JP2006006045A - Power supply method and uninterruptible power supply system - Google Patents

Power supply method and uninterruptible power supply system Download PDF

Info

Publication number
JP2006006045A
JP2006006045A JP2004180799A JP2004180799A JP2006006045A JP 2006006045 A JP2006006045 A JP 2006006045A JP 2004180799 A JP2004180799 A JP 2004180799A JP 2004180799 A JP2004180799 A JP 2004180799A JP 2006006045 A JP2006006045 A JP 2006006045A
Authority
JP
Japan
Prior art keywords
power supply
power
load
uninterruptible
uninterruptible power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004180799A
Other languages
Japanese (ja)
Inventor
Akira Sueyoshi
暁 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004180799A priority Critical patent/JP2006006045A/en
Publication of JP2006006045A publication Critical patent/JP2006006045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply method which is reduced in the difference of a charging time to each power compensating device, regardless of the presence of a variation in the charging capacity of the power compensating devices corresponding to a plurality of UPSes connected in parallel, and can prevent an early trouble and the parallel-off of the UPSes connected to the power compensating device reduced in capacity even in the case of a power loss on a host side, and to provide an uninterruptible power supply system. <P>SOLUTION: Charging states of the power compensating devices 6 are provided to every two uninterruptible power supply systems (1 to n) connected in parallel are detected. Then, power supply sharing to a load 7 is lowered to the uninterruptible power supply system connected to the power compensating device 6 low in charging capacity, whereas the sharing of the other uninterruptible power supply device 2 is increased to compensate the reduction in the sharing to secure power required by the load. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数台の無停電電源装置を並列接続して負荷に電力を供給する電力供給方法及び無停電電源システムに関する。   The present invention relates to a power supply method and an uninterruptible power supply system in which a plurality of uninterruptible power supply apparatuses are connected in parallel to supply power to a load.

近年、各種産業分野において、コンピュータのような重要負荷に対し、電圧変動の少ない良質の交流電力を安定に供給する無停電電源装置(以下、UPSと呼ぶ)が広く用いられている。このUPSは、充電機能を有する整流器を有し、商用電源を直流に変換して蓄電池などの電力補償装置を充電すると共に、この直流をインバータにより所定周波数の交流に逆変換し、負荷に供給するものである。そして、このUPSを複数台並列接続して、より信頼性を高めた無停電電源システムが用いられるようになってきた。   In recent years, uninterruptible power supplies (hereinafter referred to as UPS) that stably supply high-quality AC power with little voltage fluctuation to an important load such as a computer have been widely used in various industrial fields. This UPS has a rectifier having a charging function, converts a commercial power source into a direct current to charge a power compensation device such as a storage battery, and reversely converts the direct current into an alternating current of a predetermined frequency by an inverter and supplies it to a load. Is. Then, an uninterruptible power supply system in which a plurality of UPSs are connected in parallel to improve reliability has come to be used.

このような無停電電源システムにおいて、各UPSに対応してそれぞれ設けられた電力補償装置の充電制御は、各UPSにおいて独立して実施しており、並列接続されたUPS間での充電制御は実施していない。   In such an uninterruptible power supply system, the charging control of the power compensator provided corresponding to each UPS is performed independently in each UPS, and the charging control between the UPSs connected in parallel is performed. Not done.

なお、無停電電源システムではないが、電力補償システムにおける充電時間の迅速化や充電量の適正化を図る発明は、従来から提案されていた(例えば、特許文献1参照)。   In addition, although it is not an uninterruptible power supply system, the invention which aims at speeding up of charge time in charge compensation system and optimization of charge amount has been proposed conventionally (for example, refer to patent documents 1).

しかし、複数台のUPSを並列接続した無停電電源システムでの、各UPS間での充電制御に関しては、これまで実施されていなかった。   However, charging control between UPSs in an uninterruptible power supply system in which a plurality of UPSs are connected in parallel has not been performed so far.

ところで、無停電電源システムを構成する各UPSでは、整流器の出力は、負荷への供給分(直接的にはインバータへの供給分である) と電力補償装置への充電分の合計であり、電力補償装置への充電電流は、整流器の定格容量と、この整流器が設けられたUPSの定格容量との差分となる。   By the way, in each UPS constituting the uninterruptible power supply system, the output of the rectifier is the sum of the supply to the load (directly the supply to the inverter) and the charge to the power compensator. The charging current to the compensation device is a difference between the rated capacity of the rectifier and the rated capacity of the UPS provided with the rectifier.

一方、このような無停電電源システムでは、商用電源の停電などにより各UPSの上位側で電力喪失が生じると、これまで電力補償装置に充電されていた直流電力に基づき、インバータを介して負荷へ電力供給される。このとき、複数台並列接続されているUPSに、電力補償装置の容量が低下しているものがあっても、負荷への電力供給は、各UPSにて均等に負荷分担されるよう制御される。このため、容量が低下している電力補償装置と接続したUPSは、他の並列接続されているUPSよりも早く故障解列してしまう。   On the other hand, in such an uninterruptible power supply system, when power loss occurs on the upper side of each UPS due to a power failure of the commercial power supply, etc., based on the DC power that has been charged in the power compensator so far, it is supplied to the load via the inverter. Powered. At this time, even if a plurality of UPSs connected in parallel have a reduced capacity of the power compensation device, the power supply to the load is controlled so that the load is evenly shared by each UPS. . For this reason, a UPS connected to a power compensator having a reduced capacity is fault-disconnected earlier than other UPSs connected in parallel.

