JP2006003265A - Determination method - Google Patents

Determination method Download PDF

Info

Publication number
JP2006003265A
JP2006003265A JP2004181253A JP2004181253A JP2006003265A JP 2006003265 A JP2006003265 A JP 2006003265A JP 2004181253 A JP2004181253 A JP 2004181253A JP 2004181253 A JP2004181253 A JP 2004181253A JP 2006003265 A JP2006003265 A JP 2006003265A
Authority
JP
Japan
Prior art keywords
group
copolymer
modified
unmodified
molecular chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004181253A
Other languages
Japanese (ja)
Other versions
JP4434850B2 (en
Inventor
Nobumitsu Oshima
伸光 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004181253A priority Critical patent/JP4434850B2/en
Publication of JP2006003265A publication Critical patent/JP2006003265A/en
Application granted granted Critical
Publication of JP4434850B2 publication Critical patent/JP4434850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of accurately measuring a ratio of a modified copolymer, of which the molecular chain terminal is modified, and an unmodified copolymer, of which the molecular chain terminal is unmodified, in a mixture of the modified copolymer and the unmodified copolymer in a short time. <P>SOLUTION: In the method for determinating the ratio of the component (A) and component (B) in a polymer material containing the modified copolymer being a conjugated diene monomer/vinyl aromatic hydrocarbon monomer copolymer, of which the molecular chain terminal is blocked by an amino group, and the unmodified copolymer of which the molecular chain terminal is not blocked by the amino group, the component (A) and the component (B) are separated by liquid chromatography, wherein a silica gel of which the surface silanol group is unmodified or a silica gel of which the surface silanol group is partially or wholly modified with an aminopropyl group is a fixed phase and a mixed solvent of a polar solvent and a non-polar solvent is a mobile phase, to be determinated. The ratio of the modified copolymer of which the molecular chain terminal is modified and the unmodified copolymer of which the molecular chain terminal is unmodified in the mixture of the modified copolymer and the unmodified copolymer can be accurately measured in a short time and especially a mixture having a molecular weight of 100,000 or above difficult to measure heretofore can be also measured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分子鎖末端が変性された変性共重合体と、分子鎖末端が変性されていない非変性共重合体との混合物から、変性共重合体と非変性共重合体とを液体クロマトグラフィーにより分離して、それらの比を定量する方法に関する。   In the present invention, a modified copolymer and a non-modified copolymer are subjected to liquid chromatography from a mixture of a modified copolymer with a molecular chain terminal modified and a non-modified copolymer with a molecular chain terminal unmodified. And the ratio thereof is quantified.

高分子材料の分子鎖末端に官能基を導入することで、これまでにない特性をもたせる分子鎖末端変性技術があるが、この技術により得られる高分子材料において、全ての分子鎖末端に官能基が導入されている場合は少なく、むしろ分子鎖末端に官能基が導入されていない分子、即ち、変性されていない分子が共存していることがほとんどである。そのため、分子鎖末端変性技術により高分子材料の特性を制御し、調整するためには、分子鎖末端に官能基が導入された分子の割合、即ち、変性効率を測定する技術が必要である。   There is a molecular chain end modification technology that introduces a functional group at the molecular chain end of the polymer material, which has unprecedented characteristics. In the polymer material obtained by this technology, functional groups are added to all molecular chain ends. In many cases, a molecule having no functional group introduced at the end of the molecular chain, that is, an unmodified molecule coexists. Therefore, in order to control and adjust the characteristics of the polymer material by the molecular chain terminal modification technique, a technique for measuring the ratio of molecules having functional groups introduced at the molecular chain terminals, that is, modification efficiency is required.

このような変性効率測定技術としては、例えば紫外光を用いた分光分析により官能基の特性ピークを利用して定量する方法がある。しかしながら、この方法では低分子量のものであれば官能基置換部分の特性ピークが、ある程度の検出強度で測定可能であるが、高分子量のものでは、特性ピークの検出強度が弱くなってしまうため、変換効率の測定は極めて困難である。また、予めモデル化合物を用いて検量線を作成する必要もある。   As such a modification efficiency measurement technique, for example, there is a method of quantifying using a characteristic peak of a functional group by spectroscopic analysis using ultraviolet light. However, in this method, if the molecular weight is low, the characteristic peak of the functional group-substituted moiety can be measured with a certain degree of detection intensity. However, if the molecular weight is high, the detection intensity of the characteristic peak becomes weak. Measurement of conversion efficiency is extremely difficult. It is also necessary to create a calibration curve using a model compound in advance.

また、パテントブルー(Patent Blue)等の置換官能基と反応して発色する試薬を用い、この試薬を置換官能基と反応させて発色させ、その反応生成物の吸光度により変換効率を測定する方法(非特許文献1:J. Macromol. Sci. Revs. Macromol. Chem. C2(2),225−277(1968))もあるが、この方法では、測定試料の調製が煩雑である上、発色試薬と置換官能基と反応率を考慮しなければならず、変性効率を算出するためには絶対分子量も必要であるため、分子量の換算による誤差や測定のバラツキも大きい。更に、この方法においてもまた、予めモデル化合物を用いて検量線を作成する必要がある。   In addition, a reagent that develops color by reacting with a substituted functional group such as Patent Blue and the like, reacts this reagent with the substituted functional group to develop color, and measures the conversion efficiency by the absorbance of the reaction product ( Non-Patent Document 1: J. Macromol. Sci. Revs. Macromol. Chem. C2 (2), 225-277 (1968)), this method requires complicated preparation of a measurement sample and a coloring reagent. The substituted functional group and the reaction rate must be taken into account, and the absolute molecular weight is also required to calculate the denaturation efficiency. Therefore, errors due to conversion of the molecular weight and variations in measurement are large. Furthermore, also in this method, it is necessary to prepare a calibration curve using a model compound in advance.

