JP2006008852A - Method for producing emulsified oil fuel - Google Patents

Method for producing emulsified oil fuel Download PDF

Info

Publication number
JP2006008852A
JP2006008852A JP2004188122A JP2004188122A JP2006008852A JP 2006008852 A JP2006008852 A JP 2006008852A JP 2004188122 A JP2004188122 A JP 2004188122A JP 2004188122 A JP2004188122 A JP 2004188122A JP 2006008852 A JP2006008852 A JP 2006008852A
Authority
JP
Japan
Prior art keywords
rotor
stator
protrusions
fuel
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004188122A
Other languages
Japanese (ja)
Inventor
正芳 ▲高▼貝
Masayoshi Takagai
Koji Nagao
浩司 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI KAKOKI KK
ATEC JAPAN KK
Kobe Dockyard & General Machin
Kobe Dockyard & General Machinery Ltd
Original Assignee
ASAHI KAKOKI KK
ATEC JAPAN KK
Kobe Dockyard & General Machin
Kobe Dockyard & General Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI KAKOKI KK, ATEC JAPAN KK, Kobe Dockyard & General Machin, Kobe Dockyard & General Machinery Ltd filed Critical ASAHI KAKOKI KK
Priority to JP2004188122A priority Critical patent/JP2006008852A/en
Publication of JP2006008852A publication Critical patent/JP2006008852A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing emulsified oil fuel that has high improvement effect of fuel consumption efficiency and high dispersion stability. <P>SOLUTION: In this method for producing the emulsified fuel, 5 to 50 % wt. of water or vegetable oil and fuel oil are mixed by means of a stirring machine 1. This stirring machine 1 can relatively rotate and is equipped with: the first member 2 and the second member 3 both of which opposing to each other at a prescribed interval; a flowing pass formed between these opposing members 2, 3; the projection parts 6, 7 arranged in circular rings that constitute a part of the opposing faces; and the indents 82 and 83 that desposed between the projection parts 6, 7, and constitute a part of the flow pass are prepared. The mutually proximal indents 82 on the rotor side and the indents 83 on the stator side are overlapped in the position of the same axis direction and are opened as they oppose to each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水又は植物油と燃料油とを攪拌機により混合するエマルション燃料の製造方法に関するものである。   The present invention relates to a method for producing an emulsion fuel in which water or vegetable oil and fuel oil are mixed with a stirrer.

燃費の向上や排気ガス中における有害物質の発生低減のため、重油、軽油、灯油等の燃料油と水とを混合して製造されるエマルション燃料が種々検討されている。エマルション燃料には、水中に油粒子が分散したO/W(Oil in Water)型と、油中に水粒子が分散したW/O(Water in Oil)型の2タイプがある。水と油とは、通常は2相に分離してしまうものであるから、エマルション化して分散安定性を図るべく、安定剤あるいは乳化剤(界面活性剤等)を添加し且つ攪拌機等を用いて充分に混合する必要がある。特許文献1には、所定のHLB値に設定された界面活性剤を乳化剤とするエマルション燃料の製造方法が記載されている。この特許文献1では、さらにエマルション燃料の製造装置として、外縁部に複数の棒状翼を備えた回転子と、円筒形の網状スクリーンとを備えた回転子とを一体にして回転するように構成された装置が記載されている(特許文献1参照。)。
特開平2003−113385号公報(請求項1、請求項3、図2)
Various emulsion fuels produced by mixing fuel oil such as heavy oil, light oil, kerosene and water have been studied in order to improve fuel consumption and reduce generation of harmful substances in exhaust gas. There are two types of emulsion fuel, an O / W (Oil in Water) type in which oil particles are dispersed in water and a W / O (Water in Oil) type in which water particles are dispersed in oil. Since water and oil usually separate into two phases, a stabilizer or an emulsifier (surfactant, etc.) is added to the emulsion to achieve dispersion stability, and it is sufficient to use a stirrer etc. Need to be mixed. Patent Document 1 describes a method for producing an emulsion fuel using a surfactant set to a predetermined HLB value as an emulsifier. In this patent document 1, as an emulsion fuel manufacturing apparatus, a rotor having a plurality of rod-shaped blades on an outer edge and a rotor having a cylindrical mesh screen are integrally rotated. (See Patent Document 1).
Japanese Patent Laid-Open No. 2003-113385 (Claims 1, 3 and 2)

上述した従来の製造装置により製造されたエマルション燃料は、燃費向上の効果が充分に得られなかった。また、上記の従来技術では、界面活性剤のHLB値を考慮することにより分散安定化を図ろうと試みているものの、実際には分散安定性に乏しかった。そのため、上記従来技術では、撹拌装置を燃料タンクと燃焼装置との間に直結するインライン方式とすることにより、撹拌直後の燃料を燃焼装置に供給する方式とし、長時間放置に伴う油水分離現象を防止することが必要とされていた(特許文献1の[0019]参照)。   The emulsion fuel produced by the above-described conventional production apparatus has not been able to sufficiently obtain the effect of improving fuel efficiency. Further, in the above-described conventional technology, although attempts have been made to stabilize the dispersion by considering the HLB value of the surfactant, the dispersion stability is actually poor. Therefore, in the above prior art, by adopting an inline method in which the agitator is directly connected between the fuel tank and the combustion device, a method for supplying the fuel immediately after agitation to the combustion device is adopted, and the oil-water separation phenomenon associated with standing for a long time is avoided. It was necessary to prevent it (see [0019] of Patent Document 1).

本発明は、かかる事情に鑑みてなされたものであり、燃費向上の効果が高く、分散安定性に優れたエマルション燃料を製造する製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a production method for producing an emulsion fuel that is highly effective in improving fuel efficiency and excellent in dispersion stability.

本発明は、5〜50重量%の水又は植物油と燃料油とを攪拌機により混合するエマルション燃料の製造方法であって、前記攪拌機は、混合される流体の流入口及び混合後の流体の排出口と、所定の回転軸まわりに相対回転が可能で且つ所定間隔を介して対向する第一部材及び第二部材と、前記第一部材及び第二部材の対向面間において形成され、前記流入口から前記排出口にまで連通する流路と、前記回転軸と同軸で前記第一部材及び第二部材に設けられ、前記対向面の一部を形成する円環状に配列された突出部と、前記突出部相互間に設けられ、前記流路の一部を構成するくぼみと、を備えると共に、近接する前記第一部材のくぼみと前記第二部材のくぼみとは、同一の軸方向位置で重なり合い且つ互いに向き合って開放している攪拌機であることを特徴とする。   The present invention relates to a method for producing an emulsion fuel in which 5 to 50% by weight of water or vegetable oil and fuel oil are mixed with a stirrer, wherein the stirrer has an inlet for fluid to be mixed and an outlet for fluid after mixing. And a first member and a second member that are capable of relative rotation around a predetermined rotation axis and are opposed to each other with a predetermined interval, and formed between the opposed surfaces of the first member and the second member, and from the inflow port A flow path that communicates with the discharge port, a projecting portion that is provided on the first member and the second member coaxially with the rotating shaft, and that is arranged in an annular shape to form a part of the facing surface; And the recesses of the first member and the recesses of the second member that are adjacent to each other overlap each other at the same axial position and each other. With an agitator that is open And wherein the Rukoto.

