいては、圧縮ゴム層のベルトの長手方向と幅方向との間の引張特性の差は小さい。   As described above, in the present invention, even if the sheet made of the unvulcanized rubber compound for the compressed rubber layer contains short fibers, the amount of the compound is limited. In the transmission belt according to the present invention obtained by using a sheet composed of an unvulcanized rubber compound, the difference in tensile properties between the longitudinal direction and the width direction of the belt of the compressed rubber layer is small.

ここで、本発明によれば、圧縮ゴム層に短繊維を配合せず、又は圧縮ゴム層に短繊維を配合する場合は、その配合量を前述したように限られた範囲とすると共に、圧縮ゴム層において、短繊維をベルト長手方向に配向させ、更に、伝動ベルトの長手方向の圧縮ゴム層の引張弾性率をaとし、ベルト幅方向の圧縮ゴム層の引張弾性率をbとするとき、0.9≦a/b≦1.2とすることによって、ベルト走行時の発音性を低くすることができると共に、高温環境下での耐屈曲疲労性を向上させることができる。本発明においては、伝動ベルトの長手方向の圧縮ゴム層の引張弾性率aは、通常、20〜100MPaの範囲であり、好ましくは、30〜60MPaの範囲である。   Here, according to the present invention, when the short fiber is not blended in the compressed rubber layer, or when the short fiber is blended in the compressed rubber layer, the blending amount is limited to the range as described above, and the compression is performed. In the rubber layer, when short fibers are oriented in the belt longitudinal direction, and the tensile elastic modulus of the compression rubber layer in the longitudinal direction of the transmission belt is a, and the tensile elastic modulus of the compression rubber layer in the belt width direction is b, By setting 0.9 ≦ a / b ≦ 1.2, it is possible to reduce the sound output during belt running and to improve the bending fatigue resistance in a high temperature environment. In the present invention, the tensile elastic modulus a of the compression rubber layer in the longitudinal direction of the transmission belt is usually in the range of 20 to 100 MPa, and preferably in the range of 30 to 60 MPa.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下の各実施例及び比較例においては、接着ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートは、下記ゴム配合物をカレンダーロールにてシートに圧延したものを用いた。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In each of the following Examples and Comparative Examples, the sheet made of the unvulcanized ethylene-α-olefin-diene rubber compound for the adhesive rubber layer was obtained by rolling the following rubber compound into a sheet with a calender roll.

(接着ゴム層用未加硫ゴム配合物)
エチレン−プロピレン−ジエンゴム(エチレン含量56重量%) 100 重量部
HAFカーボン 50 重量部
シリカ 20 重量部
パラフィン油 20 重量部
加硫剤(オイル硫黄) 3 重量部
加硫促進剤DM 1.4重量部
加硫促進剤EZ 0.6重量部
加硫促進剤TT 0.6重量部
加硫助剤(ステアリン酸) 1 重量部
加硫助剤(酸化亜鉛) 5 重量部
老化防止剤224 2 重量部
老化防止剤MB 1 重量部
粘着付与剤(石油樹脂) 5 重量部
(Unvulcanized rubber compound for adhesive rubber layer)
Ethylene-propylene-diene rubber (ethylene content 56% by weight) 100 parts by weight HAF carbon 50 parts by weight silica 20 parts by weight paraffin oil 20 parts by weight vulcanizing agent (oil sulfur) 3 parts by weight vulcanization accelerator DM 1.4 parts by weight Sulfur accelerator EZ 0.6 part by weight vulcanization accelerator TT 0.6 part by weight vulcanization aid (stearic acid) 1 part by weight vulcanization aid (zinc oxide) 5 parts by weight anti-aging agent 224 2 parts by weight anti-aging Agent MB 1 part by weight tackifier (petroleum resin) 5 parts by weight

(圧縮ゴム層用未加硫ゴム配合物)
実施例及び比較例のそれぞれにおいて、圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートはいずれも、それぞれ表1に示すゴム配合物をカレンダーロールにてシートに圧延したものである。
(Unvulcanized rubber compound for compressed rubber layer)
In each of the examples and comparative examples, each of the sheets made of the unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer was obtained by rolling the rubber compound shown in Table 1 into a sheet with a calender roll. It is.