一方、薄層クロマトグラフィー(TLC)により変性共重合体と非変性共重合体とを分離し、イアトロスキャンと呼ばれる専用の測定器で測定してクロマトグラムを得、これにより変換効率を測定する方法(非特許文献2:Macromolecules,23,939−945(1990))もあるが、この方法はTLCによる分離後に測定器で測定するものであって、TLCに30分〜1時間、更にその後に測定器での所定の分析時間が必要であり、分析に時間と工数を必要とする。また、TLCでは分子量が10万以上の高分子量のものは分離が困難である。   On the other hand, a modified copolymer and a non-modified copolymer are separated by thin layer chromatography (TLC) and measured with a dedicated measuring instrument called Iatroscan to obtain a chromatogram, thereby measuring conversion efficiency. There is also a method (Non-Patent Document 2: Macromolecules, 23, 939-945 (1990)), but this method is to measure with a measuring device after separation by TLC, and after 30 minutes to 1 hour after TLC, Predetermined analysis time with a measuring instrument is required, and analysis requires time and man-hours. In addition, in TLC, it is difficult to separate a polymer having a molecular weight of 100,000 or more.

このように、従来の測定技術では、分子鎖末端が変性された変性共重合体と、分子鎖末端が変性されていない非変性共重合体との混合物中の、変性共重合体と非変性共重合体との比を測定することは、煩雑な工程が必要であり、かつ分析時間も長時間となることから、迅速かつ正確な測定を必要とする場合、例えば、製造現場における工程管理や、製品試験に十分な方法とは言えず、この測定を短時間かつ正確に測定する方法が望まれていた。   Thus, in the conventional measurement technique, a modified copolymer and a non-modified copolymer in a mixture of a modified copolymer with a molecular chain terminal modified and a non-modified copolymer with a molecular chain terminal unmodified. Measuring the ratio with the polymer requires a complicated process and also requires a long analysis time, so when quick and accurate measurement is required, for example, process management at the manufacturing site, It is not a sufficient method for product testing, and a method for measuring this measurement in a short time and accurately has been desired.

J. Macromol. Sci. Revs. Macromol. Chem. C2(2),225−277(1968)J. et al. Macromol. Sci. Revs. Macromol. Chem. C2 (2), 225-277 (1968) Macromolecules,23,939−945(1990)Macromolecules, 23, 939-945 (1990). 特開平6−199921号公報JP-A-6-199921

本発明は、上記事情に鑑みなされたものであり、分子鎖末端が変性された変性共重合体と、分子鎖末端が変性されていない非変性共重合体との混合物中の、変性共重合体と非変性共重合体との比を短時間かつ正確に測定することができる方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a modified copolymer in a mixture of a modified copolymer having a molecular chain terminal modified and a non-modified copolymer having a molecular chain terminal unmodified. It is an object of the present invention to provide a method capable of accurately measuring the ratio of a non-modified copolymer in a short time.

本発明者は、上記目的を達成するため鋭意検討を重ねた結果、分子鎖末端が下記一般式(1)

Figure 2006003265
(式中、R1及びR2は炭素数1〜12のアルキル基、シクロアルキル基又はアラルキル基を表し、同一であっても異なっていてもよい。)
又は下記一般式(2)
Figure 2006003265
(式中、Xは炭素数3〜8のポリメチレン基を表す。)
で表されるアミノ基で封鎖された変性共重合体と、
上記共役ジエンモノマーと上記ビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が上記アミノ基で封鎖されていない非変性共重合体
とを含む高分子材料中の上記変性共重合体と上記非変性共重合体とを、表面シラノール基が非修飾のシリカゲル又は表面シラノール基の一部若しくは全部がアミノプロピル基で修飾されたシリカゲルを固定相、極性溶媒と非極性溶媒との混合溶媒を移動相とする液体クロマトグラフィーにて分離することが可能であり、これにより、検量線を作成することなく、分子量が5,000程度の低分子量のものから1,000,000の高分子量のものまで、特に、従来、測定が困難であった分子量が100,000以上のものであっても変性共重合体と非変性共重合体との混合物中の変性共重合体と非変性共重合体との比を直接的に短時間かつ正確に測定できることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventor has a molecular chain terminal represented by the following general formula (1).
Figure 2006003265
(Wherein, R 1 and R 2 represent an alkyl group, a cycloalkyl group or an aralkyl group having 1 to 12 carbon atoms, it may be the same or different.)
Or the following general formula (2)
Figure 2006003265
(In the formula, X represents a polymethylene group having 3 to 8 carbon atoms.)
A modified copolymer blocked with an amino group represented by:
The modified copolymer in a polymer material comprising a copolymer of the conjugated diene monomer and the vinyl aromatic hydrocarbon monomer, the molecular chain terminal of which is not blocked with the amino group. Mix the mixture and the above-mentioned non-modified copolymer with silica gel whose surface silanol groups are unmodified or silica gel whose surface silanol groups are partially or entirely modified with aminopropyl groups, and a mixture of a polar solvent and a nonpolar solvent. Separation by liquid chromatography using a solvent as a mobile phase is possible, and thus, a low molecular weight molecular weight of about 5,000 to 1,000,000 high molecular weight can be obtained without preparing a calibration curve. In particular, a modified copolymer in a mixture of a modified copolymer and a non-modified copolymer, even if the molecular weight is conventionally 100,000 or more, which has been difficult to measure. It found that the ratio of the non-modified copolymer can be directly quickly and accurately measured, and they were therefore able to complete the present invention.