上記の攪拌機により撹拌すると、突出部により流体が激しく撹拌されるとともに、流体は互いに相対回転する第一部材と第二部材との間で剪断力を与えられる。また、流路の一部を構成するくぼみ内において渦が発生して混合効率を高める。さらに、流路を通過する課程において、流体は、遠心力の作用により、軸方向位置が重なり且つ互いに向き合って開放しているくぼみ相互間を移送されることとなる。よって、くぼみ内で発生した渦同士が衝突するとともに、くぼみ間移送による位置交換や上記剪断力などが複合的に作用して、極めて効率よく混合される。このような攪拌機により、5〜50重量%の水又は植物油と燃料油とが安定的に且つ微細に分散し、結果として燃費にすぐれたエマルション燃料を製造することができる。
なお、上記「5〜50重量%」の「重量%」とは、水又は植物油と燃料油とを混合した混合液(添加剤を入れる場合は、当該添加剤の重量を含む)に対する水又は植物油の重量%である。
When stirring with the above stirrer, the fluid is vigorously stirred by the protrusions, and the fluid is given a shearing force between the first member and the second member that rotate relative to each other. In addition, vortices are generated in the recesses constituting a part of the flow path to increase the mixing efficiency. Further, in the process of passing through the flow path, the fluid is transferred between the recesses that are open in the axial positions and facing each other by the action of centrifugal force. Therefore, vortices generated in the recesses collide with each other, and the position exchange by the transfer between the recesses and the above-described shearing force act in combination, so that the mixing is performed extremely efficiently. By such a stirrer, 5 to 50% by weight of water or vegetable oil and fuel oil are stably and finely dispersed, and as a result, an emulsion fuel having excellent fuel efficiency can be produced.
In addition, “weight%” of the above “5 to 50% by weight” means water or vegetable oil with respect to a mixed liquid in which water or vegetable oil and fuel oil are mixed (when the additive is added, the weight of the additive is included). % By weight.

前記くぼみは、前記第一及び第二部材上において、周方向の所定間隔おきに配置されているのが好ましい。この場合、円環状の突出部に複数のくぼみを効率的に配置することができる。よって、多くのくぼみを設けることが可能となり、流体の流れをより複雑なものとすることができる。   The recesses are preferably arranged at predetermined intervals in the circumferential direction on the first and second members. In this case, a plurality of depressions can be efficiently arranged in the annular projecting portion. Therefore, it becomes possible to provide many dents and to make the flow of fluid more complicated.

前記くぼみは球状であるのが好ましい。球状とすることで、くぼみ内で渦の発生が促進され、また、球状とすることで曲面が滑らかとなり、流体の滞留を抑制することができるから、混合効率が高まる。   The indentation is preferably spherical. By making it spherical, the generation of vortices is promoted in the recess, and by making it spherical, the curved surface becomes smooth and the retention of fluid can be suppressed, so that the mixing efficiency is increased.

また、前記攪拌機の前記突出部の外面は、軸方向に平行な円周面と、径方向に平行な径方向平面から成り、前記第一部材の前記対向面は、全体的に円錐凸形状を成し且つ階段状に配列された複数の前記突出部及び前記くぼみにより形成され、前記第二部材の前記対向面は、前記第一部材の前記対向面に対応して、全体的に円錐凹形状を有し且つ階段状に配列された複数の前記突出部及び前記くぼみにより形成されており、前記くぼみは、前記突出部の前記円周面と前記径方向平面とが交差する交線上に中心を有する略1/4球状とするのが好ましい。   The outer surface of the protruding portion of the stirrer includes a circumferential surface parallel to the axial direction and a radial plane parallel to the radial direction, and the opposing surface of the first member has a generally conical convex shape. Formed by a plurality of protrusions and recesses arranged in a staircase pattern, and the opposing surface of the second member has a generally conical concave shape corresponding to the opposing surface of the first member And a plurality of the protrusions and the recesses arranged in a step shape, the recess being centered on a line of intersection between the circumferential surface of the protrusions and the radial plane. It is preferable to have a substantially ¼ spherical shape.

この場合、形状を互いに対応させた階段状の円錐凸面と円錐凹面と組み合わせることにより、相対回転する第一部材と第二部材との間の隙間を小さくしつつ複数の段差を経由する複雑な流路を形成することができる。また、各階段状の突出部のそれぞれにくぼみを設けることにより、径方向及び軸方向の異なる位置に多くのくぼみを効率的に配置することができる。また、くぼみを突出部の円周面と径方向平面とが交差する交線上に中心を有する略1/4球状とすることにより、くぼみが径方向及び軸方向の両方に開放された形状となる。よって、第一部材のくぼみと第二部材のくぼみとが、同一の軸方向位置及び径方向位置で重なり合い且つ軸方向及び径方向に互いに向き合って開放した状態となるから、両くぼみ間相互の流体移送を多頻度かつ複雑に行うことが可能となる。   In this case, by combining a stepped conical convex surface and a conical concave surface corresponding to each other, a complicated flow passing through a plurality of steps while reducing the gap between the first member and the second member that rotate relative to each other. A path can be formed. In addition, by providing the depressions in each of the stepped protrusions, many depressions can be efficiently arranged at different positions in the radial direction and the axial direction. Further, by forming the dent into a substantially ¼ spherical shape having a center on the intersection line where the circumferential surface of the projecting portion and the radial plane intersect, the dent becomes a shape opened in both the radial direction and the axial direction. . Therefore, the indentation of the first member and the indentation of the second member overlap each other at the same axial position and radial position, and are opened facing each other in the axial direction and radial direction. The transfer can be performed frequently and complicatedly.

以上に記載したように、本発明の製造方法によれば、相対回転する各部材により生ずる剪断力、くぼみ内で発生した渦同士の衝突、くぼみ間移送による位置交換などを複合的に作用させることができ、5〜50重量%の水又は植物油と燃料油とを安定して分散させて燃費にすぐれたエマルション燃料を製造することができる。   As described above, according to the manufacturing method of the present invention, the shearing force generated by each member rotating relative to each other, the collision of vortices generated in the recesses, the position exchange by the transfer between the recesses, and the like are combined. It is possible to produce an emulsion fuel excellent in fuel efficiency by stably dispersing 5 to 50% by weight of water or vegetable oil and fuel oil.

