JP2006005800A - Piezoelectric speaker - Google Patents

Piezoelectric speaker Download PDF

Info

Publication number
JP2006005800A
JP2006005800A JP2004181815A JP2004181815A JP2006005800A JP 2006005800 A JP2006005800 A JP 2006005800A JP 2004181815 A JP2004181815 A JP 2004181815A JP 2004181815 A JP2004181815 A JP 2004181815A JP 2006005800 A JP2006005800 A JP 2006005800A
Authority
JP
Japan
Prior art keywords
piezoelectric
conductive
layers
electrode
piezoelectric speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004181815A
Other languages
Japanese (ja)
Inventor
Norikazu Sashita
則和 指田
Shigeo Ishii
茂雄 石井
Hiroshi Hamada
浩 浜田
Yoshiyuki Watabe
嘉幸 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2004181815A priority Critical patent/JP2006005800A/en
Priority to US11/154,149 priority patent/US20060028097A1/en
Priority to CN200510077322.7A priority patent/CN1710994A/en
Publication of JP2006005800A publication Critical patent/JP2006005800A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric speaker with a low profile wherein a power loss can be reduced by decreasing a contact resistance without deteriorating the sound quality. <P>SOLUTION: A piezoelectric element 14 on the surface of which an electrode layer is provided is adhered to a principal face of a diaphragm 12 of the piezoelectric speaker 10. The piezoelectric element 14 is formed to have a structure wherein at least three or more piezoelectric layers 16 and electrode layers 16 are alternately laminated to obtain a sufficient drive force. A conduction path 20 comprising a belt-like metallic foil and on the rear side of which an adhesive layer 22 is provided is provided to the surface of the electrode layer 16. Further, it does not matter whether or not the adhesive layer 22 has conductivity. Conductive paste with low rigidity and a high volume resistivity is coated over the conduction path 20 and the surface of the electrode layer 16 to form conductive layers 24 to 26 whose Young's modulus is 100 MPs or below and whose volume resistivity is 6 × 10<SP>-3</SP>Ωcm or below. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電スピーカに関し、更に具体的には、薄型の圧電スピーカの電力ロス及び音圧低下の改善に関するものである。   The present invention relates to a piezoelectric speaker, and more specifically to improvement of power loss and sound pressure drop of a thin piezoelectric speaker.

従来、例えば、厚さ1mm以下の超薄型圧電スピーカは、金属製の振動板の片面あるいは両面に、板厚方向に分極した圧電体素子(圧電体薄板)を貼り付けた構造となっている。十分な音圧を得るためには、この圧電体素子を、圧電体(圧電層)と電極層を積層した積層体とする必要がある。そのため、電極を同時焼成する必要があり、焼成に耐えうる材料として銀/パラジウム合金電極を用いている。そして、圧電体表面の電極に信号を印加するための導電路として、厚さ0.1mm以下の導電性粘着材つきの金属箔を用いてスピーカ全体としての薄さを確保している(例えば、以下の特許文献1)。また、コストを下げるために電極中のパラジウム比率を下げる方法が有効であることから、低温で焼結する圧電体を用いることで、例えば、銀/パラジウム比を9:1程度としている。ただし、このようなパラジウム含有量を下げた電極では、収縮が母材である圧電体よりも低温で進むため、焼結中に収縮の不整合で発生する応力により、圧電素子が変形したり破壊したりしてしまう。そこで、電極中に母材と同じ圧電体材料を添加し、収縮率の整合を取る方法が用いられている。
特開2003−078995公報
Conventionally, for example, an ultra-thin piezoelectric speaker having a thickness of 1 mm or less has a structure in which a piezoelectric element (piezoelectric thin plate) polarized in the thickness direction is attached to one or both surfaces of a metal diaphragm. . In order to obtain a sufficient sound pressure, the piezoelectric element needs to be a laminated body in which a piezoelectric body (piezoelectric layer) and an electrode layer are laminated. Therefore, it is necessary to fire the electrodes simultaneously, and a silver / palladium alloy electrode is used as a material that can withstand the firing. As a conductive path for applying a signal to the electrode on the surface of the piezoelectric body, a thin metal foil with a conductive adhesive material having a thickness of 0.1 mm or less is ensured as a whole speaker (for example, below) Patent Document 1). Further, since a method of reducing the palladium ratio in the electrode is effective for reducing the cost, for example, the silver / palladium ratio is set to about 9: 1 by using a piezoelectric body that is sintered at a low temperature. However, in such an electrode with a reduced palladium content, since the shrinkage proceeds at a lower temperature than the base piezoelectric material, the piezoelectric element may be deformed or broken due to the stress generated by shrinkage mismatch during sintering. I will do. Therefore, a method is used in which the same piezoelectric material as the base material is added to the electrode to match the shrinkage rate.
JP 2003-078995 A

しかしながら、以上のように電極に添加された圧電体材料は、焼結中に金属から排除されてしまうため、圧電素子の外部電極では、電極表面に圧電体材料の粒子が析出してしまう。圧電体材料自身は不導体であるため、析出粒子によって接触抵抗が高くなり、接触部分で消費される電力が大きくなる。従って、有効に音に変換されるエネルギーが小さくなり、変換効率が低下するという問題がある。また、この問題を回避するために、導電路(金属箔)の面積を増やし、接触抵抗を低下させる方法もあるが、この方法では、導電路が振動板の振動を阻害してしまうため、共振周波数が高くなり、音圧が下がってしまうという不都合がある。   However, since the piezoelectric material added to the electrode as described above is excluded from the metal during the sintering, particles of the piezoelectric material are deposited on the electrode surface in the external electrode of the piezoelectric element. Since the piezoelectric material itself is a nonconductor, the contact resistance is increased by the precipitated particles, and the power consumed at the contact portion is increased. Therefore, there is a problem that energy that is effectively converted into sound is reduced, and conversion efficiency is lowered. In order to avoid this problem, there is a method of increasing the area of the conductive path (metal foil) and reducing the contact resistance. However, in this method, the conductive path interferes with the vibration of the diaphragm. There is an inconvenience that the frequency increases and the sound pressure decreases.