即ち、本発明は、以下の定量方法を提供する。
請求項1:(A)共役ジエンモノマーとビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が下記一般式(1)

Figure 2006003265
(式中、R1及びR2は炭素数1〜12のアルキル基、シクロアルキル基又はアラルキル基を表し、同一であっても異なっていてもよい。)
又は下記一般式(2)
Figure 2006003265
(式中、Xは炭素数3〜8のポリメチレン基を表す。)
で表されるアミノ基で封鎖された変性共重合体と、
(B)上記共役ジエンモノマーと上記ビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が上記アミノ基で封鎖されていない非変性共重合体
とを含む高分子材料中の上記(A)成分と上記(B)成分との比を定量する方法であって、
上記高分子材料中の上記(A)成分と上記(B)成分とを、表面シラノール基が非修飾のシリカゲル又は表面シラノール基の一部若しくは全部がアミノプロピル基で修飾されたシリカゲルを固定相、極性溶媒と非極性溶媒との混合溶媒を移動相とする液体クロマトグラフィーにて分離して定量することを特徴とする定量方法。
請求項2:上記共役ジエンモノマーが1,3−ブタジエンであり、上記ビニル芳香族炭化水素モノマーがスチレンであることを特徴とする請求項1記載の定量方法。
請求項3:上記アミノ基がジオクチルアミノ基、ピロリジノ基又はヘキサメチレンイミノ基であることを特徴とする請求項1又は2記載の定量方法。
請求項4:上記高分子材料の数平均分子量が5,000〜1,000,000であることを特徴とする請求項1乃至3のいずれか1項記載の定量方法。
請求項5:上記極性溶媒がクロロホルム、テトラヒドロフラン、メタノール及びエタノールから選ばれる1種又は2種以上であり、かつ上記非極性溶媒がシクロヘキサン、ヘキサン及びヘプタンから選ばれる1種又は2種以上であることを特徴とする請求項1乃至4のいずれか1項記載の定量方法。 That is, the present invention provides the following quantitative method.
Claim 1: (A) A copolymer of a conjugated diene monomer and a vinyl aromatic hydrocarbon monomer, the molecular chain terminal of which is represented by the following general formula (1)
Figure 2006003265
(Wherein, R 1 and R 2 represent an alkyl group, a cycloalkyl group or an aralkyl group having 1 to 12 carbon atoms, it may be the same or different.)
Or the following general formula (2)
Figure 2006003265
(In the formula, X represents a polymethylene group having 3 to 8 carbon atoms.)
A modified copolymer blocked with an amino group represented by:
(B) The above-mentioned polymer in a polymer material comprising a copolymer of the conjugated diene monomer and the vinyl aromatic hydrocarbon monomer, wherein the molecular chain terminal is not blocked with the amino group. A method for quantifying the ratio of the component (A) to the component (B),
The stationary phase of the component (A) and the component (B) in the polymer material is a silica gel in which the surface silanol group is unmodified or in which part or all of the surface silanol group is modified with an aminopropyl group, A quantification method comprising separating and quantifying by a liquid chromatography using a mixed solvent of a polar solvent and a nonpolar solvent as a mobile phase.
[2] The method according to [1], wherein the conjugated diene monomer is 1,3-butadiene and the vinyl aromatic hydrocarbon monomer is styrene.
[3] The method according to [1] or [2], wherein the amino group is a dioctylamino group, a pyrrolidino group or a hexamethyleneimino group.
[4] The method according to any one of [1] to [3], wherein the polymer material has a number average molecular weight of 5,000 to 1,000,000.
Claim 5: The polar solvent is one or more selected from chloroform, tetrahydrofuran, methanol and ethanol, and the nonpolar solvent is one or more selected from cyclohexane, hexane and heptane. The quantification method according to any one of claims 1 to 4, wherein:

本発明によれば、分子鎖末端が変性された変性共重合体と、分子鎖末端が変性されていない非変性共重合体との混合物中の、変性共重合体と非変性共重合体との比を短時間かつ正確に測定することができ、特に、従来困難だった100,000以上の分子量を有する混合物の測定も可能である。   According to the present invention, a modified copolymer and a non-modified copolymer in a mixture of a modified copolymer with a molecular chain terminal modified and a non-modified copolymer with a molecular chain terminal unmodified. The ratio can be measured accurately in a short time, and in particular, it is possible to measure a mixture having a molecular weight of 100,000 or more, which has been difficult in the past.

