JP2006003350A - Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points - Google Patents

Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points Download PDF

Info

Publication number
JP2006003350A
JP2006003350A JP2005147507A JP2005147507A JP2006003350A JP 2006003350 A JP2006003350 A JP 2006003350A JP 2005147507 A JP2005147507 A JP 2005147507A JP 2005147507 A JP2005147507 A JP 2005147507A JP 2006003350 A JP2006003350 A JP 2006003350A
Authority
JP
Japan
Prior art keywords
optical fiber
displacement
load
point
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005147507A
Other languages
Japanese (ja)
Inventor
Yoichi Tsutsumi
洋一 堤
Tatsuro Yoshinaga
達郎 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DORO HOZEN GIJUTSU CENTER
DORO HOZEN GIJUTSU CT
Sho Bond Corp
Original Assignee
DORO HOZEN GIJUTSU CENTER
DORO HOZEN GIJUTSU CT
Sho Bond Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DORO HOZEN GIJUTSU CENTER, DORO HOZEN GIJUTSU CT, Sho Bond Corp filed Critical DORO HOZEN GIJUTSU CENTER
Priority to JP2005147507A priority Critical patent/JP2006003350A/en
Publication of JP2006003350A publication Critical patent/JP2006003350A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of detecting quickly and properly a displacement amount of a structure all the time or in a disaster such as earthquake, in particular, a displacement amount between two points, even in a prescribed remote site. <P>SOLUTION: An abutment or a pier 37 is arranged in a lower position between one girder 35 and the other girder 36, in the one girder 35 as the structure and the other girder 36 as the structure. The pier 37 may be constituted of a skeleton. An inter-two-point displacement gage 38 is arranged on an upper face of the pier 37, the inter-two-point displacement gage 38 is mounted with an optical fiber fixing jig, a rotatable optical fiber winding member comprising a plurality or a large number of pulleys constituted of a plurality of lines, and a displacement/load conversion member comprising a coil spring or the like, one side and the other side optical fibers 39, 40 having a strain sensor function are extracted from the inter-two-point displacement gage 38, and the one side optical fiber 39 is connected to a BOTDR (Brilloin Optical Time Domain Reflectometer) instrument 46. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、常時又は地震時等の災害時に於ける2点間の変位を検出すべくした光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法に関する。 The present invention relates to an optical fiber two-point displacement meter and a two-point displacement remote monitoring method using an optical fiber for detecting displacement between two points at the time of a disaster such as an earthquake or an earthquake.

従来、この種の第1の例としては図12に示す特開2002−90233に開示されたものがある。これについて説明すれば、川1上に橋梁2が立設されている。そして、川1上に支柱3、4が適宜な間隔で立設されており、この支柱3と、支柱4との間における上部には桁5a、5b、5cが繋ぎ合わせて設けられている。この桁5aにおける手前側の下フランジ5dの上面から桁5b、5cの下フランジ5e、5fの上面までに光ファイバ6の一端が敷設されると共に光ファイバ6の他端は歪・損失統合型光パルス試験器7に接続されている。この歪・損失統合型光パルス試験器7にはコード8の一端が接続されていると共にコード8の他端はプラグ9に接続されている。このプラグ9にはコード14の一端が接続されていると共にコード14の他端は電源10に接続されている。この電源10の一例として、光ファイバ6が電磁誘導やノイズに影響されないことから簡易型発電機を使用することもある。また、前記歪・損失統合型光パルス試験器7にはコード11の一端が接続されていると共にコード11の他端は出力手段としてのモニタ12に接続されている。さらに、モニタ12にはコード13の一端が接続されていると共にコード13の他端は前記プラグ9に接続されている。このプラグ9には前記コード14を介して前記電源10に接続されている。 Conventionally, a first example of this type is disclosed in Japanese Patent Laid-Open No. 2002-90233 shown in FIG. To explain this, a bridge 2 is erected on the river 1. And the support | pillars 3 and 4 are standingly arranged by the appropriate space | interval on the river 1, The girder 5a, 5b, 5c is connected and provided in the upper part between this support | pillar 3 and the support | pillar 4. One end of the optical fiber 6 is laid from the upper surface of the lower flange 5d on the near side in the girder 5a to the upper surfaces of the lower flanges 5e and 5f of the girder 5b, 5c, and the other end of the optical fiber 6 is a strain / loss integrated type light. It is connected to the pulse tester 7. One end of a cord 8 is connected to the strain / loss integrated optical pulse tester 7 and the other end of the cord 8 is connected to a plug 9. One end of a cord 14 is connected to the plug 9 and the other end of the cord 14 is connected to a power source 10. As an example of the power supply 10, a simple generator may be used because the optical fiber 6 is not affected by electromagnetic induction or noise. One end of a cord 11 is connected to the strain / loss integrated optical pulse tester 7 and the other end of the cord 11 is connected to a monitor 12 as an output means. Further, one end of a cord 13 is connected to the monitor 12 and the other end of the cord 13 is connected to the plug 9. The plug 9 is connected to the power supply 10 via the cord 14.

前記桁5cと桁5bとの繋ぎ部15A、桁5bと桁5aの繋ぎ部15Bにおける光ファイバ6は、数ループのごとく無張力の状態にたるませておくようにする。しかも、光ファイバ6を桁5c、5b、5aにおける下フランジ5f、5e、5dの上面に敷設する場合は、前記繋ぎ部15A、繋ぎ部15Bのスプライスプレート部上には光ファイバ6を敷設せずに無張力の状態にたるませておくようにし、そして、桁5bにおける下フランジ5eの上面すなわち、図8において左右端上には両面テープを張り付け、この両面テープ上に光ファイバ6を一定の張力を与えながら仮止めすべく張り付ける。そして、この仮止めされた光ファイバ6を接着剤によって全面接着せしめ、次いで、粘着テープを光ファイバ6上に貼ることで、光ファイバ6が下フランジ5eの上面に敷設される。 The optical fiber 6 at the connecting portion 15A between the beam 5c and the beam 5b and at the connecting portion 15B between the beam 5b and the beam 5a is allowed to sag in a tension-free state like several loops. Moreover, when the optical fiber 6 is laid on the upper surfaces of the lower flanges 5f, 5e, and 5d in the girders 5c, 5b, and 5a, the optical fiber 6 is not laid on the splice plate portion of the connecting portion 15A and the connecting portion 15B. Then, a double-faced tape is applied to the upper surface of the lower flange 5e of the beam 5b, that is, the left and right ends in FIG. 8, and the optical fiber 6 is placed on the double-faced tape with a certain tension. Paste to temporarily fix while giving. Then, the temporarily fixed optical fiber 6 is adhered to the entire surface with an adhesive, and then an adhesive tape is stuck on the optical fiber 6 so that the optical fiber 6 is laid on the upper surface of the lower flange 5e.

また、この種の第2の例としては図13(a)(b)に示す特開2000−292216に開示されたものがある。この光ファイバセンサ15は、斜面16に露出した監視対象物17に余長を確保して取り付けた光ファイバ18に、地滑り等の可能性の少ない監視基準側である安定地盤19側の光ファイバ20を光コネクタ21を介して着脱可能に接続することで、安定地盤19側の光ファイバ20を介して監視対象物17側の光ファイバ18と光パルス試験器22とを接続して構成されている。監視対象物17側の光ファイバ18は、斜面16に露出する監視対象物17である岩石に取り付けたセンサユニット23に余長を湾曲収納し、このセンサユニット23から引き出された光コネクタ21を、安定地盤19側の光ファイバ20に着脱可能に接続する。センサユニット23は、監視対象物17である岩石に取り付けたリール23aに光ファイバ18の余長を巻付け吸収する。安定地盤19側の光ファイバ20は、監視対象物17側の光ファイバ18に光コネクタ21を介して接続され、アンカーボルト24によって、監視対象物17の近傍の前記安定地盤19側に固定されている。監視対象物17側の光ファイバ18は、センサユニット23から引出不可能に引き留めておき、このセンサユニット23とアンカーボルト24との間では、光コネクタ21によって接続され直線状に緊張する。 A second example of this type is disclosed in Japanese Patent Laid-Open No. 2000-292216 shown in FIGS. 13 (a) and 13 (b). This optical fiber sensor 15 has an optical fiber 20 on the stable ground 19 side, which is the monitoring reference side with little possibility of landslide, etc., attached to an optical fiber 18 secured with a surplus length attached to the monitoring object 17 exposed on the slope 16. Is detachably connected via the optical connector 21, so that the optical fiber 18 on the monitoring object 17 side and the optical pulse tester 22 are connected via the optical fiber 20 on the stable ground 19 side. . The optical fiber 18 on the side of the monitoring object 17 stores the extra length in a sensor unit 23 attached to the rock that is the monitoring object 17 exposed on the slope 16, and the optical connector 21 drawn out from the sensor unit 23 is Removably connected to the optical fiber 20 on the stable ground 19 side. The sensor unit 23 winds and absorbs the extra length of the optical fiber 18 around a reel 23 a attached to the rock that is the monitoring object 17. The optical fiber 20 on the stable ground 19 side is connected to the optical fiber 18 on the monitored object 17 side via an optical connector 21 and is fixed to the stable ground 19 side near the monitored object 17 by an anchor bolt 24. Yes. The optical fiber 18 on the monitoring object 17 side is kept so as not to be pulled out from the sensor unit 23, and is connected between the sensor unit 23 and the anchor bolt 24 by the optical connector 21 and is tensioned linearly.

また、この種の第3の例としては図14(a)(b)に示す特開2000−258135に開示されたものがある。これについて説明すれば、25は河川堤防、26は河川、27は光ファイバセンサである。光ファイバセンサ27は、河川堤防26の長手方向に沿って延在配置された長尺の光ファイバである光ケーブル27aと、この光ケーブル27aの長手方向に連続的に設けられた複数のセンシング部27bとを備えて構成されている。センシング部27bは、光ケーブル27aの長手方向に沿って互いに当接させて隙間無く連続的に配設されているが、必要箇所にのみ配設することも可能である。前記光ケーブル27aに収納されている光ファイバには、光パルス試験器28が接続され、この光パルス試験器28から試験光を入射可能になっている。図10(b)に示すように、光ケーブル27aは、PVC(ポリ塩化ビニル)等の樹脂製の外被27c内に単心の光ファイバ心線27dを収納し、さらに、外被27cと光ファイバ心線27dとの間に抗張力体27eを収納した構造になっている。ここで、光ケーブル27aは、通常の屋外布設用の光ケーブルにて一般的であるテンションメンバを有するものでは無く、繊維状の抗張力体27eのみに張力負担を頼るものであり、一般的屋外布設用の光ケーブルに比べて伸び歪みが印加されやすくなっている。外被27cとしては優れた防水性並びに耐久性を有するものを適用する。 A third example of this type is disclosed in Japanese Patent Laid-Open No. 2000-258135 shown in FIGS. To explain this, 25 is a river bank, 26 is a river, and 27 is an optical fiber sensor. The optical fiber sensor 27 includes an optical cable 27a that is a long optical fiber that extends along the longitudinal direction of the river bank 26, and a plurality of sensing units 27b that are continuously provided in the longitudinal direction of the optical cable 27a. It is configured with. The sensing unit 27b is continuously disposed without any gap while being in contact with each other along the longitudinal direction of the optical cable 27a, but may be disposed only at a necessary portion. An optical pulse tester 28 is connected to the optical fiber accommodated in the optical cable 27a, and test light can be incident from the optical pulse tester 28. As shown in FIG. 10 (b), the optical cable 27a has a single-core optical fiber core 27d housed in a resin jacket 27c such as PVC (polyvinyl chloride), and further, the jacket 27c and the optical fiber. A tensile strength body 27e is accommodated between the core wire 27d. Here, the optical cable 27a does not have a tension member that is generally used for a normal outdoor laying optical cable, but depends only on the fibrous strength member 27e, and is used for general outdoor laying. Elongation strain is easily applied compared to optical cables. A material having excellent waterproofness and durability is applied as the outer cover 27c.

また、この種の第4の例としては図15に示すものがある。これについて説明すれば、29は面状光ファイバセンサとしての面状センサである。該面状センサ29は、コンクリート構造物の表面に接着剤で一体的に貼り付け固定される。そして該面状センサ29からの信号をコネクタ収納box30を介して、光ファイバ通信網31に接続され、この光ファイバ通信網31を現場Aに一定間隔、例えば年数回毎に搬入して設置したBOTDR(Brillouin Optical Time Domain Reflectometer)計測器32に接続している。現場Aでは、発電器33及びパソコン(PC)34を備え、当該構成要素を上記BOTDR計測器32に接続している。そして、上記コンクリート構造物の歪み分布を計測し、BOTDR計測器32等により得られたデータは時系列のデータとして観測し、該データの変化から該コンクリート構造物の損傷進行状況を予測する。本システム構成はオフラインシステムとして機能し、面状センサ29のコンクリート構造物への設置後は電源等の設備も必要なく、メンテナンスフリーとなる特徴がある。
尚、オンラインシステムとして機能させる構成とすることもできるが、その場合現地AにBOTDR計測器32等を収納するBOXや設備が必要となる。
また、他の従来の技術としては電線等を使用して、構造物の変位による移動による該材料の通電と切断の状態によるON、OFF機能をもたせた装置や方法であった。
特開2002−90233公開特許公報 特開2000−292216公開特許公報 特開2000−258135公開特許公報
A fourth example of this type is shown in FIG. If this is demonstrated, 29 is a planar sensor as a planar optical fiber sensor. The planar sensor 29 is integrally attached and fixed to the surface of the concrete structure with an adhesive. A signal from the planar sensor 29 is connected to an optical fiber communication network 31 via a connector storage box 30, and this optical fiber communication network 31 is installed at a site A at regular intervals, for example, several times a year. (Brillouin Optical Time Domain Reflectometer) is connected to the measuring instrument 32. At the site A, a generator 33 and a personal computer (PC) 34 are provided, and the components are connected to the BOTDR measuring instrument 32. Then, the strain distribution of the concrete structure is measured, the data obtained by the BOTDR measuring instrument 32 and the like is observed as time-series data, and the progress of damage of the concrete structure is predicted from the change in the data. This system configuration functions as an off-line system, and after installation of the surface sensor 29 on a concrete structure, there is a feature that no equipment such as a power source is required and maintenance is free.
In addition, although it can also be set as the structure functioned as an on-line system, in that case, the BOX and equipment which accommodate the BOTDR measuring device 32 grade | etc., In the site A are needed.
Another conventional technique is an apparatus or method that uses an electric wire or the like and has an ON / OFF function depending on the state of energization and cutting of the material by movement due to displacement of the structure.
Japanese Patent Laid-Open No. 2002-90233 Japanese Patent Laid-Open No. 2000-292216 Japanese Patent Laid-Open No. 2000-258135

従来の技術は、叙上の構成であるので次の課題が存在した。
すなわち、従来の技術に於ける上記第1の例によれば、一端から他端までの全長の桁5a、5b、5cの間に適宜な間隔で複数の繋ぎ部15B、15Aを有した橋梁2の歪み分布を計測する際、各繋ぎ部15B、15Aに光ファイバ6を敷設しないで無張力の状態にたるませる工法や上記各繋ぎ部15B、15A以外の一端から他端までの全長の桁5a、5b、5cに一定の張力を与えつつ光ファイバ6を敷設する工法とする必要があり、桁変位監視に伴う工法が複雑であるばかりか現場での諸設備取付け工数が大幅に増大するという問題点があった。
Since the conventional technique has the above-described configuration, the following problems existed.
That is, according to the first example in the prior art, the bridge 2 having a plurality of connecting portions 15B, 15A at appropriate intervals between the full-length beams 5a, 5b, 5c from one end to the other end. When measuring the strain distribution, the construction method in which the optical fiber 6 is not laid in the connecting portions 15B and 15A and the state is stretched in a tension-free state, or the full length girder 5a from one end to the other end other than the connecting portions 15B and 15A. 5b and 5c need to be constructed with a certain tension applied, and the construction method for girder displacement monitoring is complicated, and the number of installation steps for various facilities on the site is greatly increased. There was a point.

また、従来の技術に於ける上記第2の例によれば、土砂や岩盤の監視対象物17の変位や歪みを計測し、岩盤崩落や斜面崩壊等の危険部位を常時監視し災害の予兆現象を迅速に把握でき防災に役立つものの、施設工数や関連部材が大幅に増大するうえに当該技術をそのまま桁変位監視装置やシステムに適用することは困難であるという問題点があった。 In addition, according to the second example in the prior art, the displacement and strain of the monitoring object 17 of the earth and sand and the rock mass are measured, and the dangerous part such as the rock mass collapse and the slope collapse is constantly monitored to predict a disaster phenomenon. However, it is difficult to apply the technology as it is to the girder displacement monitoring device or system.