本発明は、以上の点に着目したもので、その目的は、音質を劣化させることなく接触抵抗を低くして電力ロスの低減を図ることができる薄型の圧電スピーカを提供することである。   The present invention focuses on the above points, and an object of the present invention is to provide a thin piezoelectric speaker that can reduce power loss by reducing contact resistance without deteriorating sound quality.

前記目的を達成するため、本発明は、圧電体の少なくとも一方の主面に電極層を備えた圧電素子と、該圧電素子の他方の主面側に貼着された振動板を含む圧電スピーカであって、前記圧電素子の電極層同士,あるいは、前記圧電素子のいずれか一方の電極層と外部回路とを導電接続するとともに、裏面に設けられた粘着材層によって、前記電極層に固着される帯状金属箔からなる導電路,導電ペーストの塗布により形成されており、前記電極層の表面から前記導電路の上面にわたって設けられたヤング率100MPa以下,かつ、体積抵抗率6×10−3Ωcm以下の導電層,を備えたことを特徴とする。 In order to achieve the above object, the present invention provides a piezoelectric speaker including a piezoelectric element having an electrode layer on at least one main surface of a piezoelectric body, and a diaphragm attached to the other main surface side of the piezoelectric element. In addition, the electrode layers of the piezoelectric elements or one of the electrode layers of the piezoelectric elements and an external circuit are conductively connected, and are fixed to the electrode layers by an adhesive material layer provided on the back surface. A conductive path made of a strip-shaped metal foil, formed by coating a conductive paste, has a Young's modulus of 100 MPa or less and a volume resistivity of 6 × 10 −3 Ωcm or less provided from the surface of the electrode layer to the upper surface of the conductive path A conductive layer.

主要な形態の一つは、前記電極層表面と導電層との接触面積,ならびに、前記導電路と導電層との接触面積が、それぞれ0.8mm以上であり、前記導電層の厚みが0.01mm以上であることを特徴とする。他の形態は、前記電極層表面と導電層との接触面積が、好ましくは、20mm以下であることを特徴とする。また、前記振動板の直径が10mm〜50mmであることを特徴とする。 One of the main forms is that the contact area between the electrode layer surface and the conductive layer and the contact area between the conductive path and the conductive layer are each 0.8 mm 2 or more, and the thickness of the conductive layer is 0. .01 mm or more. In another embodiment, the contact area between the electrode layer surface and the conductive layer is preferably 20 mm 2 or less. The diameter of the diaphragm is 10 mm to 50 mm.

更に他の形態は、(1)前記振動板の少なくとも一方の主面に前記圧電素子を貼着した構造であること,(2)前記圧電素子が、圧電層と電極層を交互に複数積層した積層構造であること,(3)前記圧電素子が、少なくとも3層以上の圧電層を含むこと,を特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   Still another embodiment is (1) a structure in which the piezoelectric element is attached to at least one main surface of the diaphragm, and (2) the piezoelectric element has a plurality of alternately laminated piezoelectric layers and electrode layers. (3) The piezoelectric element includes at least three or more piezoelectric layers. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明は、振動板の主面に設けられた圧電素子の表面の電極層上に、裏面に粘着材層を設けた帯状金属箔からなる導電路を設けて、前記電極層同士あるいは電極層と外部回路との接続を行うとともに、剛性が低く体積抵抗率の高い導電ペーストを利用して、ヤング率100MPa以下,かつ、体積抵抗率6×10−3Ωcm以下の導電層を、前記電極層の表面から前記導電路の上面にかかるように形成することとした。このため、音質を劣化させることなく接触抵抗を低く保ち、信号の電力ロスを防いで効率の高い薄型の圧電スピーカを得ることができる。 In the present invention, a conductive path made of a strip-shaped metal foil having an adhesive material layer provided on the back surface is provided on the electrode layer on the surface of the piezoelectric element provided on the main surface of the diaphragm. A conductive layer having a Young's modulus of 100 MPa or less and a volume resistivity of 6 × 10 −3 Ωcm or less is formed using the conductive paste having a low rigidity and a high volume resistivity while connecting to an external circuit. The surface is formed so as to extend from the surface to the upper surface of the conductive path. For this reason, it is possible to obtain a thin piezoelectric speaker with high efficiency while maintaining low contact resistance without deteriorating sound quality and preventing power loss of signals.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。図1は、本発明の圧電スピーカの基本構造を示す図であり、図1(A)は実施形態1の平面図,図1(B)はその斜視図,図1(C)は導電路の裏面を示す斜視図,図1(D)は実施形態2の平面図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples. FIG. 1 is a diagram showing a basic structure of a piezoelectric speaker according to the present invention. FIG. 1 (A) is a plan view of Embodiment 1, FIG. 1 (B) is a perspective view thereof, and FIG. FIG. 1D is a plan view of the second embodiment.

図1に示すように、本発明の圧電スピーカ10は、金属製の振動板12に、少なくとも一方の主面に電極層16を備えた積層圧電体による圧電素子14を貼り付けたものである。前記圧電スピーカ10は、前記圧電素子14を振動板12のいずれか一方の主面に設けたユニモルフ型であってもよいし、振動板12の両面に設けたバイモルフ型であってもよい。圧電スピーカ10の全体の厚さを1mm以下とするために、前記振動板12は、例えば厚さを0.1mm以下とする。また、十分な駆動力を得るために、圧電素子14は、少なくとも3層以上の圧電層を電極層と交互に積層した積層構造とし、総厚が0.1mmを越えないものとする。   As shown in FIG. 1, a piezoelectric speaker 10 of the present invention is obtained by attaching a piezoelectric element 14 made of a laminated piezoelectric material having an electrode layer 16 on at least one main surface to a metal diaphragm 12. The piezoelectric speaker 10 may be a unimorph type in which the piezoelectric element 14 is provided on one main surface of the diaphragm 12 or may be a bimorph type provided on both surfaces of the diaphragm 12. In order to make the total thickness of the piezoelectric speaker 10 1 mm or less, the diaphragm 12 has a thickness of 0.1 mm or less, for example. In order to obtain a sufficient driving force, the piezoelectric element 14 has a laminated structure in which at least three or more piezoelectric layers are alternately laminated with electrode layers, and the total thickness does not exceed 0.1 mm.