以下、本発明につき更に詳述する。
本発明の定量方法は、(A)共役ジエンモノマーとビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が下記一般式(1)
The present invention will be described in further detail below.
The quantitative method of the present invention is a copolymer of (A) a conjugated diene monomer and a vinyl aromatic hydrocarbon monomer, the molecular chain terminal of which is represented by the following general formula (1)

Figure 2006003265
(式中、R1及びR2は炭素数1〜12、好ましくは1〜8のアルキル基、シクロアルキル基又はアラルキル基を表し、同一であっても異なっていてもよい。)
又は下記一般式(2)
Figure 2006003265
(Wherein R 1 and R 2 represent an alkyl group, a cycloalkyl group or an aralkyl group having 1 to 12, preferably 1 to 8 carbon atoms, and may be the same or different.)
Or the following general formula (2)

Figure 2006003265
(式中、Xは炭素数3〜8のポリメチレン基を表す。)
で表されるアミノ基で封鎖された変性共重合体と、
(B)上記共役ジエンモノマーと上記ビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が上記アミノ基で封鎖されていない非変性共重合体
とを含む高分子材料中の上記(A)成分と上記(B)成分との比を定量する方法であり、
上記高分子材料中の上記(A)成分と上記(B)成分とを、表面シラノール基が非修飾のシリカゲル又は表面シラノール基の一部若しくは全部がアミノプロピル基で修飾されたシリカゲルを固定相、極性溶媒と非極性溶媒との混合溶媒を移動相とする液体クロマトグラフィーにて分離して定量するものである。
Figure 2006003265
(In the formula, X represents a polymethylene group having 3 to 8 carbon atoms.)
A modified copolymer blocked with an amino group represented by:
(B) The above-mentioned polymer in a polymer material comprising a copolymer of the conjugated diene monomer and the vinyl aromatic hydrocarbon monomer, wherein the molecular chain terminal is not blocked with the amino group. It is a method for quantifying the ratio of the component (A) to the component (B),
The stationary phase of the component (A) and the component (B) in the polymer material is a silica gel in which the surface silanol group is unmodified or in which part or all of the surface silanol group is modified with an aminopropyl group, It is separated and quantified by liquid chromatography using a mixed solvent of a polar solvent and a nonpolar solvent as a mobile phase.

本発明の定量方法においては、上記(A)成分である変性共重合体と、上記(B)成分である非変性共重合体とは、主鎖の構造が同じであるから、両者の分子量が同じであれば、示差屈折率検出器、紫外吸収検出器等の検出器により得られる変性共重合体及び非変性共重合体のピークを、変性共重合体及び非変性共重合体各々の量に対応する値として、面積比によって、直接変性共重合体と非変性共重合体との比を、予め検量線を作成することなく算出することができる。また、変性共重合体と非変性共重合体との分子量が異なる場合であっても、分子量による検出強度の差を予め測定しておけばよく、この結果から分子量差による強度差を換算するのみで、面積比によって、直接変性共重合体と非変性共重合体との比を算出することができる。   In the quantification method of the present invention, the modified copolymer as the component (A) and the non-modified copolymer as the component (B) have the same main chain structure. If they are the same, the peak of the modified copolymer and the unmodified copolymer obtained by a detector such as a differential refractive index detector or an ultraviolet absorption detector is added to the amount of each of the modified copolymer and the unmodified copolymer. As a corresponding value, the ratio between the directly modified copolymer and the non-modified copolymer can be calculated from the area ratio without preparing a calibration curve in advance. Even if the modified copolymer and the unmodified copolymer have different molecular weights, the difference in the detected intensity due to the molecular weight may be measured in advance, and the intensity difference due to the molecular weight difference is only converted from this result. Thus, the ratio between the directly modified copolymer and the unmodified copolymer can be calculated from the area ratio.

本発明において、分析の対象となる混合物は、(A)成分である共役ジエンモノマーとビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が上記一般式(1)又は(2)で表されるアミノ基で封鎖された変性共重合体と、(B)共役ジエンモノマーとビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が上記アミノ基、即ち、上記一般式(1)又は(2)で表されるアミノ基で封鎖されていない非変性共重合体とを含むものである。   In the present invention, the mixture to be analyzed is a copolymer of a conjugated diene monomer (A) component and a vinyl aromatic hydrocarbon monomer, and the molecular chain terminal is the above general formula (1) or (2 And (B) a copolymer of a conjugated diene monomer and a vinyl aromatic hydrocarbon monomer, the molecular chain terminal of which is the amino group, that is, the above-mentioned And a non-modified copolymer not blocked with an amino group represented by the general formula (1) or (2).

これら共重合体の骨格を与える共役ジエンモノマーとしては、例えば、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン、2−フェニル−1,3−ブタジエン、1,3−ヘキサジエン等が挙げられる。中でも好ましいのは1,3−ブタジエンである。一方、ビニル芳香族炭化水素モノマーとしては、スチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロヘキシルスチレン、2,4,6−トリメチルスチレン等を例示することができる。中でも好ましいのは、スチレンである。   Examples of the conjugated diene monomer that gives the skeleton of these copolymers include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 1,3. -Hexadiene and the like. Of these, 1,3-butadiene is preferred. On the other hand, as vinyl aromatic hydrocarbon monomers, styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, etc. It can be illustrated. Of these, styrene is preferred.

また、(A)成分の共重合体は、その分子鎖の一方又は両方が上記一般式(1)又は(2)で示されるアミノ基で封鎖されたものであるが、この上記一般式(1)で表されるアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジ−n−ブチルアミノ基、ジイソブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジアリルアミノ基、ジシクロヘキシルアミノ基、ブチルイソプロピルアミノ基、ジベンジルアミノ基、メチルベンジルアミノ基、メチルヘキシルアミノ基、エチルヘキシルアミノ基等を例示することができる。中でも、ジオクチルアミノ基が好ましい。   The copolymer of component (A) has one or both of its molecular chains blocked with an amino group represented by the above general formula (1) or (2). The amino group represented by) is dimethylamino group, diethylamino group, dipropylamino group, di-n-butylamino group, diisobutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group. And a diallylamino group, a dicyclohexylamino group, a butylisopropylamino group, a dibenzylamino group, a methylbenzylamino group, a methylhexylamino group, and an ethylhexylamino group. Of these, a dioctylamino group is preferable.