また、従来の技術に於ける上記第3の例によれば、上記河川堤防25に別途移動部や該河川堤防25の変位量増幅部を設ける必要があり、また、光ケーブル27aが外被27cや心線部27dに複雑な構造を有すると共に一般用屋外布設分の光ケーブルとは異質な防水性や耐久性の高いものを使用しなければ実施できない隘路があり、当該技術をそのまま桁変位監視装置に適用することができないという問題点があった。 Further, according to the third example in the prior art, it is necessary to separately provide a moving part and a displacement amount amplifying part of the river bank 25 in the river bank 25, and the optical cable 27a includes the jacket 27c, There is a bottleneck that cannot be implemented without using a waterproof and highly durable cable that has a complicated structure in the core portion 27d and is different from the optical cable for general outdoor use. There was a problem that it could not be applied.

また、従来の技術に於ける上記第4の例によれば、コンクリート構造物、特に、桁について、常時又は地震等の災害時や緊急点検時に現地へのアクセスやデータ解析に時間が掛り当該桁の移動量を正確かつ迅速に把握することができず加えて、桁変位監視装置システムの施工が高価となり、実施上多くの問題点が残存した。
また、桁変位の精度を向上させるためには変位センサ部とデータ測定装置を近接する必要があり、さらに現地Aでの桁変位に係る測定機器等を収納する設備が必要となり、保守費用や施工費用が増大するという問題点があった。
また、地震時等に於いて例えば約30(km)範囲にある構造物の桁変位を把握するためには、当該構造物の管理担当者が直接現場に行き、桁の変位を調べる必要があり、地震時等に於いては人的問題や対象構造物までの交通手段の問題など、タイムリーに例えば構造物の2部材間の2点間の変位を知ることは不可能に近いという問題点があった。
Also, according to the fourth example in the prior art, it takes time to access the site and analyze data for concrete structures, especially for girders, at all times or during disasters such as earthquakes and emergency inspections. In addition, it was impossible to accurately and quickly grasp the amount of movement, and the construction of the girder displacement monitoring system became expensive, and many problems remained in practice.
In addition, in order to improve the accuracy of the girder displacement, it is necessary to bring the displacement sensor unit and the data measuring device close to each other, and further, equipment for storing the measuring device related to the girder displacement at the site A is necessary, and maintenance costs and construction There was a problem that the cost increased.
In addition, in order to grasp the girder displacement of a structure in the range of, for example, about 30 km during an earthquake, it is necessary for the person in charge of the structure to go directly to the site and check the girder displacement. In the event of an earthquake, there is a problem that it is almost impossible to know the displacement between two points of two members of a structure in a timely manner, such as a human problem or a problem of transportation to the target structure. was there.

本発明は特異な構造で構成されかつ一方点又は他方点等に設置された2点間変位計と、該2点間変位計に接続されるBOTDR計測器を使用して常時又は地震時等の災害時に於けるコンクリート構造物、例えば、桁の変位量を所定の遠隔地に於いても迅速かつ適正に検出できる光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法を提供することを目的としたものであって、次の構成、手段から成立する。 The present invention uses a two-point displacement meter configured with a unique structure and installed at one point or the other point, and a BOTDR measuring instrument connected to the two-point displacement meter, so that it is always or during an earthquake. Providing a two-point displacement meter using an optical fiber and a method for remotely monitoring the displacement between two points using an optical fiber that can quickly and properly detect the displacement of a concrete structure, such as a girder, at a predetermined remote location in a disaster. The purpose of this is to establish the following configuration and means.

すなわち、請求項1記載の発明によれば、一方、他方の2点間の変位を測定するものであって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続したことを特徴とする。 That is, according to the first aspect of the present invention, the optical fiber winding is a rotatable optical fiber winding that measures a displacement between two points on the other side and includes a plurality of or a plurality of pulleys configured in a plurality of rows. A rotating member, an optical fiber fixing jig connected to one side of the optical fiber wound around the optical fiber winding member, and a displacement / load converting member connected to the other side of the optical fiber are accommodated inside. Thus, one side of the optical fiber is connected to a BOTDR measuring instrument.

請求項2記載の発明によれば、請求項1記載の発明に於いて、前記2点間変位計は箱状ケースに構成され、その内底面部に上記光ファイバ固定治具と、上記複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、上記変位・荷重変換部材とを固定したことを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, the two-point displacement meter is configured as a box-shaped case, and the optical fiber fixing jig and the plurality of rows are arranged on an inner bottom surface thereof. A rotatable optical fiber winding member composed of a plurality of pulleys or a plurality of pulleys, and the displacement / load conversion member are fixed.

請求項3記載の発明によれば、請求項1又は2記載の発明に於いて、前記変位・荷重変換部材は、コイルバネで構成されたことを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the displacement / load conversion member is constituted by a coil spring.

請求項4記載の発明によれば、一方、他方の2点間の変位を測定するもので一方点に設置してあって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続し、上記変位・荷重変換部材に接続されたリードワイヤを他方点に配置したアングルに固定したことを特徴とする。 According to the invention described in claim 4, the displacement between the other two points is measured, and is installed at one point, and can be rotated by a plurality of or a plurality of pulleys configured in a plurality of rows. An optical fiber winding member, an optical fiber fixing jig connecting one side of the optical fiber wound around the optical fiber winding member, and a displacement / load converting member connecting the other side of the optical fiber; And one side of the optical fiber is connected to a BOTDR measuring instrument, and a lead wire connected to the displacement / load conversion member is fixed to an angle arranged at the other point.

請求項5記載の発明によれば、請求項1、2、3又は4記載の発明に於いて、前記光ファイバの設置時に予め張力を与えることを特徴とする。 According to a fifth aspect of the invention, in the first, second, third or fourth aspect of the invention, a tension is applied in advance when the optical fiber is installed.

請求項6記載の発明によれば、一方、他方の桁相互間の下方に配置される橋脚の上面に設置されてあって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続し、上記変位・荷重変換部材に接続されたリードワイヤを上記桁の下面に固定したアングルに固定したことを特徴とする。 According to the invention described in claim 6, it is installed on the upper surface of the bridge pier disposed below one of the other girders, and is rotatable by a plurality of or a plurality of pulleys configured in a plurality of rows. An optical fiber winding member, an optical fiber fixing jig connecting one side of the optical fiber wound around the optical fiber winding member, and a displacement / load converting member connecting the other side of the optical fiber; The one side of the optical fiber is connected to a BOTDR measuring instrument, and the lead wire connected to the displacement / load conversion member is fixed to an angle fixed to the lower surface of the girder. To do.

請求項7記載の発明によれば、一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤを巻装した定荷重バネ部材と、該定荷重バネ部材からのリードワイヤを接続しかつ桁変位を荷重に変換する変位・荷重変換部材と、該変位・荷重変換部材に発生した荷重に基づき一端及び他端の光ファイバを張設・巻取しかつ該一端及び他端の光ファイバをネットワーク通信網に接続した張力発生部材と、前記光ファイバを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材とを具備したことを特徴とする。 According to the seventh aspect of the present invention, a constant load spring member for measuring a girder displacement between the other two points and winding a lead wire for transmitting the girder displacement, and the constant load spring A displacement / load conversion member for connecting a lead wire from the member and converting a girder displacement into a load, and an optical fiber at one end and the other end are stretched and wound based on the load generated on the displacement / load conversion member; A rotatable light comprising a tension generating member in which the optical fibers at the one end and the other end are connected to a network communication network, and a plurality of or a plurality of pulleys that are wound around the optical fiber and configured in a plurality of rows. And a fiber winding member.

請求項8記載の発明によれば、一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤを巻装した定荷重バネ部材と、該定荷重バネ部材からのリードワイヤを接続しかつ桁変位を荷重に変換する変位・荷重変換部材と、該変位・荷重変換部材に発生した荷重に基づき一端及び他端の光ファイバを張設・巻取しかつ該一端及び他端の光ファイバをネットワーク通信網に接続した張力発生部材と、前記光ファイバを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、前記定荷重バネ部材、変位・荷重変換部材、張力発生部材及び光ファイバ巻回部材を内装した箱状ケースと、該箱状ケースの壁部位に装着されてあって、前記定荷重バネ部材の前後に配置され、リードワイヤを巻装する前記リードワイヤ引出部材とを具備したことを特徴とする。 According to the eighth aspect of the present invention, a constant load spring member for measuring a girder displacement between the other two points and winding a lead wire for transmitting the girder displacement, and the constant load spring A displacement / load conversion member for connecting a lead wire from the member and converting a girder displacement into a load, and an optical fiber at one end and the other end are stretched and wound based on the load generated on the displacement / load conversion member; A rotatable light comprising a tension generating member in which the optical fibers at the one end and the other end are connected to a network communication network, and a plurality of or a plurality of pulleys that are wound around the optical fiber and configured in a plurality of rows. A fiber winding member, a box-shaped case having the constant load spring member, a displacement / load conversion member, a tension generating member, and an optical fiber winding member, and a wall portion of the box-shaped case, Arranged before and after the constant load spring member Is characterized by comprising a said lead wire pull-out member for winding the lead wire.

請求項9記載の発明によれば、請求項8記載の発明に於いて、前記リードワイヤ引出部材は、前記箱状ケースの壁部を貫通した回転軸の両端に連結されると共に前記リードワイヤを張設・巻取りする箱状ケース内外に配置されたプーリーと、該回転軸に囲僥されたオイルシール部材を有したことを特徴とする。 According to a ninth aspect of the invention, in the eighth aspect of the invention, the lead wire lead-out member is connected to both ends of a rotating shaft that penetrates the wall portion of the box-shaped case, and the lead wire is connected to the lead wire. It has a pulley disposed inside and outside a box-shaped case for tensioning and winding, and an oil seal member surrounded by the rotation shaft.

請求項10記載の発明によれば、一方、他方の2点間の変位を測定するものであって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続してなる2点間変位計を各構造物に設置されている既存の光ファイバネットワーク通信網に接続した光ファイバによる2点間変位遠隔監視方法を特徴とする。 According to the invention of claim 10, a rotatable optical fiber winding member that measures a displacement between two points on the other side and includes a plurality or a plurality of pulleys configured in a plurality of rows. And an optical fiber fixing jig connected to one side of the optical fiber wound around the optical fiber winding member, and a displacement / load conversion member connected to the other side of the optical fiber. Therefore, the two-point displacement remote monitoring by the optical fiber connected to the existing optical fiber network communication network installed in each structure with the two-point displacement meter formed by connecting one side of the optical fiber to the BOTDR measuring instrument Features method.

本発明に係る光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法は、叙上の構成を有するので次の効果がある。 The two-point displacement meter using an optical fiber and the two-point displacement remote monitoring method using an optical fiber according to the present invention have the following effects because they have the above-described configuration.

すなわち、請求項1記載の発明によれば、一方、他方の2点間の変位を測定するものであって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続したことを特徴とする光ファイバによる2点間変位計を提供する。
このような構成としたので、光ファイバに複数列で構成された複数個又は多数個のプーリーでなる光ファイバ巻回部材を内部に備え、この光ファイバ巻回部材により光ファイバの長さを必要長まで小空間を構成した2点間変位計の内部に集約させて施工工数を大幅に削減すると共に各構造物の上面等に容易に設置することができ、また常時又は地震時等の災害時に拘らず正確かつ迅速に2点間の変位量を検出することができる効果がある。
That is, according to the first aspect of the present invention, the optical fiber winding is a rotatable optical fiber winding that measures a displacement between two points on the other side and includes a plurality of or a plurality of pulleys configured in a plurality of rows. A rotating member, an optical fiber fixing jig connected to one side of the optical fiber wound around the optical fiber winding member, and a displacement / load converting member connected to the other side of the optical fiber are accommodated inside. Thus, a two-point displacement meter using an optical fiber is provided in which one side of the optical fiber is connected to a BOTDR measuring instrument.
With this configuration, an optical fiber winding member made up of a plurality of pulleys or a plurality of pulleys arranged in a plurality of rows is provided inside the optical fiber, and the length of the optical fiber is required by the optical fiber winding member. It can be installed on the upper surface of each structure, and it can be easily installed on the upper surface of each structure by concentrating it inside a two-point displacement meter that constitutes a small space up to a long length. Regardless, there is an effect that the displacement amount between two points can be detected accurately and quickly.

請求項2記載の発明によれば、前記2点間変位計は箱状ケースに構成され、その内底面部に上記光ファイバ固定治具と、上記複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、上記変位・荷重変換部材とを固定したことを特徴とする請求項1記載の光ファイバによる2点間変位計を提供する。
このような構成としたので、上記請求項1記載の発明の効果に加えて、2点間変位計がコンパクトな箱状ケースに構成され、その内部に光ファイバ固定治具、光ファイバ巻回部材やコイルバネ等の変位・荷重変換部材の各構成要素を収容したので各構成要素をコンパクトに組付けられると共に構成部品又は部材の取り替えを容易にし、設置工数を大幅に低減する効果がある。
According to the second aspect of the present invention, the two-point displacement meter is configured as a box-shaped case, and the plurality of or a plurality of the optical fiber fixing jigs formed on the inner bottom surface portion and the plurality of rows are provided. 2. A two-point displacement meter using an optical fiber according to claim 1, wherein a rotatable optical fiber winding member comprising a pulley and the displacement / load converting member are fixed.
Since it was set as such a structure, in addition to the effect of the invention of the said Claim 1, a two-point displacement meter is comprised by the compact box-shaped case, and an optical fiber fixing jig and an optical fiber winding member are set in the inside. Since the components of the displacement / load conversion member such as the coil spring are accommodated, the components can be assembled in a compact manner, and the replacement of the components or members can be facilitated, and the installation man-hour can be greatly reduced.

請求項3記載の発明によれば、前記変位・荷重変換部材は、コイルバネで構成されたことを特徴とする請求項1又は2記載の光ファイバによる2点間変位計を提供する。
このような構成としたので、光ファイバの他方側に接続される変位・荷重変換部材を汎用の所定のバネ定数を有するコイルバネを採用したので、2点間変位計の実施化が極めて容易になるという効果がある。
According to a third aspect of the present invention, there is provided the two-point displacement meter using an optical fiber according to the first or second aspect, wherein the displacement / load converting member is constituted by a coil spring.
Since such a configuration is adopted, the displacement / load conversion member connected to the other side of the optical fiber employs a coil spring having a general-purpose predetermined spring constant, so that it is very easy to implement a two-point displacement meter. There is an effect.

請求項4記載の発明によれば、一方、他方の2点間の変位を測定するもので一方点に設置してあって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続し、上記変位・荷重変換部材に接続されたリードワイヤを他方点に配置したアングルに固定したことを特徴とする光ファイバによる2点間変位計を提供する。
このような構成としたので、上記光ファイバの他方側を構造物の下面に変位・荷重変換部材を介してアングルに固定されるリードワイヤに接続したので、該光ファイバが外部からの衝撃等から保護され損傷する惧れがなく設置から長年月を経た状態でも光ファイバの歪みや桁の変位を正確に判定かつ検出し、耐久性の高い2点間変位計を提供できる効果がある。
According to the invention described in claim 4, the displacement between the other two points is measured, and is installed at one point, and can be rotated by a plurality of or a plurality of pulleys configured in a plurality of rows. An optical fiber winding member, an optical fiber fixing jig connecting one side of the optical fiber wound around the optical fiber winding member, and a displacement / load converting member connecting the other side of the optical fiber; In which the one side of the optical fiber is connected to a BOTDR measuring instrument, and the lead wire connected to the displacement / load converting member is fixed to an angle arranged at the other point. A fiber-to-point displacement meter is provided.
With this configuration, the other side of the optical fiber is connected to a lead wire fixed to an angle via a displacement / load conversion member on the lower surface of the structure, so that the optical fiber is protected from an external impact or the like. There is an advantage that a highly durable point-to-point displacement meter can be provided by accurately determining and detecting the distortion of the optical fiber and the displacement of the girder even after a long period of time without being protected and possibly damaged.

請求項5記載の発明によれば、前記光ファイバの設置時に予め張力を与えることを特徴とする請求項1、2、3又は4記載の光ファイバによる2点間変位計を提供する。
このような構成としたので、複数個又は多数個のプーリーと、変位・荷重変換部材としてのコイルバネを介し、この部材間に予め張力を掛けて変位に対して引張方向と圧縮方向に対応可能な2点間の変位を有効利用する効果がある。
According to a fifth aspect of the present invention, there is provided a two-point displacement meter using an optical fiber according to the first, second, third or fourth aspect, wherein tension is applied in advance when the optical fiber is installed.
With such a configuration, a plurality of or many pulleys and a coil spring as a displacement / load conversion member can be used to apply tension between the members in advance, so that the displacement can be accommodated in the tension direction and the compression direction. There is an effect of effectively using the displacement between two points.