(RFLの調製)
レゾルシン7.31重量部とホルマリン(37重量%濃度)10.77重量部を混合、攪拌し、これに水酸化ナトリウム水溶液(固形分0.33重量部)を加えて、混合、攪拌した。これに水160.91重量部を加え、5時間熟成して、固形分濃度6.40重量%のレゾルシン・ホルマリン樹脂(レゾルシン・ホルマリン初期縮合物、RF)水溶液を得た。このRF水溶液にクロロスルホン化ポリエチレンゴム(CSM)ラテックスを加え、12時間熟成して、レゾルシン・ホルマリン・ラテックス(RFL)を得た。
(Preparation of RFL)
7.31 parts by weight of resorcin and 10.77 parts by weight of formalin (37% by weight concentration) were mixed and stirred, and an aqueous sodium hydroxide solution (solid content: 0.33 parts by weight) was added thereto and mixed and stirred. To this was added 160.91 parts by weight of water and aged for 5 hours to obtain an aqueous solution of resorcin / formalin resin (resorcin / formalin initial condensate, RF) having a solid concentration of 6.40% by weight. Chlorosulfonated polyethylene rubber (CSM) latex was added to this RF aqueous solution and aged for 12 hours to obtain resorcin-formalin latex (RFL).

(アラミド心線の接着処理)
アラミド心線として、アラミドフィラメントを下撚りしてストランドとし、これを上撚りしてなるアラミド心線(1000de/1×3、上撚係数859.9、下撚係数863.3)を用いた。このアラミド心線をイソシアネート(ポリメチレンポリフェニルポリイソシアネート)のトルエン溶液(イソシアネート固形分16重量%)に浸漬した後、250℃で40秒間加熱乾燥して、前処理を施した。
(Aramid core bonding process)
As the aramid core wire, an aramid core wire (1000 de / 1 × 3, upper twist coefficient 859.9, lower twist coefficient 863.3) formed by twisting an aramid filament into a strand and twisting this strand was used. The aramid cord was immersed in a toluene solution of isocyanate (polymethylene polyphenyl polyisocyanate) (isocyanate solid content: 16% by weight) and then pre-treated by heating and drying at 250 ° C. for 40 seconds.

次に、このように前処理したアラミド心線を、最初のRFL処理として、上記RFLに浸漬し、250℃で80秒間加熱乾燥させ、次に、2回目のRFL処理として、上記RFLに浸漬し、250℃で80秒間加熱乾燥させた。この後、このようにRFL処理したアラミド心線を前記接着ゴム層用エチレン−α−オレフィン−ジエンゴム配合物をトルエンに溶解してなる接着溶液(ゴム糊)に浸漬した後、60℃で40秒間加熱乾燥して、接着処理を施した。   Next, the pretreated aramid core wire is immersed in the RFL as the first RFL treatment, heated and dried at 250 ° C. for 80 seconds, and then immersed in the RFL as the second RFL treatment. And dried at 250 ° C. for 80 seconds. Thereafter, the aramid core wire thus RFL-treated is immersed in an adhesive solution (rubber paste) obtained by dissolving the ethylene-α-olefin-diene rubber compound for adhesive rubber layer in toluene, and then at 60 ° C. for 40 seconds. It heat-dried and the adhesion | attachment process was performed.