一方、上記一般式(2)で表されるアミノ基としては、トリメチレンイミノ基、ピロリジノ基、ピペリジノ基、2−メチルピペリジノ基、3−メチルピペリジノ基、4−メチルピペリジノ基、3,5−ジメチルピペリジノ基、2−エチルピペリジノ基、ヘキサメチレンイミノ基、ヘプタメチレンイミノ基を例示することができる。中でも、ピロリジノ基又はヘキサメチレンイミノ基が好ましい。   On the other hand, the amino group represented by the general formula (2) includes trimethyleneimino group, pyrrolidino group, piperidino group, 2-methylpiperidino group, 3-methylpiperidino group, 4-methylpiperidino group, 3,5-dimethylpiperidin Group, 2-ethylpiperidino group, hexamethyleneimino group and heptamethyleneimino group. Of these, a pyrrolidino group or a hexamethyleneimino group is preferable.

本発明において、分析の対象となる変性共重合体と非変性共重合体との混合物としては、特に限定されるものではないが、例えば、特開平6−199921号公報に記載されている方法により得られた共重合体、即ち、炭化水素溶媒中、テトラヒドロフラン等のランダマイザーの存在下又は非存在下で、n−ブチルリチウム等の有機リチウム化合物と、下記一般式(3)   In the present invention, the mixture of the modified copolymer and the non-modified copolymer to be analyzed is not particularly limited, but for example, by a method described in JP-A-6-199921. The obtained copolymer, that is, an organic lithium compound such as n-butyllithium in a hydrocarbon solvent in the presence or absence of a randomizer such as tetrahydrofuran, and the following general formula (3)

Figure 2006003265
(式中、R1及びR2は上記一般式(1)と同様である。)
又は下記一般式(4)
Figure 2006003265
(In the formula, R 1 and R 2 are the same as those in the general formula (1).)
Or the following general formula (4)

Figure 2006003265
(式中、Xは上記一般式(2)と同様である。)
で表されるアミン化合物とを接触させて生成する可溶性重合開始剤であるリチウム系重合開始剤により1,3−ペンタジエン等の共役ジエンモノマー及びスチレン等のビニル芳香族炭化水素モノマーの共重合を行う方法により得られた共重合体が挙げられる。この共重合体は、変性共重合体と非変性共重合体との分子量がほぼ同等であることから、本発明を好適に適用し得る混合物である。
Figure 2006003265
(In the formula, X is the same as the above general formula (2).)
A conjugated diene monomer such as 1,3-pentadiene and a vinyl aromatic hydrocarbon monomer such as styrene are copolymerized with a lithium-based polymerization initiator that is a soluble polymerization initiator formed by contacting with an amine compound represented by Examples thereof include a copolymer obtained by the method. This copolymer is a mixture to which the present invention can be suitably applied because the molecular weights of the modified copolymer and the non-modified copolymer are substantially the same.

この場合、上記一般式(3)で表されるアミン化合物としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジアリルアミン、ジシクロヘキシルアミン、ブチルイソプロピルアミン、ジベンジルアミン、メチルベンジルアミン、メチルヘキシルアミン、エチルヘキシルアミン等、上記一般式(4)で表されるアミン化合物としては、トリメチレンイミン、ピロリジン、ピペリジン、2−メチルピペリジン、3−メチルピペリジン、4−メチルピペリジン、3,5−ジメチルピペリジン、2−エチルピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン等が好ましく挙げられる。   In this case, as the amine compound represented by the general formula (3), dimethylamine, diethylamine, dipropylamine, di-n-butylamine, diisobutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, diallylamine , Dicyclohexylamine, butylisopropylamine, dibenzylamine, methylbenzylamine, methylhexylamine, ethylhexylamine, and the like, amine compounds represented by the above general formula (4) include trimethyleneimine, pyrrolidine, piperidine, 2-methyl Preferred are piperidine, 3-methylpiperidine, 4-methylpiperidine, 3,5-dimethylpiperidine, 2-ethylpiperidine, hexamethyleneimine, heptamethyleneimine and the like.

本発明の定量方法は、上述したような(A)成分の変性共重合体と、(B)成分の非変性共重合体との混合物である高分子材料中の、(A)成分と(B)成分とを液体クロマトグラフィー、特に高速液体クロマトグラフィー(HPLC)で分離するものであるが、この場合の固定相として、表面シラノール基が非修飾のシリカゲル又は表面シラノール基の一部若しくは全部がアミノプロピル基で修飾されたシリカゲルを用いる。このようなものとしては、市販品を用い得、例えば、Merck社製 LiChrosorb Si60等が挙げられる。   The quantification method of the present invention comprises the components (A) and (B) in the polymer material which is a mixture of the modified copolymer (A) and the non-modified copolymer (B) as described above. ) Components are separated from each other by liquid chromatography, particularly high performance liquid chromatography (HPLC). In this case, as the stationary phase, silica gel whose surface silanol groups are unmodified or part or all of the surface silanol groups are amino. Silica gel modified with propyl groups is used. As such a thing, a commercial item can be used, For example, Merck Corporation LiChrosorb Si60 etc. are mentioned.