請求項6記載の発明によれば、一方、他方の桁相互間の下方に配置される橋脚の上面に設置されてあって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続し、上記変位・荷重変換部材に接続されたリードワイヤを上記桁の下面に固定したアングルに固定したことを特徴とする光ファイバによる桁変位計を提供する。
このような構成としたので、コンパクトに設計された2点間変位計を桁変位計として使用すると共に常時又は地震時等の災害時のいずれに際しても一方又は他方の桁変位や橋脚変位を現場から所定の遠隔地に設置した光ファイバに発生した歪みを測定するBOTDR計測器やその他関連製品によりリアルタイムに監視でき、正確かつ迅速に桁の移動量を把握することができる光ファイバによる桁変位計を提供する効果がある。
According to the invention described in claim 6, it is installed on the upper surface of the bridge pier disposed below one of the other girders, and is rotatable by a plurality of or a plurality of pulleys configured in a plurality of rows. An optical fiber winding member, an optical fiber fixing jig connecting one side of the optical fiber wound around the optical fiber winding member, and a displacement / load converting member connecting the other side of the optical fiber; The one side of the optical fiber is connected to a BOTDR measuring instrument, and the lead wire connected to the displacement / load conversion member is fixed to an angle fixed to the lower surface of the girder. An optical fiber girder displacement meter is provided.
With such a configuration, a compactly designed two-point displacement meter is used as a girder displacement meter, and one or the other girder displacement or pier displacement can be detected from the field at any time during a normal or disaster such as an earthquake. An optical fiber girder displacement meter that can be monitored in real time with a BOTDR measuring instrument and other related products that measure strain generated in an optical fiber installed at a predetermined remote location, and can accurately and quickly grasp the amount of digit movement. There is an effect to provide.

請求項7記載の発明によれば、一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤを巻装した定荷重バネ部材と、該定荷重バネ部材からのリードワイヤを接続しかつ桁変位を荷重に変換する変位・荷重変換部材と、該変位・荷重変換部材に発生した荷重に基づき一端及び他端の光ファイバを張設・巻取しかつ該一端及び他端の光ファイバをネットワーク通信網に接続した張力発生部材と、前記光ファイバを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材とを具備したことを特徴とする光ファイバによる2点間変位計を提供する。
このような構成としたので、定荷重バネ部材や張力発生部材を設けたのでノイズに基づく桁変位を阻止し伝達することなくリードワイヤの張力を一定荷重に保持し桁変位を正確に伝達すると共に光ファイバを光ファイバ巻回部材により均一に張設し得るので高品質の2点間変位計を提供できる効果がある。
According to the seventh aspect of the present invention, a constant load spring member for measuring a girder displacement between the other two points and winding a lead wire for transmitting the girder displacement, and the constant load spring A displacement / load conversion member for connecting a lead wire from the member and converting a girder displacement into a load, and an optical fiber at one end and the other end are stretched and wound based on the load generated on the displacement / load conversion member; A rotatable light comprising a tension generating member in which the optical fibers at the one end and the other end are connected to a network communication network, and a plurality of or a plurality of pulleys that are wound around the optical fiber and configured in a plurality of rows. A two-point displacement meter using an optical fiber characterized by comprising a fiber winding member.
With such a configuration, a constant load spring member and a tension generating member are provided, so that the girder displacement based on noise is prevented and transmitted without holding the lead wire tension at a constant load and accurately transmitting the girder displacement. Since the optical fiber can be uniformly stretched by the optical fiber winding member, it is possible to provide a high-quality two-point displacement meter.

請求項8記載の発明によれば、一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤを巻装した定荷重バネ部材と、該定荷重バネ部材からのリードワイヤを接続しかつ桁変位を荷重に変換する変位・荷重変換部材と、該変位・荷重変換部材に発生した荷重に基づき一端及び他端の光ファイバを張設・巻取しかつ該一端及び他端の光ファイバをネットワーク通信網に接続した張力発生部材と、前記光ファイバを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、前記定荷重バネ部材、変位・荷重変換部材、張力発生部材及び光ファイバ巻回部材を内装した箱状ケースと、該箱状ケースの壁部位に装着されてあって、前記定荷重バネ部材の前後に配置され、リードワイヤを巻装する前記リードワイヤ引出部材とを具備したことを特徴とする光ファイバによる2点間変位計を提供する。
このような構成としたので、請求項7記載の発明の効果に加えて、リードワイヤの引出しを容易にするうえに2点間変位計がコンパクトな箱状ケースに構成され、その内部に定荷重バネ部材、光ファイバ巻回部材やコイルバネ等の変位・荷重変換部材、張力発生部材の各構成要素を収容したので各構成要素をコンパクトに組付けられると共に構成部品又は部材の取り替えを容易にし、設置工数を大幅に低減する効果がある。
According to the eighth aspect of the present invention, a constant load spring member for measuring a girder displacement between the other two points and winding a lead wire for transmitting the girder displacement, and the constant load spring A displacement / load conversion member for connecting a lead wire from the member and converting a girder displacement into a load, and an optical fiber at one end and the other end are stretched and wound based on the load generated on the displacement / load conversion member; A rotatable light comprising a tension generating member in which the optical fibers at the one end and the other end are connected to a network communication network, and a plurality of or a plurality of pulleys that are wound around the optical fiber and configured in a plurality of rows. A fiber winding member, a box-shaped case having the constant load spring member, a displacement / load conversion member, a tension generating member, and an optical fiber winding member, and a wall portion of the box-shaped case, Arranged before and after the constant load spring member It is to provide a point-to-point displacement meter by the optical fiber, characterized by comprising a said lead wire pull-out member for winding the lead wire.
With such a configuration, in addition to the effect of the invention according to claim 7, in addition to facilitating lead wire drawing, the two-point displacement meter is configured in a compact box-shaped case and has a constant load inside. Since each component of the displacement / load conversion member such as a spring member, an optical fiber winding member and a coil spring, and a tension generating member are accommodated, each component can be assembled in a compact manner, and the replacement of components or members can be facilitated. There is an effect of greatly reducing the man-hours.

請求項9記載の発明によれば、前記リードワイヤ引出部材は、前記箱状ケースの壁部を貫通した回転軸の両端に連結されると共に前記リードワイヤを張設・巻取りする箱状ケース内外に配置されたプーリーと、該回転軸に囲僥されたオイルシール部材を有したことを特徴とする請求項8記載の光ファイバによる2点間変位計を提供する。
このような構成としたので、請求項8記載の発明の効果に加えて、当該2点間変位計は風雨や震動等の外部の悪環境において、その機密性や耐久性を向上させ、長寿命の計測器として信頼性を高める効果がある。
According to the ninth aspect of the present invention, the lead wire lead-out member is connected to both ends of the rotating shaft that penetrates the wall portion of the box-shaped case, and the box-shaped case inside and outside that stretches and winds the lead wire. 9. An optical fiber two-point displacement meter according to claim 8, further comprising an oil seal member surrounded by the pulley and an oil seal member surrounded by the rotation shaft.
With such a configuration, in addition to the effect of the invention according to claim 8, the two-point displacement meter improves its confidentiality and durability in a bad external environment such as wind and rain and vibration, and has a long service life. As an instrument, it has the effect of improving reliability.

請求項10記載の発明によれば、一方、他方の2点間の変位を測定するものであって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続してなる2点間変位計を各構造物に設置されている既存の光ファイバネットワーク通信網に接続したことを特徴とする光ファイバによる2点間変位遠隔監視方法を提供する。
このような構成としたので、特に、地震時等の災害時に於いて、例えば、国道沿いに敷設された光ファイバネットワーク通信網の例えば情報BOXを使用して約20(km)ないし30(km)程度離れた遠隔地の道路事務所内に設置した光スイッチを経由して複数の橋梁とBOTDR計測器を接続して光ファイバによる2点間変位や歪み測定用の光ファイバを該変位計に直列に結線し、構造物の歪みを遠隔監視する方法を構成でき、電源設備を必要とすることなく1本の光ファイバで自動的に2点間又は複数若しくは多数間の構造物の変位を監視できる効果がある。また、地震等の災害時、担当職員が遠距離にある構造物へ直接行くことなく、そして集中的に構造物の2点間の変位を把握可能な監視システムを提供する効果がある。
According to the invention of claim 10, a rotatable optical fiber winding member that measures a displacement between two points on the other side and includes a plurality or a plurality of pulleys configured in a plurality of rows. And an optical fiber fixing jig connected to one side of the optical fiber wound around the optical fiber winding member, and a displacement / load conversion member connected to the other side of the optical fiber. A two-point displacement meter formed by connecting one side of the optical fiber to a BOTDR measuring instrument is connected to an existing optical fiber network communication network installed in each structure. A point-to-point displacement remote monitoring method is provided.
With such a configuration, especially in the event of a disaster such as an earthquake, for example, about 20 (km) to 30 (km) using, for example, an information BOX of an optical fiber network communication network laid along a national road. Connect a plurality of bridges and a BOTDR measuring instrument via an optical switch installed in a remote road office at a certain distance, and connect the optical fiber for measuring displacement and strain between two points by optical fiber in series with the displacement meter. It is possible to configure a method for connecting and remotely monitoring the distortion of the structure, and the effect of automatically monitoring the displacement of the structure between two points or between multiple or multiple points with one optical fiber without the need for power supply equipment There is. In addition, in the event of a disaster such as an earthquake, there is an effect of providing a monitoring system in which the staff in charge does not go directly to a structure at a long distance and can intensively grasp the displacement between two points of the structure.

以下、本発明に係る光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法の実施の形態について添付図面に基づき詳細に説明する。 DESCRIPTION OF EMBODIMENTS Embodiments of a two-point displacement meter using an optical fiber and a two-point displacement remote monitoring method using an optical fiber according to the present invention will be described below in detail with reference to the accompanying drawings.

図1ないし図6は、本発明に係る光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法の実施の形態を示す一例であって、図1は、土木・建築構造物として2点間の変位を検出する光ファイバによる2点間変位計の配置状態を示す概要図、図2は、上記2点間変位計の内部に収容される各構成部材を示す構成図、図3は、本発明に係る光ファイバの歪み(μ)に対する荷重(gf)の関係特性図、図4は、本発明に係る光ファイバの歪み(μ)に対する荷重(gf)の光ファイバ素線特性図、図5は、各構造物に設置した本発明に係る光ファイバによる2点間変位計でネットワーク通信網を介してBOTDR計測器で構造物の変位を検出する方法を示すシステム概要図、図6は、図5に示す2点間変位監視システムに於ける2点間変位計の内部構成を示す構成概要図である。 1 to 6 are examples showing an embodiment of a two-point displacement meter using an optical fiber and a two-point displacement remote monitoring method using an optical fiber according to the present invention. FIG. 1 shows a civil engineering / building structure. FIG. 2 is a schematic diagram showing an arrangement state of a two-point displacement meter using an optical fiber that detects a displacement between two points, and FIG. 2 is a configuration diagram showing each component housed in the two-point displacement meter, FIG. 3 is a characteristic diagram of the load (gf) with respect to strain (μ) of the optical fiber according to the present invention, and FIG. 4 is an optical fiber characteristic of the load (gf) with respect to strain (μ) of the optical fiber according to the present invention. FIG. 5 is a system schematic diagram showing a method of detecting displacement of a structure with a BOTDR measuring instrument via a network communication network by a two-point displacement meter using an optical fiber according to the present invention installed in each structure. 6 is a two-point displacement monitoring system shown in FIG. It is a structure schematic diagram which shows the internal structure of a 2-point displacement meter.

図1は、本発明に係る光ファイバによる2点間変位計の設置状態を示す一例であって、構造物、例えば桁や橋脚の変位を検出する例を示した。35は土木・建築構造物例えば、コンクリート構造物の一方の桁である。36は土木・建築構造物例えば、コンクリート構造物の他方の桁である。該一方の桁35と他方の桁36の相互間の下方位置には橋台又は橋脚37が配置してある。該橋脚37は躯体で構成してもよい。上記橋脚37は、上面に2点間変位計38を配置し、図2に示すようにこの2点間変位計38から歪みセンサ機能を有する一方側及び他方側の光ファイバ39、40を引出す。尚、本実施の形態に於ける2点間変位計38は桁変位計としての機能を有している。 FIG. 1 is an example showing an installation state of a two-point displacement meter using an optical fiber according to the present invention, and shows an example of detecting displacement of a structure such as a girder or a bridge pier. Reference numeral 35 denotes one digit of a civil engineering / building structure such as a concrete structure. Reference numeral 36 denotes the other girder of a civil engineering / building structure such as a concrete structure. An abutment or pier 37 is disposed at a lower position between the one girder 35 and the other girder 36. The pier 37 may be formed of a frame. The bridge pier 37 has a two-point displacement meter 38 disposed on the upper surface thereof, and as shown in FIG. 2, one side and the other side optical fibers 39 and 40 having a strain sensor function are drawn out from the two-point displacement meter 38. The two-point displacement meter 38 in this embodiment has a function as a digit displacement meter.

また、上記2点間変位計38は内部に収容してあって、例えば橋脚37の上面37aに設置され、上記他方側の光ファイバ40に接続した図2に示す弾性部材の性質を有する変位・荷重変換部材41としての例えば、バネ、好ましくはコイルバネ(以下単に「バネ」という)を有し、この変位・荷重変換部材41に連結する鋼線等でなるリードワイヤ42は、上記2点間変位計38から引廻され他方の桁36の下面36aに固定されたアングル44に固定されている。尚、35aは一方の桁35の下面である。 Further, the two-point displacement meter 38 is housed inside, for example, installed on the upper surface 37a of the pier 37 and connected to the optical fiber 40 on the other side and having the properties of an elastic member shown in FIG. The load converting member 41 includes, for example, a spring, preferably a coil spring (hereinafter simply referred to as “spring”), and the lead wire 42 made of a steel wire or the like connected to the displacement / load converting member 41 is displaced between the two points. The angle is fixed from the total 38 and fixed to the lower surface 36a of the other beam 36. Incidentally, 35a is the lower surface of one girder 35.

ここに於いて、上記2点間変位計38は図2に示すように、2列又は3列の複数列すなわち、本実施の形態では、各列が円盤状に形成された6個の一方及び他方のプーリー45a、45a…及び45b、45b…を組合せて、2列で構成された光ファイバ巻回部材45と、上記一方側の光ファイバ39及び上記他方側の光ファイバ40と一体した同一光ファイバで構成されかつ両プーリー45a、45b間に巻装された光ファイバ45cと、一端側を上記一方側の光ファイバ39及び他端を上記光ファイバ45cに接続した光ファイバ固定治具45dと、上記光ファイバ45cと他方側の光ファイバ40の接続点に接続されたコイルバネ等でなる変位・荷重変換部材41とで構成される。
尚、上記一方及び他方のプーリー45a、45bは単一列、3列又は4列等であってもよく、さらに前端及び後端間に6個以外の多数固を配置してもよい。
Here, as shown in FIG. 2, the two-point displacement meter 38 has two or three rows, that is, in this embodiment, each of the six rows formed in a disk shape and .., 45b, 45b, etc. are combined with the other pulleys 45a, 45a,..., 45b, 45b, and the like, and the same light integrated with the optical fiber 39 on one side and the optical fiber 40 on the other side. An optical fiber 45c formed of a fiber and wound between the pulleys 45a and 45b; an optical fiber fixing jig 45d having one end connected to the one optical fiber 39 and the other end connected to the optical fiber 45c; A displacement / load conversion member 41 made of a coil spring or the like connected to a connection point between the optical fiber 45c and the optical fiber 40 on the other side.
The one and other pulleys 45a and 45b may be in a single row, three rows, four rows, or the like, and more than six may be arranged between the front end and the rear end.

上記一方のプーリー45a、45a…及び上記他方のプーリー45b、45b…はその軸心が一方、他方の軸棒45e、45fを貫通させかつ相互間幅を有して回転可能に軸着している。上記一方の軸棒45eの前端45e1及び後端45e2並びに上記他方の軸棒45fの前端45f1及び後端45f2はそれぞれ2つの脚部45g1、45g2及び45h1、45h2を備え、上記一方及び他方のプーリー45a…、45b…を回転自在に支承している。また、該一方及び他方のプーリー45a、45a…、45b、45b…は、外周部に例えば、略V字状又は凹陥状の溝を周設形成し、この溝内に上記光ファイバ45cをそれぞれ交互につまり一方のプーリー45aから他方のプーリー45bに往復させて懸架する。 The one pulley 45a, 45a,... And the other pulley 45b, 45b,... Are pivotally mounted so that their shaft centers pass through one and the other shaft rods 45e, 45f and have a mutual width. . The front end 45e1 and the rear end 45e2 of the one shaft rod 45e and the front end 45f1 and the rear end 45f2 of the other shaft rod 45f are respectively provided with two leg portions 45g1, 45g2, 45h1, and 45h2, and the one and the other pulleys 45a. ..., 45b ... are rotatably supported. The one and the other pulleys 45a, 45a,..., 45b, 45b... Have, for example, substantially V-shaped or recessed grooves formed in the outer periphery thereof, and the optical fibers 45c are alternately arranged in the grooves. That is, it is suspended by reciprocating from one pulley 45a to the other pulley 45b.

