JP2006004730A - Assembled sealing plate and battery - Google Patents

Assembled sealing plate and battery Download PDF

Info

Publication number
JP2006004730A
JP2006004730A JP2004179265A JP2004179265A JP2006004730A JP 2006004730 A JP2006004730 A JP 2006004730A JP 2004179265 A JP2004179265 A JP 2004179265A JP 2004179265 A JP2004179265 A JP 2004179265A JP 2006004730 A JP2006004730 A JP 2006004730A
Authority
JP
Japan
Prior art keywords
plate
bottom plate
shaped
valve body
sealing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004179265A
Other languages
Japanese (ja)
Inventor
Hiromasa Hiramatsu
宏正 平松
Yasuhiro Suzuki
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004179265A priority Critical patent/JP2006004730A/en
Publication of JP2006004730A publication Critical patent/JP2006004730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability of welding strength in connecting an assembled sealing plate composed of a positive electrode terminal cap, a valve body composed of a disciform metal thin plate which is broken at a prescribed pressure, a ring shaped valve body support plate, and a hat shaped bottom plate to electrically connect the positive electrode terminal cap and a positive electrode of a power generating element, with an electrode plate reed connected to the power generating element. <P>SOLUTION: In the assembled sealing plate, the disciform bottom plate 3 having a plurality of through-holes 3a in the vicinity of the center avoiding the center, a ring shaped stainless plate 5, the valve body 4 composed of the disciform metal thin plate which is broken at the prescribed pressure, a ring shaped PTC element plate 6, and a terminal cap 7 having a through-hole 7a are laminated in this order, and these are integrated by a ring shaped insulating gasket 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池およびその組立封口板に関し、特に正極端子キャップ、リング状のPTC素子板、所定の圧力で破断する円盤状の金属薄板からなる弁体、リング状のステンレス板、及び円盤状の底板からなり、発電要素から極板リードを介して底板に電気接続するようにした組立封口板に関するものである。   The present invention relates to a battery and an assembly sealing plate thereof, in particular, a positive terminal cap, a ring-shaped PTC element plate, a valve body made of a disk-shaped metal thin plate that breaks at a predetermined pressure, a ring-shaped stainless steel plate, and a disk-shaped The present invention relates to an assembly sealing plate which is composed of a bottom plate and is electrically connected to the bottom plate from a power generation element via an electrode plate lead.

一般に、リチウム電池等の組立封口板は、正極端子キャップ、所定の圧力で破断する円盤状の金属薄板からなる弁体、リング状の弁体支持板、及び正極端子キャップと発電要素の正極とを電気的に接続するハット状の底板とからなっている。そして、底板のツバ部に弁体と弁体支持板を重ねてツバ部が折り返して、底板と弁体と弁体支持板が一体化され、端子キャップと底板の凹部に透孔が設けられている。そして、負極端子を兼ねる電池ケースに発電要素を収容し、電池ケースの開口部にガスケットを介して前記の組立封口板を装着し、組立封口板の底板の凹部と発電要素の正極とを極板リードで接続し、電池ケースの開口部をかしめて電池が構成される。底板は、凹部にある透孔をさけて発電要素からの電気接続のために極板リードがスポット溶接等で接続される。ここで、溶接時の加圧力により塑性変形することのないように底板の厚みを確保することで、溶接部位および封口板の信頼性を確保している。   Generally, an assembly sealing plate such as a lithium battery includes a positive electrode terminal cap, a valve body made of a disk-shaped thin metal plate that is broken at a predetermined pressure, a ring-shaped valve body support plate, and a positive electrode terminal cap and a positive electrode of a power generation element. It consists of a hat-shaped bottom plate that is electrically connected. Then, the valve body and the valve body support plate are overlapped on the flange portion of the bottom plate, the flange portion is folded back, the bottom plate, the valve body, and the valve body support plate are integrated, and a through hole is provided in the recess of the terminal cap and the bottom plate. Yes. Then, the power generation element is accommodated in a battery case that also serves as a negative electrode terminal, the assembly sealing plate is attached to the opening of the battery case via a gasket, and the concave portion of the bottom plate of the assembly sealing plate and the positive electrode of the power generation element are connected to the electrode plate. The battery is configured by connecting with leads and caulking the opening of the battery case. The electrode plate lead is connected to the bottom plate by spot welding or the like for electrical connection from the power generation element while avoiding the through hole in the recess. Here, the reliability of the welded part and the sealing plate is ensured by ensuring the thickness of the bottom plate so as not to be plastically deformed by the applied pressure during welding.