一方、移動相(溶離液)としては、極性溶媒と非極性溶媒との混合溶媒を用いる。この場合、極性溶媒としては、上述した高分子材料を溶解可能であり、かつ吸着クロマトグラフィーにおける溶媒能力が高いものが用いられ、例えば、クロロホルム、テトラヒドロフラン、メタノール及びエタノールから選ばれる1種又は2種以上を用いることが好適である。この場合、クロロホルム及び/又はテトラヒドロフランと、メタノール及び/又はエタノールとを容量比で99.9/0.1〜95/5で混合したものを極性溶媒として用いることが特に好ましい。   On the other hand, a mixed solvent of a polar solvent and a nonpolar solvent is used as the mobile phase (eluent). In this case, as the polar solvent, those capable of dissolving the above-described polymer material and having a high solvent ability in adsorption chromatography are used. For example, one or two kinds selected from chloroform, tetrahydrofuran, methanol and ethanol are used. It is preferable to use the above. In this case, it is particularly preferable to use as a polar solvent a mixture of chloroform and / or tetrahydrofuran and methanol and / or ethanol at a volume ratio of 99.9 / 0.1 to 95/5.

また、非極性溶媒としては、上述した高分子材料を溶解可能であり、かつ吸着クロマトグラフィーにおける溶媒能力が低いものが用いられ、例えば、シクロヘキサン、ヘキサン及びヘプタンから選ばれる1種又は2種以上を用いることが好適である。   In addition, as the nonpolar solvent, those capable of dissolving the above-described polymer material and having a low solvent ability in adsorption chromatography are used. For example, one or more selected from cyclohexane, hexane and heptane are used. It is preferable to use it.

極性溶媒と非極性溶媒との混合比は、特に限定されるものではないが、極性溶媒/非極性溶媒=1/9〜5/5(容量比)とすることが好ましい。   The mixing ratio of the polar solvent and the nonpolar solvent is not particularly limited, but is preferably polar solvent / nonpolar solvent = 1/9 to 5/5 (volume ratio).

(A)成分及び(B)成分の定量に用いる検出器としては、示差屈折率検出器(RI)、紫外吸収検出器(UV)等を用い得るが、検出感度及び汎用性に優れ、精度よく定量できる観点からエバポレイト光散乱検出器を用いることも好適である。なお、液体クロマトグラフィーによる分離及び検出における他の条件は、従来公知の一般的な液体クロマトグラフィー条件を適用し得る。   As a detector used for quantification of the component (A) and the component (B), a differential refractive index detector (RI), an ultraviolet absorption detector (UV), etc. can be used, but it has excellent detection sensitivity and versatility, and has high accuracy. From the viewpoint of quantification, it is also preferable to use an evaporator light scattering detector. In addition, conventionally well-known general liquid chromatography conditions can be applied to other conditions in separation and detection by liquid chromatography.

本発明は、数平均分子量が5,000〜1,000,000、特に、従来の方法では短時間、かつ高精度の分析が極めて困難であった数平均分子量が100,000以上の高分子材料の定量において威力を発揮し、例えば、5〜10分程度という極めて短時間で高精度の分析が可能である。   The present invention relates to a polymer material having a number average molecular weight of 5,000 to 1,000,000, in particular, a polymer material having a number average molecular weight of 100,000 or more, which was extremely difficult to analyze with high accuracy in a short time by the conventional method. Power is demonstrated in the quantitative determination of, and for example, highly accurate analysis is possible in an extremely short time of about 5 to 10 minutes.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、合成例で用いた全ての原料は脱水精製したものを用いた。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to the following Example. All raw materials used in the synthesis examples were dehydrated and purified.

[合成例1〜7]
乾燥し、窒素置換された800mlの耐圧ガラス容器に、表1の処方に従って、シクロヘキサン、1,3−ブタジエンモノマー、スチレンモノマー、テトラヒドロフラン(THF)、ヘキサメチレンイミン(HMI)、ピロリジン、ジオクチルアミンを注入し、これにn−ブチルリチウム(BuLi)を加えた後、50℃で2時間重合を行った。重合系は重合開始から終了まで、全く沈澱は見られず均一に透明であった。重合転化率はほぼ100%であった。重合溶液の一部をサンプリングし、イソプロピルアルコールを加え、固形物を乾燥し、ゴム状共重合体を得た。この共重合体の分子量分布を測定した結果を表1に併記する。
[Synthesis Examples 1 to 7]
According to the formulation shown in Table 1, cyclohexane, 1,3-butadiene monomer, styrene monomer, tetrahydrofuran (THF), hexamethyleneimine (HMI), pyrrolidine, and dioctylamine are injected into an 800 ml pressure-resistant glass container that has been dried and purged with nitrogen. Then, n-butyllithium (BuLi) was added thereto, followed by polymerization at 50 ° C. for 2 hours. From the start to the end of the polymerization, the polymerization system was uniformly transparent without any precipitation. The polymerization conversion was almost 100%. A part of the polymerization solution was sampled, isopropyl alcohol was added, and the solid was dried to obtain a rubbery copolymer. The results of measuring the molecular weight distribution of this copolymer are also shown in Table 1.

なお、共重合体の数平均分子量(Mn)の測定は、ゲルパーミエイションクロマトグラフィー(GPC:東ソー製 HLC−8020、カラム:東ソー製 GMH−XL(2本直列))により、示差屈折率検出器(RI)を用いて行い、単分散ポリスチレンを標準とするポリスチレン換算値とした。   The number average molecular weight (Mn) of the copolymer was measured by gel permeation chromatography (GPC: Tosoh HLC-8020, column: Tosoh GMH-XL (two in series)). This was carried out using a vessel (RI), and the value was converted to polystyrene using monodisperse polystyrene as a standard.