このように構成したので、上記光ファイバ45cは一方のプーリー45aと他方のプーリー45bとの間隔長のほかにかつ一方のプーリー45a…、他方のプーリー45b…の6個分の距離を稼ぐことができ、上記2点間変位計38が小型の箱状ケースで構成した場合にも、比較的長大な光ファイバ45cを収容することができ、一方、他方の桁長の長いものにも適用させることができる。そして、上記2点間変位計38は、内部の底面部等に例えば基盤(図示せず)を設置し、この基盤上面に上記光ファイバ固定治具45d及び複数列で構成された複数個又は多数固のプーリー45a、45bでなる回転可能な光ファイバ巻回部材45及びバネ、特に、コイルバネ等でなる変位・荷重変換部材41を搭載する。 Since the optical fiber 45c is configured as described above, the optical fiber 45c can obtain a distance corresponding to six of the pulleys 45a and 45b in addition to the distance between the pulley 45a and the pulley 45b. Even when the two-point displacement meter 38 is constituted by a small box-shaped case, the relatively long optical fiber 45c can be accommodated, and on the other hand, it can be applied to the other one having a long girder length. Can do. The two-point displacement meter 38 is provided with, for example, a base (not shown) on the inner bottom surface or the like, and a plurality or many of the optical fiber fixing jig 45d and a plurality of rows are formed on the top of the base. A rotatable optical fiber winding member 45 made of solid pulleys 45a and 45b and a spring, in particular, a displacement / load conversion member 41 made of a coil spring or the like are mounted.

上記2点間変位計38に収容しているバネ等の変位・荷重変換部材41から引出されたリードワイヤ42はその他端がアングル44の垂下固定部43の緊締貫通孔43aに係止固定している。上記変位・荷重変換部材41によりリードワイヤ42は適宜の張力を確保して張設すると共に上記2点間変位計38の変位・荷重変換部材41を適宜に伸張させ、また、上記光ファイバ45cを光ファイバ巻回部材45に設置する際予め張力を与えており、上記一方側及び他方側の光ファイバ39、40の歪みを適正に検出させ、上記構造物の2点間すなわち土木・建築構造物、例えばコンクリート構造物の変位量若しくは移動量を測定かつ検出する。 The lead wire 42 drawn out from the displacement / load converting member 41 such as a spring accommodated in the two-point displacement gauge 38 is locked and fixed to the tightening through hole 43a of the hanging fixing portion 43 of the angle 44 at the other end. Yes. The lead / wire 42 is stretched while securing an appropriate tension by the displacement / load conversion member 41, and the displacement / load conversion member 41 of the two-point displacement meter 38 is appropriately extended, and the optical fiber 45c is Tension is applied in advance when the optical fiber winding member 45 is installed, and the distortion of the optical fibers 39 and 40 on the one side and the other side is properly detected, so that it is between two points of the structure, that is, civil engineering / building structure. For example, the amount of displacement or movement of a concrete structure is measured and detected.

また、上記他方側の光ファイバ40は、上記2点間変位計38から引出され、図1に示すように上記他方側の桁36の下面36aに固定したアングル44に接続する。そして、該一方側の光ファイバ39はいわゆるBORTD計測器46を接続する。そして、BOTDR(Brillouin Optical Time Domain Reflectometer)計測器46は、上記光ファイバ39及び40間に加えられた歪み分布を光ファイバ39及び40の一端から光パルスを入射させ、後方散乱光の一つであるブリルアン散乱光の周波数シフトから歪みの大きさを該光パルスの光速と受信時間から距離を求め、桁や橋脚の変位を検出する。 The other side optical fiber 40 is drawn from the two-point displacement meter 38 and connected to an angle 44 fixed to the lower surface 36a of the other side girder 36 as shown in FIG. The one side optical fiber 39 is connected to a so-called BORTD measuring instrument 46. Then, a BOTDR (Brillouin Optical Time Domain Reflectometer) measuring device 46 causes a strain distribution applied between the optical fibers 39 and 40 to enter an optical pulse from one end of the optical fibers 39 and 40, and uses one of the backscattered light. The magnitude of distortion is obtained from the frequency shift of a certain Brillouin scattered light, the distance is obtained from the speed of light and the reception time of the light pulse, and the displacement of the beam and the pier is detected.

尚、上記2点間変位計38は桁や橋脚等の2点間の変位を測定するために所定値以上の長さを有する光ファイバ45cが必要となる。つまり、該光ファイバ45cの許容伸び率を1.2(%)とすれば、12(cm)の変位を測定するためには所定値より10(m)の延長が必要であり、一定以上の任意の変位量を測定するために光ファイバの許容伸び量を補填する手段が必要となる。この補填する手段が前述したコイルバネ等でなる変位・荷重変換部材41であって、上記光ファイバ45cに直列に接続されている。従って、上記2点間変位計38の構成は上述の一方、他方のプーリー45a…及び45b、45b…や上述の光ファイバ巻回部材45等を備えない構成としてもよい。 The two-point displacement meter 38 requires an optical fiber 45c having a length greater than a predetermined value in order to measure the displacement between two points such as a girder and a bridge pier. That is, if the allowable elongation of the optical fiber 45c is 1.2 (%), it is necessary to extend 10 (m) from a predetermined value in order to measure the displacement of 12 (cm). In order to measure an arbitrary amount of displacement, a means for compensating for the allowable elongation of the optical fiber is required. The compensating means is the displacement / load converting member 41 made of the coil spring or the like, and is connected in series to the optical fiber 45c. Accordingly, the configuration of the two-point displacement meter 38 may be configured so as not to include the above-described one and other pulleys 45a, 45b, 45b, the optical fiber winding member 45, and the like.

上述した本発明に係る光ファイバによる2点間変位計の実施の形態に基づく動作等について説明する。 The operation | movement etc. based on embodiment of the two-point displacement meter by the optical fiber which concerns on this invention mentioned above are demonstrated.

本発明に係る光ファイバによる2点間変位計は一方側又は他方側のセンサとしての光ファイバ39、40間の歪み分布を測定するBOTDR計測器46を備え、2点間の構造物の変位を変位・荷重変換部材41(バネ)により力に変換し、直接に当該光ファイバ39、40間に加え、該一方側又は他方側光ファイバ39、40間に発生した歪みを測定し、一方、他方の構造物の2点間変位を検出する技術である。
そして、図2に示すように上記2点間変位計38内に設置された光ファイバ巻回部材45に巻装された1本の長大な光ファイバ45cに桁歪み測定用としての一方側又は他方側の光ファイバ39、40を直列に接続し、一方点、他方点例えば桁35、36や橋脚37に於ける構造物の複数箇所の変位や歪みを同時に測定できることを特徴とする。
A two-point displacement meter using an optical fiber according to the present invention includes a BOTDR measuring instrument 46 for measuring a strain distribution between optical fibers 39 and 40 serving as a sensor on one side or the other side. It is converted into force by a displacement / load converting member 41 (spring), directly applied between the optical fibers 39, 40, and the distortion generated between the one or other optical fibers 39, 40 is measured. This is a technique for detecting the displacement between two points of the structure.
Then, as shown in FIG. 2, one long side or the other side for measuring the girder distortion on one long optical fiber 45c wound around the optical fiber winding member 45 installed in the two-point displacement meter 38. The optical fibers 39 and 40 on the side are connected in series, and displacements and strains at a plurality of locations of the structure at one point, the other point, for example, the girders 35 and 36 and the pier 37 can be measured simultaneously.

次に、上記一方側又は他方側の光ファイバ39、40間に掛る荷重(gf)と歪み(μ)の関係について説明すれば、図3は、素線の径が0.25(mm)、UV被覆線に於ける一方側又は他方側の光ファイバ39、40間に掛る荷重Y(gf)と歪みX(μ)の関係を示す特性図である。この特性図は、−20(℃)ないし60(℃)の範囲に於いて、測定した結果を示しており、式(1)が成立する。
すなわち、Y=0.106X (1)
式(1)で一方、他方の桁35、36の変位を掛る荷重Y(gf)に変換して、当該一方側又は他方側の光ファイバ39、40間に加えれば、上記BOTDR計測器46により、一方又は他方の桁45、46や橋脚37の変位を測定できる。
Next, the relationship between the load (gf) and strain (μ) applied between the optical fibers 39 and 40 on the one side or the other side will be described. FIG. 3 shows that the diameter of the strand is 0.25 (mm), It is a characteristic view which shows the relationship between the load Y (gf) applied between the optical fibers 39 and 40 on the one side or the other side in the UV coated wire, and the strain X (μ). This characteristic diagram shows the measurement results in the range of −20 (° C.) to 60 (° C.), and equation (1) is established.
That is, Y = 0.106X (1)
When converted into the load Y (gf) that applies the displacement of one of the other girders 35 and 36 in the formula (1) and added between the optical fibers 39 and 40 on the one side or the other side, the BOTDR measuring instrument 46 , The displacement of one or the other girder 45, 46 or the pier 37 can be measured.

また、一方側又は他方側の光ファイバ39、40間に掛る荷重(gf)と桁変位の関係について説明すれば、一般に、光ファイバ39、40間は20000(μ)〜30000(μ)で破断するといわれている。最悪の場合を考慮して、2点間変位計38つまり桁変位計の最大許容歪みを10000(μ)とすると、BOTDR計測器46の機能よりパルス幅100(ns)での測定精度は30(μ)であるから10000/30=333となり、1(mm)の精度で約300(mm)すなわち、1(cm)の精度で約3(m)の変位を測定できる。 Further, the relationship between the load (gf) applied between the optical fibers 39 and 40 on one side or the other side and the girder displacement will be described. Generally, the optical fibers 39 and 40 are broken at 20000 (μ) to 30000 (μ). It is said that. Considering the worst case, if the maximum allowable strain of the two-point displacement meter 38, that is, the girder displacement meter is 10000 (μ), the measurement accuracy at the pulse width of 100 (ns) is 30 (by the function of the BOTDR measuring device 46). Since it is μ), 10000/30 = 333, so that displacement of about 300 (mm) with an accuracy of 1 (mm), that is, about 3 (m) with an accuracy of 1 (cm) can be measured.

地震時の構造物すなわち桁の変位を考慮すると30(cm)の変位が必要であり、光ファイバ39、40間をセンサとしたとき、許容歪みを10000(μ)とすると、30(cm)の変位を得るためには光ファイバ39、40間は、約30(m)の長さの光ファイバを用いる必要がある。そして、光ファイバ39、40に変位・荷重変換部材41としてのバネを介在させる方法がある。例えば、図4に示すように、桁変位30(cm)の変位を測定するために必要なバネの伸びは次の計算により、10(m)×10000(μ)=0.10(m)となる。0.10(m)の伸びを得るには上記式(1)から光ファイバ39、40に掛る荷重Y=0.106×1000=1060(gf)となる。すなわち、1060(g)で0.10(m)を引張すれば光ファイバ39、40は10000(μ)発生することが判明した。 Considering the structure of the earthquake, that is, the displacement of the girder, a displacement of 30 (cm) is required. When the sensor is between the optical fibers 39 and 40, if the allowable strain is 10,000 (μ), the displacement is 30 (cm). In order to obtain the displacement, it is necessary to use an optical fiber having a length of about 30 (m) between the optical fibers 39 and 40. There is a method in which a spring as the displacement / load conversion member 41 is interposed in the optical fibers 39 and 40. For example, as shown in FIG. 4, the elongation of the spring necessary for measuring the displacement of the beam displacement 30 (cm) is 10 (m) × 10000 (μ) = 0.10 (m) by the following calculation. Become. In order to obtain the elongation of 0.10 (m), the load Y applied to the optical fibers 39 and 40 from the above formula (1) becomes Y = 0.106 × 1000 = 1060 (gf). That is, it was found that if 0.10 (m) is pulled at 1060 (g), 10000 (μ) of optical fibers 39 and 40 are generated.

ここで上記2点間変位計38に変位・荷重変換部材41としてのバネを介在させる理由は、光ファイバ39、40間の歪み(μ)は光ファイバの長さL(m)、光ファイバの伸び△L(m)とすれば、μ=△L(m)/L(m)で表される。リードワイヤ42の伸びを無視すると、桁35、36の変位と光ファイバ39、40間の伸び△L(m)が同じとなり、大きな変位に対応するためには、光ファイバの長さLを長くする必要がある。桁35、36の移動量は、光ファイバ39、40間の伸び△L(m)にバネの伸びを加えた値となっている。バネ定数を変化させることで、光ファイバ39、40間の歪み(μ)を一定にして任意の変位に対応できることになる。また、光ファイバ39、40間の縮む方向の変位は予め張力を加えた位置を0点とすることで対応できる。 Here, the reason why the spring as the displacement / load converting member 41 is interposed in the above-described two-point displacement meter 38 is that the strain (μ) between the optical fibers 39 and 40 is the length L (m) of the optical fiber, If the elongation is ΔL (m), it is expressed by μ = ΔL (m) / L (m). If the extension of the lead wire 42 is ignored, the displacement of the girders 35 and 36 and the extension ΔL (m) between the optical fibers 39 and 40 are the same. In order to cope with a large displacement, the length L of the optical fiber is increased. There is a need to. The amount of movement of the girders 35 and 36 is a value obtained by adding the elongation of the spring to the elongation ΔL (m) between the optical fibers 39 and 40. By changing the spring constant, the strain (μ) between the optical fibers 39 and 40 can be kept constant to cope with an arbitrary displacement. Further, the displacement in the contracting direction between the optical fibers 39 and 40 can be dealt with by setting the position where tension is applied in advance to 0 point.

桁35、36の変位を光ファイバ39、40で直接受ける場合と、バネを介在する場合について説明すれば、
(1)変位を直接に受ける場合は、光ファイバ39、40の延長を1(m)とすると光ファイバの伸びは前記式より、±5(mm)の変位に対応できることになる。要求される桁35、36の移動量を±150(mm)と仮定すると光ファイバ39、40の伸びは△L=300(mm)となり、光ファイバ39、40の延長は30(m)必要となる。
(2)桁35、36と光ファイバ39、40の間にバネを介在させた場合、光ファイバ39、40の延長に関係なく、光ファイバ39、40に10000(μ)以上の歪みが発生しないようなバネ定数を選ぶことによって任意の変位に対応できる。
The case where the displacement of the girders 35 and 36 is directly received by the optical fibers 39 and 40 and the case where a spring is interposed are described.
(1) When receiving the displacement directly, if the extension of the optical fibers 39 and 40 is 1 (m), the extension of the optical fiber can correspond to a displacement of ± 5 (mm) from the above equation. Assuming that the required movement amount of the girders 35 and 36 is ± 150 (mm), the elongation of the optical fibers 39 and 40 is ΔL = 300 (mm), and the extension of the optical fibers 39 and 40 requires 30 (m). Become.
(2) When a spring is interposed between the girders 35 and 36 and the optical fibers 39 and 40, the optical fibers 39 and 40 are not distorted by 10,000 (μ) or more regardless of the extension of the optical fibers 39 and 40. By selecting such a spring constant, it is possible to cope with an arbitrary displacement.

次に、上述した本発明に係る具体的な実施例1としての図5に示す既存の光ファイバネットワーク通信網を利用した光ファイバによる2点間変位遠隔監視方法について説明する。
ここで、図5はいわゆる遠距離監視システムの概要を示すものであって、各構造物設置点、すなわち本実施例ではB、C、Dの3個所の構造物に設置した本発明装置としての2点間変位計38から引出された光ファイバ39と40を直列に既存の光ファイバネットワーク通信網51に接続すると共に遠隔地に設置したBOTDR計測器46で、上記各構造物B、C及びDの変位を一斉に検出する。また、当該実施例は一方側又は他方側の光ファイバ39、40を各桁35、36に設置した後は、設置現場BないしEに於いて電源設備は不要となり、メンテナンスフリー状態となる。
尚、図5に於いて37は橋脚である。
Next, a two-point displacement remote monitoring method using an optical fiber using the existing optical fiber network communication network shown in FIG. 5 as a specific embodiment 1 according to the present invention described above will be described.
Here, FIG. 5 shows an outline of a so-called long-distance monitoring system, which is an apparatus according to the present invention installed at each structure installation point, that is, at three structures B, C, and D in this embodiment. The BOTDR measuring instrument 46 connected to the existing optical fiber network communication network 51 in series with the optical fibers 39 and 40 drawn from the point-to-point displacement meter 38 and installed at a remote place, the above structures B, C and D The displacement of is detected all at once. Further, in this embodiment, after the optical fibers 39 and 40 on one side or the other side are installed in the girders 35 and 36, the power supply equipment is not required at the installation sites B to E, and the maintenance-free state is brought about.
In FIG. 5, reference numeral 37 denotes a pier.