このような封口板構造を備えた円筒型リチウム一次電池は、例えば特許文献1に記載されている。図4は、このような円筒型リチウム一次電池の要部断面図を示す。電池ケース21の内部に正極板、セパレータ、負極板を重ね合わせてスパイラル状に捲回した電池発電要素22が収容されている。ここで、正極板は二酸化マンガンの粉末等を金属製の芯材に充填した極板であり、セパレータはPP(ポリプロピレン)製、負極板は金属リチウムをシート状に加工したものである。また、電池ケース21内には有機電解液が注入されており、一例として溶媒はPC(プロピレンカーボネート)、DME(1,2−ジメトキシエタン)、溶質はLiCF3SO3(トリフルオロメタンスルホン酸リチウム)が用いられている。この電池発電要素22の上方部に、凹部に透孔23aの開いたステンレス製のハット状の底板23のツバ部で所定の圧力で破断するよう防爆機構を有するための金属薄板からなる弁体24と中央部に孔25aの開いたリング状のステンレス板25を重ね合わせたものをかしめて一体化させたものを最下部とし、その上部にリング状のPTC素子板26を載せ、さらにその上に正極端子キャップ27を積層配置したものを断面がコの字状で環状のガスケット28を挟んで電池ケース21の開口をかしめて構成される。そして、このハット状の底板23の透孔23aをさけて凹部の一部に、正極板に接続された極板リード29が1点または2点でスポット溶接されている。
実開平4−112459号公報
A cylindrical lithium primary battery having such a sealing plate structure is described in Patent Document 1, for example. FIG. 4 shows a cross-sectional view of the main part of such a cylindrical lithium primary battery. A battery power generation element 22 is housed inside the battery case 21 in which a positive electrode plate, a separator, and a negative electrode plate are overlapped and wound in a spiral shape. Here, the positive electrode plate is an electrode plate in which a metal core material is filled with manganese dioxide powder or the like, the separator is made of PP (polypropylene), and the negative electrode plate is obtained by processing metallic lithium into a sheet shape. In addition, an organic electrolyte is injected into the battery case 21. As an example, the solvent is PC (propylene carbonate), DME (1,2-dimethoxyethane), and the solute is LiCF 3 SO 3 (lithium trifluoromethanesulfonate). Is used. In the upper part of the battery power generation element 22, a valve body 24 made of a thin metal plate for having an explosion-proof mechanism to break at a predetermined pressure at a flange portion of a stainless steel hat-like bottom plate 23 having a through hole 23 a in a recess. The lower part is the one obtained by caulking and integrating the ring-shaped stainless steel plate 25 with a hole 25a in the center, and the ring-shaped PTC element plate 26 is placed on the upper part. A structure in which the positive electrode terminal caps 27 are stacked is configured by caulking the opening of the battery case 21 with an annular gasket 28 sandwiched in a U-shaped cross section. In addition, the electrode plate lead 29 connected to the positive electrode plate is spot-welded at one point or two points in a part of the concave portion so as to avoid the through hole 23a of the hat-shaped bottom plate 23.
Japanese Utility Model Publication No.4-112459

以上のような封口板構造では、例えば、極板リードの幅が狭かったり、ハット状底板の板厚が薄い場合は、溶接強度の信頼性を向上させるためにスポット溶接箇所を増やしたり、透孔の位置を変更して溶接部位を底板周辺部から中央部に変更をすることが好ましい。しかしながら、板厚が薄いと、溶接時の加圧による変位が大きく、溶接強度の信頼性の低下につながるため好ましくない。   In the sealing plate structure as described above, for example, when the width of the electrode plate lead is narrow or the thickness of the hat-shaped bottom plate is thin, the number of spot welds is increased in order to improve the reliability of the welding strength, It is preferable to change the position of the welding part from the peripheral part of the bottom plate to the central part. However, if the plate thickness is thin, displacement due to pressurization during welding is large, leading to a decrease in reliability of welding strength, which is not preferable.