以下に、本発明の実施形態を図面を参照しつつ説明する。
図1は、本発明の製造方法に使用される攪拌機1の一実施形態におけるミキシングヘッドh部分を示す断面図である。この攪拌機1は、頂点が下向きの(上下逆さの)略円錐状である第一部材としてのロータ2と、略円錐皿状である第二部材としてのステータ3とを有している。そして、ロータ2の外面である略円錐凸面とステータ3の内面である略円錐凹面とが突き合わされた状態となっている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a mixing head h portion in an embodiment of a stirrer 1 used in the production method of the present invention. The stirrer 1 includes a rotor 2 as a first member having a substantially conical shape whose apex is downward (upside down), and a stator 3 as a second member having a substantially conical dish shape. The substantially conical convex surface that is the outer surface of the rotor 2 and the substantially conical concave surface that is the inner surface of the stator 3 are in contact with each other.

ロータ2は、所定隙間を介してステータ3の内部に収容されており、またロータ2とステータ3とは互いに同軸で設けられている。ロータ2やステータ3の中心軸と同軸で配置されたドライブシャフト10は、その下端においてロータ2とボルト11により締結されている。ドライブシャフト10には図1において図示しないモータ12(図5参照)が連結されており、このモータ12によりドライブシャフト10及びロータ2が回転するようになっている。ステータ3には、その上面を塞ぐ様に設けられた円環状のフランジ13と、該フランジ13からドライブシャフト10と同軸で延在する円筒部14とが一体化されており、円筒部14とドライブシャフト10との間には軸受15が介装されている。軸受15により、ドライブシャフト10は円筒部14に対して回動自在に支持されている。またフランジ13は、軸方向に延びる3本のタイバー16(図5参照。図1においては1本のみ図示される。)によりモータ12の本体側に固定されている(図5参照)。以上のような構成により、ロータ2とステータ3との相対回転が可能とされている。このようにミキシングヘッドh部分は、分解及び洗浄がしやすい構造となっている。   The rotor 2 is accommodated inside the stator 3 through a predetermined gap, and the rotor 2 and the stator 3 are provided coaxially with each other. The drive shaft 10 arranged coaxially with the central axis of the rotor 2 and the stator 3 is fastened by the rotor 2 and the bolt 11 at the lower end thereof. A motor 12 (see FIG. 5) not shown in FIG. 1 is connected to the drive shaft 10, and the drive shaft 10 and the rotor 2 are rotated by the motor 12. The stator 3 is integrated with an annular flange 13 provided so as to close the upper surface thereof, and a cylindrical portion 14 extending coaxially with the drive shaft 10 from the flange 13. A bearing 15 is interposed between the shaft 10 and the shaft 10. The drive shaft 10 is supported by the bearing 15 so as to be rotatable with respect to the cylindrical portion 14. Further, the flange 13 is fixed to the main body side of the motor 12 (see FIG. 5) by three tie bars 16 (see FIG. 5, only one is shown in FIG. 1) extending in the axial direction. With the above configuration, the rotor 2 and the stator 3 can be rotated relative to each other. In this way, the mixing head h portion has a structure that is easy to disassemble and clean.

ステータ3の底部には、混合される流体を流入させるための流入口4が一つ設けられている。流入口4は、ステータ3を貫通する円形の孔であり、ステータ3と同軸で設けられている。またステータ3の上部側面には、混合後の流体を排出するための排出口5が設けられている。排出口5はステータ3を貫通しており、且つ周方向の所定間隔おきに複数設けられている(図5参照)。   At the bottom of the stator 3, one inflow port 4 for allowing the fluid to be mixed to flow is provided. The inflow port 4 is a circular hole that penetrates the stator 3, and is provided coaxially with the stator 3. A discharge port 5 for discharging the mixed fluid is provided on the upper side surface of the stator 3. A plurality of discharge ports 5 penetrates the stator 3 and are provided at predetermined intervals in the circumferential direction (see FIG. 5).

略円錐形状のロータ2の外面は、全体的に円錐凸形状を成し且つ同軸で階段状に配列された複数のロータ側突出部6及びロータ側くぼみ82により形成されている。ロータ側突出部6は、所定径の円環状に配列されている。以下、同一の軸方向位置に配置され円環状の配列する複数の突出部の突出端を結ぶ円の直径を「突出部の径」と表現するものとする。各軸方向位置に配列されたロータ側突出部6は、その径が大きいものほど軸方向上方に配置される。本実施形態では、同一の軸方向位置に配列されたロータ側突出部6の群は4群とされているが、2群以上であれば好ましい。   The outer surface of the substantially conical rotor 2 is formed by a plurality of rotor-side protrusions 6 and rotor-side depressions 82 that are conically convex overall and are arranged coaxially and stepwise. The rotor side protrusions 6 are arranged in an annular shape having a predetermined diameter. Hereinafter, the diameter of a circle connecting the projecting ends of a plurality of projecting portions arranged in the same axial direction and arranged in an annular shape will be expressed as a “diameter of the projecting portion”. The rotor-side protrusions 6 arranged at the respective axial positions are arranged upward in the axial direction as the diameter thereof increases. In the present embodiment, the group of the rotor-side protrusions 6 arranged at the same axial position is four groups, but two or more groups are preferable.

略円錐皿形状のステータ3の内面は、全体的に円錐凹形状を成し且つ同軸で階段状に配列された複数のステータ側突出部7及びステータ側くぼみ83により形成されている。ステータ側突出部7も、ロータ側突出部6と同様、その径が大きくなるほど軸方向上方に配置される。本実施形態では、同一の軸方向位置に配置されたステータ側突出部7は5群とされているが、3群以上であれば好ましい。またステータ側突出部7の群は、ロータ側突出部6の群の数よりも1つ多い数とすると、ロータ側突出部6とステータ側突出部7とを交互に組み合わせやすくなるので好ましい。   The inner surface of the substantially conical dish-shaped stator 3 is formed by a plurality of stator-side protrusions 7 and stator-side recesses 83 which are conically concave as a whole and are arranged coaxially and stepwise. Similarly to the rotor-side protruding portion 6, the stator-side protruding portion 7 is also arranged on the upper side in the axial direction as the diameter increases. In the present embodiment, the stator side protrusions 7 arranged at the same axial position are made into five groups, but it is preferable that the number is three groups or more. Further, it is preferable that the number of groups of the stator side protrusions 7 is one more than the number of groups of the rotor side protrusions 6 because the rotor side protrusions 6 and the stator side protrusions 7 can be easily combined alternately.