実施例1
(圧縮ゴム層の引張弾性率の測定)
表1に示す圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物を混練し、カレンダーロールにて圧延して、厚み0.6mmのシートとし、このシートを2枚重ねて温度160℃で25分間、加熱加圧し、加硫して、厚み1mmの加硫ゴムシートを得た。この加硫ゴムシートからJIS K 6301の加硫ゴムに関する試験法に従ってダンベルA型の試料を打抜き、この試料について粘弾性試験機(レオロジー社製FTレオスペクトラー)を用いて、動的歪み1.0%、周波数10Hzで荷重を加えて測定した。上記加硫ゴムシートの長手方向(ベルト長手方向)の引張弾性率をaとし、加硫ゴムシートの幅方向(ベルト幅方向、上記長手方向と直交する方向)の引張弾性率をbとして、上記加硫ゴムシートの長手方向(ベルト長手方向)の引張弾性率aと共に、a/bの値を表1に示す。
Example 1
(Measurement of tensile modulus of compression rubber layer)
The unvulcanized ethylene-α-olefin-diene rubber compound for compressed rubber layer shown in Table 1 is kneaded and rolled with a calender roll to form a sheet having a thickness of 0.6 mm. And vulcanized for 25 minutes to obtain a vulcanized rubber sheet having a thickness of 1 mm. From this vulcanized rubber sheet, a dumbbell A type sample was punched out according to the test method for vulcanized rubber of JIS K 6301, and this sample was subjected to dynamic strain 1. using a viscoelasticity tester (FT Rheospectr manufactured by Rheology). Measurement was performed by applying a load at 0% and a frequency of 10 Hz. The tensile elastic modulus in the longitudinal direction (belt longitudinal direction) of the vulcanized rubber sheet is a, and the tensile elastic modulus in the width direction (belt width direction, direction perpendicular to the longitudinal direction) of the vulcanized rubber sheet is b. The value of a / b is shown in Table 1 together with the tensile modulus a in the longitudinal direction (belt longitudinal direction) of the vulcanized rubber sheet.

(Vリブドベルトの製造)
前述したように、表面が滑らかな円筒状の成形ドラムの周囲にゴム引き帆布と表1の接着ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートを巻き付けた後、この上に上記接着処理した前記アラミド心線を螺旋状にスピニングし、更に、その上に上記と同じ第2の接着ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートを巻き付けた。
(Manufacture of V-ribbed belt)
As described above, a sheet made of a rubber-drawn canvas and an unvulcanized ethylene-propylene-diene rubber compound for an adhesive rubber layer shown in Table 1 is wrapped around a cylindrical molding drum having a smooth surface, and then the above-described sheet is wound on the sheet. The bonded aramid core wire was spun into a spiral shape, and a sheet made of the same unvulcanized ethylene-propylene-diene rubber compound for the second adhesive rubber layer as described above was further wound thereon.

次いで、この上に圧縮ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートをその長手方向が成形ドラムの円周方向と一致するように巻き付けて、積層体を形成した後、これを加硫缶中にて内圧6kgf/cm2、外圧6kgf/cm2、温度165℃で35分間、加圧加熱し、蒸気加硫して、環状の加硫物を得た。この環状の加硫物を前述したように加工して、接着ゴム層に上記心線が埋設されており、この接着ゴム層の上面に帆布が接着されていると共に、接着ゴム層の下面に3つのリブが形成された圧縮ゴム層を有する周長1000mmのVリブドベルトを得た。 Next, a sheet made of an unvulcanized ethylene-propylene-diene rubber compound for a compressed rubber layer is wound on this so that the longitudinal direction thereof coincides with the circumferential direction of the molding drum to form a laminate, In a vulcanizing can, pressure was heated for 35 minutes at an internal pressure of 6 kgf / cm 2 , an external pressure of 6 kgf / cm 2 , and a temperature of 165 ° C., and steam vulcanized to obtain an annular vulcanizate. The annular vulcanizate is processed as described above, and the core wire is embedded in the adhesive rubber layer. The canvas is bonded to the upper surface of the adhesive rubber layer, and 3 is formed on the lower surface of the adhesive rubber layer. A V-ribbed belt having a circumferential length of 1000 mm having a compressed rubber layer formed with two ribs was obtained.

得られたVリブドベルトの性能を下記のようにして評価した。各性能評価において、ベルトに対応したVリブ溝を有する材質S45Cのプーリを用いた。   The performance of the obtained V-ribbed belt was evaluated as follows. In each performance evaluation, a pulley made of material S45C having a V-rib groove corresponding to the belt was used.