一例としては、底板の板厚が0.2mmの場合、周辺部での1点スポット溶接を、中央部での2点スポット溶接に変更しようとすると、加圧力の負担増、また、ハット型形状の
底端部からの中央加圧点までの距離増大による加圧負担増により、スポット溶接時に底板が塑性変形することがわかった。
As an example, if the thickness of the bottom plate is 0.2 mm, changing the one-point spot welding at the peripheral part to the two-point spot welding at the central part will increase the burden of the pressing force, and will also be hat-shaped It was found that the bottom plate was plastically deformed during spot welding due to an increase in the pressure load due to an increase in the distance from the bottom end of the metal to the central pressure point.

そこで、この底板中央部での2点スポット溶接を塑性変形なく実現させるためには、底板の板厚を0.3mm以上にすればよいことがわかったが、ハット状のツバ部で弁体と弁体支持板を挟んで折り返したときの折り返し部の厚みが0.2mm増大するため底板全体としては0.3mmもの厚み増大につながり、極板リードが下方の電池発電要素部を強く圧迫するようになることで、極板間の内部ショートを誘発する可能性が大きくなるため好ましくない。   Therefore, in order to realize the two-point spot welding at the center of the bottom plate without plastic deformation, it has been found that the thickness of the bottom plate should be 0.3 mm or more. The thickness of the folded portion when the valve body support plate is folded back is increased by 0.2 mm, so that the entire bottom plate is increased by 0.3 mm, and the electrode plate lead strongly presses the lower battery power generation element portion. Since this increases the possibility of inducing an internal short circuit between the electrode plates, it is not preferable.

そこで本発明は、底板の厚みを例えば0.2mmから0.3mmに増しても、封口板がしめる体積を増大させることなく、スポット溶接箇所を例えば1点から2点に増やしたり、スポット溶接箇所を周辺部から中央部に変えることができる封口板構造およびそれを用いた電池を提供することを目的とする。   Therefore, the present invention increases the spot welding location from 1 point to 2 points, for example, without increasing the volume of the sealing plate even if the thickness of the bottom plate is increased from 0.2 mm to 0.3 mm, for example. An object of the present invention is to provide a sealing plate structure that can change the peripheral part from the peripheral part to the central part and a battery using the same.

上記従来の課題を解決するために、本発明の組立封口板は、中心を避けて中央付近に複数の透孔を有する円盤状の底板と、リング状のステンレス板と、所定の圧力で破断する円盤状の金属薄板からなる弁体と、リング状のPTC素子板と、透孔を有する端子キャップとをこの順に積層し、これらを環状絶縁性ガスケットにより一体化されたことを特徴とする。   In order to solve the above-described conventional problems, the assembly sealing plate of the present invention breaks at a predetermined pressure with a disc-shaped bottom plate having a plurality of through holes in the vicinity of the center, avoiding the center, and a ring-shaped stainless steel plate. A valve body made of a disk-shaped metal thin plate, a ring-shaped PTC element plate, and a terminal cap having a through hole are laminated in this order, and these are integrated by an annular insulating gasket.

また本発明の電池は、発電要素を収容してその一方の極性の端子を兼ねる電池ケース、および電池ケースの開口部に環状絶縁性ガスケットを含む組立封口板を具備し、前記組立封口板は、中心を避けて中央付近に複数の透孔を有する円盤状の底板と、リング状のステンレス板と、所定の圧力で破断する円盤状の金属薄板からなる弁体と、リング状のPTC素子板と、透孔を有する端子キャップとをこの順に積層して、これらが前記環状絶縁性ガスケットにより一体化されてなり、前記底板と前記発電要素の他方の極性の電極とが極板リードで接続されてなることを特徴とする。   The battery of the present invention includes a battery case that houses a power generation element and also serves as a terminal of one polarity, and an assembly sealing plate that includes an annular insulating gasket in an opening of the battery case, the assembly sealing plate includes: A disc-shaped bottom plate having a plurality of through holes in the vicinity of the center, avoiding the center, a ring-shaped stainless steel plate, a valve body made of a disc-shaped metal thin plate that breaks at a predetermined pressure, and a ring-shaped PTC element plate The terminal cap having a through hole is laminated in this order, and these are integrated by the annular insulating gasket, and the bottom plate and the electrode of the other polarity of the power generation element are connected by the electrode plate lead. It is characterized by becoming.

このような組立封口板を用いて電池を組み立てると、底板を円盤状とし、これにステンレス板と弁体とPTC素子板をこの順に積層しているので組立封口板のしめる体積を減少させることができるとともに、底板の厚みを増やすことによって極板リードとの溶接強度の信頼性を向上させることができる。   When a battery is assembled using such an assembly sealing plate, the bottom plate is formed into a disk shape, and the stainless plate, the valve body, and the PTC element plate are laminated in this order, so the volume of the assembly sealing plate can be reduced. In addition, the reliability of the welding strength with the electrode plate lead can be improved by increasing the thickness of the bottom plate.