前記圧電素子14の層間及び表裏面の電極層16の材質としては、例えば、圧電体と同時焼成可能な、銀/パラジウム=9/1〜10/0の比率(モル比)の合金あるいは銀が利用される。電極層16は、合金(ないし銀)と圧電体粉末を、バインダーとともに適当な溶剤に加えてペーストとし、圧電体のグリーンシートに、例えば、スクリーン印刷法により形成する。このような圧電素子14の表面の電極層16に、裏面に粘着材層22が設けられた厚さ0.1mm以下の帯状の金属箔を貼り付ける。該金属箔により、前記電極層16同士や、該電極層16と外部回路を接続するための導電路20が形成される。なお、ここで用いる粘着材層22は、導電性のものでもよいし、非導電性のものであってもよい。ただし、導電性の粘着材層22を用いる場合には、振動板12との短絡を防ぐために、粘着材層22と振動板12が触れる部分に図示しない絶縁性のテープを貼るなど、絶縁するための処置を適宜講じる必要がある。   The material of the electrode layer 16 between the layers of the piezoelectric element 14 and the front and back surfaces is, for example, an alloy or silver of silver / palladium = 9/1 to 10/0 ratio (molar ratio) that can be fired simultaneously with the piezoelectric body. Used. The electrode layer 16 is formed by pasting an alloy (or silver) and piezoelectric powder into a paste by adding an appropriate solvent together with a binder to a piezoelectric green sheet by, for example, screen printing. A band-shaped metal foil having a thickness of 0.1 mm or less and having an adhesive layer 22 provided on the back surface is attached to the electrode layer 16 on the surface of the piezoelectric element 14. The metal foil forms conductive paths 20 for connecting the electrode layers 16 to each other and for connecting the electrode layers 16 and external circuits. The pressure-sensitive adhesive layer 22 used here may be conductive or non-conductive. However, in the case where the conductive adhesive layer 22 is used, in order to insulate, for example, an insulating tape (not shown) is attached to a portion where the adhesive layer 22 and the diaphragm 12 touch in order to prevent a short circuit with the diaphragm 12. It is necessary to take appropriate measures.

次いで、導電路20の上から、該導電路20上と前記電極層16の表面にわたるように、剛性が低く、体積抵抗率が低い導電ペーストを塗布し、導電層を形成する。導電ペーストの塗布形状は、例えば、図1(A)に示す圧電スピーカ10のように、円形の導電層24を2つ形成するようにしてもよいし、図1(D)に示す導電層26のように長方形にするなど、任意の形状としてよい。   Next, a conductive paste having a low rigidity and a low volume resistivity is applied from the conductive path 20 over the conductive path 20 and the surface of the electrode layer 16 to form a conductive layer. As for the application shape of the conductive paste, for example, two circular conductive layers 24 may be formed as in the piezoelectric speaker 10 shown in FIG. 1 (A), or the conductive layer 26 shown in FIG. 1 (D). It is good also as arbitrary shapes, such as making it a rectangle like.

前記導電層24ないし26としては、具体的には、ヤング率100MPa以下,かつ、体積抵抗率が6×10−3Ωcm以下の特性を満たすものが好適である。ヤング率が、前記値以上では、振動板12が変形するときの応力に耐えられず破壊してしまうし、振動板12の変位に対する抵抗となるため、音質の劣化を招く。例えば、以下の表1は、導電層として利用する導電ペーストのヤング率と圧電スピーカ10の駆動による破壊の有無の関係を示す一例である。使用ペーストAはポリエステル系,使用ペーストBはシリコーン系,使用ペーストCはエポキシ系,使用ペーストDはポリイミド系の樹脂を利用したものであり、いずれの使用ペーストも導電フィラーとして銀を含んでいる。

Figure 2006005800
表1から分かるように、使用ペーストB〜Dは、体積抵抗率は6×10−3Ωcm以下の条件を満たすものの、剛性が高すぎるため駆動によって破壊してしまう。 Specifically, the conductive layers 24 to 26 preferably have a Young's modulus of 100 MPa or less and a volume resistivity of 6 × 10 −3 Ωcm or less. When the Young's modulus is equal to or greater than the above value, the diaphragm 12 cannot withstand the stress when the diaphragm 12 is deformed and breaks, and becomes a resistance against the displacement of the diaphragm 12, thereby deteriorating sound quality. For example, Table 1 below is an example showing the relationship between the Young's modulus of a conductive paste used as a conductive layer and the presence or absence of breakage due to driving of the piezoelectric speaker 10. The used paste A uses polyester, the used paste B uses silicone, the used paste C uses epoxy, and the used paste D uses polyimide-based resin. Both used pastes contain silver as a conductive filler.
Figure 2006005800
As can be seen from Table 1, the used pastes B to D satisfy the condition that the volume resistivity is 6 × 10 −3 Ωcm or less, but are too high in rigidity so that they are destroyed by driving.

また、以下の表2には、導電ペーストによって図1(D)に示す形状の導電層26を形成し、導電ペーストのヤング率を変えた場合の音圧変化が示されている。

Figure 2006005800
表2の結果から分かるように、音圧劣化を例えば0.1dB以内におさめるためには、導電ペーストのヤング率は100MPaが上限であることがわかる。従って、駆動による破壊を防止し、音質の劣化を最小限にするためには、導電ペーストのヤング率を100MPa以下にするのが好ましいことが分かる。 Table 2 below shows changes in sound pressure when the conductive layer 26 having the shape shown in FIG. 1D is formed from the conductive paste and the Young's modulus of the conductive paste is changed.
Figure 2006005800
As can be seen from the results in Table 2, it can be seen that the upper limit of the Young's modulus of the conductive paste is 100 MPa in order to suppress the sound pressure degradation within, for example, 0.1 dB. Therefore, it can be seen that it is preferable to set the Young's modulus of the conductive paste to 100 MPa or less in order to prevent breakage due to driving and minimize deterioration of sound quality.