Figure 2006003265
Figure 2006003265

[実施例1〜6]
合成例1〜6で得られた各々の共重合体中の変性共重合体と非変性共重合体とを下記の液体クロマトグラフィーにより分析し、変性共重合体と非変性共重合体との比を求めた。結果を表2に示す。
[Examples 1 to 6]
The modified copolymer and the unmodified copolymer in each of the copolymers obtained in Synthesis Examples 1 to 6 were analyzed by the following liquid chromatography, and the ratio of the modified copolymer to the unmodified copolymer was determined. Asked. The results are shown in Table 2.

分析試料調製
各合成例において得られたゴム状共重合体を下記溶離液に1mg/mlの濃度で溶解させたものを分析試料溶液とした。
液体クロマトグラフィー(HPLC)
カラム:Merck社製 LiChrosorb Si60(径4mm、長さ250mm)
溶離液:(1vol%エタノール−99vol%クロロホルム液)/シクロヘキサン=3/7
検出器:UV(254nm)
温度:40℃
流速:1ml/min
試料注入量:20μl
クロマトグラムの描画及びピーク面積の計数は電位差積算型データ処理機(インテグレータ)による。
Analytical sample preparation The rubbery copolymer obtained in each synthesis example was dissolved in the following eluent at a concentration of 1 mg / ml to obtain an analytical sample solution.
Liquid chromatography (HPLC)
Column: LiChrosorb Si60 (diameter 4 mm, length 250 mm) manufactured by Merck
Eluent: (1 vol% ethanol-99 vol% chloroform solution) / cyclohexane = 3/7
Detector: UV (254 nm)
Temperature: 40 ° C
Flow rate: 1 ml / min
Sample injection volume: 20 μl
Drawing of the chromatogram and counting of the peak area are performed by a potential difference integration type data processor (integrator).

また、実施例1〜5で得られたクロマトグラムを図1に、実施例1〜5で用いた各共重合体合成時の原料ヘキサメチレンイミンとn−ブチルリチウムとの比(HMI/BuLi)に対して、対応する共重合体により得られたクロマトグラムの置換共重合体のピーク面積の割合をプロットしたグラフを図2に、実施例6で得られたクロマトグラムを図3に各々示す。   Further, the chromatograms obtained in Examples 1 to 5 are shown in FIG. 1, and the ratio of the raw material hexamethyleneimine and n-butyllithium at the time of synthesizing each copolymer used in Examples 1 to 5 (HMI / BuLi). FIG. 2 is a graph plotting the ratio of the peak area of the substituted copolymer in the chromatogram obtained with the corresponding copolymer, and FIG. 3 is the chromatogram obtained in Example 6.

[実施例7]
合成例7で得られた共重合体中の変性共重合体と非変性共重合体とを、溶離液として(1vol%エタノール−99vol%クロロホルム液)/シクロヘキサン=1/9を用いた以外は実施例1と同様の方法で液体クロマトグラフィーにより分析し、変性共重合体と非変性共重合体との比を求めた。結果を表2に示す。また、得られたクロマトグラムを図4に示す。
[Example 7]
The modified copolymer and the unmodified copolymer in the copolymer obtained in Synthesis Example 7 were used except that (1 vol% ethanol-99 vol% chloroform solution) / cyclohexane = 1/9 was used as an eluent. Analysis was performed by liquid chromatography in the same manner as in Example 1 to determine the ratio of the modified copolymer to the unmodified copolymer. The results are shown in Table 2. Moreover, the obtained chromatogram is shown in FIG.

Figure 2006003265
Figure 2006003265

実施例1〜5において得られたクロマトグラムである。It is the chromatogram obtained in Examples 1-5. 共重合体合成時の原料ヘキサメチレンイミンとn−ブチルリチウムとの比(HMI/BuLi)に対して、対応する共重合体により得られたクロマトグラムの置換共重合体のピーク面積の割合をプロットしたグラフである。Plotting the ratio of the peak area of the substituted copolymer in the chromatogram obtained with the corresponding copolymer against the ratio (HMI / BuLi) of the raw material hexamethyleneimine and n-butyllithium at the time of copolymer synthesis It is a graph. 実施例6において得られたクロマトグラムである。7 is a chromatogram obtained in Example 6. 実施例7において得られたクロマトグラムである。10 is a chromatogram obtained in Example 7.

Claims (5)