なお、底板の透孔は、電池内部でのガス発生等により内部圧力が上昇した際にガスの放出を行うもので、これが円滑に行われるには0.5mm以上の孔径が好ましく、また、底板の中央付近に極板リードが溶接され、その溶接スペースを確保するうえで2mm以下の孔径が好ましい。また、底板が貼り合わされるリング状のステンレス板の開口は、底板の透孔のステンレス板への投影部分を囲むような大きさにすることで、内部圧力上昇時のガス放出がより確実となる。   The through-holes in the bottom plate release gas when the internal pressure rises due to gas generation inside the battery. To facilitate this, a hole diameter of 0.5 mm or more is preferable. An electrode plate lead is welded in the vicinity of the center, and a hole diameter of 2 mm or less is preferable in order to secure the welding space. Moreover, the opening of the ring-shaped stainless steel plate to which the bottom plate is bonded is sized so as to surround the projected portion of the through hole of the bottom plate on the stainless steel plate, so that the gas release when the internal pressure rises is more reliable. .

本発明によれば、底板の厚みを増大させても組立封口板のしめる体積を増大させることはなく、そのことにより底板への中央部、2点スポット溶接を可能にし、底板と極板リードの溶接強度、信頼性を向上させた電池を提供することができる。   According to the present invention, even if the thickness of the bottom plate is increased, the volume of the assembly sealing plate is not increased, thereby enabling two-point spot welding in the center portion of the bottom plate, and the bottom plate and the electrode plate lead. A battery with improved welding strength and reliability can be provided.

また、電池によっては、組立封口板のしめる体積の低減が可能となり、電池ケース内の電池発電要素のしめる体積を増すことで電池の容量増大を図ることもできる。   Further, depending on the battery, the volume of the assembly sealing plate can be reduced, and the capacity of the battery can be increased by increasing the volume of the battery power generation element in the battery case.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施例として、円筒型リチウム一次電池について説明する。図1は、本発明の一実施例の円筒型リチウム一次電池の要部断面図を示す。この電池は以下のようにして作製する。まず、有底円筒状の電池ケース1の内部に正極板、セパレータ、負極板を重ね合わせてスパイラル状に捲回し、その正極板に極板リード9が接続された電池発電要素2を収容するとともに、負極と電池ケース1とが接続される。ここで、正極板は二酸化マンガンの粉末等を金属製の芯材に充填した極板であり、セパレータはPP(ポリプロピレン)製、負極板は金属リチウムをシート状に加工したものである。次に、組立封口板を以下のようにして準備する。底板3とリング状のステンレス板5とを抵抗溶接または超音波溶接により貼り合わせ、さらにこのステンレス板5にアルミニウムの弁体4を重ねて高周波加熱により溶着固定する。底板3には、中心を避けて中央部分の8箇所に直径0.8mmの透孔3aが設けられており、その透孔3aをステンレス板5に投影した部分を囲むようにステンレス板5には直径9mmの開口5aが設けられている。そして、これにリング状のPTC素子板6と透孔7aが設けられた正極端子キャップ7を重ねて絶縁性樹脂からなる環状のガスケット8に挿入して組立封口板ができあがる。この組立封口板を電池ケース1に挿入するとともに、組立封口板の底板3に発電要素2の正極板に接続された極板リード9の端部を1点または2点でスポット溶接した後、有機電解液が注入される。有機電解液は、一例として溶媒はPC(プロピレンカーボネート)、DME(1,2−ジメトキシエタン)、溶質はLiCF3SO3(トリフルオロメタンスルホン酸リチウム)が用いられている。最後に、電池ケース1の開口部分を内側にかしめて封口することによって電池が完成する。 As one embodiment of the present invention, a cylindrical lithium primary battery will be described. FIG. 1 shows a cross-sectional view of the main part of a cylindrical lithium primary battery according to an embodiment of the present invention. This battery is manufactured as follows. First, a positive electrode plate, a separator, and a negative electrode plate are stacked inside a bottomed cylindrical battery case 1 and wound in a spiral shape, and the battery power generation element 2 having the electrode plate lead 9 connected to the positive electrode plate is accommodated. The negative electrode and the battery case 1 are connected. Here, the positive electrode plate is an electrode plate in which a metal core material is filled with manganese dioxide powder or the like, the separator is made of PP (polypropylene), and the negative electrode plate is obtained by processing metallic lithium into a sheet shape. Next, an assembly sealing plate is prepared as follows. The bottom plate 3 and the ring-shaped stainless steel plate 5 are bonded together by resistance welding or ultrasonic welding, and an aluminum valve body 4 is overlapped on the stainless steel plate 5 and fixed by welding by high frequency heating. The bottom plate 3 is provided with through holes 3a having a diameter of 0.8 mm at eight positions in the center portion, avoiding the center, and the stainless plate 5 is surrounded by a portion where the through holes 3a are projected onto the stainless plate 5. An opening 5a having a diameter of 9 mm is provided. Then, the ring-shaped PTC element plate 6 and the positive electrode terminal cap 7 provided with the through holes 7a are overlapped with each other and inserted into an annular gasket 8 made of an insulating resin to complete an assembly sealing plate. The assembly sealing plate is inserted into the battery case 1 and the end portion of the electrode plate lead 9 connected to the positive electrode plate of the power generating element 2 is spot welded to the bottom plate 3 of the assembly sealing plate at one point or two points. An electrolyte is injected. As an example of the organic electrolyte, PC (propylene carbonate) and DME (1,2-dimethoxyethane) are used as a solvent, and LiCF 3 SO 3 (lithium trifluoromethanesulfonate) is used as a solute. Finally, the battery is completed by crimping the opening of the battery case 1 inward.