次に、図5の実施例1に基づき図6に示す2点間変位計38の内部の構成及び動作を説明する。
上記2点間変位計38は図6に示すように、2列又は3列の複数列すなわち、本実施の形態では、各列が円盤状に形成された6個の一方及び他方のプーリー45a、45a…及び45b、45b…を組合せて、2列で構成された光ファイバ巻回部材45と、上記一方側の光ファイバ39及び上記他方側の光ファイバ40と一体した同一光ファイバで構成されかつ両プーリー45a、45b間に巻装された光ファイバ45cと、一端側を上記一方側の光ファイバ39及び他端を上記光ファイバ45cに接続した光ファイバ固定治具45dと、上記光ファイバ45cと他方側の光ファイバ40の接続点に接続されたコイルバネ等でなる変位・荷重変換部材41とで構成される。
また、前述した一方側の光ファイバ39、他方側の光ファイバ40及び光ファイバ45cは連続した一つのものであって、単一の光ファイバで構成されている。
尚、上記一方及び他方のプーリー45a、45bは単一列、3列又は4列等であってもよく、さらに前端及び後端間に6個以外の多数固を配置してもよい。
Next, the internal configuration and operation of the two-point displacement meter 38 shown in FIG. 6 will be described based on the first embodiment shown in FIG.
As shown in FIG. 6, the two-point displacement meter 38 has two or three rows, that is, in this embodiment, six one and other pulleys 45a each having a disc shape. 45a... And 45b, 45b... Are composed of optical fiber winding members 45 configured in two rows, the same optical fiber integrated with the one side optical fiber 39 and the other side optical fiber 40, and An optical fiber 45c wound between the pulleys 45a and 45b, an optical fiber fixing jig 45d having one end connected to the optical fiber 39 on one side and the other end connected to the optical fiber 45c, and the optical fiber 45c It is comprised with the displacement and load conversion member 41 which consists of a coil spring etc. which were connected to the connection point of the optical fiber 40 of the other side.
Further, the above-described optical fiber 39 on the one side, optical fiber 40 on the other side, and optical fiber 45c are one continuous, and are constituted by a single optical fiber.
The one and other pulleys 45a and 45b may be in a single row, three rows, four rows, or the like, and more than six may be arranged between the front end and the rear end.

上記一方のプーリー45a、45a…及び上記他方のプーリー45b、45b…はその軸心が一方、他方の軸棒45e、45fを貫通させかつ相互間幅を有して回転可能に軸着している。上記一方の軸棒45eの前端45e1及び後端45e2並びに上記他方の軸棒45fの前端45f1及び後端45f2はそれぞれ2つの脚部45g1、45g2及び45h1、45h2を備え、上記一方及び他方のプーリー45a…、45b…を回転自在に支承している。また、該一方及び他方のプーリー45a、45a…、45b、45b…は、外周部に例えば、略V字状又は凹陥状の溝を周設形成し、この溝内に上記光ファイバ45cをそれぞれ交互につまり一方のプーリー45aから他方のプーリー45bに往復させて懸架する。 The one pulley 45a, 45a,... And the other pulley 45b, 45b,... Are pivotally mounted so that their shaft centers pass through one and the other shaft rods 45e, 45f and have a mutual width. . The front end 45e1 and the rear end 45e2 of the one shaft rod 45e and the front end 45f1 and the rear end 45f2 of the other shaft rod 45f are respectively provided with two leg portions 45g1, 45g2, 45h1, and 45h2, and the one and the other pulleys 45a. ..., 45b ... are rotatably supported. The one and the other pulleys 45a, 45a,..., 45b, 45b... Have, for example, substantially V-shaped or recessed grooves formed in the outer periphery thereof, and the optical fibers 45c are alternately arranged in the grooves. That is, it is suspended by reciprocating from one pulley 45a to the other pulley 45b.

このように構成したので、上記光ファイバ45cは一方のプーリー45aと他方のプーリー45bとの間隔長のほかにかつ一方のプーリー45a…、他方のプーリー45b…の6個分の距離を稼ぐことができ、上記2点間変位計38が小型の箱状ケースで構成した場合にも、比較的長大な光ファイバ45cを収容することができ、一方、他方の桁長の長いものにも適用させることができる。そして、上記2点間変位計38は、内部の底面部等に例えば基盤を設置し、この基盤上面に上記光ファイバ固定治具45d及び複数列で構成された複数個又は多数固のプーリー45a、45bでなる回転可能な光ファイバ巻回部材45及びバネ、特に、コイルバネ等でなる変位・荷重変換部材41を搭載する。 Since the optical fiber 45c is configured as described above, the optical fiber 45c can obtain a distance corresponding to six of the pulleys 45a and 45b in addition to the distance between the pulley 45a and the pulley 45b. Even when the two-point displacement meter 38 is constituted by a small box-shaped case, the relatively long optical fiber 45c can be accommodated, and on the other hand, it can be applied to the other one having a long girder length. Can do. The two-point displacement meter 38 has, for example, a base installed on the bottom surface of the inside, and a plurality of or a plurality of solid pulleys 45a composed of the optical fiber fixing jig 45d and a plurality of rows on the top surface of the base. A rotatable optical fiber winding member 45 made of 45b and a displacement / load converting member 41 made of a spring, particularly a coil spring or the like are mounted.

上記2点間変位計38に収容しているバネ等の変位・荷重変換部材41から引出されたリードワイヤ42はその他端がアングル44の垂下固定部43の緊締貫通孔43aに係止固定している。
上記変位・荷重変換部材性部材41によりリードワイヤ42は適宜の張力を確保して張設すると共に上記2点間変位計38の変位・荷重変換部材41を適宜に伸張させ、また、上記光ファイバ45cを光ファイバ巻回部材45に設置する際予め張力を与えており、上記一方側及び他方側の光ファイバ39、40の歪みを適正に検出させ、上記構造物の2点間すなわち土木・建築構造物、例えばコンクリート構造物の変位量若しくは移動量を測定かつ検出する。そして、上記他方側の光ファイバ40は前記光ファイバ巻回部材45に巻装された光ファイバ45cの他方端と変位・荷重変換部材41との接続点Pに接続されると共に既存の光ファイバネットワーク通信網51に接続する。
The lead wire 42 drawn out from the displacement / load converting member 41 such as a spring accommodated in the two-point displacement gauge 38 is locked and fixed to the tightening through hole 43a of the hanging fixing portion 43 of the angle 44 at the other end. Yes.
The lead / wire 42 is stretched while securing an appropriate tension by the displacement / load conversion member 41, and the displacement / load conversion member 41 of the two-point displacement meter 38 is appropriately extended. Tension is applied in advance when installing the optical fiber winding member 45 on the optical fiber winding member 45 so that the distortion of the optical fibers 39 and 40 on the one side and the other side can be properly detected, and between two points of the structure, that is, civil engineering / architecture Measure and detect the amount of displacement or movement of a structure, such as a concrete structure. The other optical fiber 40 is connected to a connection point P between the other end of the optical fiber 45c wound around the optical fiber winding member 45 and the displacement / load conversion member 41, and an existing optical fiber network. Connect to the communication network 51.

また、図5に示すように、各構造物設置点B、C、Dに設置された当該各2点間変位計38に於ける他方側の光ファイバ40は上記光ファイバネットワーク通信網51を介して順次次段の一方側の光ファイバ39に直列接続構成されている。そして、最終段の2点間変位計38の一方側の光ファイバ39は光ファイバネットワーク通信網51を介していわゆるBOTDR計測器46に接続する。
尚、他の構成部材等は図2に示すものと略同一であり説明を省略する。
In addition, as shown in FIG. 5, the optical fiber 40 on the other side of each of the two-point displacement gauges 38 installed at the respective structure installation points B, C, D is connected via the optical fiber network communication network 51. Are sequentially connected in series with the optical fiber 39 on one side of the next stage. Then, the optical fiber 39 on one side of the final two-point displacement meter 38 is connected to a so-called BOTDR measuring device 46 via the optical fiber network communication network 51.
Other constituent members are substantially the same as those shown in FIG.

次に、図6に示す本発明に係る2点間変位遠隔監視システムに於ける2点間変位計の応用例である実施例2について説明する。
この実施例2に係る2点間変位計38Aの特徴点は図7に示す構成概要図から明らかなように一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤ42を巻装した定荷重バネ部材53と、該定荷重バネ部材53からのリードワイヤ42を接続しかつ桁変位を荷重に変換する変位・荷重変換部材41と、該変位・荷重変換部材41に発生した荷重に基づき一端及び他端の光ファイバ45cを張設・巻取しかつ該一方側及び他方側の光ファイバ39、40をネットワーク通信網51、51に接続した張力発生部材52と、該一方側及び他方側の光ファイバ39、40に連続してなる前記光ファイバ45cを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材45とを備えたことにある。
Next, a second embodiment which is an application example of the two-point displacement meter in the two-point displacement remote monitoring system according to the present invention shown in FIG. 6 will be described.
The feature point of the two-point displacement meter 38A according to the second embodiment is to measure the girder displacement between the other two points, as is apparent from the schematic configuration diagram shown in FIG. A constant load spring member 53 wound with a lead wire 42 to be transmitted, a displacement / load conversion member 41 that connects the lead wire 42 from the constant load spring member 53 and converts a digit displacement into a load, and the displacement / load Based on the load generated in the conversion member 41, one end and the other end of the optical fiber 45c are stretched and wound, and the one side and the other side optical fibers 39, 40 are connected to the network communication networks 51, 51. 52 and the optical fiber 45c that is continuous with the optical fibers 39 and 40 on the one side and the other side, and is rotatable by a plurality or a plurality of pulleys configured in a plurality of rows. Optical fiber winding In that a wood 45.

図7に基づきこの本発明に係る2点間変位遠隔監視システムに於ける2点間変位計の実施例2を説明すれば、2列又は3列の複数列すなわち、実施例2では、各列が円盤状に形成された9個の一方及び他方のプーリー45a、45a…及び45b、45b…を組合せて、2列で構成された光ファイバ巻回部材45と、上記一方側の光ファイバ39及び上記他方側の光ファイバ40と一体した同一光ファイバで構成されかつ両プーリー45a、45b間に巻装された光ファイバ45cと、上記光ファイバ39と上記光ファイバ40は上記光ファイバ巻回部材45から導出された後に張力発生部材52により固定され、それぞれ外部のネットワーク通信網51、51に接続される。一方、2点間の土木・建築構造物、例えば、一方、他方の桁変位を伝達するリードワイヤ42を定荷重バネ部材53に巻装し、さらに、該リードワイヤ42は、その桁変位を荷重に変換する変位・荷重変換部材41の他端に接続する。また、該変位・荷重変換部材41の一端は、前記リードワイヤ42と同種又は別異のリードワイヤ42aを上記張力発生部材52に接続する。そして、該張力発生部材52を回転駆動することにより上記光ファイバ45cに張力を付与し、この2点間の構造物の変位信号すなわち桁変位信号をネットワーク通信網51、51を介して伝送し、上記BOTDR計測器46により計測する。 A second embodiment of the two-point displacement meter in the two-point displacement remote monitoring system according to the present invention will be described with reference to FIG. Is formed by combining nine one and other pulleys 45a, 45a,..., 45b, 45b... Formed in a disc shape, and the one-side optical fiber 39 and The optical fiber 45c is composed of the same optical fiber integrated with the other optical fiber 40 and is wound between the pulleys 45a and 45b, and the optical fiber 39 and the optical fiber 40 are the optical fiber winding member 45. Are fixed by a tension generating member 52 and connected to external network communication networks 51 and 51, respectively. On the other hand, a civil engineering / building structure between two points, for example, a lead wire 42 for transmitting the displacement of one side of the other is wound around the constant load spring member 53, and the lead wire 42 loads the displacement of the digit. It connects with the other end of the displacement and load conversion member 41 which converts into. One end of the displacement / load converting member 41 connects a lead wire 42a of the same type or different from the lead wire 42 to the tension generating member 52. Then, the tension generating member 52 is rotationally driven to apply tension to the optical fiber 45c, and a displacement signal of the structure between the two points, that is, a digit displacement signal is transmitted through the network communication networks 51 and 51, Measurement is performed by the BOTDR measuring instrument 46.

尚、図7に於いては、2点間変位計38Aの実施例2の構成に備えられる後述するダミー用プーリーやオイルシール部材等は省略した。
また、上記一方及び他方のプーリー45a、45bは単一列、3列又は4列等であってもよく、さらに前端及び後端間に9個以外の多数固を配置してもよい。
In FIG. 7, a dummy pulley and an oil seal member, which will be described later, provided in the configuration of the second embodiment of the two-point displacement meter 38A are omitted.
The one and other pulleys 45a and 45b may be in a single row, three rows, four rows, or the like, and a multiplicity other than nine may be arranged between the front end and the rear end.

上記一方のプーリー45a、45a…及び上記他方のプーリー45b、45b…はその軸心が軸棒45e、45fを貫通させかつ相互間幅を有して回転可能に軸着している。上記軸棒45eの前端45e1及び後端45e2並びに上記軸棒45fの前端45f1及び後端45f2はそれぞれ2つの脚部又は軸受部材45g1、45g2及び45h1、45h2を備え、上記一方及び他方のプーリー45a…、45b…を回転自在に支承している。また、該一方及び他方のプーリー45a、45a…、45b、45b…は、外周部に例えば、略V字状又は凹陥状の溝を周設形成し、この溝内に上記光ファイバ45cをそれぞれ交互につまり一方のプーリー45aから他方のプーリー45bに往復させて懸架する。 The one pulley 45a, 45a,... And the other pulley 45b, 45b,... Have shafts that pass through the shaft rods 45e, 45f and have a width between them so that they can rotate. The front end 45e1 and the rear end 45e2 of the shaft rod 45e and the front end 45f1 and the rear end 45f2 of the shaft rod 45f are each provided with two leg portions or bearing members 45g1, 45g2, 45h1, 45h2, and the one and other pulleys 45a,. 45b are rotatably supported. The one and the other pulleys 45a, 45a,..., 45b, 45b... Have, for example, substantially V-shaped or recessed grooves formed in the outer periphery thereof, and the optical fibers 45c are alternately arranged in the grooves. That is, it is suspended by reciprocating from one pulley 45a to the other pulley 45b.

このように構成したので、上記光ファイバ45cは一方のプーリー45aと他方のプーリー45bとの間隔長のほかにかつ一方のプーリー45a…、他方のプーリー45b…の9個分の距離を稼ぐことができ、上記2点間変位計38Aが小型の箱状ケースで構成した場合にも、比較的長大な光ファイバ45cを収容することができ、一方、他方の桁長の長いものにも適用させることができる。 Since the optical fiber 45c is configured as described above, the optical fiber 45c can obtain a distance corresponding to nine of the one pulley 45a, the other pulley 45b, in addition to the distance between the one pulley 45a and the other pulley 45b. Even when the two-point displacement meter 38A is formed of a small box-like case, the relatively long optical fiber 45c can be accommodated, and on the other hand, it can be applied to the other one having a long girder length. Can do.

次に、図7に示す本発明に係る2点間変位遠隔監視システムに於ける2点間変位計38Aの実施例2に示す構成について具体的な構造例を図8に示し、これを説明する。
図8は、当該実施例2に於ける2点間変位計38Aの構造例であって、その全体を水平方向に断面した平面図である。
Next, FIG. 8 shows a specific structural example of the configuration shown in Example 2 of the two-point displacement meter 38A in the two-point displacement remote monitoring system according to the present invention shown in FIG. 7, and this will be described. .
FIG. 8 is a structural example of the two-point displacement meter 38A in the second embodiment, and is a plan view in which the whole is sectioned in the horizontal direction.