(走行時の発音性の測定)
図2に示すように、それぞれ直径120mmの駆動プーリ11と従動プーリ12に上記Vリブドベルト13を巻き掛けると共に、中間にベルト走行方向がほぼ直角に変化するように直径70mmのアイドラープーリ14と直径50mmのテンションプーリ15を配設し、上記アイドラープーリの近傍にVリブドベルトの内側に騒音計16を配設した。このようなベルト走行試験装置を用い、上記テンションプーリに水平方向にセット荷重979Nを与え、従動プーリに加える負荷はなしとして、駆動プーリを4900rpmで駆動して、ベルトを300時間走行させたときの音圧(dB)を測定して、走行時の発音性を調べた。結果を表1に示す。上記実験条件下においては、音圧が80dB以下であるとき、実際の走行時の発音性が低いということができる。75dB以下であれば、一層、好ましい。
(Measurement of pronunciation during driving)
As shown in FIG. 2, the V-ribbed belt 13 is wound around a driving pulley 11 and a driven pulley 12 each having a diameter of 120 mm, and an idler pulley 14 having a diameter of 70 mm and a diameter of 50 mm so that the belt running direction changes substantially at right angles. The tension pulley 15 was disposed, and a noise meter 16 was disposed inside the V-ribbed belt in the vicinity of the idler pulley. Using such a belt running test apparatus, a set load 979N is applied to the tension pulley in the horizontal direction, and there is no load applied to the driven pulley, and the drive pulley is driven at 4900 rpm and the belt is run for 300 hours. The pressure (dB) was measured to examine the sound output during running. The results are shown in Table 1. Under the above experimental conditions, when the sound pressure is 80 dB or less, it can be said that the sounding performance during actual running is low. If it is 75 dB or less, it is more preferable.

(ベルトの高温走行時の屈曲寿命の測定)
前述した図2に示すベルト走行試験装置を用いて、雰囲気温度120℃において、テンションプーリ15に水平方向にセット荷重979Nを与えると共に、従動プーリ12に4900rpmにて2kW/リブの負荷がかかるようにして走行させ、一定時間ごとに走行を停止し、ベルトのリブ表面を調べて、割れが目視で認められるまでの走行時間を屈曲寿命とした。結果を表1に示す。
(Measurement of flex life when belt is running at high temperature)
Using the belt running test apparatus shown in FIG. 2 described above, a set load of 979 N is applied to the tension pulley 15 in the horizontal direction at an ambient temperature of 120 ° C., and a 2 kW / rib load is applied to the driven pulley 12 at 4900 rpm. The belt was stopped at regular intervals, the rib surface of the belt was examined, and the running time until cracks were visually recognized was defined as the bending life. The results are shown in Table 1.

実施例2〜7
表1中の実施例2〜7に示す圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物を用いた以外は、実施例1と同様にして、加硫ゴムシートを得、その引張弾性率を測定すると共に、実施例1と同様にして、Vリブドベルトを製造して、走行時の発音性とベルトの屈曲寿命を測定した。結果を表1に示す。
Examples 2-7
A vulcanized rubber sheet was obtained in the same manner as in Example 1 except that the unvulcanized ethylene-α-olefin-diene rubber compound for compressed rubber layer shown in Examples 2 to 7 in Table 1 was used. In addition to measuring the elastic modulus, a V-ribbed belt was manufactured in the same manner as in Example 1, and the sound output during running and the bending life of the belt were measured. The results are shown in Table 1.

比較例1及び2
表1中の比較例1及び2に示す圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物をそれぞれ用いた以外は、実施例1と同様にして、それぞれ加硫ゴムシートを得、それらの引張弾性率を測定すると共に、実施例1と同様にして、それぞれVリブドベルトを製造して、それらについて、走行時の発音性と屈曲寿命を測定した。結果を表1に示す。
Comparative Examples 1 and 2
Except for using the unvulcanized ethylene-α-olefin-diene rubber compound for compressed rubber layer shown in Comparative Examples 1 and 2 in Table 1, respectively, a vulcanized rubber sheet was obtained in the same manner as in Example 1, While measuring the tensile elastic modulus, V-ribbed belts were produced in the same manner as in Example 1, and the sounding performance and the flex life during running were measured for each. The results are shown in Table 1.