また、このような並列接続されているUPSの電力補償装置に対する充電制御では、通常時、次の上位側の電力喪失に備えて充電を実施するが、各電力補償装置の充電容量にばらつきがある場合、現状の制御方法では、充電が完了するのに差を生じてしまう。   In addition, in the charge control for the UPS power compensation devices connected in parallel, charging is normally performed in preparation for the next power loss on the higher-order side, but the charge capacity of each power compensation device varies. In this case, the current control method causes a difference in the completion of charging.

図4は、n台のUPSを並列接続した無停電電源システムにおいて、1番目のUPS(以下、UPS(1)とする) と、他のUPS(以下、UPS(2〜n)とする)との充電容量にばらつきがある場合を説明している。   FIG. 4 shows a first UPS (hereinafter referred to as UPS (1)) and other UPS (hereinafter referred to as UPS (2-n)) in an uninterruptible power supply system in which n UPSs are connected in parallel. The case where there is variation in the charging capacity is described.

図4(a)では、UPS(2〜n)が電力補償装置への充電がほぼ完了し、直流電流が低い値であるのに対し、UPS(1)は対応する電力補償装置の充電が完了していないため大きな直流電流値を示し、時間T3が経過して充電が完了することにより、直流電流値はUPS(2〜n)と同じ値まで低下する。   In FIG. 4A, UPS (2 to n) is almost completely charged to the power compensator and the DC current is a low value, whereas UPS (1) is charged to the corresponding power compensator. Therefore, when the charging is completed after the time T3 has elapsed, the direct current value decreases to the same value as UPS (2 to n).

図4(b)は、n台のUPSの出力電流を示しており、n台並列で均等に負荷を分担しているので、USP(1)及び他のUSP(2〜n)の出力電流は同じ値となる。   FIG. 4B shows the output currents of n UPSs, and since the loads are equally shared by n units in parallel, the output currents of USP (1) and other USPs (2 to n) are It becomes the same value.

図4(c)は、UPS(1)の整流器電流を示しており、同図(a)で示した電力補償装置充電電流分と、同図(b)の出力電流に相当する負荷電流分とが加算された値となり、時間T3が経過して電力補償装置の充電が完了することにより、整流器電流も低下する。   FIG. 4 (c) shows the rectifier current of UPS (1). The power compensation device charging current shown in FIG. 4 (a) and the load current equivalent to the output current shown in FIG. When the time T3 has elapsed and the charging of the power compensator is completed, the rectifier current also decreases.

一方、上位側の電力喪失時には、各USPは、対応する電力補償装置からの直流電力に基づく給電となる。その際に、容量が低下している電力補償装置が混在していると、容量が低下している電力補償装置が接続されているUSPは、他のUSPよりも早く故障解列してしまい、無停電電源システム全体のシステム容量の低下を招いてしまう。   On the other hand, at the time of power loss on the upper side, each USP is fed based on DC power from the corresponding power compensation device. At that time, if power compensators with reduced capacities are mixed, the USP to which the power compensators with reduced capacities are connected breaks down earlier than other USPs. The system capacity of the entire uninterruptible power supply system will be reduced.

図5は、n台のUPSを並列接続した無停電電源システムにおいて、1番目のUPS(1)が、他のUPS(2〜n)に比べ容量が低下している場合を説明している。   FIG. 5 illustrates a case where the capacity of the first UPS (1) is lower than the other UPS (2 to n) in an uninterruptible power supply system in which n UPSs are connected in parallel.

図5(a)は各UPSの直流電圧の変化を示し、図5(b)は各UPSの出力電流の状態を示し、図5(c)は各UPSの直流電流の状態を示している。これらの図から、電力補償装置の容量が充分なUPS(2〜n)は、直流電圧及び直流電流の変化は緩やかであるが、電力補償装置の容量が低下しているUPS1では、他のUPS(2〜n)に比べ直流電圧及び直流電流の変化が大きく、時間T5を経過した時点で故障解列してしまう。このUPS(1)の故障解列以降は、他のUPS(2〜n)が解列されたUPS(1)の負担分を分担することになるので、図5(b)で示すように、それらの出力電流が増大する。
特開2002−271993号
5A shows changes in the DC voltage of each UPS, FIG. 5B shows the state of the output current of each UPS, and FIG. 5C shows the state of the DC current of each UPS. From these figures, UPS (2 to n) having a sufficient capacity of the power compensator has a gradual change in the DC voltage and DC current, but in UPS 1 in which the capacity of the power compensator has decreased, other UPS Compared with (2 to n), the change in the DC voltage and the DC current is large, and the failure is resolved when the time T5 has elapsed. After the failure of UPS (1) is resolved, the share of UPS (1) from which other UPS (2-n) is disconnected will be shared, so as shown in FIG. Their output current increases.
JP 2002-271993 A

このように複数台のUPSを並列接続して負荷に電力を供給する無停電電源システムでは、各電力補償装置の充電制御を個別に行っていたので、充電容量にばらつきがある場合、充電時間に差が生じ、また、上位側の電力喪失時に電力補償装置から給電する場合は、容量が低下している電力補償装置に接続した無停電電源装置が早期に故障解列し、システム全体の容量低下が生じた。   In such an uninterruptible power supply system in which a plurality of UPSs are connected in parallel to supply power to the load, the charge control of each power compensation device is performed individually. If there is a difference, and power is supplied from the power compensator when power is lost on the upper side, the uninterruptible power supply connected to the power compensator whose capacity has been reduced will quickly fail and the capacity of the entire system will be reduced. Occurred.