周方向に隣り合ったロータ側突出部6の相互間にロータ側くぼみ82が配置されており、周方向に隣り合ったステータ側突出部7の相互間にステータ側くぼみ83が配置されている。これら突出部6,7は、円環状に突出する円環状部(図示しない)の周方向所定間隔おきにくぼみを形成することにより容易に作製することができる。   A rotor side recess 82 is disposed between the rotor side protrusions 6 adjacent in the circumferential direction, and a stator side recess 83 is disposed between the stator side protrusions 7 adjacent in the circumferential direction. These protrusions 6 and 7 can be easily manufactured by forming recesses at predetermined intervals in the circumferential direction of an annular portion (not shown) protruding in an annular shape.

ロータ側突出部6のそれぞれの外面は、軸方向に平行なロータ側円周面6aと、径方向に平行なロータ側径方向平面6bとから成る。また、ステータ側突出部7のそれぞれの外面は、軸方向に平行なステータ側円周面7aと、径方向に平行なステータ側径方向平面7bとから成る。   Each outer surface of the rotor side protrusion 6 is composed of a rotor side circumferential surface 6a parallel to the axial direction and a rotor side radial plane 6b parallel to the radial direction. Each outer surface of the stator side protruding portion 7 is composed of a stator side circumferential surface 7a parallel to the axial direction and a stator side radial plane 7b parallel to the radial direction.

このように、第一部材であるロータ2と第二部材であるステータ3との対向面は、同軸でかつ階段状に連続して配列された複数の突出部6,7とくぼみ82,83とにより形成されている。
そして、ロータ2の対向面とステータ3の対向面とは、互いに対応した形状とされている。本実施形態では、全てのロータ側突出部6及びステータ側突出部7において、ロータ側円周面6aの軸方向幅(高さ)とステータ側円周面7a軸方向幅(高さ)とが同一とされ、且つ、ロータ側径方向平面6bの径方向幅とステータ側径方向平面7bの径方向幅とが略同一(ロータ側のほうが径方向間隔kの分だけ小さい)とされている。そして、4つのロータ側突出部6の群を径の小さい方から順に61,62,63,64とし、5つのステータ側突出部7の群を径の小さい方から順に71,72,73,74,75すると、ロータ側突出部6の群のうち最小径である第一ロータ側突出部61のロータ側円周面6aの外径d61は、ステータ側突出部7の群のうち2番目に径の小さい第二ステータ側突出部72のステータ側円周面7aの内径d72と略同一(外径d61よりも内径d72のほうが径方向間隔kの分だけ大きい)とされている。同様に、ロータ側突出部6の群のロータ側円周面6aの外径は、該ロータ側突出部6と同一の軸方向位置で重なり合うステータ側突出部7の群のステータ側円周面7aの内径と略同一となっている。そして、ロータ側突出部6のロータ側径方向平面6bと、該ロータ側突出部6と同一の径方向位置で重なり合うステータ側突出部7のステータ側径方向平面7bとは、距離dの軸方向間隔を介して対向している。かかる構成により、ロータ側突出部6とステータ側突出部7との対向間隔を小さくして、ロータ2とステータ3との対向面間に形成された流路を流れる流体に強い剪断力を与えることを可能としている。
Thus, the opposing surface of the rotor 2 as the first member and the stator 3 as the second member has a plurality of protrusions 6 and 7 and recesses 82 and 83 that are arranged coaxially and continuously in a staircase pattern. It is formed by.
The opposing surface of the rotor 2 and the opposing surface of the stator 3 have shapes corresponding to each other. In this embodiment, in all the rotor side protrusions 6 and the stator side protrusions 7, the axial width (height) of the rotor side circumferential surface 6a and the axial width (height) of the stator side circumferential surface 7a are the same. The radial width of the rotor side radial plane 6b and the radial width of the stator side radial plane 7b are substantially the same (the rotor side is smaller by the radial interval k). And the group of four rotor side protrusions 6 is 61, 62, 63, 64 in order from the smallest diameter, and the group of five stator side protrusions 7 is 71, 72, 73, 74 in order from the smallest diameter. , 75, the outer diameter d61 of the rotor-side circumferential surface 6a of the first rotor-side protrusion 61, which is the smallest diameter in the group of rotor-side protrusions 6, is the second largest in the group of stator-side protrusions 7. The inner diameter d72 of the stator-side circumferential surface 7a of the small second stator-side protruding portion 72 is substantially the same (the inner diameter d72 is larger than the outer diameter d61 by the radial interval k). Similarly, the outer diameter of the rotor-side circumferential surface 6a of the group of rotor-side protrusions 6 is equal to the stator-side circumferential surface 7a of the group of stator-side protrusions 7 that overlap at the same axial position as the rotor-side protrusion 6. It is substantially the same as the inner diameter. The rotor side radial plane 6b of the rotor side projection 6 and the stator side radial plane 7b of the stator side projection 7 overlapping at the same radial position as the rotor side projection 6 are in the axial direction of distance d. Opposite through an interval. With this configuration, the facing distance between the rotor-side protruding portion 6 and the stator-side protruding portion 7 is reduced, and a strong shearing force is applied to the fluid flowing through the flow path formed between the facing surfaces of the rotor 2 and the stator 3. Is possible.

各突出部6、7のそれぞれには、該突出部6,7の相互間に設けられ流体の流路の一部を構成するくぼみとして、ロータ側くぼみ82及びステータ側くぼみ83が設けられている。図2は、ロータ2をステータ3との対向面側(図1における下側)から見た場合におけるロータ側くぼみ82の配列を示す平面図であり、図3は、ステータ3をロータ2との対向面側(図1における上側)から見た場合におけるステータ側くぼみ83の配列を示す平面図である。   Each of the protrusions 6 and 7 is provided with a rotor-side recess 82 and a stator-side recess 83 as recesses provided between the protrusions 6 and 7 and constituting a part of the fluid flow path. . FIG. 2 is a plan view showing the arrangement of the rotor-side depressions 82 when the rotor 2 is viewed from the side facing the stator 3 (the lower side in FIG. 1). FIG. FIG. 6 is a plan view showing an arrangement of stator side recesses 83 when viewed from the opposite surface side (upper side in FIG. 1).