比較例3
実施例1と同様にして、表面が滑らかな円筒状の成形ドラムの周囲にゴム引き帆布と第1の接着ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートを巻き付けた後、この上に上記接着処理した前記アラミド心線を螺旋状にスピニングし、更に、その上に上記と同じ第2の接着ゴム層用未加硫エチレン−プロピレン−ジエンゴム配合物からなるシートを巻き付けた。
Comparative Example 3
In the same manner as in Example 1, a sheet made of a rubber-drawn canvas and a first unvulcanized ethylene-propylene-diene rubber compound for an adhesive rubber layer was wound around a cylindrical molding drum having a smooth surface. The aramid core wire subjected to the above adhesion treatment was spun into a spiral shape, and a sheet made of the same unvulcanized ethylene-propylene-diene rubber compound for the second adhesive rubber layer as described above was further wound thereon.

次いで、この上に表1中の比較例3に示す圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が成形ドラムの円周方向と直交するように巻き付けて、積層体を形成した後、これを加硫缶中にて内圧6kgf/cm2、外圧6kgf/cm2、温度165℃で35分間、加圧加熱し、パーオキサイド加硫して、環状の加硫物を得た。以下、実施例1と同様にして、Vリブドベルトを製造して、実施例1と同様にして、走行時の発音性とベルトの屈曲寿命を測定した。 Next, a sheet made of the unvulcanized ethylene-α-olefin-diene rubber compound for compressed rubber layer shown in Comparative Example 3 in Table 1 is wound on the sheet so that the longitudinal direction thereof is orthogonal to the circumferential direction of the molding drum. After forming the laminate, this was heated in a vulcanizing can at an internal pressure of 6 kgf / cm 2 , an external pressure of 6 kgf / cm 2 , and a temperature of 165 ° C. for 35 minutes, peroxide vulcanized, A vulcanizate was obtained. Thereafter, a V-ribbed belt was produced in the same manner as in Example 1, and the sounding performance during running and the bending life of the belt were measured in the same manner as in Example 1.

また、表1中の比較例3に示す圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物を混練し、カレンダーロールにて圧延して、厚み0.6mmのシートとし、このシート2枚を温度160℃で25分間、加熱加圧し、パーオキサイド加硫して、厚み1mmの加硫ゴムシートを得た。この加硫ゴムシートについて、実施例1と同様にして、その列理方向(ベルト長手方向)の引張弾性率をaとし、加硫ゴムシートの幅方向(ベルト幅方向、上記列理方向と直交する方向)の引張弾性率をbとして、上記加硫ゴムシートの長手方向(ベルト長手方向)の引張弾性率aと共に、a/bの値を表1に示す。   Further, the unvulcanized ethylene-α-olefin-diene rubber compound for compressed rubber layer shown in Comparative Example 3 in Table 1 was kneaded and rolled with a calender roll to obtain a sheet having a thickness of 0.6 mm. The sheet was heated and pressurized at a temperature of 160 ° C. for 25 minutes and peroxide vulcanized to obtain a vulcanized rubber sheet having a thickness of 1 mm. About this vulcanized rubber sheet, in the same manner as in Example 1, the tensile modulus of elasticity in the line direction (belt longitudinal direction) is a, and the width direction of the vulcanized rubber sheet (belt width direction, orthogonal to the line direction). Table 1 shows the value of a / b together with the tensile elastic modulus a in the longitudinal direction of the vulcanized rubber sheet (belt longitudinal direction), where b is the tensile elastic modulus in the direction of

Figure 2006010068
Figure 2006010068

表1に示す結果から明らかなように、本発明によれば、圧縮ゴム層に短繊維を配合することなしに、又は圧縮ゴム層に短繊維を配合する場合には、その配合量をゴム成分100重量部に対して5重量部以下とすると共に、得られる伝動ベルトにおいて、その短繊維をベルト長手方向に配向させることによって、走行時の発音性を、短繊維をベルト幅方向に配向させて分散させた従来の伝動ベルト(比較例3)とほぼ同等の水準にすることができる。   As is apparent from the results shown in Table 1, according to the present invention, when the short fibers are not blended in the compressed rubber layer, or when the short fibers are blended in the compressed rubber layer, the blending amount is changed to the rubber component. In addition to 5 parts by weight or less with respect to 100 parts by weight, in the resulting transmission belt, the short fibers are oriented in the longitudinal direction of the belt so that the sound performance during running is oriented in the belt width direction. The level can be made substantially equal to that of the dispersed conventional transmission belt (Comparative Example 3).