この電池の従来の封口板の要部断面図は図4のとおりであるが、それに用いられているハット状の底板23はステンレス製であり、底面の直径は8mm、板厚は0.2mmである。また、底板中央部には直径4mmのガス抜き孔が開いている。極板リード29は底板23の周辺部の一部に、3kg/cm2で1点でスポット溶接が施され、正極端子キャップ27までが電気的に接続されている。 FIG. 4 is a cross-sectional view of the main part of the conventional sealing plate of this battery. The hat-shaped bottom plate 23 used in the battery is made of stainless steel, and the bottom surface has a diameter of 8 mm and a plate thickness of 0.2 mm. is there. Further, a gas vent hole having a diameter of 4 mm is opened at the center of the bottom plate. The electrode plate lead 29 is spot-welded to a part of the peripheral portion of the bottom plate 23 at a point of 3 kg / cm 2 and is electrically connected to the positive electrode terminal cap 27.

(試験1)
底板と極板リードとの接続における溶接強度などを評価するため、従来の電池と同じ構成でハット状の底板に弁体とステンレス板とを一体化したものに、極板リードだけを模擬的にスポット溶接を行った。
(Test 1)
In order to evaluate the welding strength, etc. in the connection between the bottom plate and the electrode plate lead, the electrode plate and the stainless plate are integrated into a hat-shaped bottom plate with the same configuration as a conventional battery, and only the electrode plate lead is simulated. Spot welding was performed.

図5および図6は従来の電池におけるスポット溶接部の断面図と極板リード側からみた底面図を示す。このときには、1点でのスポット溶接のため、加圧による変形はないものの、十分な溶接強度が得られないものも発生した。   5 and 6 show a cross-sectional view of a spot welded portion and a bottom view as seen from the electrode plate lead side in a conventional battery. At this time, since spot welding was performed at one point, there was no deformation due to pressurization, but there was a case where sufficient welding strength was not obtained.

次に、この極板リードの底板周辺部への1点スポット溶接を、中央部への2点スポット溶接に変更するため、まず、板厚は0.2mmのまま、底面中央部の孔をふさいだ底板に変更し、この底板中央部にスポット溶接時の加圧力以上の5kg/cm2の加重をかけ、予想されるスポット溶接時の変形具合を確認したところ、加圧なしの状態にもどすと加圧部に塑性変形がみられた。 Next, in order to change the one-point spot welding to the peripheral part of the bottom plate of this electrode plate lead to the two-point spot welding to the central part, first, the hole at the central part of the bottom surface is closed with the plate thickness remaining 0.2 mm. Change to the bottom plate, apply a weight of 5 kg / cm 2 higher than the applied pressure during spot welding to the center of the bottom plate, and confirm the expected deformation at the time of spot welding. Plastic deformation was observed in the pressure part.