本発明の目的は、並列接続された複数台のUPSに対応する電力保障装置に、充電容量のばらつきがあっても、各電力補償装置に対する充電時間の差が少なくなり、また、上位側電力喪失時においても容量が低下している電力補償装置に接続したUPSの早期な故障解列を防止できる電力供給方法及び無停電電源システムを提供することにある。   The object of the present invention is to reduce the difference in charging time for each power compensator even if there is a variation in charging capacity among the power guarantee devices corresponding to a plurality of UPSs connected in parallel, and the upper power loss. It is an object of the present invention to provide an electric power supply method and an uninterruptible power supply system that can prevent early failure of a UPS connected to a power compensator whose capacity has been reduced.

本発明による電力供給方法は、交流を直流に変換する整流器と、この整流器により整流された直流を交流に逆変換するインバータとを有し、前記整流器からインバータへの直流部に電力補償装置が接続された無停電電源装置を、複数台並列接続して負荷に電力を供給する電力供給方法であって、前記各無停電電源装置が、整流器からの直流電力により対応する電力補償装置を充電しつつ、対応するインバータから交流出力し、前記負荷が要求する電力を互いに分担して供給する通常運転時において、前記複数台の無停電電源装置毎に設けられた電力補償装置の充電状態をそれぞれ検出し、充電容量の低い電力補償装置が接続された無停電電源装置に対しては、前記負荷への電力供給分担を下げて電力補償装置への充電電流を増加させ、この分担減少分を他の無停電電源装置の分担をあげることで負荷が要求する電力を確保することを特徴とする。   The power supply method according to the present invention includes a rectifier that converts alternating current into direct current, and an inverter that reversely converts direct current rectified by the rectifier into alternating current, and a power compensation device is connected to the direct current portion from the rectifier to the inverter. Power supply method for connecting a plurality of uninterruptible power supply devices connected in parallel to supply power to a load, wherein each uninterruptible power supply device is charging a corresponding power compensation device with DC power from a rectifier , Detecting the charge state of each of the power compensators provided for each of the plurality of uninterruptible power supply units during normal operation in which AC power is output from the corresponding inverter and the power required by the load is supplied to each other. For an uninterruptible power supply connected to a power compensation device with a low charging capacity, the power supply to the load is reduced to increase the charging current to the power compensation device. Load decrease by increasing the share of other uninterruptible power supply, characterized in that to secure the electric power demand.

また、本発明方法では、前記無停電電源装置の上位側電力喪失により、各無停電電源装置が、対応する電力補償装置からインバータに供給される直流電力に基づき、前記負荷が要求する電力を互いに分担して供給するバックアップ運転時は、前記複数台の無停電電源装置毎に設けられた電力補償装置の充電状態をそれぞれ検出し、充電容量の低い電力補償装置が接続された無停電電源装置に対しては、前記負荷への電力供給分担を下げて電力補償装置からの供給電流を減少させ、この分担減少分を他の無停電電源装置の分担をあげることで負荷が要求する電力を確保する。   Further, in the method of the present invention, due to the loss of the upper power of the uninterruptible power supply, each uninterruptible power supply can mutually reduce the power required by the load based on the DC power supplied from the corresponding power compensator to the inverter. At the time of backup operation that is shared and supplied, the charging state of each power compensation device provided for each of the plurality of uninterruptible power supply devices is detected, and the uninterruptible power supply device to which a power compensation device with a low charging capacity is connected is detected. On the other hand, the power supply to the load is reduced to reduce the supply current from the power compensation device, and the power required by the load is secured by increasing the share of the uninterruptible power supply with this reduced share. .

本発明による無停電電源システムは、複数台の無停電電源装置毎に設けられた電力補償装置の充電状態をそれぞれ監視する充電状態検出手段と、この充電状態検出手段による検出の結果、充電容量の低い電力補償装置が接続された無停電電源装置に対しては、前記負荷への電力供給分担を下げ、この分担減少分を他の無停電電源装置の分担をあげる負荷分担制御手段とを備えたことを特徴とする。   An uninterruptible power supply system according to the present invention includes a charge state detection unit that monitors a charge state of a power compensation device provided for each of a plurality of uninterruptible power supply units, and a result of detection by the charge state detection unit. For an uninterruptible power supply to which a low power compensator is connected, load sharing control means for lowering the share of power supply to the load and increasing the share of the other uninterruptible power supply to reduce this share is provided. It is characterized by that.

本発明システムでは、充電電力検出手段には、電力補償装置の直流電流及び直流電圧を検出し、それらの値により充電状態を判断するものを用いればよい。   In the system of the present invention, the charging power detection means may be one that detects the DC current and DC voltage of the power compensation device and determines the charging state based on those values.

本発明によれば、並列接続された複数台の無停電電源装置に対応する各電力補償装置の充電容量にばらつきがあっても、各電力充電容量を短期間で均一にすることができ、かつ無停電電源装置の上位側の電力喪失時においても、全体の電力補償装置の残容量を有効に活用することにより、無停電電源システムのシステム容量を低減することがなく、システム信頼性を維持できる。   According to the present invention, even if there is variation in the charging capacity of each power compensation device corresponding to a plurality of uninterruptible power supply devices connected in parallel, each power charging capacity can be made uniform in a short period of time, and Even in the event of power loss on the upper side of the uninterruptible power supply, system reliability can be maintained without reducing the system capacity of the uninterruptible power supply system by effectively utilizing the remaining capacity of the entire power compensator .