そのうえ、本発明による伝動ベルトは、高温環境下での耐屈曲疲労性にもすぐれており、好ましい態様(実施例1〜3)よれば、上記従来の伝動ベルトに比べて、耐屈曲疲労性が一層、改善されており、従って、従来の伝動ベルトよりも、一層、長い屈曲寿命を有する。しかし、圧縮ゴム層への短繊維の配合量をゴム成分100重量部に対して5重量部を越える量とし、ベルト長手方向に配向させた伝動ベルト(比較例1及び2)はいずれも、a/bの値が1.2を越えており、高温環境下での屈曲寿命が短い。   In addition, the transmission belt according to the present invention is also excellent in bending fatigue resistance under a high temperature environment, and according to a preferred embodiment (Examples 1 to 3), the bending belt is more resistant to bending fatigue than the conventional transmission belt. It is further improved and therefore has a longer flex life than conventional transmission belts. However, the transmission belts (Comparative Examples 1 and 2) in which the amount of the short fibers in the compressed rubber layer exceeds 5 parts by weight with respect to 100 parts by weight of the rubber component and is oriented in the belt longitudinal direction are as follows. The value of / b exceeds 1.2, and the bending life in a high temperature environment is short.

更に、本発明による伝動ベルトは、上述したように、圧縮ゴム層に短繊維を配合することなしに製造することができ、又は圧縮ゴム層に短繊維を配合する場合には、得られる伝動ベルトにおいて、ベルト長手方向に配向させるから、従来の短繊維をベルト幅方向に配向させる場合と相違し、製造工程を簡単化し、工程数を減らして、低廉に製造することができる。   Further, as described above, the transmission belt according to the present invention can be produced without blending the short fibers in the compressed rubber layer, or when the short fibers are blended in the compressed rubber layer, the resulting transmission belt is obtained. However, since it is oriented in the longitudinal direction of the belt, it can be produced at low cost by simplifying the production process and reducing the number of processes, unlike the case where conventional short fibers are oriented in the belt width direction.

Vリブドベルトの一例の横断面図である。It is a cross-sectional view of an example of a V-ribbed belt. ベルト走行時の発音性と高温走行時の屈曲寿命を調べるためのベルト走行試験機を示す図である。It is a figure which shows the belt running test machine for investigating the sounding property at the time of belt running, and the bending life at the time of high temperature running.

符号の説明Explanation of symbols

1…ゴム引き帆布
2…接着ゴム層
3…心線
4…圧縮ゴム層
5…リブ

DESCRIPTION OF SYMBOLS 1 ... Rubberized canvas 2 ... Adhesive rubber layer 3 ... Core wire 4 ... Compression rubber layer 5 ... Rib

Claims (11)