また、体積抵抗率が6×10−3Ωcm以上では、接触抵抗を十分小さくすることができない。導電ペーストの塗布形状は、上述したように、円形・長方形など任意の形状とすることができるが、導電路20に重なる部分と、電極層16に重なる部分の双方とも0.8mm以上となるようにする。これより小さい面積では、接触抵抗値が十分低くならない。また、ヤング率60MPaの導電ペーストを用いて、電極層16上の導電ペースト(導電層24ないし26)の塗布面積を変えた場合の音圧劣化が、以下の表3に示されている。表3に示す通り、面積が20mmよりも大きい場合に音圧劣化が0.1dBを越えるため、電極層16上の塗布面積は20mm以下であることが好ましい。なお、このような導電ペーストの塗布面積が音質に与える影響は、前記振動板12の直径が10〜50mm程度の比較的小型の圧電スピーカの場合に顕著となる。これは、比較的小型の圧電スピーカの場合は、振動板12の剛性が高くなるため、導電ペーストの影響を受けにくくなるからである。

Figure 2006005800
前記導電ペーストの塗布方法としては、例えば、印刷法,スプレー法など公知の各種の方法を用いることができる。また、導電層24又は26の厚みは、例えば、0.01mm(10μm)以上とする。これより厚みが少ないと、抵抗値が高くなり過ぎて安定した接触状態を形成できない。塗布後に導電ペーストを紫外線照射や加熱などの所定の方法で硬化させることにより、接触状態が安定した圧電スピーカ10を得ることができる。 Further, when the volume resistivity is 6 × 10 −3 Ωcm or more, the contact resistance cannot be sufficiently reduced. The application shape of the conductive paste can be any shape such as a circle or a rectangle as described above, but both the portion overlapping the conductive path 20 and the portion overlapping the electrode layer 16 are 0.8 mm 2 or more. Like that. In an area smaller than this, the contact resistance value is not sufficiently low. Table 3 below shows the sound pressure degradation when the application area of the conductive paste (conductive layers 24 to 26) on the electrode layer 16 is changed using a conductive paste having a Young's modulus of 60 MPa. As shown in Table 3, since the sound pressure deterioration exceeds 0.1 dB when the area is larger than 20 mm 2 , the coating area on the electrode layer 16 is preferably 20 mm 2 or less. Note that the effect of the application area of the conductive paste on the sound quality is remarkable in the case of a relatively small piezoelectric speaker having the diaphragm 12 having a diameter of about 10 to 50 mm. This is because, in the case of a relatively small piezoelectric speaker, the rigidity of the diaphragm 12 is increased, and therefore, it is less susceptible to the influence of the conductive paste.
Figure 2006005800
As a method for applying the conductive paste, various known methods such as a printing method and a spray method can be used. Moreover, the thickness of the conductive layer 24 or 26 shall be 0.01 mm (10 micrometers) or more, for example. If the thickness is less than this, the resistance value becomes too high to form a stable contact state. By curing the conductive paste by a predetermined method such as ultraviolet irradiation or heating after the application, the piezoelectric speaker 10 having a stable contact state can be obtained.

次に、本発明の実施例と比較例について説明する。図2には、実施例及び比較例の圧電スピーカの主要断面が示されている。まず、実施例1について説明すると、実施例1の圧電スピーカ30は、振動板32の表裏両面に、積層構造の圧電素子34及び40を貼り合わせたバイモルフ型となっており、前記圧電素子34,40の表面の電極層38A,44Aには、帯状金属箔からなる導電路46A,46Bが設けられている。前記振動板32としては、例えば、直径23mm,厚さ0.03mmの鉄−ニッケル合金が用いられる。前記圧電素子34は、3層の圧電層36A〜36Cと4層の電極層38A〜38Dを交互に積層した積層体であって、前記圧電層36A〜36Cとしては、例えば、直径19mm,厚さ0.018mm(18μm)のジルコン酸チタン酸鉛が用いられ、電極層36A〜36Cとしては、例えば、直径18.5mm,厚さ0.001mmの銀−パラジウム合金が用いられる。前記電極層38A〜38Dは、スルーホールなどにより互いに接続されている。他方の圧電素子40も、前記圧電素子34と同じ構成となっており、3層の圧電層42A〜42Cと、4層の電極層44A〜44Dが交互に積層された積層構造である。   Next, examples and comparative examples of the present invention will be described. FIG. 2 shows a main cross section of the piezoelectric speaker of the example and the comparative example. First, a description will be given of the first embodiment. The piezoelectric speaker 30 of the first embodiment is a bimorph type in which piezoelectric elements 34 and 40 having a laminated structure are bonded to both front and back surfaces of a diaphragm 32. The piezoelectric element 34, Conductive paths 46A and 46B made of a strip-shaped metal foil are provided on the electrode layers 38A and 44A on the surface of 40. As the diaphragm 32, for example, an iron-nickel alloy having a diameter of 23 mm and a thickness of 0.03 mm is used. The piezoelectric element 34 is a laminate in which three piezoelectric layers 36A to 36C and four electrode layers 38A to 38D are alternately stacked. The piezoelectric layers 36A to 36C have, for example, a diameter of 19 mm and a thickness. 0.018 mm (18 μm) lead zirconate titanate is used, and for example, a silver-palladium alloy having a diameter of 18.5 mm and a thickness of 0.001 mm is used as the electrode layers 36A to 36C. The electrode layers 38A to 38D are connected to each other by through holes or the like. The other piezoelectric element 40 has the same configuration as the piezoelectric element 34, and has a laminated structure in which three piezoelectric layers 42A to 42C and four electrode layers 44A to 44D are alternately laminated.