以下、本発明による電力供給方法及び無停電電源システムの一実施の形態について図面を用いて詳細に説明する。   Hereinafter, an embodiment of a power supply method and an uninterruptible power supply system according to the present invention will be described in detail with reference to the drawings.

図1は、この実施の形態における無停電電源システムの構成図である。図1(a)において、2はUPS(無停電電源装置)で、充電機能を有する整流器4とインバータ5とを有し、対応する電力補償装置6と接続している。整流器4の入力側は遮断器31を介して商用電源などの交流電源1に接続し、その出力側(直流部)はインバータ5の入力側に接続している。蓄電池などからなる電力補償装置6は遮断器32を介して上記直流部に接続しており、整流器4の出力電流により充電され、かつ上位電源喪失時にはインバータ5に対して直流電力を供給する。   FIG. 1 is a configuration diagram of an uninterruptible power supply system according to this embodiment. In FIG. 1A, reference numeral 2 denotes a UPS (uninterruptible power supply), which has a rectifier 4 and an inverter 5 having a charging function, and is connected to a corresponding power compensator 6. The input side of the rectifier 4 is connected to an AC power source 1 such as a commercial power source via a circuit breaker 31, and its output side (DC unit) is connected to the input side of the inverter 5. The power compensation device 6 including a storage battery is connected to the DC unit via the circuit breaker 32, is charged by the output current of the rectifier 4, and supplies DC power to the inverter 5 when the upper power source is lost.

インバータ5の出力側は遮断器33を介してUPS2外に導出され、さらに遮断器34を経て、他のUPS2と並列接続され、複数台(n台)のUPS2を並列接続してなる無停電電源システムを構成している。この無停電電源システムの出力端は遮断器35を介して負荷7に接続し、負荷7に交流電力を供給する。   The output side of the inverter 5 is led out of the UPS 2 through the circuit breaker 33, further connected in parallel with other UPS 2 through the circuit breaker 34, and an uninterruptible power supply formed by connecting a plurality (n units) of UPS 2 in parallel. The system is configured. The output end of the uninterruptible power supply system is connected to the load 7 via the circuit breaker 35 and supplies AC power to the load 7.

このようにUPS2を複数台並列接続した無停電電源システムにおいて、電力補償装置6の充電状態を検出するため、各電力補償装置6との接続部の直流電圧V1,・・・,Vnと直流電流I1,・・・,Inを検出する。また、各UPS2の負荷分担量を検出するため、各UPS2の出力電流IO1,・・・,IOnを検出する。   In such an uninterruptible power supply system in which a plurality of UPSs 2 are connected in parallel, in order to detect the state of charge of the power compensator 6, the DC voltages V1,... I1,..., In are detected. Further, in order to detect the load sharing amount of each UPS 2, output currents IO1,..., IOn of each UPS 2 are detected.

これら各直流電圧V1,・・・,Vnおよび各直流電流I1,・・・,Inは、図1(b)で示す直流電圧検出手段21及び直流電流検出手段22を介して負荷分担制御手段23に入力され、各電力補償装置6の充電状態情報となる。したがって、これら電圧検出手段21及び電流検出手段は、各電力補償装置6の充電状態を検出する充電状態検出手段として機能する。また、各出力電流IO1,・・・,IOnも出力電流検出手段24を介して負荷分担制御手段23に入力され、各UPS2の負荷分担情報となる。   These DC voltages V1,..., Vn and DC currents I1,..., In are supplied to the load sharing control means 23 via the DC voltage detection means 21 and the DC current detection means 22 shown in FIG. To be the charging state information of each power compensation device 6. Therefore, the voltage detection means 21 and the current detection means function as a charge state detection means for detecting the charge state of each power compensation device 6. Also, the output currents IO1,..., IOn are also input to the load sharing control means 23 via the output current detection means 24, and become load sharing information for each UPS2.

負荷分担制御手段23は、この充電状態検出手段21,22による検出の結果、充電容量の低い電力補償装置6が接続されたUPS2に対しては、負荷7への電力供給分担を下げ、この分担減少分を他のUPS2の分担をあげるように制御する。すなわち、負荷分担制御手段23の制御信号は、各UPS2の整流器制御手段25及びインバータ制御手段26に出力され、上述のように、各UPS2の負荷分担を制御する。   As a result of the detection by the charge state detection units 21 and 22, the load sharing control unit 23 lowers the power supply sharing to the load 7 for the UPS 2 to which the power compensation device 6 having a low charge capacity is connected. The decrease is controlled to increase the share of other UPS2. That is, the control signal of the load sharing control unit 23 is output to the rectifier control unit 25 and the inverter control unit 26 of each UPS 2 and controls the load sharing of each UPS 2 as described above.

上記構成において、各UPS2が、整流器4からの直流電力により対応する電力補償装置6を充電しつつ、対応するインバータ5から交流出力し、負荷7が要求する電力を互いに分担して供給する通常運転時では、各電力補償装置6の充電状態を直流電流値によりそれぞれ検出する。すなわち、直流電流I1,・・・,Inが低い場合は、この低い直流電流で充電されている電力補償装置6は充電容量が高いことを意味する。反対に、直流電流I1,・・・,Inが高い場合は、この高い直流電流で充電されている電力補償装置6は充電容量が低いことを意味している。   In the above configuration, each UPS 2 charges the corresponding power compensator 6 with DC power from the rectifier 4, outputs AC from the corresponding inverter 5, and supplies the power required by the load 7 in a shared manner with each other. In some cases, the state of charge of each power compensator 6 is detected by a DC current value. That is, when the direct currents I1,..., In are low, it means that the power compensation device 6 charged with this low direct current has a high charge capacity. On the other hand, when the direct currents I1,..., In are high, it means that the power compensation device 6 charged with the high direct current has a low charge capacity.