54は、例えば略矩形状の箱状ケースであり2点間変位計38Aの各構成部材を収納している。この箱状ケース54は、例えばステンレス鋼(SUS304)の材料で成形され、その壁部54aの所定部位に貫通した単一又は複数の配管54bを経由して、その内部に収容した構成部材や内部壁面等の結露を防止すべく結露防止ガスとしての窒素ガスを封入する。そして、該配管54bには制御切替弁又はコック54cを設け、窒素ガスを設計仕様に応じて封入量を制御する。 Reference numeral 54 denotes a substantially rectangular box-shaped case, for example, which houses the constituent members of the two-point displacement meter 38A. The box-shaped case 54 is formed of, for example, a stainless steel (SUS304) material, and includes a component member or an internal component housed therein via a single or a plurality of pipes 54b penetrating through a predetermined portion of the wall portion 54a. Nitrogen gas as anti-condensation gas is sealed to prevent condensation on the wall surface. The pipe 54b is provided with a control switching valve or cock 54c to control the amount of nitrogen gas filled according to the design specifications.

また、前記箱状ケース54の壁部54aの所定部位には、リードワイヤ引出部材55を装着している。該リードワイヤ引出部材55は、前記箱状ケース54の壁部54aを貫通した回転軸55aを備え、この回転軸55aの両端、つまり、該箱状ケース54の内側方向端55a1と外側方向端55a2が、それぞれリードワイヤ42の巻取機構としての一方、他方のプーリー55b、55bに連結されている。そして、該リードワイヤ引出部材55はオイルシール部材55cを備え、該回転軸55aにベアリングを介装して囲僥すると共にシール機能を有するOリング55dを介して前記壁部54aに圧接・固定している。また、該オイルシール部材55cは前記箱状ケース54の内側壁部及び外側壁部に前記回転軸55aを嵌入する窪み又は凹陥55e及び55fを形成し、この窪み又は凹陥55e及び55fにオイルシール剤55g、55gを塗布又は注入して構成される。このように構成したので前記箱状ケース54の内外の機密性を完全に確保すると共に箱状ケース54内の結露防止の実行を挙げて他の構成部材の長寿命化を促進し、高品質の2点間変位計38Aを提供できる。 A lead wire lead member 55 is attached to a predetermined portion of the wall portion 54a of the box-shaped case 54. The lead wire lead-out member 55 includes a rotation shaft 55a penetrating the wall portion 54a of the box-shaped case 54. Both ends of the rotation shaft 55a, that is, the inner end 55a1 and the outer end 55a2 of the box-shaped case 54 are provided. Are connected to one and the other pulleys 55b and 55b as the winding mechanism of the lead wire 42, respectively. The lead wire lead-out member 55 includes an oil seal member 55c. The lead wire lead member 55 is surrounded by a bearing on the rotary shaft 55a and is pressed against and fixed to the wall portion 54a through an O-ring 55d having a sealing function. ing. The oil seal member 55c is formed with recesses or recesses 55e and 55f into which the rotary shaft 55a is fitted in the inner wall portion and the outer wall portion of the box-shaped case 54, and an oil sealant is formed in the recesses or recesses 55e and 55f. It is configured by applying or injecting 55 g and 55 g. Since it is configured in this manner, the inside and outside confidentiality of the box-shaped case 54 is completely ensured, and the prevention of condensation in the box-shaped case 54 is given to promote the extension of the life of other components, and high quality A two-point displacement meter 38A can be provided.

前記定荷重バネ部材53は、例えば桁変位を伝達するリードワイヤ42の張力を一定荷重以上に保持すると同時に桁移動以外の変位に対してこれを阻止し、かつ遮断するためのフィルターとしての機能を有する構成部品であって前述したリードワイヤ引出部材55から導入されたリードワイヤ42を方向転換プーリー56を介して巻装すると共に後段の変位・荷重変換部材41の他端に直結する。該定荷重バネ部材53は、図9に示すように例えば、上段、下段の複数段でなる全体が概ね円筒体又は円柱体で構成されたリードワイヤ巻取部53Aと、巻取部復帰機構53Bとで構成される。 The constant load spring member 53 functions, for example, as a filter for holding the tension of the lead wire 42 for transmitting a girder displacement at a certain load or more and at the same time preventing and blocking the displacement other than the girder movement. The lead wire 42 introduced from the lead wire drawing member 55 described above is wound via the direction change pulley 56 and directly connected to the other end of the displacement / load conversion member 41 in the subsequent stage. As shown in FIG. 9, the constant load spring member 53 includes, for example, a lead wire winding portion 53 </ b> A having a plurality of upper and lower steps and a generally cylindrical or columnar body, and a winding portion return mechanism 53 </ b> B. It consists of.

該リードワイヤ巻取部53Aは例えば図示するようにリードワイヤ引出部材55及び方向転換プーリー56から導入されたリードワイヤ42を巻装するための上段巻取部53A1と、該上段巻取部53A1の垂直方向に一体に成形された下段回転復帰部材固定部53A2とを備え、この下段回転復帰部材固定部53A2に回転復帰機能を有する例えば金属板バネ53C1の一端部をビス等で固定している。また、該リードワイヤ巻取部53Aの上端及び中間位置すなわち上段巻取部53A1と下段回転復帰部材固定部53A2の連結部分には鍔53A3、53A4を固定配備し、巻装したリードワイヤ42の離脱防止を図っている。そして、前記巻取部復帰機構53Bは前記リードワイヤ巻取部53Aに隣接して配置し、例えば図示するようにボビン状の巻装体で構成され、回転復帰部品としての金属板バネ53Cの他端部を巻装・固定した筒体形状又は円柱形状の板バネ巻装部53B1と、該板バネ巻装部53B1の上、下端に形成した鍔53B2、53B3とを有している。 The lead wire winding unit 53A includes, for example, an upper winding unit 53A1 for winding the lead wire 42 introduced from the lead wire drawing member 55 and the direction changing pulley 56, and an upper winding unit 53A1 as illustrated. A lower rotation return member fixing portion 53A2 integrally formed in the vertical direction is provided, and one end portion of, for example, a metal plate spring 53C1 having a rotation return function is fixed to the lower rotation return member fixing portion 53A2 with a screw or the like. Further, hooks 53A3 and 53A4 are fixedly arranged at the upper end and the middle position of the lead wire winding portion 53A, that is, the connecting portion between the upper winding portion 53A1 and the lower rotation returning member fixing portion 53A2, and the wound lead wire 42 is detached. I'm trying to prevent it. The winding part return mechanism 53B is disposed adjacent to the lead wire winding part 53A, and is formed of, for example, a bobbin-like winding body as shown in the figure, and the metal plate spring 53C as a rotation return part. It has a cylindrical or columnar leaf spring winding portion 53B1 with its end portions wound and fixed, and flanges 53B2 and 53B3 formed on the upper and lower ends of the leaf spring winding portion 53B1.

また、前記リードワイヤ巻取部53A及び前記巻取復帰機構53Bは箱状ケース54の底面54dに敷設した基盤54e上に立設・固定した垂直軸53A5及び53B4に回転自在に枢着している。
而して、前記リードワイヤ巻取部53Aがリードワイヤ42を巻取りかつ引張り作用をするに応じて前記巻取部復帰機構53Bの板バネ巻装部53B1を回転させつつ金属板バネ53Cが伸張又は圧縮され該リードワイヤ巻取部53Aを左又は右方向に回転する。そして、常に該金属板バネ53Cが引張力を該リードワイヤ巻取部53Aに付与するので、リードワイヤ巻取部53Aに巻装したリードワイヤ42の張力を一定荷重に保持できる。
尚、上記金属板バネ53Cは他の部品例えば非金属材料やカム又は小型モータ等で構成してもよい。
Further, the lead wire winding portion 53A and the winding return mechanism 53B are pivotally attached to vertical shafts 53A5 and 53B4 which are erected and fixed on a base 54e laid on the bottom surface 54d of the box-shaped case 54. .
Thus, as the lead wire winding portion 53A winds and pulls the lead wire 42, the metal leaf spring 53C expands while rotating the leaf spring winding portion 53B1 of the winding portion return mechanism 53B. Alternatively, the lead wire take-up portion 53A is compressed and rotated left or right. Since the metal plate spring 53C always applies a tensile force to the lead wire winding portion 53A, the tension of the lead wire 42 wound around the lead wire winding portion 53A can be maintained at a constant load.
The metal leaf spring 53C may be composed of other parts such as a non-metallic material, a cam, or a small motor.

前記変位・荷重変換部材41は、例えば図示するように略円筒体形状の容器41aと、該容器41aの一端及び他端に固定した容器キャップ41dと、該容器41a内に挿置した弾性部材としての性質を有する例えばコイルバネ等のバネ41bと、該容器41aの一方側及び他方側を前記基盤54e上に固定するためのブラケット又は脚部、軸受部材41c、41cとを備えている。そして、バネ41bの一端及び他端は、前記定荷重バネ部材53からのリードワイヤ42及び張力発生部材52に接続したリードワイヤ42aをそれぞれ接続構成している。 The displacement / load conversion member 41 includes, for example, a substantially cylindrical container 41a, a container cap 41d fixed to one end and the other end of the container 41a, and an elastic member inserted into the container 41a as illustrated. For example, a spring 41b such as a coil spring, a bracket or a leg for fixing one side and the other side of the container 41a on the base 54e, and bearing members 41c and 41c are provided. One end and the other end of the spring 41b are connected to the lead wire 42 from the constant load spring member 53 and the lead wire 42a connected to the tension generating member 52, respectively.

前記変位・荷重変換部材41は2点間変位つまり、桁変位を容器41aのバネ41bにより荷重に変換する装置であって、例えば、試算又は実験に基づくと前記バネ41bの設計仕様はリードワイヤ42に係る張力を9.7(N)である場合、該バネ41bに接続する動滑車(図示せず)を配備し、線径を1.0(mm)、材質をSUS304WPB、長さを57.2(mm)、容器長を158.2(mm)に設定すると変換効率よく桁変位を荷重に変換できることが判明した。
ここで、動滑車を容器41a内に配備すればバネ41bの伸びを短くでき、当変位・荷重変換部材41の小型化が図れる。
The displacement / load converting member 41 is a device that converts a displacement between two points, that is, a girder displacement into a load by a spring 41b of the container 41a. For example, based on trial calculation or experiment, the design specification of the spring 41b is a lead wire 42. When the tension is 9.7 (N), a moving pulley (not shown) connected to the spring 41b is provided, the wire diameter is 1.0 (mm), the material is SUS304WPB, and the length is 57. It was found that when the container length was set to 2 (mm) and the container length to 158.2 (mm), the girder displacement could be converted into the load with high conversion efficiency.
Here, if the movable pulley is arranged in the container 41a, the extension of the spring 41b can be shortened, and the displacement / load converting member 41 can be downsized.

前記張力発生部材52は、図10に示すように、例えば、アイドラーであって、上段、中段及び下段に各上段、中段及び下段プーリー52a、52b及び52cを重設して構成する。また、張力発生部材52は該上段、中段プーリー52a、52b及び下段プーリー52cの略中心部であって、基盤54e上に垂直方向に立設した垂直軸52dを備えており、該上段プーリー52a、中段プーリー52b及び下段プーリー52cは垂直軸52dに回転自在に枢着している。 As shown in FIG. 10, the tension generating member 52 is, for example, an idler, and is configured by superposing upper, middle and lower pulleys 52a, 52b and 52c on the upper, middle and lower stages. Further, the tension generating member 52 is provided with a vertical shaft 52d erected in the vertical direction on the base 54e, which is a substantially central part of the upper, middle pulleys 52a, 52b and the lower pulley 52c, and the upper pulley 52a, The middle pulley 52b and the lower pulley 52c are pivotally attached to the vertical shaft 52d.

前記張力発生部材52は前記変位・荷重変換部材41に発生した荷重でリードワイヤ42aを介して下段プーリー52cを回転させ、これに連動する。該上段プーリー及び該中段プーリー52bにそれぞれ固定した光ファイバ45cとしての一方側光ファイバ45c1及び他方側光ファイバ45c2を例えばプーリーで構成した方向転換部材52Aを経由して巻取り、前述した光ファイバ巻回部材45の一方のプーリー45a…及び他方のプーリー45b…に懸架された光ファイバ45cに張力を発生させる装置である。ここで前記一方側及び他方側光ファイバ45c1及び45c2は上段及び中段プーリー52a及び52bの略V字状又は凹陥状の溝52a1及び52b1にエポキシ樹脂等でなる接着剤52e、52eで固定する。 The tension generating member 52 rotates the lower pulley 52c via the lead wire 42a with the load generated on the displacement / load converting member 41, and interlocks with this. The one-side optical fiber 45c1 and the other-side optical fiber 45c2 as the optical fibers 45c fixed to the upper pulley and the middle pulley 52b, respectively, are wound through a direction changing member 52A configured by, for example, a pulley, and the above-described optical fiber winding is performed. This is a device for generating tension in the optical fiber 45c suspended from one pulley 45a of the rotating member 45 and the other pulley 45b. Here, the one-side and other-side optical fibers 45c1 and 45c2 are fixed to the substantially V-shaped or recessed grooves 52a1 and 52b1 of the upper and middle pulleys 52a and 52b with adhesives 52e and 52e made of epoxy resin or the like.

尚、図8に於いて光ファイバ45は2列又は3列の複数列すなわち、本実施例2では、各列が円盤状に形成された9個の一方及び他方のプーリー45a、45a…及び45b、45b…を組合せて、2列で構成された光ファイバ巻回部材45と、上記一方側光ファイバ45c1及び上記他方側光ファイバ45c2と一体した同一光ファイバで構成されかつ両プーリー45a、45b間に巻装された光ファイバ45cと、上記光ファイバ45c1と上記光ファイバ45c2は上記光ファイバ巻回部材45から導出された後に張力発生部材52により固定され、それぞれ外部のネットワーク通信網51、51に接続される。 In FIG. 8, the optical fiber 45 has two or three rows, that is, in this embodiment 2, nine one and other pulleys 45a, 45a,. , 45b... Are combined with the optical fiber winding member 45 configured in two rows, the same optical fiber integrated with the one side optical fiber 45c1 and the other side optical fiber 45c2, and between the pulleys 45a and 45b. The optical fiber 45c wound around the optical fiber 45c, the optical fiber 45c1 and the optical fiber 45c2 are led out from the optical fiber winding member 45 and then fixed by the tension generating member 52, and are respectively connected to the external network communication networks 51 and 51. Connected.

そして、前記一方側光ファイバ45c1及び他方側光ファイバ45c2は図10に示すように接着剤52e、52eを介して一体となる一方側の光ファイバ39及び他方側の光ファイバ40により前記箱状ケース54から外部に導出され、それぞれネットワーク通信網51、51に接続される。ここで、前記張力発生部材52に接続された一方側の光ファイバ39は、光ファイバ巻回部材45の一方及び他方の軸棒45e及び45fに固定されたプーリー45j及び45kと、この両プーリー45j及び45kを連結する連結バー45mとで構成されたダミー用光ファイバ変位検出部材45Aの該プーリー45j及び45kに懸架しかつ経由して前記箱状ケース54の壁部54aに嵌着したパッキン部材47a内を挿通してネットワーク通信網51に接続する。
また、前記張力発生部材52に接続された他方側の光ファイバ40は、前記箱状ケース54の壁部54aに嵌着したパッキン部材47b内を挿通してネットワーク通信網51に接続する。
As shown in FIG. 10, the one side optical fiber 45c1 and the other side optical fiber 45c2 are integrated into the box-like case by the one side optical fiber 39 and the other side optical fiber 40 through adhesives 52e and 52e. 54 is derived to the outside and connected to the network communication networks 51 and 51, respectively. Here, one optical fiber 39 connected to the tension generating member 52 includes pulleys 45j and 45k fixed to one and the other shaft rods 45e and 45f of the optical fiber winding member 45, and both pulleys 45j. And a packing bar 47a that is suspended from the pulleys 45j and 45k of the dummy optical fiber displacement detecting member 45A constituted by the connecting bar 45m for connecting 45k and is fitted to the wall portion 54a of the box-like case 54 via the pulley 45j and 45k. It is connected to the network communication network 51 through the inside.
The optical fiber 40 on the other side connected to the tension generating member 52 is inserted into the packing member 47 b fitted to the wall portion 54 a of the box-shaped case 54 and connected to the network communication network 51.

尚、桁変位の歪み信号が桁の変位による張力以外の光ファイバ45cそれ自体や光ファイバ巻回部材45等の温度変化に伴う光ファイバ45cの伸縮作用によって発生するので、このため適正な桁変位信号を伝送すべく前記ダミー用光ファイバ変位検出部材45Aはかかる桁変位以外の歪み要因に基づく桁変位信号を阻止し又はキャンセルする機能を有する。
上述した一方側の光ファイバ39、他方側の光ファイバ40、一方側光ファイバ45c1、他方側光ファイバ45c2及び光ファイバ45cは連続した一つのものであって、単一の光ファイバで構成されている。
Since the distortion signal of the girder displacement is generated by the expansion / contraction action of the optical fiber 45c due to the temperature change of the optical fiber 45c itself or the optical fiber winding member 45 other than the tension due to the girder displacement, an appropriate girder displacement is thus obtained. In order to transmit a signal, the dummy optical fiber displacement detecting member 45A has a function of blocking or canceling a beam displacement signal based on a distortion factor other than the beam displacement.
The one side optical fiber 39, the other side optical fiber 40, the one side optical fiber 45c1, the other side optical fiber 45c2, and the optical fiber 45c described above are a continuous one, and are configured by a single optical fiber. Yes.