図2に示すように、ロータ側くぼみ82は、各ロータ側突出部6の相互間に周方向の所定間隔おきに設けられている。ロータ側くぼみ82の大きさ(球面の直径)及び間隔は略同一とされているので、径方向外側にいくほど多くのロータ側くぼみ82が設けられている。例えば、ロータ側突出部6の群うち最も小径の第一ロータ側突出部61の相互間には6つのロータ側くぼみ82が設けられているのに対して、2番目に小径の第二ロータ側突出部62には9つのロータ側くぼみ82が設けられている。
同様に、図3に示すように、ステータ側くぼみ83は、各ステータ側突出部7の相互間に周方向の所定間隔おきに設けられている。ステータ側くぼみ83の大きさ(球面の直径)及び間隔は略同一とされているので、径方向外側にいくほど多くのステータ側くぼみ83が設けられている。例えば、ステータ側突出部7の群うち最も小径の第一ステータ側突出部71の相互間には3つのステータ側くぼみ83が設けられているのに対して、2番目に小径の第二ステータ側突出部72の相互間には6つのロータ側くぼみ82が設けられている。
このように、各ロータ側突出部6及びステータ側突出部7の相互間にくぼみ82,83を周方向の所定間隔おきに設けることにより、多数のくぼみ82,83を効率よく配置することができ、より複雑な撹拌が可能となる。
As shown in FIG. 2, the rotor-side depressions 82 are provided at predetermined intervals in the circumferential direction between the rotor-side protrusions 6. Since the size (the diameter of the spherical surface) and the interval of the rotor side indentations 82 are substantially the same, more rotor side indentations 82 are provided toward the outer side in the radial direction. For example, six rotor-side recesses 82 are provided between the first rotor-side protrusions 61 having the smallest diameter in the group of the rotor-side protrusions 6, whereas the second rotor side having the second smallest diameter is provided. Nine rotor side recesses 82 are provided in the protrusion 62.
Similarly, as shown in FIG. 3, the stator side depressions 83 are provided at predetermined intervals in the circumferential direction between the stator side protrusions 7. Since the size (spherical diameter) and interval of the stator side recesses 83 are substantially the same, the more stator side recesses 83 are provided toward the outer side in the radial direction. For example, three stator-side recesses 83 are provided between the smallest-diameter first stator-side projections 71 in the group of stator-side projections 7, whereas the second smallest-diameter second stator side is provided. Six rotor side recesses 82 are provided between the protrusions 72.
Thus, by providing the recesses 82 and 83 between the rotor-side protrusions 6 and the stator-side protrusions 7 at predetermined intervals in the circumferential direction, a large number of the recesses 82 and 83 can be efficiently arranged. , More complex stirring is possible.

各くぼみ8の形状は、いずれも同一直径の球状とされている。球状とすることで、くぼみ内で渦の発生が促進され、また、球状とすることで曲面が滑らかとなり、流体の滞留を抑制することができるから、混合効率が高まる。
また軸方向各位置のロータ側突出部6及びステータ側突出部7の相互間において、各くぼみ82,83は周方向に略等間隔おきに設けられている。このようにすると、円環状に配列された突出部6,7の相互間にくぼみ82,83を効率的に配列することができる。よって、比較的多くの突出部6,7と比較的多くのくぼみ82,83を設けることが出来、流体の流れをより複雑なものとすることができる。
Each of the recesses 8 has a spherical shape with the same diameter. By making it spherical, the generation of vortices is promoted in the recess, and by making it spherical, the curved surface becomes smooth and the retention of fluid can be suppressed, so that the mixing efficiency is increased.
In addition, the recesses 82 and 83 are provided at substantially equal intervals in the circumferential direction between the rotor-side protrusion 6 and the stator-side protrusion 7 at each position in the axial direction. In this way, the depressions 82 and 83 can be efficiently arranged between the projecting portions 6 and 7 arranged in an annular shape. Therefore, a relatively large number of protrusions 6 and 7 and a relatively large number of depressions 82 and 83 can be provided, and the flow of fluid can be made more complicated.

ロータ側突出部6相互間に設けられた各ロータ側くぼみ82は、ロータ側円周面6aとロータ側径方向平面6bとが交差する仮想線である交線6c上に中心を有する略1/4球状とされている。したがってロータ側くぼみ82は、ロータ側円周面6aを略半円状に切り欠くと同時に、ロータ側径方向平面6bも略半円状に切り欠く。同様に、ステータ側突出部7に設けられた各ステータ側くぼみ83は、ステータ側円周面7aとステータ側径方向平面7bとが交差する仮想線である交線7c上に中心を有する略1/4球状とされている。したがってステータ側くぼみ83は、ステータ側円周面7aを略半周状に切り欠くと同時に、ステータ側径方向平面7bも略半周状に切り欠く。したがって、図1及び図4に示すように、近接するロータ側くぼみ82とステータ側くぼみ83とは、同一の軸方向位置及び径方向位置で重なり合い且つ軸方向及び径方向に互いに向き合って開放している状態となっている。なお図4は、図2と図3を重ねることによりロータ側くぼみ82とステータ側くぼみ83との相対関係を示した図である。ただし、ロータ2とステータ3とは相対回転するから、図4の相対関係は、ロータ2の回転に伴い所定の周期ごとに表れる。   Each of the rotor-side indentations 82 provided between the rotor-side protrusions 6 is substantially 1 / centered on an intersection line 6c that is a virtual line where the rotor-side circumferential surface 6a and the rotor-side radial plane 6b intersect. Four spheres are used. Accordingly, the rotor-side recess 82 cuts out the rotor-side circumferential surface 6a in a substantially semicircular shape, and simultaneously cuts out the rotor-side radial plane 6b in a substantially semicircular shape. Similarly, each stator-side depression 83 provided in the stator-side protruding portion 7 has a center on an intersection line 7c that is a virtual line where the stator-side circumferential surface 7a and the stator-side radial plane 7b intersect. / 4 sphere. Accordingly, the stator-side recess 83 cuts out the stator-side circumferential surface 7a in a substantially semicircular shape, and simultaneously cuts out the stator-side radial plane 7b in a substantially semicircular shape. Therefore, as shown in FIGS. 1 and 4, the adjacent rotor side recess 82 and stator side recess 83 overlap at the same axial position and radial position and are opened facing each other in the axial direction and radial direction. It is in a state. FIG. 4 is a diagram showing the relative relationship between the rotor side recess 82 and the stator side recess 83 by overlapping FIGS. 2 and 3. However, since the rotor 2 and the stator 3 rotate relative to each other, the relative relationship shown in FIG. 4 appears every predetermined period as the rotor 2 rotates.

以上のような構成を有する攪拌機1を使用する場合は、図5に示すように、攪拌機1のミキシングヘッドh部分を混合したい液体20内に浸し、モータ12を動作させ、ドライブシャフト10を介してロータ2を回転させる。そうすると、回転しないステータ3に対してロータ2が回転し、ロータ2とステータ3とが相対回転することとなる。このように、本実施形態の攪拌機1は、バッチ処理用に用いられる。   When using the stirrer 1 having the above-described configuration, as shown in FIG. 5, the mixing head h portion of the stirrer 1 is immersed in the liquid 20 to be mixed, the motor 12 is operated, and the drive shaft 10 is connected. The rotor 2 is rotated. If it does so, the rotor 2 will rotate with respect to the stator 3 which does not rotate, and the rotor 2 and the stator 3 will rotate relatively. Thus, the stirrer 1 of this embodiment is used for batch processing.