(試験2)
そこで、塑性変形しない板厚の目安をつけるためCAEによるシミュレーションを行いその板厚を0.3mmと算出し、従来の同じハット状の底板を用いた構造で、板厚のみ0.2mmから0.3mmに変更し、同様の加圧試験を行った。この場合、加圧部には目視による塑性変形は発見できなかった。
(Test 2)
Therefore, a CAE simulation is performed to obtain a guideline of the plate thickness that is not plastically deformed, and the plate thickness is calculated to be 0.3 mm. With the conventional structure using the same hat-shaped bottom plate, only the plate thickness is 0.2 mm to 0.2 mm. The same pressure test was conducted after changing to 3 mm. In this case, visual plastic deformation could not be found in the pressurizing portion.

ところが、この場合、ハット状の底板のツバ部での折り返し構造のため、厚みが0.2mm増え、さらに溶接部位の板厚分の増大0.1mmと合わせて封口板全体で高さが0.3mm高くなる。従って、底板にスポット溶接された正極リードが下部の発電要素を圧迫することによる微小ショートを誘発する危険性も高くなるため好ましくない。   However, in this case, the thickness is increased by 0.2 mm due to the folded structure at the flange portion of the hat-shaped bottom plate, and the height of the entire sealing plate is 0.1 mm in addition to the increase of 0.1 mm in the thickness of the welded portion. 3mm higher. Therefore, the positive lead spot-welded to the bottom plate is not preferable because the risk of inducing a micro short circuit due to the pressure on the lower power generation element is increased.

(試験3)
そこで、底板の厚みを0.3mmに増大すると同時に、形状を平板にして封口板体積の低減を図り、かつ図2および図3に示すように封口板構成材料である底板3、リング状のステンレス板5、アルミニウムの弁体4をこの順序で積層し、さらに漏液経路を遮断するため底板3とステンレス板5は超音波接着で貼り合わせた。底板3には、中心を避けて中央部分の8箇所に直径0.8mmの透孔3aが設けられており、その透孔3aをステンレス板5に投影した部分を囲むようにステンレス板5には直径9mmの開口5aが設けられている。底板3と弁体4との間にステンレス板5をはさみ、所定の空間距離をあけることでスポット溶接時の加圧、加熱の影響が弁体に出にくくなる。このような構成で、上記と同様の加圧試験を実施し、変形具合を確認したところ、塑性変形は見られず、弁体4の破れもなかった。
(Test 3)
Therefore, the thickness of the bottom plate is increased to 0.3 mm, and at the same time, the shape of the bottom plate is reduced to reduce the volume of the sealing plate, and as shown in FIGS. The plate 5 and the aluminum valve body 4 were laminated in this order, and the bottom plate 3 and the stainless steel plate 5 were bonded together by ultrasonic bonding in order to block the leakage path. The bottom plate 3 is provided with through holes 3a having a diameter of 0.8 mm at eight positions in the center portion, avoiding the center, and the stainless plate 5 is surrounded by a portion where the through holes 3a are projected onto the stainless plate 5. An opening 5a having a diameter of 9 mm is provided. By sandwiching the stainless steel plate 5 between the bottom plate 3 and the valve body 4 and leaving a predetermined spatial distance, the influence of pressurization and heating at the time of spot welding becomes difficult to appear on the valve body. With such a configuration, a pressure test similar to that described above was carried out and the degree of deformation was confirmed. As a result, no plastic deformation was observed and the valve body 4 was not torn.

そして、図2および図3に示すように平板形状の底板3の中央部に極板リード9を2点スポット溶接したものを作製し、初期引っ張り強度も確認したが現行規格を十分上回る強度を有すること確認できるとともに、より信頼性を向上させることができた。   Then, as shown in FIG. 2 and FIG. 3, a two-point spot welded electrode plate lead 9 was prepared at the center of the flat bottom plate 3, and the initial tensile strength was confirmed, but the strength sufficiently exceeded the current standard. It was possible to confirm that the reliability was improved.