上述した本発明に係る2点間変位遠隔監視システムに於ける実施例2に係る2点間変位計38Aのその他の構成及び動作等は上述した実施例1と略同一であり、その説明を省略する。 Other configurations and operations of the two-point displacement meter 38A according to the second embodiment in the two-point displacement remote monitoring system according to the present invention described above are substantially the same as those of the first embodiment, and the description thereof is omitted. To do.

次に、本発明に係る2点間変位を遠隔監視するシステムの応用例である実施例3について説明する。
図11は、上記図5の構造物設置点BないしDに加えて更に構造物設置点Eを追加したときの遠隔監視システムの具体的構成図である。これについて説明し、本発明の実施例3を明らかにする。
図11に示すように、2点間変位監視計の設置点つまり構造物の設置点BないしEから例えば、30(km)の位置の光ファイバネットワーク通信網51で構築した所定遠隔地に有する道路事務所48等に備えたBOTDR計測器46及びそれに関連する設備品により2点間の変位を検出するシステムを示すものである。
Next, Embodiment 3 which is an application example of the system for remotely monitoring the displacement between two points according to the present invention will be described.
FIG. 11 is a specific configuration diagram of the remote monitoring system when a structure installation point E is further added in addition to the structure installation points B to D of FIG. This will be described to clarify the third embodiment of the present invention.
As shown in FIG. 11, a road having a predetermined remote location constructed by an optical fiber network communication network 51 at a position of, for example, 30 (km) from the installation point B to E of the displacement monitor between two points, that is, the installation points B to E of the structure. The system which detects the displacement between two points | pieces with the BOTDR measuring instrument 46 with which the office 48 grade | etc., Was equipped, and its related equipment is shown.

道路事務所48は例えば、上記BOTDR計測器46と、一方側及び他方側の光ファイバ39、40間に2点間変位計38、38Aを設置した複数又は多数の橋梁や各桁等構造物を切換え監視するために該BOTDR計測器46に接続した光スイッチ49と、AC電源に接続されかつ上記BOTDR計測器46へ接続する制御パソコン50とを設置している。 The road office 48 includes, for example, a structure such as the BOTDR measuring instrument 46 and a plurality of or many bridges and girders in which two-point displacement meters 38 and 38A are installed between the optical fibers 39 and 40 on one side and the other side. An optical switch 49 connected to the BOTDR measuring instrument 46 and a control personal computer 50 connected to the AC power source and connected to the BOTDR measuring instrument 46 are installed for switching monitoring.

そして、これは特に、地震時等の災害時に於ける2点間変位遠隔監視方法を示すシステムであり、例えば、道路沿いに敷設された光ファイバネットワーク通信網51から道路事務所48に設置した光スイッチ49を経由して複数又は多数の橋梁や各桁等の構造物の2点間の変位を切換え監視する。また、当該実施例は一方側又は他方側の光ファイバ39、40を各桁35、36に設置した後は、設置現場BないしEに於いて電源設備は不要となり、メンテナンスフリー状態となる。また、光スイッチ49により複数又は多数の橋梁や桁35、36等構造物の2点間変位を自動的に切換え監視できる。 In particular, this is a system showing a method for remotely monitoring the displacement between two points at the time of a disaster such as an earthquake. For example, the light installed in the road office 48 from the optical fiber network communication network 51 laid along the road. Via a switch 49, the displacement between two points of a structure such as a plurality or a large number of bridges and girders is switched and monitored. Further, in this embodiment, after the optical fibers 39 and 40 on one side or the other side are installed in the girders 35 and 36, the power supply equipment is not required at the installation sites B to E, and the maintenance-free state is brought about. The optical switch 49 can automatically switch and monitor the displacement between two or more structures such as a plurality or many bridges and girders 35 and 36.

次に、上述した図5及び図11に示す本発明に係る光ファイバによる2点間変位計を使用した2点間変位を遠隔監視する方法の実施例3の動作等について説明する。 Next, the operation of the third embodiment of the method for remotely monitoring the displacement between two points using the two-point displacement meter by the optical fiber according to the present invention shown in FIGS. 5 and 11 will be described.

当該2点間変位遠隔監視システムは測定原理上、2点間変位計38、38AとBOTDR計測器46間を繋ぐ光ファイバ39、40や光ファイバネットワーク通信網51等での光の損失が一定レベル以下の必要がある。光ファイバ39、40や光ファイバネットワーク通信網51等の伝送損失は、その延長融着箇所やコネクタ接続箇所等によって決定する。また、伝送損失の許容レベルはBOTDR計測器46から送られる距離分解能としてのパルス幅によって決定する。また、距離分解能11(m)、22(m)で通信回線延長20(km)〜30(km)圏内の構造物は、1台のBOTDR計測器46で測定可能となることが判明した。BOTDR計測器46の測定時間は、測定条件の設定方法で異なる。測定時間に関係する設定条件としては、加算回数、周波数掃引数等が大きな要因となり通常の桁変位を監視する場合においては、例えば、加算回数214、周波数掃引回数約40回で設定して約6分で測定しているが、これらの設定を調整することで地震時等の災害時に於ける2点間変位の監視については、2分以内での測定は可能である。 The two-point displacement remote monitoring system has a certain level of optical loss in the optical fibers 39 and 40, the optical fiber network communication network 51, etc. connecting the two-point displacement meters 38 and 38A and the BOTDR measuring device 46 in terms of measurement principle. There is a need to: The transmission loss of the optical fibers 39, 40, the optical fiber network communication network 51, etc. is determined by the extended fusion location, the connector connection location, and the like. Further, the allowable level of transmission loss is determined by the pulse width as the distance resolution sent from the BOTDR measuring instrument 46. It has also been found that a structure within a communication line extension of 20 (km) to 30 (km) with a distance resolution of 11 (m) and 22 (m) can be measured with a single BOTDR measuring instrument 46. The measurement time of the BOTDR measuring instrument 46 differs depending on the measurement condition setting method. As setting conditions related to the measurement time, when the number of additions, frequency sweep argument, etc. are the main factors and normal digit displacement is monitored, for example, the number of additions is 2 14 and the number of frequency sweeps is about 40. The measurement is performed in 6 minutes. However, by adjusting these settings, it is possible to monitor the displacement between two points during a disaster such as an earthquake within 2 minutes.

本発明に係る光ファイバによる2点間変位遠隔監視方法に於けるシステムとしては、さらに次の実施例が考えられる。すなわち、先づ、桁変位測定システムである。これはいわゆるオフラインシステムであって、複数の桁に2点間変位計としての桁変位監視センサを設置し、それらを直列に光ファイバで接続して端部にコネクタを取り付け、現場に設置したコネクタ収納BOXに収納しておき、必要なときに現場に測定装置を搬入してコネクタを接続して測定するシステムである。
次に、斜面崩落監視システムである。これは、崩落、落石等の可能性のある箇所に2点間変位計としての桁変位監視センサを設置し、その間にワイヤを張り巡らしワイヤの移動量を監視することで、崩落、落石等を予測するシステムであって、該桁変位監視センサを既設の光ファイバ通信網と接続することで遠隔監視が可能である特徴を有する。
As a system in the remote monitoring method for displacement between two points using an optical fiber according to the present invention, the following embodiments can be further considered. That is, first, a digit displacement measuring system. This is a so-called off-line system. A girder displacement monitoring sensor as a two-point displacement meter is installed in a plurality of girder, they are connected in series with an optical fiber, and a connector is attached to the end. The system is stored in a storage BOX, and when necessary, a measurement device is carried to the site and a connector is connected to perform measurement.
Next is the slope failure monitoring system. This is done by installing a girder displacement monitoring sensor as a two-point displacement meter in a place where there is a possibility of collapse, falling rocks, etc. The prediction system has a feature that remote monitoring is possible by connecting the girder displacement monitoring sensor to an existing optical fiber communication network.

本発明に係る光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法の実施の形態を示す一例であって、コンクリート構造物として2点間の変位を検出する光ファイバによる2点間変位計の配置状態を示す概要図である。FIG. 2 is an example showing an embodiment of a two-point displacement meter using an optical fiber and a method for remotely monitoring a two-point displacement using an optical fiber according to the present invention, and is an optical fiber that detects a displacement between two points as a concrete structure. It is a schematic diagram which shows the arrangement | positioning state of a point-to-point displacement meter. 本発明に係る光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法の実施の形態を示す一例であって、上記2点間変位計の内部に収容される各構成部材を示す構成図である。It is an example which shows embodiment of the two-point displacement meter by the optical fiber and the two-point displacement remote monitoring method by the optical fiber concerning the present invention, Comprising: Each component accommodated in the inside of the above-mentioned two-point displacement meter FIG. 本発明に係る光ファイバの歪み(μ)に対する荷重(gf)の関係特性図である。It is a characteristic view of the load (gf) with respect to distortion (μ) of the optical fiber according to the present invention. 本発明に係る光ファイバの歪み(μ)に対する荷重(gf)の光ファイバ素線特性図である。It is an optical fiber strand characteristic view of load (gf) to distortion (μ) of an optical fiber concerning the present invention. 本発明に係る光ファイバによる2点間変位計及び光ファイバによる2点間変位遠隔監視方法の実施の形態を示す一例であって、各構造物に設置した本発明に係る光ファイバによる2点間変位計でネットワーク通信網を介してBOTDR計測器で構造物の変位を検出する方法を示すシステム概要図である。1 is an example showing an embodiment of a two-point displacement meter using an optical fiber and a two-point displacement remote monitoring method using an optical fiber according to the present invention, and the two-point displacement using the optical fiber according to the present invention installed in each structure; It is a system schematic diagram which shows the method of detecting the displacement of a structure with a BOTDR measuring device via a network communication network with a displacement meter. 図5に示す2点間変位遠隔監視システムに於ける2点間変位計の実施例1の構成概要図である。FIG. 6 is a schematic configuration diagram of Example 1 of a two-point displacement meter in the two-point displacement remote monitoring system shown in FIG. 5. 本発明に係る2点間変位遠隔監視システムに於ける2点間変位計の実施例2の構成概要図である。It is a structure schematic diagram of Example 2 of the two-point displacement meter in the two-point displacement remote monitoring system which concerns on this invention. 図7に示す本発明に係る2点間変位遠隔監視システムに於ける2点間変位計の実施例2の具体的な構造例を示す水平断面図である。FIG. 9 is a horizontal sectional view showing a specific structural example of the second embodiment of the two-point displacement meter in the two-point displacement remote monitoring system according to the present invention shown in FIG. 7. 図8に示す本発明に係る2点間変位遠隔監視システムに於ける2点間変位計の実施例2の具体的な構造例に備えた定荷重バネ部材の一例を示す側面図である。It is a side view which shows an example of the constant load spring member with which the specific structural example of Example 2 of the two-point displacement meter in the two-point displacement remote monitoring system which concerns on this invention shown in FIG. 8 was equipped. 図8に示す本発明に係る2点間変位遠隔監視システムに於ける2点間変位計の実施例2の具体的な構造例に備えた張力発生部材の一例を示す側面図である。It is a side view which shows an example of the tension generation member with which the specific structural example of Example 2 of the two-point displacement meter in the two-point displacement remote monitoring system which concerns on this invention shown in FIG. 8 was equipped. 本発明に係る光ファイバによる2点間変位計を使用した光ファイバによる2点間変位遠隔監視方法の実施例3を示す一例であって、各構造物に設置した光ファイバによる2点間変位計から遠隔地例えば30(km)程度に離れた位置に於ける各構造物の変位の監視を行なう方法を示すシステムの一例を示す構成図である。It is an example which shows Example 3 of the two-point displacement remote monitoring method by the optical fiber using the two-point displacement meter by the optical fiber which concerns on this invention, Comprising: It is the two-point displacement meter by the optical fiber installed in each structure It is a block diagram which shows an example of the system which shows the method of monitoring the displacement of each structure in the position distant from the remote place, for example, about 30 (km). 従来の技術に於ける第1の例を示す桁変位監視システムの構成図である。It is a block diagram of the digit displacement monitoring system which shows the 1st example in a prior art. 従来の技術に於ける第2の例を示す光ファイバセンサを使用した監視対象物変位検出システムであって、(a)は全体構成図、(b)は監視対象物を拡大した側面図である。It is a monitoring object displacement detection system using the optical fiber sensor which shows the 2nd example in a prior art, Comprising: (a) is a whole block diagram, (b) is the side view to which the monitoring object was expanded. . 従来の技術に於ける第3の例を示す光ファイバセンサを使用した河川堤防変位検出システムであって、(a)は全体構成図、(b)は光ケーブルの断面図である。It is a river dike displacement detection system using an optical fiber sensor showing a third example in the prior art, where (a) is an overall configuration diagram and (b) is a cross-sectional view of an optical cable. 従来の技術に於ける第4の例を示す面状センサを使用したコンクリート構造物変位検出システムの全体構成図である。It is a whole block diagram of the concrete structure displacement detection system using the planar sensor which shows the 4th example in a prior art.