ロータ2が回転すると、遠心ポンプの原理により液体20が流入口4から吸い込まれ、ロータ2とステータ3との対向面間に形成された流路を経由した後、排出口5から排出される。図1の破線矢印に示すように、流入口4から排出口5に至る過程において、液体20は、ロータ側くぼみ82とステータ側くぼみ83との間で交互に移送される。即ち、あるロータ側くぼみ82に流入した液体20は、遠心力の作用により、該くぼみ82と軸方向位置が等しいステータ側くぼみ83に移送され、更に、該くぼみ83と径方向位置が等しいロータ側くぼみ82に移送される。そして以後、このくぼみ間移送が適宜繰り返される。なお、図1の破線矢印は、理解しやすいように単純化した平面的な矢印としたが、実際には、ロータ2とステータ3とは相対回転しているので、ロータ側くぼみ82とステータ側くぼみ83との間の移送は回転運動を伴いつつ行われる。そして、個々のくぼみ82,83内では渦が発生するとともに、これらの渦同士が激しくぶつかり合うことになる。
なお、ポンプ機能を高めるため、ロータ2の外周面にインペラ(羽根)を追加してもよい。
When the rotor 2 rotates, the liquid 20 is sucked from the inlet 4 according to the principle of the centrifugal pump, and is discharged from the outlet 5 after passing through the flow path formed between the opposed surfaces of the rotor 2 and the stator 3. As shown by the broken line arrows in FIG. 1, in the process from the inlet 4 to the outlet 5, the liquid 20 is alternately transferred between the rotor side recess 82 and the stator side recess 83. That is, the liquid 20 flowing into a certain rotor-side depression 82 is transferred to the stator-side depression 83 having the same axial position as the depression 82 by the action of centrifugal force, and further, the rotor side having the same radial position as the depression 83. It is transferred to the recess 82. Thereafter, the transfer between the recesses is repeated as appropriate. The broken-line arrow in FIG. 1 is a simplified planar arrow for easy understanding. However, since the rotor 2 and the stator 3 are actually rotating relative to each other, the rotor-side recess 82 and the stator side are actually rotated. Transfer to and from the recess 83 is performed with a rotational motion. Then, vortices are generated in the individual depressions 82 and 83, and these vortices collide violently.
In order to enhance the pump function, an impeller (blade) may be added to the outer peripheral surface of the rotor 2.

また、ロータ2とステータ3との間の軸方向間隔dや径方向間隔kは比較的狭く設定されているので、液体20に強い剪断力が作用する。なお、図2に示すように、ロータ2のロータ側円周面6aやロータ側径方向平面6bには、くぼみの無い非くぼみ部21が存在し、同様にステータ3のステータ側円周面7aやステータ側径方向平面7bにも、くぼみの無い非くぼみ部21が存在する。これら非くぼみ部21の存在により、液体20は軸方向間隔dや径方向間隔kの隙間により生ずる剪断力を受けることになる。   Further, since the axial distance d and the radial distance k between the rotor 2 and the stator 3 are set to be relatively narrow, a strong shearing force acts on the liquid 20. As shown in FIG. 2, the rotor-side circumferential surface 6 a and the rotor-side radial plane 6 b of the rotor 2 have a non-recessed portion 21 without a recess, and similarly, the stator-side circumferential surface 7 a of the stator 3. The stator side radial plane 7b also has a non-recessed portion 21 without a recess. Due to the presence of these non-recessed portions 21, the liquid 20 receives a shearing force generated by a gap having an axial interval d or a radial interval k.

なお、軸方向間隔dや径方向間隔kは、混合したい液体20の粘度や溶質の粒径等、諸般の事情を考慮して適宜設定される。ただし通常は、軸方向間隔dや径方向間隔kを比較的狭くするほうが液体20に作用する剪断力が高まり好ましい。したがって軸方向間隔dは、2mm以下とするのが好ましく、1mm以下とするのが更に好ましい。ただし軸方向間隔dを狭くしすぎると液体20の流れが円滑で無くなる場合があり、またロータ2やステータ3に過度の寸法精度が求められコストが高くなる場合があるから、軸方向間隔dは0.1mm以上とするのが好ましく、0.2mm以上とするのが更に好ましく、0.4mm以上とするのが更に好ましい。
径方向間隔kの好ましい範囲については、上記軸方向間隔dの好ましい範囲と同様である。そして、ロータ2とステータ3との隙間距離の最小値の好ましい範囲についても、上記軸方向間隔dの好ましい範囲と同じである。
なお、ロータ2とステータ3との軸方向相対位置を可変とすることにより軸方向間隔dを調整できる調整機構を備えた攪拌機1としてもよい。
The axial interval d and the radial interval k are appropriately set in consideration of various circumstances such as the viscosity of the liquid 20 to be mixed and the particle size of the solute. In general, however, it is preferable that the axial distance d and the radial distance k be relatively narrow because the shearing force acting on the liquid 20 is increased. Accordingly, the axial distance d is preferably 2 mm or less, and more preferably 1 mm or less. However, if the axial distance d is too small, the flow of the liquid 20 may not be smooth, and excessive dimensional accuracy may be required for the rotor 2 and the stator 3, which may increase the cost. It is preferably 0.1 mm or more, more preferably 0.2 mm or more, and further preferably 0.4 mm or more.
The preferable range of the radial interval k is the same as the preferable range of the axial interval d. The preferable range of the minimum clearance distance between the rotor 2 and the stator 3 is also the same as the preferable range of the axial distance d.
In addition, it is good also as the stirrer 1 provided with the adjustment mechanism which can adjust the axial direction space | interval d by making the axial direction relative position of the rotor 2 and the stator 3 variable.

本発明の製造方法では、燃料油に5〜50重量%の水又は植物油を混合する。燃料油としては、ガソリン、航空用ガソリン、自動車用ガソリン、工業用ガソリン、灯油、軽油、重油(A重油、B重油、C重油)等が例示される。水としては、イオン交換水、水道水、蒸留水などを適宜用いることが出来る。植物油としては、例えば、なたね油などを用いることが出来る。後述の実験に示すように、本発明では特に、A重油に5〜50重量%の水を混合した場合に特に良好な結果が得られた。   In the production method of the present invention, 5 to 50% by weight of water or vegetable oil is mixed with the fuel oil. Examples of the fuel oil include gasoline, aviation gasoline, automobile gasoline, industrial gasoline, kerosene, light oil, heavy oil (A heavy oil, B heavy oil, C heavy oil) and the like. As water, ion-exchanged water, tap water, distilled water, or the like can be used as appropriate. As vegetable oil, rapeseed oil etc. can be used, for example. As shown in the experiments described later, in the present invention, particularly good results were obtained when 5 to 50% by weight of water was mixed with A heavy oil.