次に、図2および図3に示す構成と同じ構成をもたせて図1に示す電池を組み立てた。本発明の電池では、電池組立後の抜き取り検査におけるスポットはずれの発生がなくなったため、従来行っていた再検査や工程解析に要する時間が必要なくなり、工数削減、生産性の向上に大きく貢献するものとなった。また、さらに底板でステンレス板とアルミニウム弁体をかしめる構造をやめ、それぞれを平板として、上部のPTC素子板、正極端子キャップとともに、環状絶縁性ガスケットで一体化することで、材料費、組立工数を低減することが可能となった。   Next, the battery shown in FIG. 1 was assembled with the same configuration as that shown in FIGS. In the battery of the present invention, since spot deviation in the sampling inspection after battery assembly has been eliminated, the time required for re-inspection and process analysis that has been performed in the past is no longer necessary, greatly contributing to man-hour reduction and productivity improvement. became. In addition, the structure of caulking the stainless steel plate and aluminum valve body with the bottom plate is stopped, and each is flat and integrated with the upper PTC element plate and the positive terminal cap together with the annular insulating gasket. Can be reduced.

本発明の電池用組立封口板を用いた電池は、組立封口板を構成する底板の厚みを増大させても組立封口板のしめる体積を増大させることなく、底板の中央部への極板リードの接続を複数のスポット溶接または超音波溶接することを可能にすることで、従来以上に電池の溶接部位の信頼性向上に貢献するものである。   The battery using the battery assembly sealing plate according to the present invention has an electrode plate lead to the center of the bottom plate without increasing the volume of the assembly sealing plate even if the thickness of the bottom plate constituting the assembly sealing plate is increased. By making it possible to perform a plurality of spot welding or ultrasonic welding of the connection, it contributes to the improvement of the reliability of the welded part of the battery more than before.

本発明の実施例の円筒型リチウム一次電池の要部断面図Sectional drawing of the principal part of the cylindrical lithium primary battery of the Example of this invention 本発明の底板に正極リードがスポット溶接された状態の断面図Sectional drawing of the state in which the positive electrode lead is spot welded to the bottom plate of the present invention 本発明の底板に正極リードがスポット溶接された状態の底面図Bottom view of the state where the positive electrode lead is spot welded to the bottom plate of the present invention 従来の円筒型リチウム一次電池の要部断面図Sectional view of the main part of a conventional cylindrical lithium primary battery 従来の底板に正極リードがスポット溶接された状態の断面図Sectional view of positive electrode lead spot welded to conventional bottom plate 従来の底板に正極リードがスポット溶接された状態の底面図Bottom view of positive electrode lead spot welded to conventional bottom plate

符号の説明Explanation of symbols

1 電池ケース
2 電池発電要素
3 底板
3a 透孔(φ0.8mm×8箇所)
4 弁体
5 ステンレス板
5a 開口
6 PTC素子板
7 正極端子キャップ
7a 透孔
8 ガスケット
9 極板リード
10 スポット溶接部(2点)
21 電池ケース
22 電池発電要素
23 底板
23a 透孔(φ4mm×1箇所)
24 弁体
25 ステンレス板
26 PTC素子板
27 正極端子キャップ
27a 透孔
28 ガスケット
29 極板リード
30 スポット溶接部(1点)

DESCRIPTION OF SYMBOLS 1 Battery case 2 Battery power generation element 3 Bottom plate 3a Through-hole (phi0.8mmx8 location)
4 Valve body 5 Stainless steel plate 5a Opening 6 PTC element plate 7 Positive terminal cap 7a Through hole 8 Gasket 9 Electrode plate lead 10 Spot weld (2 points)
21 Battery case 22 Battery power generation element 23 Bottom plate 23a Through-hole (φ4 mm × 1 location)
24 Valve body 25 Stainless steel plate 26 PTC element plate 27 Positive electrode terminal cap 27a Through hole 28 Gasket 29 Electrode plate lead 30 Spot weld (1 point)

Claims (5)