整流器4は、装置定格に対して設計されているため、整流器4の容量から負荷容量を引いた容量が電力補償装置6に対する充電分の容量となる。そこで、充電容量の低い電力補償装置6を有するUPS2に対しては、負荷7への電力供給分担を下げて電力補償装置6への充電電流を増加させる。この分担減少分は他のUPS2の分担をあげることで負荷7が要求する電力を確保する。   Since the rectifier 4 is designed with respect to the device rating, the capacity obtained by subtracting the load capacity from the capacity of the rectifier 4 is the capacity for charging the power compensator 6. Therefore, for the UPS 2 having the power compensation device 6 with a low charge capacity, the charge supply to the power compensation device 6 is increased by reducing the power supply share to the load 7. This reduced share secures the power required by the load 7 by increasing the share of the other UPS 2.

すなわち、検知した直流電流I1,・・・,Inが高い場合は、その電力補償装置6の充電容量が低いと判断し、負荷分担制御手段23は、該当するUPS2のインバータ5を制御することで負荷分担を下げ、インバータ5の一次側の直流電流を低減させる。そのため、整流器4の電流は、電力補償装置6を充電する直流電流が増加し、充電時間を短縮することが可能となる。また、他のUPS2のインバータ5を制御し、負荷分担を上げることで、負荷7への必要とする電力供給を維持し、無停電電源システムの機能を維持する。   That is, when the detected direct currents I1,..., In are high, it is determined that the charging capacity of the power compensation device 6 is low, and the load sharing control means 23 controls the inverter 5 of the corresponding UPS 2. The load sharing is lowered and the DC current on the primary side of the inverter 5 is reduced. As a result, the current of the rectifier 4 increases the direct current for charging the power compensator 6, thereby shortening the charging time. Further, by controlling the inverter 5 of the other UPS 2 and increasing the load sharing, the necessary power supply to the load 7 is maintained, and the function of the uninterruptible power supply system is maintained.

図2は、n台並列接続された無停電電源システムにおいて、1号機である第1USP(1)の直流電流が大きい場合、すなわち、第1USP(1)に接続されている電力補償装置6の充電容量が低い場合の負荷分担制御例を表すタイムチャートである。   FIG. 2 shows the charging of the power compensator 6 connected to the first USP (1) when the direct current of the first USP (1) as the first unit is large in the n uninterruptible power supply systems connected in parallel. It is a time chart showing the example of load sharing control when a capacity | capacitance is low.

図2(a)で示すように、時間T1までは、第1UPS(1)の充電容量が低いために、直流電流値が他のUPS(2〜n)に比べて大きい。このため、図2(b)で示すように、第1UPS(1)の負荷分担(出力電流)を下げ、他のUPS(2〜n)の負荷分担(出力電流)をあげる。その結果、図2(c)で示すように、第1USP(1)の整流器電流は、時間T1までの間、負荷電流分が少なく、電力補償装置充電電流分が大きな割合となる。   As shown in FIG. 2A, until the time T1, the charge capacity of the first UPS (1) is low, so that the direct current value is larger than the other UPS (2 to n). For this reason, as shown in FIG. 2B, the load sharing (output current) of the first UPS (1) is lowered, and the load sharing (output current) of the other UPS (2 to n) is increased. As a result, as shown in FIG. 2C, the rectifier current of the first USP (1) has a small amount of load current and a large proportion of the power compensator charging current until time T1.

時間T1以降は、第1UPS(1)2に接続された電力補償装置6の充電状態が改善され、充電が完了する時間T2以降では、他のUPS(2〜n)と同等の負荷分担状態となる。   After time T1, the state of charge of the power compensator 6 connected to the first UPS (1) 2 is improved, and after time T2 when charging is completed, the load sharing state equivalent to the other UPS (2-n) Become.

このように、並列接続された各UPS(1〜n)2における各電力補償装置6への直流電流と直流電圧を検出し、その直流電流と直流電圧をもとに、その充電容量を把握する。電力補償装置6の充電を行う際に、その充電容量が低い場合は、この電力補償装置6が接続されたUSP2の負荷分担を下げることにより、整流器4の出力電流は負荷電流の割合が低下され、その分電力補償装置6への充電電流を増すことが可能となり、充電時間が低減される。   Thus, the DC current and DC voltage to each power compensation device 6 in each UPS (1 to n) 2 connected in parallel are detected, and the charge capacity is grasped based on the DC current and DC voltage. . When the power compensation device 6 is charged and its charge capacity is low, the load share of the rectifier 4 is reduced by reducing the load sharing of the USP 2 to which the power compensation device 6 is connected. Accordingly, it becomes possible to increase the charging current to the power compensator 6, and the charging time is reduced.