前記導電路46A,46Bは、導電性の粘着材層48A,48Bが裏面に設けられた銅箔であって、例えば、厚さ0.07mm,長さ10mm,幅2mmの寸法のものが用いられる。なお、前記粘着材層48A,48Bは、非導電性であってもよい。更に、前記振動板32の周辺部の金属が剥き出しになっている部分での短絡を防止するために、前記導電路46A,46Bの内側には、絶縁性テープ50A,50Bが貼り付けられている。そして、このような導電路46A,46Bの上から、銀を導電フィラーとするポリエステル系導電ペースト(品名:DW−250H−5,東洋紡(株)製,ヤング率:60MPa,体積抵抗:1×10−3Ωcm)を塗布し、導電層52A及び52Bを形成する。塗布形状は、図1(A)に示す形態のように、スプレー法により直径1.0mmの円形を2ヶ所とし、導電路46A(46B)および電極層38A(44A)上の面積をそれぞれ0.9mm,また、導電層52A,52Bの厚さを0.015mmとした。得られた圧電スピーカの導電路46A,46Bと、圧電体34,40の表面の電極層38A,44Aとの間の抵抗値を4端子法で測定し、結果を以下の表4に示した。 The conductive paths 46A and 46B are copper foils having conductive adhesive layers 48A and 48B provided on the back surface, and for example, those having dimensions of thickness 0.07 mm, length 10 mm, and width 2 mm are used. . The adhesive material layers 48A and 48B may be non-conductive. Furthermore, in order to prevent a short circuit in the portion where the metal around the diaphragm 32 is exposed, insulating tapes 50A and 50B are affixed inside the conductive paths 46A and 46B. . Then, from above the conductive paths 46A and 46B, a polyester conductive paste using silver as a conductive filler (product name: DW-250H-5, manufactured by Toyobo Co., Ltd., Young's modulus: 60 MPa, volume resistance: 1 × 10 −3 Ωcm) is applied to form conductive layers 52A and 52B. As in the form shown in FIG. 1A, the application shape is formed by setting a circular shape having a diameter of 1.0 mm at two locations by a spray method, and the areas on the conductive path 46A (46B) and the electrode layer 38A (44A) are set to 0. 9 mm 2, the conductive layer 52A, the thickness of the 52B was 0.015 mm. The resistance values between the conductive paths 46A and 46B of the obtained piezoelectric speaker and the electrode layers 38A and 44A on the surfaces of the piezoelectric bodies 34 and 40 were measured by a four-terminal method, and the results are shown in Table 4 below.

前記実施例1と同様の条件の導電ペーストを、導電路46A,46Bの上から印刷法にて塗布し、図1(D)に示す形態のように、1.6×4mmの長方形の導電層52A,52Bを形成した。なお、導電路46A(46B)と電極層38A(44A)上の面積は、それぞれ3.2mmとなるようにし、厚みを0.03mmとなるように制御した。作製した圧電スピーカの導電路46A,46Bと、電極層38A,44Aとの間の抵抗値を、前記実施例1と同様の条件で測定した。 A conductive paste having the same conditions as in Example 1 was applied by printing from above the conductive paths 46A and 46B, and a rectangular conductive layer of 1.6 × 4 mm as shown in FIG. 1D. 52A and 52B were formed. The areas on the conductive path 46A (46B) and the electrode layer 38A (44A) were controlled to 3.2 mm 2 and the thickness to 0.03 mm, respectively. The resistance value between the conductive paths 46A and 46B of the produced piezoelectric speaker and the electrode layers 38A and 44A was measured under the same conditions as in Example 1.

[比較例1]
上述した実施例1と同様の方法で、導電ペーストを用いないもの,すなわち、導電層52A,52Bを形成しない圧電スピーカを作製し、上述した方法で抵抗値の測定を行った。
[Comparative Example 1]
A piezoelectric speaker that does not use a conductive paste, that is, a piezoelectric speaker that does not form the conductive layers 52A and 52B, was manufactured in the same manner as in Example 1 described above, and the resistance value was measured by the method described above.

[比較例2]
前記実施例2との比較用に、導電層52A,52Bのヤング率を1000MPa,体積抵抗率を2×10−3Ωcm,厚みを0.02mmとした圧電スピーカを作製し、上述した方法で抵抗値の測定を行った。
[Comparative Example 2]
For comparison with Example 2, a piezoelectric speaker in which the Young's modulus of the conductive layers 52A and 52B was 1000 MPa, the volume resistivity was 2 × 10 −3 Ωcm, and the thickness was 0.02 mm was prepared. The value was measured.

[比較例3]
前記実施例1との比較用に、導電層52A,52Bのヤング率を40MPa,体積抵抗率を1×10−1Ωcmとした圧電スピーカを作製し、上述した方法で抵抗値の測定を行った。
[Comparative Example 3]
For comparison with Example 1, a piezoelectric speaker in which the Young's modulus of the conductive layers 52A and 52B was 40 MPa and the volume resistivity was 1 × 10 −1 Ωcm was produced, and the resistance value was measured by the method described above. .

[比較例4]
前記実施例2との比較用に、導電層52A,52Bの厚みを0.005mmとした圧電スピーカを作成し、上述した方法で抵抗値の測定を行った。
[Comparative Example 4]
For comparison with Example 2, a piezoelectric speaker in which the thickness of the conductive layers 52A and 52B was 0.005 mm was prepared, and the resistance value was measured by the method described above.