圧縮ゴム層と接着ゴム層とが共にエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記接着ゴム層内に心線が埋設、接着されている伝動ベルトにおいて、ベルト長手方向の圧縮ゴム層の引張弾性率をaとし、ベルト幅方向の圧縮ゴム層の引張弾性率をbとするとき、0.9≦a/b≦1.2であることを特徴とする伝動ベルト。   Both the compression rubber layer and the adhesive rubber layer are made of a vulcanized product of an ethylene-α-olefin-diene rubber compound, and in the transmission belt in which the core wire is embedded and bonded in the adhesive rubber layer, the compression in the belt longitudinal direction is performed. A transmission belt, wherein 0.9 ≦ a / b ≦ 1.2, where a is a tensile elastic modulus of the rubber layer and b is a tensile elastic modulus of the compression rubber layer in the belt width direction. 圧縮ゴム層がエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55〜85重量%の範囲にある請求項1に記載の伝動ベルト。   The transmission belt according to claim 1, wherein the compression rubber layer is made of a vulcanized product of an ethylene-α-olefin-diene rubber blend, and the ethylene content of the ethylene-α-olefin-diene rubber is in the range of 55 to 85% by weight. 圧縮ゴム層が短繊維を含むエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55〜85重量%の範囲にあり、上記配合物中の上記短繊維の含量が上記エチレン−α−オレフィン−ジエンゴム100重量部に対して5重量部以下の範囲にある請求項1に記載の伝動ベルト。   The compression rubber layer is made of a vulcanized product of an ethylene-α-olefin-diene rubber compound containing short fibers, and the ethylene content of the ethylene-α-olefin-diene rubber is in the range of 55 to 85% by weight. The transmission belt according to claim 1, wherein the content of the short fibers is in the range of 5 parts by weight or less with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. エチレン−α−オレフィン−ジエンゴムのエチレン含量が60〜80重量%の範囲にある請求項2又は3に記載の伝動ベルト。   The power transmission belt according to claim 2 or 3, wherein the ethylene content of the ethylene-α-olefin-diene rubber is in the range of 60 to 80% by weight. 圧縮ゴム層が超高分子量ポリエチレンを含むエチレン−α−オレフィン−ジエンゴム配合物の加硫物からなり、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55重量%以上であって、60重量%よりも少なく、上記配合物中の上記超高分子量ポリエチレンの含量が上記エチレン−α−オレフィン−ジエンゴム100重量部に対して1〜50重量部の範囲である請求項1から3のいずれかに記載の伝動ベルト。   The compression rubber layer is composed of a vulcanized product of an ethylene-α-olefin-diene rubber compound containing ultrahigh molecular weight polyethylene, and the ethylene content of the ethylene-α-olefin-diene rubber is 55% by weight or more, from 60% by weight The content of the ultra high molecular weight polyethylene in the blend is in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. Transmission belt. 請求項1から5のいずれかに記載のVリブドベルト。   The V-ribbed belt according to any one of claims 1 to 5. 円筒状の成形ドラムの外周面にゴム引き帆布を巻き付け、この上に第1の接着ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が上記成形ドラムの円周方向と一致するように巻き付け、この上に心線を螺旋状にスピニングした後、第2の接着ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が上記成形ドラムの円周方向と一致するように巻き付け、この上に圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物からなるシートをその長手方向が上記成形ドラムの円周方向と一致するように巻き付けて、積層円筒体を形成し、これを加圧加熱して、上記第1と第2の接着ゴム層用未加硫ゴム配合物からなるシートと圧縮ゴム層用未加硫ゴム配合物からなるシートを加硫一体化する伝動ベルトの製造方法において、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55〜85重量%の範囲にあることを特徴とする伝動ベルトの製造方法。   A rubber-drawn canvas is wound around the outer peripheral surface of a cylindrical molding drum, and a sheet made of the unvulcanized ethylene-α-olefin-diene rubber compound for the first adhesive rubber layer is wound on the circular drum of the molding drum. After winding so that it may correspond with the circumferential direction and spinning a core wire spirally on this, the longitudinal direction is the sheet | seat which consists of a 2nd unvulcanized ethylene-alpha-olefin-diene rubber compound for adhesive rubber layers. A sheet made of the unvulcanized ethylene-α-olefin-diene rubber compound for compressed rubber layer is wound on the drum so as to coincide with the circumferential direction of the molding drum, and the longitudinal direction thereof coincides with the circumferential direction of the molding drum. To form a laminated cylindrical body, which is heated under pressure, and a sheet comprising the first and second unvulcanized rubber compound for the adhesive rubber layer and an unvulcanized rubber compound for the compressed rubber layer The method of manufacturing a power transmission belt that the sheet is vulcanized integrally formed of said ethylene -α- olefin - method of manufacturing a power transmission belt that the ethylene content of diene rubber which is characterized in that in the range of 55 to 85 wt%. 圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物がエチレン−α−オレフィン−ジエンゴム100重量部に対して短繊維を5重量部以下の範囲で含む請求項7に記載の伝動ベルトの製造方法。   The transmission belt according to claim 7, wherein the unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer contains short fibers in an amount of 5 parts by weight or less based on 100 parts by weight of the ethylene-α-olefin-diene rubber. Production method. 圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物におけるエチレン−α−オレフィン−ジエンゴムのエチレン含量が60〜80重量%の範囲にある請求項7又は8に記載の伝動ベルトの製造方法。   The method for producing a transmission belt according to claim 7 or 8, wherein the ethylene content of the ethylene-α-olefin-diene rubber in the unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer is in the range of 60 to 80% by weight. . 圧縮ゴム層用未加硫エチレン−α−オレフィン−ジエンゴム配合物が超高分子量ポリエチレンを含み、上記エチレン−α−オレフィン−ジエンゴムのエチレン含量が55重量%以上であって、60重量%よりも少なく、上記配合物中の上記超高分子量ポリエチレンの含量が上記エチレン−α−オレフィン−ジエンゴム100重量部に対して1〜50重量部の範囲である請求項7又は8に記載の伝動ベルトの製造方法。   The unvulcanized ethylene-α-olefin-diene rubber compound for the compressed rubber layer contains ultra high molecular weight polyethylene, and the ethylene content of the ethylene-α-olefin-diene rubber is 55% by weight or more and less than 60% by weight. The method for producing a transmission belt according to claim 7 or 8, wherein the content of the ultrahigh molecular weight polyethylene in the blend is in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the ethylene-α-olefin-diene rubber. . 請求項7から10のいずれかに記載のVリブドベルトの製造方法。