一方、商用電源の停電などにより各USP2の上位側に電力喪失が生じると、各USP2は、対応する電力補償装置6からインバータ5に直流電力を供給し、これに基づいて負荷7が要求する電力を供給するバックアップ運転を行う。このとき、各UPS2に接続された電力補償装置6の充電状態はそれぞれ検出されているので、充電容量の低い電力補償装置6が接続されたUPS2に対しては、負荷7への電力供給分担を下げて対応する電力補償装置6からの供給電流を減少させる。この分担減少分は他のUPS2の分担をあげることで負荷7が要求する電力を確保する。   On the other hand, when power loss occurs on the upper side of each USP 2 due to a power failure or the like of the commercial power supply, each USP 2 supplies DC power from the corresponding power compensator 6 to the inverter 5, and based on this, the power required by the load 7 Backup operation is performed. At this time, since the charging state of the power compensator 6 connected to each UPS 2 is detected, the power supply sharing to the load 7 is shared with respect to the UPS 2 connected to the power compensator 6 having a low charging capacity. The supply current from the corresponding power compensator 6 is decreased to decrease. This reduced share secures the power required by the load 7 by increasing the share of the other UPS 2.

すなわち、複数台並列接続されている各UPS2の直流電圧V1,・・・,Vnを検知し、直流電圧が低い場合は、その電力補償装置6の残容量が低いと判断する。そして、この電力補償装置6が接続されたUPS2のインバータ5を制御して負荷分担を下げ、インバータ5の一次側の直流電流を低減させる。そのため、電力補償装置6の負担容量も低減され、放電時間を延長することが可能となり、電力補償装置6の残容量が少ないUPS2も、その他のUPS2と同レベルの放電時間を確保でき、無停電電源システム全体のシステム容量を低減させることがない。   That is, when the DC voltages V1,..., Vn of the UPSs 2 connected in parallel are detected and the DC voltage is low, it is determined that the remaining capacity of the power compensator 6 is low. Then, the load sharing is reduced by controlling the inverter 5 of the UPS 2 to which the power compensation device 6 is connected, and the DC current on the primary side of the inverter 5 is reduced. Therefore, the burden capacity of the power compensator 6 is also reduced, the discharge time can be extended, and the UPS 2 with a small remaining capacity of the power compensator 6 can secure the same discharge time as the other UPS 2 so that there is no power failure. The system capacity of the entire power supply system is not reduced.

図3に、n台並列接続された無停電電源システムにおいて、1号機である第1USP(1)の直流電圧が低い場合の、分担制御例のタイムチャートを示す。   FIG. 3 shows a time chart of an example of sharing control when the DC voltage of the first USP (1) that is the first unit is low in the n uninterruptible power supply systems connected in parallel.

すなわち、第1UPS(1)に接続された電力補償装置6の残容量が低いために、図3(a)(c)で示すように、時間T4までは、直流電圧及び直流電流の変化の度合いが他のUPS(2〜n)に比べて大きい。このため、このままでは、第1UPS(1)のみが早期に故障解列されてしまい、無停電電源システム全体のシステム容量が低減してしまう。   That is, since the remaining capacity of the power compensator 6 connected to the first UPS (1) is low, as shown in FIGS. 3A and 3C, the degree of change in the DC voltage and DC current until time T4. Is larger than other UPS (2-n). For this reason, in this state, only the first UPS (1) is quickly fault-disconnected, and the system capacity of the entire uninterruptible power supply system is reduced.

そこで、図3(b)で示すように、時間T4以降、第1UPS(1)の負荷分担(出力電流)を下げ、他のUPS(2〜n)の負荷分担(出力電流)をあげる。その結果、図3(a)(c)で示すように、第1USP(1)の直流電圧及び直流電流の変化の度合いが緩やかになり、時間T6において他のUPS(2〜n)と同等の状態になる。すなわち、従来のように、第1UPS(1)のみが早期に故障解列されることはなく、無停電電源システム全体のシステム容量を長期間にわたって維持することができる。   Therefore, as shown in FIG. 3B, after time T4, the load sharing (output current) of the first UPS (1) is lowered and the load sharing (output current) of the other UPS (2 to n) is increased. As a result, as shown in FIGS. 3A and 3C, the degree of change in the DC voltage and DC current of the first USP (1) becomes gradual and is equivalent to the other UPS (2 to n) at time T6. It becomes a state. In other words, unlike the conventional case, only the first UPS (1) is not quickly disconnected, and the system capacity of the entire uninterruptible power supply system can be maintained over a long period of time.

このように、並列接続された各UPS(1〜n)2における各電力補償装置6への直流電流と直流電圧を検出し、その直流電流と直流電圧をもとに、その充電容量を把握する。無停電電源システムの上位側の電源喪失時には、各UPS(1〜n)2は対応する電力補償装置6より電力供給されるが、その際に充電容量が低い電力補償装置6が接続されているUPS(1)2については、その負荷分担を下げることにより、電力補償装置6からの放電時間を他のUPS(2〜n)2と合わせることができる。したがって、充電容量低下によりUPS(1)2が故障解列し、システム容量が低下するという事態を避けることができる。   Thus, the DC current and DC voltage to each power compensation device 6 in each UPS (1 to n) 2 connected in parallel are detected, and the charge capacity is grasped based on the DC current and DC voltage. . When the power supply on the upper side of the uninterruptible power supply system is lost, each UPS (1 to n) 2 is supplied with power from the corresponding power compensator 6, and at that time, the power compensator 6 having a low charging capacity is connected. As for UPS (1) 2, the discharge time from the power compensator 6 can be matched with other UPS (2 to n) 2 by reducing the load sharing. Therefore, it is possible to avoid a situation in which the UPS (1) 2 breaks down due to a decrease in charge capacity and the system capacity decreases.