表4は、前記実施例1及び2と、比較例1〜4について、作製した圧電スピーカの導電路46A,46Bと、圧電素子34,40の表面の電極層38A,44Aとの間の接触抵抗の測定値を示したものである。

Figure 2006005800
Table 4 shows the contact resistance between the conductive paths 46A and 46B of the produced piezoelectric speaker and the electrode layers 38A and 44A on the surfaces of the piezoelectric elements 34 and 40 for Examples 1 and 2 and Comparative Examples 1 to 4. The measured values of are shown.
Figure 2006005800

この表4の結果を見ると、本発明の実施形態で規定する条件,すなわち、導電層52A,52Aのヤング率が100MPa以下,体積抵抗が6×10−3Ωcm以下,電極層38A(44A)と導電層52A(52B)との接触面積、ならびに、導電路46A(46B)と導電層52A(52B)との接触面積がそれぞれ0.8mm以上,導電層52A,52Bの厚みが0.01mm(10μm)以上,を満たす実施例1と実施例2においては、塗布形状に関わらず、接触抵抗がそれぞれ0.11Ω,0.08Ωという結果を示した。すなわち、接触抵抗を0.5Ω以下に保つことができ、信号の電力ロスを抑制して高効率の薄型圧電スピーカを実現できることが確認された。 Looking at the results in Table 4, the conditions defined in the embodiment of the present invention, that is, the Young's modulus of the conductive layers 52A and 52A is 100 MPa or less, the volume resistance is 6 × 10 −3 Ωcm or less, and the electrode layer 38A (44A) The contact area between the conductive layer 52A (52B) and the contact area between the conductive path 46A (46B) and the conductive layer 52A (52B) is 0.8 mm 2 or more, and the thickness of the conductive layers 52A and 52B is 0.01 mm. In Example 1 and Example 2 satisfying (10 μm) or more, the contact resistances were 0.11Ω and 0.08Ω, respectively, regardless of the coating shape. That is, it was confirmed that the contact resistance can be kept at 0.5Ω or less, and a high-efficiency thin piezoelectric speaker can be realized by suppressing the power loss of the signal.

これに対し、導電ペースト未使用の比較例1では、接触抵抗が4.22Ωと非常に大きくなった。また、実施例1との比較用の比較例3は、ヤング率は上述した条件を満たすものの、体積抵抗率が前記条件よりも大きく、接触抵抗は2.09Ωとなった。前記実施例2との比較用の比較例2は、厚み及び体積抵抗率は前記条件を満たすものの、ヤング率が前記条件よりも大きく、接触抵抗は1.86Ωとなった。同様に、実施例2との比較用の比較例4は、ヤング率及び体積抵抗率は前記条件を満たすものの、厚みが0.01mmよりも薄く、接触抵抗は3.33Ωを示した。以上の結果から、上述した範囲外の条件で作製した圧電スピーカでは、接触抵抗がいずれも1Ω以上となり、この部分での電力ロスが大きくなっていることが分かる。   On the other hand, in Comparative Example 1 in which no conductive paste was used, the contact resistance was very large at 4.22Ω. Further, in Comparative Example 3 for comparison with Example 1, the Young's modulus satisfies the above-described conditions, but the volume resistivity is larger than the above conditions, and the contact resistance is 2.09Ω. In Comparative Example 2 for comparison with Example 2, although the thickness and volume resistivity satisfy the above conditions, the Young's modulus is larger than the above condition, and the contact resistance is 1.86Ω. Similarly, in Comparative Example 4 for comparison with Example 2, the Young's modulus and volume resistivity satisfy the above conditions, but the thickness was thinner than 0.01 mm and the contact resistance was 3.33Ω. From the above results, it can be seen that in the piezoelectric speaker manufactured under the condition outside the above-described range, the contact resistance is 1Ω or more, and the power loss in this portion is large.

このように、少なくとも一方の主面に電極層を備えた圧電素子と振動板からなる圧電スピーカにおいて、裏面に粘着材層を設けた帯状金属箔からなる導電路によって、前記電極層同士あるいは電極層と外部回路との接続を行うとともに、剛性が低く体積抵抗率が高い導電ペーストを利用して、前記電極層の表面から前記導電路の上面にかかるように導電層を形成することとした。このため、音質を劣化させることなく接触抵抗を低く(例えば、0.5Ω以下)保ち、信号の電力ロスを防いで効率の高い薄型の圧電スピーカを得ることができる。   In this way, in a piezoelectric speaker comprising a piezoelectric element having an electrode layer on at least one main surface and a diaphragm, the electrode layers or electrode layers are formed by a conductive path made of a strip-shaped metal foil provided with an adhesive material layer on the back surface. The conductive layer is formed so as to extend from the surface of the electrode layer to the upper surface of the conductive path using a conductive paste having low rigidity and high volume resistivity. For this reason, it is possible to obtain a thin piezoelectric speaker with high efficiency while maintaining low contact resistance (for example, 0.5Ω or less) without deteriorating sound quality and preventing power loss of signals.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例に示した材料,形状,寸法は一例であり、同様の作用を奏するように適宜変更可能である。例えば、前記導電層24,26,52A,52Bの塗布形状は一例であり、上述した条件(面積,厚み)を満たすものであれば、塗布形状は適宜変更してよい。もちろん、導電路を設ける位置も任意に変更してよく、該導電路の位置に応じて適宜塗布形状を変更してよい。また、例えば、圧電スピーカがバイモルフ型の場合、一方の圧電素子の電極層上に形成される導電層と、他方の圧電素子の電極層上に形成される導電層の形状を異なるようにしてもよい。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
(1) The materials, shapes, and dimensions shown in the above-described embodiments are examples, and can be appropriately changed so as to achieve the same effect. For example, the coating shape of the conductive layers 24, 26, 52A, and 52B is an example, and the coating shape may be appropriately changed as long as the above-described conditions (area and thickness) are satisfied. Of course, the position where the conductive path is provided may be arbitrarily changed, and the application shape may be appropriately changed according to the position of the conductive path. For example, when the piezoelectric speaker is a bimorph type, the shape of the conductive layer formed on the electrode layer of one piezoelectric element may be different from the shape of the conductive layer formed on the electrode layer of the other piezoelectric element. Good.