本発明の製造方法では、水又は植物油と燃料油の他に、界面活性剤等の添加剤を用いると、分散安定性が高まり好ましい。添加剤としては、例えばW/O(Water in Oil)型エマルションを形成する界面活性剤を用いることが出来る。   In the production method of the present invention, it is preferable to use an additive such as a surfactant in addition to water or vegetable oil and fuel oil because the dispersion stability is increased. As the additive, for example, a surfactant that forms a W / O (Water in Oil) type emulsion can be used.

本発明の製造方法により作製されたエマルション燃料の燃費を確認することにより、本発明の効果を確認した。
実施例の攪拌機としては、株式会社エーテックジャパンが製造販売している流体分割混合ミキサーを用いた。
そして、A重油(密度0.86g/ml)を入れたタンク内で上記攪拌機を用いて撹拌しながら水道水と添加剤とを投入することによりエマルション燃料を作製した。そして、このエマルション燃料を用いてディーゼルエンジンで発電機を一定時間回して、その間に消費されたエマルション燃料の量を測定した。実験中は、発電量に一定の負荷を与えて、エンジンの出力及び発電量を常に一定となるようにした。なお、かかる測定にあたっては、まず測定前にエンジンを所定時間回しておき、エンジンの回転が安定した時点で測定を開始した。
水道水の配合比率を適宜変化させて測定したところ、水道水の割合を5〜50重量%とした場合に、特に燃費が良好であった。
The effect of the present invention was confirmed by confirming the fuel consumption of the emulsion fuel produced by the production method of the present invention.
As a stirrer in the examples, a fluid division mixing mixer manufactured and sold by ATEC Japan Co., Ltd. was used.
And the emulsion fuel was produced by throwing in tap water and an additive, stirring with the said stirrer in the tank containing A heavy oil (density 0.86g / ml). And the generator was rotated with the diesel engine for a fixed time using this emulsion fuel, and the quantity of the emulsion fuel consumed in the meantime was measured. During the experiment, a constant load was applied to the power generation amount so that the engine output and the power generation amount were always constant. In this measurement, the engine was first rotated for a predetermined time before the measurement, and the measurement was started when the rotation of the engine was stabilized.
When the mixing ratio of tap water was appropriately changed and measured, the fuel consumption was particularly good when the ratio of tap water was 5 to 50% by weight.

本発明の一実施形態である製造方法に用いた攪拌機のミキシングヘッド部分の断面図である。It is sectional drawing of the mixing head part of the stirrer used for the manufacturing method which is one Embodiment of this invention. 図1の攪拌機のロータ部分のくぼみの配列を示す平面図である。It is a top view which shows the arrangement | sequence of the hollow of the rotor part of the stirrer of FIG. 図1の攪拌機のステータ部分のくぼみの配列を示す平面図である。It is a top view which shows the arrangement | sequence of the hollow of the stator part of the stirrer of FIG. 図2と図3を重ね合わせることにより、ロータ部分のくぼみとステータ部分のくぼみとの相対的位置関係を示した図である。It is the figure which showed the relative positional relationship of the hollow of a rotor part, and the hollow of a stator part by superimposing FIG. 2 and FIG. 図1の攪拌機を用いて液体を攪拌している様子を示す斜視図である。It is a perspective view which shows a mode that the liquid is stirred using the stirrer of FIG.

符号の説明Explanation of symbols

1 攪拌機
2 ロータ(第一部材)
3 ステータ(第二部材)
4 流入口
5 排出口
6,61〜64 ロータ側突出部(突出部)
6a ロータ側円周面(軸方向に平行な円周面)
6b ロータ側径方向平面(径方向に平行な径方向平面)
7,71〜75 ステータ側突出部(突出部)
7a ステータ側円周面(軸方向に平行な円周面)
7b ステータ側径方向平面(径方向に平行な径方向平面)
d 軸方向間隔
82 ロータ側くぼみ(くぼみ)
83 ステータ側くぼみ(くぼみ)
1 Stirrer 2 Rotor (first member)
3 Stator (second member)
4 Inlet 5 Outlet 6, 61-64 Rotor side protrusion (protrusion)
6a Rotor side circumferential surface (circumferential surface parallel to the axial direction)
6b Rotor side radial plane (radial plane parallel to radial direction)
7,71-75 Stator side protrusion (protrusion)
7a Stator side circumferential surface (circumferential surface parallel to the axial direction)
7b Stator side radial plane (radial plane parallel to radial direction)
d Axial spacing 82 Indentation on the rotor side
83 Indentation on stator side

Claims (4)