本発明による無停電電源システムの一実施の形態を示しており、(a)はシステム構成図、(b)は負荷分担制御部分のブロック図である。1 shows an embodiment of an uninterruptible power supply system according to the present invention, where (a) is a system configuration diagram and (b) is a block diagram of a load sharing control portion. 同上一実施の形態における通常運転時における負荷分担制御例を示すタイムチャートである。It is a time chart which shows the example of load sharing control at the time of the normal driving | operation in one Embodiment same as the above. 同上一実施の形態におけるバックアップ運転時における負荷分担制御例を示すタイムチャートである。It is a time chart which shows the example of load sharing control at the time of the backup driving | operation in one Embodiment same as the above. 従来の通常運転時における負荷分担制御例を示すタイムチャートである。It is a time chart which shows the example of load sharing control at the time of the conventional normal driving | operation. 従来のバックアップ運転時における負荷分担制御例を示すタイムチャートである。It is a time chart which shows the example of load sharing control at the time of the conventional backup driving | operation.

符号の説明Explanation of symbols

2 無停電電源装置(UPS)
4 整流器
5 インバータ
6 電力補償装置
7 負荷
21 充電状態監視手段として機能する直流電圧検出手段
22 充電状態監視手段として機能する直流電流検出手段
23 負荷分担制御手段
2 Uninterruptible power supply (UPS)
4 Rectifier 5 Inverter 6 Power Compensation Device 7 Load 21 DC Voltage Detection Unit 22 Acting as Charging State Monitoring Unit DC Current Detection Unit 23 Acting as Charging State Monitoring Unit Load Sharing Control Unit

Claims (4)

交流を直流に変換する整流器と、この整流器により整流された直流を交流に逆変換するインバータとを有し、前記整流器からインバータへの直流部に電力補償装置が接続された無停電電源装置を、複数台並列接続して負荷に電力を供給する電力供給方法であって、
前記複数台の無停電電源装置が、整流器からの直流電力により対応する電力補償装置を充電しつつ、対応するインバータから交流出力し、前記負荷が要求する電力を互いに分担して供給する通常運転時において、
前記複数台の無停電電源装置毎に設けられた各電力補償装置の充電状態をそれぞれ検出し、充電容量の低い電力補償装置を接続した無停電電源装置に対しては、前記負荷への電力供給分担を下げて電力補償装置への充電電流を増加させ、
この分担減少分を他の無停電電源装置の分担をあげることで負荷が要求する電力を確保する
ことを特徴とする電力供給方法。
An uninterruptible power supply having a rectifier that converts alternating current into direct current and an inverter that reversely converts direct current rectified by the rectifier into alternating current, and a power compensation device connected to the direct current portion from the rectifier to the inverter, A power supply method for connecting multiple units in parallel and supplying power to a load,
In normal operation, the plurality of uninterruptible power supply units charge the corresponding power compensator with DC power from the rectifier, AC output from the corresponding inverter, and share the power required by the load with each other In
Supplying power to the load for the uninterruptible power supply device that detects the charging state of each power compensation device provided for each of the plurality of uninterruptible power supply devices and connects the power compensation device with a low charge capacity Decreasing the share to increase the charging current to the power compensation device,
A power supply method characterized by securing the power required by the load by increasing the share of the uninterruptible power supply by sharing the reduced share.
交流を直流に変換する整流器と、この整流器により整流された直流を交流に逆変換するインバータとを有し、前記整流器からインバータへの直流部に電力補償装置が接続された無停電電源装置を、複数台並列接続して負荷に電力を供給する電力供給方法であって、
前記無停電電源装置の上位側電力喪失により、各無停電電源装置が、対応する電力補償装置からインバータに供給される直流電力に基づき、前記負荷が要求する電力を互いに分担して供給するバックアップ運転時において、
前記複数台の無停電電源装置毎に設けられた電力補償装置の充電状態をそれぞれ監視し、充電容量の低い電力補償装置に接続された無停電電源装置に対しては、前記負荷への電力供給分担を下げて電力補償装置からの供給電流を減少させ、
この分担減少分を他の無停電電源装置の分担をあげることで負荷が要求する電力を確保する
ことを特徴とする電力供給方法。
An uninterruptible power supply having a rectifier that converts alternating current into direct current and an inverter that reversely converts direct current rectified by the rectifier into alternating current, and having a power compensation device connected to the direct current portion from the rectifier to the inverter, A power supply method for connecting multiple units in parallel and supplying power to a load,
Backup operation in which each uninterruptible power supply unit shares the power required by the load with each other based on the DC power supplied from the corresponding power compensator to the inverter due to the loss of upper power of the uninterruptible power supply unit At times
The power compensation device provided for each of the plurality of uninterruptible power supply devices is monitored for charge, and the power supply to the load is supplied to the uninterruptible power supply device connected to the power compensation device having a low charge capacity. Decreasing the share and reducing the supply current from the power compensation device,
A power supply method characterized by securing the power required by the load by increasing the share of the uninterruptible power supply with this share reduction.
交流を直流に変換する整流器と、この整流器により整流された直流を交流に逆変換するインバータとを有し、前記整流器からインバータへの直流部に電力補償装置が接続された無停電電源装置を、複数台並列接続して負荷に電力を供給する無停電電源システムであって、
前記複数台の無停電電源装置毎に設けられた電力補償装置の充電状態をそれぞれ検出する充電状態検出手段と、
この充電状態検出手段による検出の結果、充電容量の低い電力補償装置が接続された無停電電源装置に対しては、前記負荷への電力供給分担を下げ、この分担減少分を他の無停電電源装置の分担をあげる負荷分担制御手段と、
を備えたことを特徴とする無停電電源システム。
An uninterruptible power supply having a rectifier that converts alternating current into direct current and an inverter that reversely converts direct current rectified by the rectifier into alternating current, and a power compensation device connected to the direct current portion from the rectifier to the inverter, An uninterruptible power supply system that supplies power to a load by connecting multiple units in parallel,
Charge state detection means for detecting the state of charge of each power compensation device provided for each of the plurality of uninterruptible power supply devices;
As a result of the detection by the charging state detection means, for the uninterruptible power supply device to which the power compensation device having a low charge capacity is connected, the share of power supply to the load is lowered, and this reduced share is reduced to other uninterruptible power supplies. Load sharing control means for increasing the sharing of the device;
An uninterruptible power supply system characterized by comprising
充電電力検出手段は、電力補償装置の直流電流及び直流電圧を検出し、それらの値により充電状態を判断することを特徴とする請求項3に記載の無停電電源システム。   4. The uninterruptible power supply system according to claim 3, wherein the charging power detection means detects a direct current and a direct current voltage of the power compensator and determines the state of charge based on these values.
JP2004180799A 2004-06-18 2004-06-18 Power supply method and uninterruptible power supply system Pending JP2006006045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180799A JP2006006045A (en) 2004-06-18 2004-06-18 Power supply method and uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180799A JP2006006045A (en) 2004-06-18 2004-06-18 Power supply method and uninterruptible power supply system