(2)圧電層と電極層の積層数も必要に応じて変更してよい。前記実施例では、十分な駆動力を得るために、圧電層を3層積層することとしたが、積層体の総厚が0.1mmを越えないものであれば、更に多数積層することを妨げるものではない。また、内部電極層の接続構造なども必要に応じて適宜変更可能である。   (2) The number of stacked piezoelectric layers and electrode layers may be changed as necessary. In the above embodiment, three piezoelectric layers are laminated in order to obtain a sufficient driving force. However, if the total thickness of the laminated body does not exceed 0.1 mm, a large number of piezoelectric layers are prevented from being laminated. It is not a thing. Further, the connection structure of the internal electrode layers can be appropriately changed as necessary.

(3)前記実施例では、粘着材層48A,48Bとして導電性のものを利用することとしたが、非導電性のものを利用してもよい。   (3) In the above embodiment, the adhesive layers 48A and 48B are made of conductive materials, but non-conductive materials may be used.

(4)本発明の好適な応用例としては、携帯電話(PHS含む),携帯情報端末(PDA),ボイスレコーダ,PC(パソコン)などの各種電子機器のスピーカがある。もちろん、他の各種の用途に適用することを妨げるものではない。   (4) As a preferred application example of the present invention, there is a speaker of various electronic devices such as a mobile phone (including PHS), a personal digital assistant (PDA), a voice recorder, and a PC (personal computer). Of course, this does not prevent application to various other uses.

本発明によれば、振動板の主面に設けられた圧電素子の表面の電極層上に、裏面に粘着材層を設けた帯状金属箔からなる導電路を設けて、前記電極層同士あるいは電極層と外部回路との接続を行うとともに、剛性が低く体積抵抗率が高い導電ペーストを利用して、ヤング率100MPa以下,かつ、体積抵抗率6×10−3Ωcm以下の導電層を、前記電極層の表面から前記導電路の上面にかかるように形成することとした。このため、音質を劣化させることなく接触抵抗を低く保ち、信号のロスを防いで高効率を実現できるため、薄型の圧電スピーカの用途に適用できる。特に、厚さが1mm以下の超薄型圧電スピーカの用途に好適である。 According to the present invention, on the electrode layer on the surface of the piezoelectric element provided on the main surface of the diaphragm, a conductive path made of a strip-shaped metal foil having an adhesive material layer provided on the back surface is provided, and the electrode layers or electrodes are provided. A conductive layer having a Young's modulus of 100 MPa or less and a volume resistivity of 6 × 10 −3 Ωcm or less using a conductive paste having a low rigidity and a high volume resistivity, and connecting the layer to an external circuit. The layer is formed so as to extend from the surface of the layer to the upper surface of the conductive path. For this reason, the contact resistance can be kept low without deteriorating the sound quality, signal loss can be prevented, and high efficiency can be realized. Therefore, the present invention can be applied to thin piezoelectric speakers. In particular, it is suitable for an ultra-thin piezoelectric speaker having a thickness of 1 mm or less.

本発明の圧電スピーカの基本構造を示す図であり、(A)は実施形態1の平面図,(B)は実施形態1の斜視図,(C)は実施形態1の導電路の裏面を示す斜視図,(D)は実施形態2の平面図である。It is a figure which shows the basic structure of the piezoelectric speaker of this invention, (A) is a top view of Embodiment 1, (B) is a perspective view of Embodiment 1, (C) shows the back surface of the electrical conduction path of Embodiment 1. FIG. A perspective view and (D) are plan views of the second embodiment. 本発明の実施例の圧電スピーカの主要断面図である。It is principal sectional drawing of the piezoelectric speaker of the Example of this invention.

符号の説明Explanation of symbols

10:圧電スピーカ
12:振動板
14:圧電素子
16:電極層
20:導電路
22:粘着材層
24,26:導電層
30:圧電スピーカ
32:振動板
34,40:圧電素子
36A〜36C,42A〜42C:圧電層
38A〜38D,44A〜44D:電極層
46A,46B:導電路
48A,48B:粘着材層
50A,50B:絶縁性テープ
52A,52B:導電層

10: Piezoelectric speaker 12: Vibration plate 14: Piezoelectric element 16: Electrode layer 20: Conductive path 22: Adhesive material layer 24, 26: Conductive layer 30: Piezoelectric speaker 32: Vibration plate 34, 40: Piezoelectric elements 36A to 36C, 42A -42C: Piezoelectric layers 38A-38D, 44A-44D: Electrode layers 46A, 46B: Conductive paths 48A, 48B: Adhesive material layers 50A, 50B: Insulating tapes 52A, 52B: Conductive layers

Claims (7)