The manufacturing method of the V-ribbed belt in any one of Claims 7-10.

JP2005148107A 2004-05-25 2005-05-20 Transmission belt and manufacturing method thereof Active JP4667956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148107A JP4667956B2 (en) 2004-05-25 2005-05-20 Transmission belt and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004154481 2004-05-25
JP2005148107A JP4667956B2 (en) 2004-05-25 2005-05-20 Transmission belt and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006010068A true JP2006010068A (en) 2006-01-12
JP4667956B2 JP4667956B2 (en) 2011-04-13

Family

ID=35777527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148107A Active JP4667956B2 (en) 2004-05-25 2005-05-20 Transmission belt and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4667956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255635A (en) * 2006-03-24 2007-10-04 Mitsuboshi Belting Ltd Friction transmission belt
CN102374261A (en) * 2010-08-12 2012-03-14 浙江安格鲁传动系统有限公司 Tooth-shaped trimming V belt and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081506A (en) * 2000-09-08 2002-03-22 Bando Chem Ind Ltd Transmission belt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081506A (en) * 2000-09-08 2002-03-22 Bando Chem Ind Ltd Transmission belt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255635A (en) * 2006-03-24 2007-10-04 Mitsuboshi Belting Ltd Friction transmission belt
CN102374261A (en) * 2010-08-12 2012-03-14 浙江安格鲁传动系统有限公司 Tooth-shaped trimming V belt and manufacturing method thereof

Also Published As

Publication number Publication date
JP4667956B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US7901313B2 (en) Power transmission belt and process for production of the same
KR101598509B1 (en) Friction transmission belt
JP5236980B2 (en) Belt and belt manufacturing method
JP5016239B2 (en) Transmission belt
KR101713186B1 (en) Flat belt
JPWO2007110974A1 (en) Transmission belt
CN109844194A (en) Combine torsade and its manufacturing method and transmission belt and its application method
WO2017033392A1 (en) Friction transmission belt
WO2006001408A1 (en) Power transmission belt
CN107532681B (en) Transmission belt
JP6748152B2 (en) V-ribbed belt
JP4820107B2 (en) Transmission belt
KR102478921B1 (en) Core wire for friction transmission belt and friction transmission belt and manufacturing method thereof
JP4667956B2 (en) Transmission belt and manufacturing method thereof
JP2003130137A (en) Transmission belt and manufacturing method therefor
JP4837274B2 (en) Transmission belt
KR20220110095A (en) Friction transmission belt
JP4886223B2 (en) Transmission belt
EP3650731B1 (en) V-ribbed belt
JP6082853B1 (en) Friction transmission belt
JP4424705B2 (en) Transmission belt and manufacturing method thereof
JP2006029493A (en) V-ribbed belt
JP2006124484A (en) Method for producing bonded product of ethylene/alpha-olefin rubber composition and fiber and power transmission belt
JP2006153059A (en) Transmission belt
EP3971331A1 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150