中心を避けた中央付近に複数の透孔を有する円盤状の底板と、リング状のステンレス板と、所定の圧力で破断する円盤状の金属薄板からなる弁体と、リング状のPTC素子板と、透孔を有する端子キャップとをこの順に積層し、これらを環状絶縁性ガスケットにより一体化されたことを特徴とする組立封口板。 A disc-shaped bottom plate having a plurality of through holes in the vicinity of the center avoiding the center, a ring-shaped stainless steel plate, a valve body made of a disc-shaped metal thin plate that breaks at a predetermined pressure, and a ring-shaped PTC element plate; An assembly sealing plate, wherein terminal caps having through holes are laminated in this order and are integrated by an annular insulating gasket. 底板の透孔は、内径が0.5〜2mmである請求項1記載の組立封口板。 The assembly sealing plate according to claim 1, wherein the through hole of the bottom plate has an inner diameter of 0.5 to 2 mm. 底板の透孔のステンレス板への投影部分は、前記ステンレス板の開口に囲まれている請求項1記載の組立封口板。 The assembly sealing plate according to claim 1, wherein a projection portion of the through hole of the bottom plate onto the stainless plate is surrounded by the opening of the stainless plate. 底板とステンレス板とが抵抗溶接または超音波溶接により貼り合わせてある請求項1記載の組立封口板。 The assembly sealing plate according to claim 1, wherein the bottom plate and the stainless steel plate are bonded together by resistance welding or ultrasonic welding. 発電要素を収容してその一方の極性の端子を兼ねる電池ケース、および電池ケースの開口部に環状絶縁性ガスケットを含む組立封口板を具備し、前記組立封口板は、中心を避けた中央付近に複数の透孔を有する円盤状の底板と、リング状のステンレス板と、所定の圧力で破断する円盤状の金属薄板からなる弁体と、リング状のPTC素子板と、透孔を有する端子キャップとをこの順に積層して、これらが前記環状絶縁性ガスケットにより一体化されてなり、前記底板と前記発電要素の他方の極性の電極とが極板リードで接続されてなることを特徴とする電池。




A battery case that houses a power generation element and also serves as a terminal of one polarity, and an assembly sealing plate including an annular insulating gasket at the opening of the battery case, the assembly sealing plate is located near the center avoiding the center A disk-shaped bottom plate having a plurality of through holes, a ring-shaped stainless steel plate, a valve body made of a disk-shaped metal thin plate that is broken by a predetermined pressure, a ring-shaped PTC element plate, and a terminal cap having a through-hole In this order, these are integrated by the annular insulating gasket, and the bottom plate and the electrode of the other polarity of the power generation element are connected by an electrode plate lead. .




JP2004179265A 2004-06-17 2004-06-17 Assembled sealing plate and battery Pending JP2006004730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179265A JP2006004730A (en) 2004-06-17 2004-06-17 Assembled sealing plate and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179265A JP2006004730A (en) 2004-06-17 2004-06-17 Assembled sealing plate and battery

Publications (1)

Publication Number Publication Date
JP2006004730A true JP2006004730A (en) 2006-01-05

Family

ID=35772947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179265A Pending JP2006004730A (en) 2004-06-17 2004-06-17 Assembled sealing plate and battery

Country Status (1)

Country Link
JP (1) JP2006004730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727516A (en) * 2018-02-16 2020-09-29 Fdk株式会社 Sealing body and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727516A (en) * 2018-02-16 2020-09-29 Fdk株式会社 Sealing body and battery
CN111727516B (en) * 2018-02-16 2023-12-05 Fdk株式会社 Sealing body and battery

Similar Documents

Publication Publication Date Title
JP5715155B2 (en) Cylindrical secondary battery
JP5011664B2 (en) Sealed secondary battery
JP5595830B2 (en) Battery, assembled battery, and method of manufacturing assembled battery
EP2133937A1 (en) Battery mouth-sealing assembly and battery including the same
US20100233530A1 (en) battery and battery enveloping assembly convenient for assembly
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
US8852771B2 (en) Battery
JP6699563B2 (en) Storage element
US20130196220A1 (en) Prismatic secondary battery
EP2133935A1 (en) An improved battery mouth-sealing assembly and a battery including the same
JP5206264B2 (en) Battery and battery manufacturing method
US8642195B2 (en) Modular CID assembly for a lithium ion battery
TWI496337B (en) Modular cid assembly and method of forming same for a lithium ion battery
JP2016225014A (en) Cylindrical secondary battery
JP2008098141A (en) Secondary battery and secondary battery module
TWI499150B (en) Modular current interrupt device, battery and method of manufacturing the same
US20140004411A1 (en) Sealed battery
US9761860B2 (en) Secondary battery and method for producing secondary battery
JP2005149909A (en) Sealed battery
US10446804B2 (en) Hermetically sealed battery and manufacturing method for hermetically sealed battery
JP3346675B2 (en) Explosion-proof sealing plate for sealed batteries
JP2005347098A (en) Battery and assembly sealing plate for battery
JP2006004730A (en) Assembled sealing plate and battery
US20230402727A1 (en) Cylindrical battery
JP2019087371A (en) Manufacturing method of secondary battery