圧電体の少なくとも一方の主面に電極層を備えた圧電素子と、該圧電素子の他方の主面側に貼着された振動板を含む圧電スピーカであって、
前記圧電素子の電極層同士,あるいは、前記圧電素子のいずれか一方の電極層と外部回路とを導電接続するとともに、裏面に設けられた粘着材層によって、前記電極層に固着される帯状金属箔からなる導電路,
導電ペーストの塗布により形成されており、前記電極層の表面から前記導電路の上面にわたって設けられたヤング率100MPa以下,かつ、体積抵抗率6×10−3Ωcm以下の導電層,
を備えたことを特徴とする圧電スピーカ。
A piezoelectric speaker comprising a piezoelectric element having an electrode layer on at least one main surface of a piezoelectric body, and a diaphragm attached to the other main surface side of the piezoelectric element,
A band-shaped metal foil which is electrically connected to the electrode layers of the piezoelectric elements or one of the electrode layers of the piezoelectric elements and an external circuit, and is fixed to the electrode layers by an adhesive layer provided on the back surface. A conductive path consisting of,
A conductive layer formed by applying a conductive paste and having a Young's modulus of 100 MPa or less and a volume resistivity of 6 × 10 −3 Ωcm or less provided from the surface of the electrode layer to the upper surface of the conductive path;
A piezoelectric speaker characterized by comprising:
前記電極層表面と導電層との接触面積,並びに、前記導電路と導電層との接触面積が、それぞれ0.8mm以上であり、前記導電層の厚みが0.01mm以上であることを特徴とする請求項1記載の圧電スピーカ。 The contact area between the electrode layer surface and the conductive layer, and the contact area between the conductive path and the conductive layer are each 0.8 mm 2 or more, and the thickness of the conductive layer is 0.01 mm or more. The piezoelectric speaker according to claim 1. 前記電極層表面と導電層との接触面積が、好ましくは、20mm以下であることを特徴とする請求項2記載の圧電スピーカ。 The piezoelectric speaker according to claim 2, wherein a contact area between the electrode layer surface and the conductive layer is preferably 20 mm 2 or less. 前記振動板の直径が、10mm〜50mmであることを特徴とする請求項1〜3のいずれかに記載の圧電スピーカ。   The piezoelectric speaker according to claim 1, wherein the diaphragm has a diameter of 10 mm to 50 mm. 前記振動板の少なくとも一方の主面に前記圧電素子を貼着した構造であることを特徴とする請求項1〜4のいずれかに記載の圧電スピーカ。   The piezoelectric speaker according to any one of claims 1 to 4, wherein the piezoelectric speaker has a structure in which the piezoelectric element is attached to at least one main surface of the diaphragm. 前記圧電素子が、圧電層と電極層を交互に複数積層した積層構造であることを特徴とする請求項1〜5のいずれかに記載の圧電スピーカ。   The piezoelectric speaker according to claim 1, wherein the piezoelectric element has a laminated structure in which a plurality of piezoelectric layers and electrode layers are alternately laminated. 前記圧電素子が、少なくとも3層以上の圧電層を含むことを特徴とする請求項6記載の圧電スピーカ。

The piezoelectric speaker according to claim 6, wherein the piezoelectric element includes at least three piezoelectric layers.

JP2004181815A 2004-06-18 2004-06-18 Piezoelectric speaker Pending JP2006005800A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004181815A JP2006005800A (en) 2004-06-18 2004-06-18 Piezoelectric speaker
US11/154,149 US20060028097A1 (en) 2004-06-18 2005-06-16 Piezoelectric loudspeaker
CN200510077322.7A CN1710994A (en) 2004-06-18 2005-06-20 Piezoelectric loud speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181815A JP2006005800A (en) 2004-06-18 2004-06-18 Piezoelectric speaker

Publications (1)

Publication Number Publication Date
JP2006005800A true JP2006005800A (en) 2006-01-05

Family

ID=35707149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181815A Pending JP2006005800A (en) 2004-06-18 2004-06-18 Piezoelectric speaker

Country Status (2)

Country Link
JP (1) JP2006005800A (en)
CN (1) CN1710994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080962A1 (en) 2011-11-29 2013-06-06 東海ゴム工業株式会社 Polymer speaker
JP5646989B2 (en) * 2008-03-21 2014-12-24 日本碍子株式会社 Piezoelectric / electrostrictive element and manufacturing method thereof
KR20210023366A (en) * 2019-08-23 2021-03-04 김철희 loudspeaker apparatus of acoustic guitar

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012512B2 (en) 2005-12-27 2012-08-29 日本電気株式会社 Piezoelectric actuator and electronic device
CN105637898B (en) * 2014-09-26 2019-04-26 京瓷株式会社 Sound producer, flexible piezoelectric sound-generating devices and electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646989B2 (en) * 2008-03-21 2014-12-24 日本碍子株式会社 Piezoelectric / electrostrictive element and manufacturing method thereof
WO2013080962A1 (en) 2011-11-29 2013-06-06 東海ゴム工業株式会社 Polymer speaker
US8958581B2 (en) 2011-11-29 2015-02-17 Tokai Rubber Industries, Ltd. Polymer speaker
KR20210023366A (en) * 2019-08-23 2021-03-04 김철희 loudspeaker apparatus of acoustic guitar
KR102277583B1 (en) 2019-08-23 2021-07-13 김철희 loudspeaker apparatus of acoustic guitar

Also Published As

Publication number Publication date
CN1710994A (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP6395002B2 (en) Circuit board mounting structure of multilayer ceramic capacitor
KR101862422B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR101823174B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR101412940B1 (en) Multi-layered ceramic capacitor and mounting circuit of multi-layered ceramic capacitor
JP5804577B2 (en) Multilayer ceramic capacitor, its mounting substrate and manufacturing method
KR101823246B1 (en) Multi-layered ceramic electronic part and board for mounting the same
KR102076145B1 (en) Multi-layered ceramic electronic part, board for mounting the same and manufacturing method thereof
KR101548793B1 (en) Multi-layered ceramic capacitor, mounting circuit thereof and manufacturing method of the same
KR101499723B1 (en) Mounting circuit of multi-layered ceramic capacitor
KR101462746B1 (en) Multi-layered ceramic capacitor and mounting circuit having thereon multi-layered ceramic capacitor
WO2013094583A1 (en) Piezoelectric sound component and electronic device using the same
CN104465078A (en) Electronic component and method for manufacturing the same
KR20190036265A (en) Composite electronic component and board for mounting the same
CN111048309B (en) Electronic assembly
KR20140088366A (en) Multi-layered ceramic capacitor and mounting circuit having thereon multi-layered ceramic capacitor
TWI482184B (en) Multilayered ceramic capacitor and mounting structure of circuit board having multilayered ceramic capacitor mounted thereon
JP2012248846A (en) Mounting structure of circuit board of multilayer ceramic capacitor
JP2019041095A (en) Composite electronic component and mounting board thereof
KR20190072317A (en) Multi-layered ceramic capacitor and mounting circuit having thereon multi-layered ceramic capacitor
CN110895993A (en) Electronic assembly
JP2006005800A (en) Piezoelectric speaker
US20060028097A1 (en) Piezoelectric loudspeaker
KR102018310B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR102018311B1 (en) Multi-layered ceramic capacitor and board for mounting the same
JP2006005801A (en) Piezoelectric speaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602