5〜50重量%の水又は植物油と燃料油とを攪拌機により混合するエマルション燃料の製造方法であって、
前記攪拌機は、
混合される流体の流入口及び混合後の流体の排出口と、
所定の回転軸まわりに相対回転が可能で且つ所定間隔を介して対向する第一部材及び第二部材と、
前記第一部材及び第二部材の対向面間において形成され、前記流入口から前記排出口にまで連通する流路と、
前記回転軸と同軸で前記第一部材及び第二部材に設けられ、前記対向面の一部を形成する円環状に配列された突出部と、
前記突出部相互間に設けられ、前記流路の一部を構成するくぼみと、
を備えると共に、
近接する前記第一部材のくぼみと前記第二部材のくぼみとは、同一の軸方向位置で重なり合い且つ互いに向き合って開放している攪拌機であることを特徴とするエマルション燃料の製造方法。
A method for producing an emulsion fuel in which 5 to 50% by weight of water or vegetable oil and fuel oil are mixed with a stirrer,
The stirrer
A fluid inlet to be mixed and a fluid outlet after mixing;
A first member and a second member that are capable of relative rotation about a predetermined rotation axis and are opposed to each other with a predetermined interval;
A flow path formed between the opposing surfaces of the first member and the second member, and communicating from the inlet to the outlet;
Protrusions arranged in an annular shape that are provided on the first member and the second member coaxially with the rotation shaft and form a part of the facing surface;
A recess provided between the protrusions and constituting a part of the flow path;
With
The indentation of the first member and the indentation of the second member that are close to each other are stirrers that overlap at the same axial position and open to face each other.
前記くぼみは、前記第一及び第二部材上において、周方向の所定間隔おきに配置されていることを特徴とする請求項1に記載のエマルション燃料の製造方法。   2. The method for producing an emulsion fuel according to claim 1, wherein the recesses are arranged at predetermined intervals in the circumferential direction on the first and second members. 前記くぼみは球状であることを特徴とする請求項1又は2のいずれかに記載のエマルション燃料の製造方法。   The method for producing an emulsion fuel according to claim 1, wherein the indentation is spherical. 前記突出部の外面は、軸方向に平行な円周面と、径方向に平行な径方向平面から成り、
前記第一部材の前記対向面は、全体的に円錐凸形状を成し且つ階段状に配列された複数の前記突出部及び前記くぼみにより形成され、
前記第二部材の前記対向面は、前記第一部材の前記対向面に対応して、全体的に円錐凹形状を有し且つ階段状に配列された複数の前記突出部及び前記くぼみにより形成されており、
前記くぼみは、前記突出部の前記円周面と前記径方向平面とが交差する交線上に中心を有する略1/4球状であることを特徴とする請求項1〜3のいずれかに記載のエマルション燃料の製造方法。
The outer surface of the protruding portion is composed of a circumferential surface parallel to the axial direction and a radial plane parallel to the radial direction,
The opposing surface of the first member is formed by a plurality of the projecting portions and the depressions that are formed in a conical convex shape and arranged in a step shape.
The opposing surface of the second member is formed by a plurality of the projecting portions and the indentations corresponding to the opposing surface of the first member and having a conical concave shape as a whole and arranged in a staircase pattern. And
The said hollow is a substantially 1/4 spherical shape which has a center on the intersection line which the said circumferential surface and the said radial direction plane of the said protrusion part cross | intersect. Method for producing emulsion fuel.
JP2004188122A 2004-06-25 2004-06-25 Method for producing emulsified oil fuel Withdrawn JP2006008852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188122A JP2006008852A (en) 2004-06-25 2004-06-25 Method for producing emulsified oil fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188122A JP2006008852A (en) 2004-06-25 2004-06-25 Method for producing emulsified oil fuel

Publications (1)

Publication Number Publication Date
JP2006008852A true JP2006008852A (en) 2006-01-12

Family

ID=35776454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188122A Withdrawn JP2006008852A (en) 2004-06-25 2004-06-25 Method for producing emulsified oil fuel

Country Status (1)

Country Link
JP (1) JP2006008852A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105323A1 (en) * 2006-03-13 2007-09-20 Future Solution Co., Ltd. Apparatus for producing water-in-oil emulsion fuel
KR100825838B1 (en) * 2007-03-29 2008-05-16 김일룡 A burning support apparatus of the burning system for emulsified fuel
KR100836835B1 (en) * 2007-03-29 2008-06-12 김일룡 A burning system for emulsified fuel
KR100917898B1 (en) * 2009-03-24 2009-09-17 세종글로벌엔지니어링 주식회사 Atomization apparatus and liquid fuel combustion system with the same
WO2012023217A1 (en) * 2010-08-19 2012-02-23 株式会社明治 Atomizing device, and performance evaluation method and scale-up method therefor
WO2012023218A1 (en) * 2010-08-19 2012-02-23 株式会社明治 Atomizing device, and performance evaluation method and scale-up method therefor
US9504971B2 (en) 2011-09-16 2016-11-29 Unilever Bcs Us, Inc. Mixing apparatus and method of preparing edible dispersions
JP2019214003A (en) * 2018-06-11 2019-12-19 株式会社ニクニ Mixer and fluid mixing system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105323A1 (en) * 2006-03-13 2007-09-20 Future Solution Co., Ltd. Apparatus for producing water-in-oil emulsion fuel
KR100825838B1 (en) * 2007-03-29 2008-05-16 김일룡 A burning support apparatus of the burning system for emulsified fuel
KR100836835B1 (en) * 2007-03-29 2008-06-12 김일룡 A burning system for emulsified fuel
KR100917898B1 (en) * 2009-03-24 2009-09-17 세종글로벌엔지니어링 주식회사 Atomization apparatus and liquid fuel combustion system with the same
WO2010110601A2 (en) * 2009-03-24 2010-09-30 세종글로벌엔지니어링 주식회사 Atomization apparatus, and liquid fuel combustion system comprising same
WO2010110601A3 (en) * 2009-03-24 2011-01-06 세종글로벌엔지니어링 주식회사 Atomization apparatus, and liquid fuel combustion system comprising same
WO2012023217A1 (en) * 2010-08-19 2012-02-23 株式会社明治 Atomizing device, and performance evaluation method and scale-up method therefor
WO2012023218A1 (en) * 2010-08-19 2012-02-23 株式会社明治 Atomizing device, and performance evaluation method and scale-up method therefor
US9278322B2 (en) 2010-08-19 2016-03-08 Meiji Co., Ltd. Mixer of a rotor-stator type, performance estimation method thereof, and scale up method thereof
US9492800B2 (en) 2010-08-19 2016-11-15 Meiji Co., Ltd. Particle size breakup device and its performance estimation method and scale up method
US9504971B2 (en) 2011-09-16 2016-11-29 Unilever Bcs Us, Inc. Mixing apparatus and method of preparing edible dispersions
JP2019214003A (en) * 2018-06-11 2019-12-19 株式会社ニクニ Mixer and fluid mixing system

Similar Documents

Publication Publication Date Title
JP4005479B2 (en) Homogenizer
JP4533969B2 (en) Emulsion fuel, method for producing the same, and apparatus for producing the same
US8381701B2 (en) Bio-diesel fuel engine system and bio-diesel fuel engine operating method
JP2006008852A (en) Method for producing emulsified oil fuel
WO2007105323A1 (en) Apparatus for producing water-in-oil emulsion fuel
JPH11114396A (en) Agitation device
JP2016087590A (en) Agitating device
JPH10337461A (en) Agitator
RU2303482C2 (en) Mixer
CN109012251A (en) Rotary emulsifying device structure
JP3623044B2 (en) Stirrer
JP2001321651A (en) Agitating device
JP5263877B2 (en) Mixing apparatus and mixing system
JP5794564B2 (en) Stirrer
JP2010214220A (en) Emulsification apparatus
KR102649462B1 (en) agitator
JP5497275B2 (en) Emulsion fuel production equipment
RU2772472C1 (en) Dynamic activator for improving the quality of motor fuel
JP2002355540A (en) Agitator
JP4080900B2 (en) mixer
CN112426950B (en) Colostrum unit, high-viscosity material continuous fine emulsification device and emulsification method thereof
JPH11267485A (en) Vertical agitator
JP2004181326A (en) In-line mixing apparatus and mixing method
WO2014195856A1 (en) Multi-stage mixer
JPH04114723A (en) Mixing blade of high speed rotary shearing type stirrer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904