Publications (1)

Publication Number Publication Date
JP2006006045A true JP2006006045A (en) 2006-01-05

Family

ID=35773969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180799A Pending JP2006006045A (en) 2004-06-18 2004-06-18 Power supply method and uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP2006006045A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330073A (en) * 2006-06-09 2007-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power source system
WO2013058763A1 (en) * 2011-10-21 2013-04-25 Schneider Electric It Corporation Adaptive load sharing of parallel inverters system
CN104617656A (en) * 2015-01-15 2015-05-13 固安信通信号技术股份有限公司 Non-switching-connector type power supply device for rail transit
JP2016127753A (en) * 2015-01-07 2016-07-11 株式会社東芝 Load controller, load control method and computer program
JP2018191393A (en) * 2017-04-28 2018-11-29 山洋電気株式会社 Parallel connection storage battery system and control device thereof
CN110492511A (en) * 2019-08-29 2019-11-22 广东电网有限责任公司 A kind of distribute-electricity transformer district overload compensation device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330073A (en) * 2006-06-09 2007-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power source system
WO2013058763A1 (en) * 2011-10-21 2013-04-25 Schneider Electric It Corporation Adaptive load sharing of parallel inverters system
US9667069B2 (en) 2011-10-21 2017-05-30 Schneider Electric It Corporation Adaptive load sharing of parallel inverters system
JP2016127753A (en) * 2015-01-07 2016-07-11 株式会社東芝 Load controller, load control method and computer program
CN104617656A (en) * 2015-01-15 2015-05-13 固安信通信号技术股份有限公司 Non-switching-connector type power supply device for rail transit
CN104617656B (en) * 2015-01-15 2017-08-01 固安信通信号技术股份有限公司 A kind of track traffic electric supply installation without two-way contact
JP2018191393A (en) * 2017-04-28 2018-11-29 山洋電気株式会社 Parallel connection storage battery system and control device thereof
CN110492511A (en) * 2019-08-29 2019-11-22 广东电网有限责任公司 A kind of distribute-electricity transformer district overload compensation device and method

Similar Documents

Publication Publication Date Title
JP6123896B2 (en) Power system
CN101459349B (en) Battery load allocation in parallel-connected uninterruptible power supply system
US8484491B2 (en) Power supply apparatus and power supply control method
US20130119768A1 (en) Power supply having redundant power
EP3447892B1 (en) Power supply system
US20140082393A1 (en) Hot Swapping Type Uninterruptible Power Supply Module
US11611232B2 (en) Systems and methods for providing direct current and alternating current from a power supply to a load
US20190004578A1 (en) Electronic device
US7166989B2 (en) Power supply system for supplying power to an electronic apparatus
JP2006006045A (en) Power supply method and uninterruptible power supply system
JP5819783B2 (en) Uninterruptible power supply system
US11258297B2 (en) Inverter control strategy for a transient heavy load
JP4487210B2 (en) Uninterruptible power system
JP5667915B2 (en) DC power supply
US10886843B2 (en) Electric power supplying system
JP7179995B2 (en) ELECTRICAL DEVICE, POWER SUPPLY SYSTEM AND METHOD FOR MANUFACTURING ELECTRICAL DEVICE
JP5426440B2 (en) DC power supply system
US10491037B2 (en) Uninterruptable power supply system
JP4497760B2 (en) Uninterruptible power supply system
JP2500592B2 (en) Uninterruptible power system
KR20170010030A (en) Uninterruptible power sypply and method for extending battery life
KR100984323B1 (en) Single phase or three phase input - single phase output uninterruptible power supply and method for charging power to battery
JPS63148836A (en) Battery charger
KR20160087639A (en) Uninterruptible power sypply and method for extending battery life
JP2011166955A (en) Uninterruptible power supply system