符号の説明Explanation of symbols

35 一方の桁
35a 一方の桁の下面
36 他方の桁
36a 他方の桁の下面
37 橋脚(橋台)
37a 橋脚(橋台)の上面
38 2点間変位計
38A 2点間変位計
39 一方側の光ファイバ
40 他方側の光ファイバ
41 変位・荷重変換部材
41a 変位・荷重変換部材の容器
41b 変位・荷重変換部材のバネ
41c 変位・荷重変換部材のブラケット(脚部、軸受部材)
42 リードワイヤ
42a リードワイヤ
43 アングルの垂下固定部
43a アングルの垂下固定部の緊締貫通孔
44 アングル
45 光ファイバ巻回部材
45a 光ファイバ巻回部材の一方のプーリー
45b 光ファイバ巻回部材の他方のプーリー
45c 光ファイバ巻回部材の光ファイバ
45c1 光ファイバ巻回部材の光ファイバの一方側光ファイバ
45c2 光ファイバ巻回部材の光ファイバの他方側光ファイバ
45d 光ファイバ巻回部材の光ファイバ固定治具
45e 光ファイバ巻回部材の一方の軸棒
45e1 光ファイバ巻回部材の一方の軸棒の前端
45e2 光ファイバ巻回部材の一方の軸棒の後端
45f 光ファイバ巻回部材の他方の軸棒
45f1 光ファイバ巻回部材の他方の軸棒の前端
45f2 光ファイバ巻回部材の他方の軸棒の後端
45g1 光ファイバ巻回部材の脚部
45g2 光ファイバ巻回部材の脚部
45h1 光ファイバ巻回部材の脚部
45h2 光ファイバ巻回部材の脚部
45A ダミー用光ファイバ変位検出部材
45j ダミー用光ファイバ変位検出部材の一方のプーリー
45k ダミー用光ファイバ変位検出部材の他方のプーリー
45m ダミー用光ファイバ変位検出部材の連結バー
46 BOTDR計測器
47a パッキン部材
47b パッキン部材
48 道路事務所
49 光スイッチ
50 制御パソコン
51 光ファイバネットワーク通信網
52 張力発生部材
52A 方向転換部材
52a 張力発生部材の上段プーリー
52b 張力発生部材の中段プーリー
52c 張力発生部材の下段プーリー
52d 張力発生部材の垂直軸
52e 張力発生部材の接着剤
53 定荷重バネ部材
53A 定荷重バネ部材のリードワイヤ巻取部
53A1 定荷重バネ部材のリードワイヤ巻取部の上段巻取部
53A2 定荷重バネ部材のリードワイヤ巻取部の下段回転復帰部材固定部
53A3 定荷重バネ部材のリードワイヤ巻取部の下段回転復帰部材固定部の鍔
53A4 定荷重バネ部材のリードワイヤ巻取部の下段回転復帰部材固定部の鍔
53B 定荷重バネ部材の巻取部復帰機構
53B1 定荷重バネ部材の巻取部復帰機構の板バネ巻装部
53B2 定荷重バネ部材の巻取部復帰機構の板バネ巻装部の鍔
53B3 定荷重バネ部材の巻取部復帰機構の板バネ巻装部の鍔
53C 定荷重バネ部材の金属板バネ
54 箱状ケース
54a 箱状ケースの壁部
54b 箱状ケースの配管
54c 箱状ケースの制御切替弁(コック)
55 リードワイヤ引出部材
55a リードワイヤ引出部材の回転軸
55b、55b リードワイヤ引出部材の一方、他方のプーリー
55c リードワイヤ引出部材のオイルシール部材
55d リードワイヤ引出部材のOリング
55e リードワイヤ引出部材の窪み(凹陥)
55f リードワイヤ引出部材の窪み(凹陥)
55g リードワイヤ引出部材のオイルシール剤
56 方向転換プーリー
B〜E 構造物の設置点
35 One girder 35a The lower surface 36 of one girder The other girder 36a The lower surface 37 of the other girder 37 Abutment (abutment)
37a Upper surface 38 of bridge pier (abutment) Two-point displacement meter 38A Two-point displacement meter 39 Optical fiber 40 on one side Optical fiber 41 on the other side Displacement / load conversion member 41a Container 41b for displacement / load conversion member Displacement / load conversion Member spring 41c Displacement / load conversion member bracket (leg, bearing member)
42 Lead wire 42a Lead wire 43 Angle hanging fixing portion 43a Angle hanging fixing portion tightening through hole 44 Angle 45 Optical fiber winding member 45a Optical fiber winding member one pulley 45b Optical fiber winding member other pulley 45c Optical fiber winding member optical fiber 45c1 Optical fiber winding member optical fiber one side optical fiber 45c2 Optical fiber winding member optical fiber other side optical fiber 45d Optical fiber winding member optical fiber fixing jig 45e One shaft rod 45e1 of the optical fiber winding member Front end 45e2 of one shaft rod of the optical fiber winding member Rear end 45f of one shaft rod of the optical fiber winding member The other shaft rod 45f1 of the optical fiber winding member Front end 45f2 of the other shaft rod of the fiber winding member Rear end 45 of the other shaft rod of the optical fiber winding member DESCRIPTION OF SYMBOLS 1 Optical fiber winding member leg 45g2 Optical fiber winding member leg 45h1 Optical fiber winding member leg 45h2 Optical fiber winding member leg 45A Dummy optical fiber displacement detection member 45j Dummy optical fiber displacement One pulley 45k of the detecting member 45m of the dummy optical fiber displacement detecting member The other pulley 45m of the dummy optical fiber displacement detecting member connection bar 46 BOTDR measuring instrument 47a Packing member 47b Packing member 48 Road office 49 Optical switch 50 Control personal computer 51 Optical fiber network communication network 52 Tension generating member 52A Direction changing member 52a Tension generating member upper pulley 52b Tension generating member middle pulley 52c Tension generating member lower pulley 52d Tension generating member vertical shaft 52e Tension generating member adhesive 53 Load spring member 53A Heavy spring member lead wire winding portion 53A1 Constant load spring member lead wire winding portion upper winding portion 53A2 Constant load spring member lead wire winding portion Lower rotation return member fixing portion 53A3 Constant load spring member lead鍔 53A4 of the lower rotation return member fixing portion of the wire winding portion 鍔 53B of the lower rotation return member fixing portion of the lead wire winding portion of the constant load spring member B 53B of the constant load spring member of the constant load spring member Leaf spring winding part 53B2 of the winding part return mechanism Winding part 53B3 of the leaf spring winding part of the winding part return mechanism of the constant load spring member 鍔 53C of the leaf spring winding part of the winding part return mechanism of the constant load spring member Metal plate spring 54 of constant load spring member Box-shaped case 54a Box-shaped case wall 54b Box-shaped case piping 54c Box-shaped case control switching valve (cock)
55 Lead wire drawing member 55a Rotating shaft 55b, 55b of lead wire drawing member One pulley of lead wire drawing member 55c Oil seal member 55d of lead wire drawing member O-ring 55e of lead wire drawing member Recess of lead wire drawing member (Concave)
55f Recess of lead wire lead-out member
55 g Oil sealant for lead wire lead-out member 56 Direction change pulley B to E Installation point of structure

Claims (10)

一方、他方の2点間の変位を測定するものであって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続したことを特徴とする光ファイバによる2点間変位計。 On the other hand, a displacement between the other two points is measured, and a rotatable optical fiber winding member composed of a plurality of or a plurality of pulleys configured in a plurality of rows, and a winding around the optical fiber winding member. An optical fiber fixing jig connecting one side of the optical fiber mounted and a displacement / load converting member connecting the other side of the optical fiber are housed inside, and one side of the optical fiber is BOTDR A two-point displacement meter using an optical fiber, characterized by being connected to a measuring instrument. 前記2点間変位計は箱状ケースに構成され、その内底面部に上記光ファイバ固定治具と、上記複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、上記変位・荷重変換部材とを固定したことを特徴とする請求項1記載の光ファイバによる2点間変位計。 The two-point displacement meter is configured as a box-shaped case, and a rotatable optical fiber winding comprising the optical fiber fixing jig on the inner bottom surface thereof and a plurality or a plurality of pulleys configured in a plurality of rows. 2. A two-point displacement meter using an optical fiber according to claim 1, wherein the member and the displacement / load conversion member are fixed. 前記変位・荷重変換部材は、コイルバネで構成されたことを特徴とする請求項1又は2記載の光ファイバによる2点間変位計。 The two-point displacement meter using an optical fiber according to claim 1 or 2, wherein the displacement / load conversion member is constituted by a coil spring. 一方、他方の2点間の変位を測定するもので一方点に設置してあって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続し、上記変位・荷重変換部材に接続されたリードワイヤを他方点に配置したアングルに固定したことを特徴とする光ファイバによる2点間変位計。 On the other hand, it measures the displacement between the other two points, is installed at one point, and is a rotatable optical fiber winding member comprising a plurality of or a plurality of pulleys configured in a plurality of rows, and the light An optical fiber fixing jig connected to one side of the optical fiber wound around a fiber winding member and a displacement / load converting member connected to the other side of the optical fiber are housed inside, and the light A two-point displacement meter using an optical fiber, wherein one side of the fiber is connected to a BOTDR measuring instrument, and a lead wire connected to the displacement / load converting member is fixed to an angle arranged at the other point. 前記光ファイバの設置時に予め張力を与えることを特徴とする請求項1、2、3又は4記載の光ファイバによる2点間変位計。 5. A two-point displacement meter using an optical fiber according to claim 1, wherein a tension is applied in advance when the optical fiber is installed. 一方、他方の桁相互間の下方に配置される橋脚の上面に設置されてあって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続し、上記変位・荷重変換部材に接続されたリードワイヤを上記桁の下面に固定したアングルに固定したことを特徴とする光ファイバによる桁変位計。 On the other hand, a rotatable optical fiber winding member which is installed on the upper surface of a bridge pier disposed below between the other girders and is composed of a plurality of or a plurality of pulleys configured in a plurality of rows, and the light An optical fiber fixing jig connected to one side of the optical fiber wound around a fiber winding member and a displacement / load converting member connected to the other side of the optical fiber are housed inside, and the light An optical fiber girder displacement meter in which one side of a fiber is connected to a BOTDR measuring instrument and a lead wire connected to the displacement / load converting member is fixed to an angle fixed to the lower surface of the girder. 一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤを巻装した定荷重バネ部材と、該定荷重バネ部材からのリードワイヤを接続しかつ桁変位を荷重に変換する変位・荷重変換部材と、該変位・荷重変換部材に発生した荷重に基づき一端及び他端の光ファイバを張設・巻取しかつ該一端及び他端の光ファイバをネットワーク通信網に接続した張力発生部材と、前記光ファイバを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材とを具備したことを特徴とする光ファイバによる2点間変位計。 On the other hand, a girder displacement between the other two points is measured, and a constant load spring member wound with a lead wire for transmitting the girder displacement is connected to a lead wire from the constant load spring member and the girder is connected. A displacement / load conversion member that converts displacement into a load, and an optical fiber at one end and the other end are stretched and wound based on the load generated at the displacement / load conversion member, and the optical fiber at the one end and the other end is networked A tension generating member connected to a communication network; and a rotatable optical fiber winding member that is configured to wind the optical fiber and includes a plurality of or a plurality of pulleys configured in a plurality of rows. A point-to-point displacement meter using an optical fiber. 一方、他方の2点間の桁変位を測定するものであって、該桁変位を伝達するリードワイヤを巻装した定荷重バネ部材と、該定荷重バネ部材からのリードワイヤを接続しかつ桁変位を荷重に変換する変位・荷重変換部材と、該変位・荷重変換部材に発生した荷重に基づき一端及び他端の光ファイバを張設・巻取しかつ該一端及び他端の光ファイバをネットワーク通信網に接続した張力発生部材と、前記光ファイバを巻装するものであって複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、前記定荷重バネ部材、変位・荷重変換部材、張力発生部材及び光ファイバ巻回部材を内装した箱状ケースと、該箱状ケースの壁部位に装着されてあって、前記定荷重バネ部材の前後に配置され、リードワイヤを巻装する前記リードワイヤ引出部材とを具備したことを特徴とする光ファイバによる2点間変位計。 On the other hand, a girder displacement between the other two points is measured, and a constant load spring member wound with a lead wire for transmitting the girder displacement is connected to a lead wire from the constant load spring member and the girder is connected. A displacement / load conversion member that converts displacement into a load, and an optical fiber at one end and the other end are stretched and wound based on the load generated at the displacement / load conversion member, and the optical fiber at the one end and the other end is networked A tension generating member connected to a communication network, a rotatable optical fiber winding member that is wound with the optical fiber and is composed of a plurality of or a plurality of pulleys, and the constant load spring. A box-like case having a member, a displacement / load conversion member, a tension generating member, and an optical fiber winding member, and a wall portion of the box-like case, which are disposed before and after the constant load spring member; Wind the lead wire Between two points displacement meter by the optical fiber, characterized by comprising a said lead wire pull-out member. 前記リードワイヤ引出部材は、前記箱状ケースの壁部を貫通した回転軸の両端に連結されると共に前記リードワイヤを張設・巻取りする箱状ケース内外に配置されたプーリーと、該回転軸に囲僥されたオイルシール部材を有したことを特徴とする請求項8記載の光ファイバによる2点間変位計。 The lead wire drawing member is connected to both ends of a rotating shaft penetrating the wall portion of the box-shaped case, and is disposed inside and outside the box-shaped case for stretching and winding the lead wire, and the rotating shaft The two-point displacement meter using an optical fiber according to claim 8, further comprising an oil seal member surrounded by the optical fiber. 一方、他方の2点間の変位を測定するものであって、複数列で構成された複数個又は多数個のプーリーでなる回転可能な光ファイバ巻回部材と、該光ファイバ巻回部材に巻装された該光ファイバの一方側を接続した光ファイバ固定治具と、該光ファイバの他方側を接続した変位・荷重変換部材とを内部に収容してなり、上記光ファイバの一方側をBOTDR計測器に接続してなる2点間変位計を各構造物に設置されている既存の光ファイバネットワーク通信網に接続したことを特徴とする光ファイバによる2点間変位遠隔監視方法。 On the other hand, a displacement between the other two points is measured, and a rotatable optical fiber winding member composed of a plurality of or a plurality of pulleys configured in a plurality of rows, and a winding around the optical fiber winding member. An optical fiber fixing jig connecting one side of the optical fiber mounted and a displacement / load converting member connecting the other side of the optical fiber are housed inside, and one side of the optical fiber is BOTDR A point-to-point displacement remote monitoring method using an optical fiber, wherein a point-to-point displacement meter connected to a measuring instrument is connected to an existing optical fiber network communication network installed in each structure.
JP2005147507A 2004-05-20 2005-05-20 Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points Withdrawn JP2006003350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147507A JP2006003350A (en) 2004-05-20 2005-05-20 Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004149927 2004-05-20
JP2005147507A JP2006003350A (en) 2004-05-20 2005-05-20 Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points

Publications (1)

Publication Number Publication Date
JP2006003350A true JP2006003350A (en) 2006-01-05

Family

ID=35771847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147507A Withdrawn JP2006003350A (en) 2004-05-20 2005-05-20 Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points

Country Status (1)

Country Link
JP (1) JP2006003350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105369B1 (en) 2009-12-04 2012-01-16 한국건설기술연구원 Apparatus and Method for Measuring Deflection of Bridge Plate using Fiber Bragg Grating Sensor
CN102927913A (en) * 2012-10-10 2013-02-13 哈尔滨工程大学 Ultra-short base line differential plate type optical fiber displacement sensor and optical fiber strain gauge
CN103712586A (en) * 2014-01-09 2014-04-09 重庆桥都桥梁技术有限公司 Real-time automatic monitoring system of bent slope pier beam displacement
KR20160132101A (en) * 2014-03-28 2016-11-16 오지 홀딩스 가부시키가이샤 Double-sided adhesive sheet and optical member
CN107588789A (en) * 2017-09-05 2018-01-16 华北电力大学(保定) A kind of means of defence of distribution type fiber-optic in inside transformer
CN109211432A (en) * 2018-09-25 2019-01-15 重庆华渝电气集团有限公司 A method of fiber optic loop Temperature Distribution in test optical fibre gyro
WO2021132844A3 (en) * 2019-12-23 2021-08-12 (주)에프비지코리아 Device for measuring displacement of slope surface by using fiber bragg grating sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105369B1 (en) 2009-12-04 2012-01-16 한국건설기술연구원 Apparatus and Method for Measuring Deflection of Bridge Plate using Fiber Bragg Grating Sensor
CN102927913A (en) * 2012-10-10 2013-02-13 哈尔滨工程大学 Ultra-short base line differential plate type optical fiber displacement sensor and optical fiber strain gauge
CN103712586A (en) * 2014-01-09 2014-04-09 重庆桥都桥梁技术有限公司 Real-time automatic monitoring system of bent slope pier beam displacement
KR20160132101A (en) * 2014-03-28 2016-11-16 오지 홀딩스 가부시키가이샤 Double-sided adhesive sheet and optical member
CN107588789A (en) * 2017-09-05 2018-01-16 华北电力大学(保定) A kind of means of defence of distribution type fiber-optic in inside transformer
CN107588789B (en) * 2017-09-05 2019-11-01 华北电力大学(保定) A kind of means of defence of distribution type fiber-optic in inside transformer
CN109211432A (en) * 2018-09-25 2019-01-15 重庆华渝电气集团有限公司 A method of fiber optic loop Temperature Distribution in test optical fibre gyro
WO2021132844A3 (en) * 2019-12-23 2021-08-12 (주)에프비지코리아 Device for measuring displacement of slope surface by using fiber bragg grating sensor

Similar Documents

Publication Publication Date Title
Gómez et al. Structural Health Monitoring with Distributed Optical Fiber Sensors of tunnel lining affected by nearby construction activity
Li et al. Recent applications of fiber optic sensors to health monitoring in civil engineering
Rajeev et al. Distributed optical fibre sensors and their applications in pipeline monitoring
Glisic et al. Fibre optic methods for structural health monitoring
López-Higuera et al. Fiber optic sensors in structural health monitoring
Ko et al. Technology developments in structural health monitoring of large-scale bridges
JP2006003350A (en) Inter-two-point displacement gage by optical fiber, and remote monitoring method for displacement between two points
Yun et al. Recent R&D activities on structural health monitoring for civil infra-structures in Korea
Monsberger et al. Continuous strain measurements in a shotcrete tunnel lining using distributed fibre optic sensing
Zhang et al. Distributed fiber optic sensors for tunnel monitoring: A state-of-the-art review
CN110285769A (en) A kind of scale expansion device for distributive fiber optic strain sensing
Huston et al. Intelligent civil structures-activities in Vermont
Baldwin et al. Structural monitoring of composite marine piles using multiplexed fiber Bragg grating sensors: In-field applications
Lalam et al. Robotic fiber optic internal deployment tool for pipeline integrity monitoring
Inaudi et al. Distributed fiber-optic sensing for long-range monitoring of pipelines
Glisic Fiber optic sensors for subsea structural health monitoring
Cartiaux et al. Traffic and temperature effects monitoring on bridges by optical strands strain sensors
JP3725513B2 (en) Structure displacement / deformation detector using optical fiber cable
Inaudi Distributed Optical Fiber Sensors for Strain and Deformation Monitoring of Pipelines and Penstocks.
Filograno et al. Comparative Assessment and Experimental Validation of a Prototype Phase‐Optical Time‐Domain Reflectometer for Distributed Structural Health Monitoring
Merzbacher et al. Fiber optic sensors in concrete structures: a review
Ding et al. Structural Health Monitoring of the Scaffolding Dismantling Process of a Long‐Span Steel Box Girder Viaduct Based on BOTDA Technology
Kim et al. Structural health monitoring: a Canadian perspective
Jiang et al. Research on optic fiber sensing engineering technology
Dutta et al. Fiber Optic Sensing Technologies for Structural Health Monitoring of Underground Infrastructure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805