(A)共役ジエンモノマーとビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が下記一般式(1)
Figure 2006003265
(式中、R1及びR2は炭素数1〜12のアルキル基、シクロアルキル基又はアラルキル基を表し、同一であっても異なっていてもよい。)
又は下記一般式(2)
Figure 2006003265
(式中、Xは炭素数3〜8のポリメチレン基を表す。)
で表されるアミノ基で封鎖された変性共重合体と、
(B)上記共役ジエンモノマーと上記ビニル芳香族炭化水素モノマーとの共重合体であって、分子鎖末端が上記アミノ基で封鎖されていない非変性共重合体
とを含む高分子材料中の上記(A)成分と上記(B)成分との比を定量する方法であって、
上記高分子材料中の上記(A)成分と上記(B)成分とを、表面シラノール基が非修飾のシリカゲル又は表面シラノール基の一部若しくは全部がアミノプロピル基で修飾されたシリカゲルを固定相、極性溶媒と非極性溶媒との混合溶媒を移動相とする液体クロマトグラフィーにて分離して定量することを特徴とする定量方法。
(A) A copolymer of a conjugated diene monomer and a vinyl aromatic hydrocarbon monomer, the molecular chain terminal of which is represented by the following general formula (1)
Figure 2006003265
(Wherein, R 1 and R 2 represent an alkyl group, a cycloalkyl group or an aralkyl group having 1 to 12 carbon atoms, it may be the same or different.)
Or the following general formula (2)
Figure 2006003265
(In the formula, X represents a polymethylene group having 3 to 8 carbon atoms.)
A modified copolymer blocked with an amino group represented by:
(B) The above-mentioned polymer in a polymer material comprising a copolymer of the conjugated diene monomer and the vinyl aromatic hydrocarbon monomer, wherein the molecular chain terminal is not blocked with the amino group. A method for quantifying the ratio of the component (A) to the component (B),
The stationary phase of the component (A) and the component (B) in the polymer material is a silica gel in which the surface silanol group is unmodified or in which part or all of the surface silanol group is modified with an aminopropyl group, A quantification method comprising separating and quantifying by a liquid chromatography using a mixed solvent of a polar solvent and a nonpolar solvent as a mobile phase.
上記共役ジエンモノマーが1,3−ブタジエンであり、上記ビニル芳香族炭化水素モノマーがスチレンであることを特徴とする請求項1記載の定量方法。   The method according to claim 1, wherein the conjugated diene monomer is 1,3-butadiene and the vinyl aromatic hydrocarbon monomer is styrene. 上記アミノ基がジオクチルアミノ基、ピロリジノ基又はヘキサメチレンイミノ基であることを特徴とする請求項1又は2記載の定量方法。   The method according to claim 1 or 2, wherein the amino group is a dioctylamino group, a pyrrolidino group or a hexamethyleneimino group. 上記高分子材料の数平均分子量が5,000〜1,000,000であることを特徴とする請求項1乃至3のいずれか1項記載の定量方法。   The method according to claim 1, wherein the polymer material has a number average molecular weight of 5,000 to 1,000,000. 上記極性溶媒がクロロホルム、テトラヒドロフラン、メタノール及びエタノールから選ばれる1種又は2種以上であり、かつ上記非極性溶媒がシクロヘキサン、ヘキサン及びヘプタンから選ばれる1種又は2種以上であることを特徴とする請求項1乃至4のいずれか1項記載の定量方法。   The polar solvent is one or more selected from chloroform, tetrahydrofuran, methanol and ethanol, and the nonpolar solvent is one or more selected from cyclohexane, hexane and heptane. The quantification method according to any one of claims 1 to 4.
JP2004181253A 2004-06-18 2004-06-18 Quantitation method Expired - Fee Related JP4434850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181253A JP4434850B2 (en) 2004-06-18 2004-06-18 Quantitation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181253A JP4434850B2 (en) 2004-06-18 2004-06-18 Quantitation method

Publications (2)

Publication Number Publication Date
JP2006003265A true JP2006003265A (en) 2006-01-05
JP4434850B2 JP4434850B2 (en) 2010-03-17

Family

ID=35771770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181253A Expired - Fee Related JP4434850B2 (en) 2004-06-18 2004-06-18 Quantitation method

Country Status (1)

Country Link
JP (1) JP4434850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012202A (en) * 2016-07-26 2018-02-05 주식회사 엘지화학 Method for measuring a modified ratio of a polymer
KR20190037521A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for measuring a modified ratio of a polymer
WO2019066396A3 (en) * 2017-09-29 2019-05-23 주식회사 엘지화학 Rubber composition
CN110997787A (en) * 2017-09-29 2020-04-10 Lg化学株式会社 Rubber composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012202A (en) * 2016-07-26 2018-02-05 주식회사 엘지화학 Method for measuring a modified ratio of a polymer
CN107923891A (en) * 2016-07-26 2018-04-17 株式会社Lg化学 The measuring method of polymer modification rate
JP2018526628A (en) * 2016-07-26 2018-09-13 エルジー・ケム・リミテッド Method for measuring polymer modification rate
KR102115390B1 (en) * 2016-07-26 2020-05-27 주식회사 엘지화학 Method for measuring a modified ratio of a polymer
US10928368B2 (en) 2016-07-26 2021-02-23 Lg Chem, Ltd. Method for measuring polymer modification ratio
CN115128190A (en) * 2016-07-26 2022-09-30 株式会社Lg化学 Method for measuring modification rate of polymer
KR20190037521A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for measuring a modified ratio of a polymer
WO2019066396A3 (en) * 2017-09-29 2019-05-23 주식회사 엘지화학 Rubber composition
CN110997787A (en) * 2017-09-29 2020-04-10 Lg化学株式会社 Rubber composition
KR102124108B1 (en) * 2017-09-29 2020-06-17 주식회사 엘지화학 Method for measuring a modified ratio of a polymer
US11505624B2 (en) 2017-09-29 2022-11-22 Lg Chem, Ltd. Rubber composition

Also Published As

Publication number Publication date
JP4434850B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
Chi et al. Determination of carbonyl compounds in the atmosphere by DNPH derivatization and LC–ESI-MS/MS detection
CN103837617B (en) Method for analyzing migration volume from photoinitiator to modified polyphenylene oxide (MPPO) in printed wrapping paper based on liquid chromatograph-tandem mass spectrometer (LC-MS/MS) technology
Wren et al. UPLC/MS for the identification of β-blockers
CN108885195B (en) Method for analyzing copolymer of conjugated diene compound and aromatic vinyl compound
Shi et al. Generational, skeletal and substitutional diversities in generation one poly (amidoamine) dendrimers
Weidner et al. Principle of two-dimensional characterization of copolymers
JP4434850B2 (en) Quantitation method
Ravisankar et al. Current trends in performance of forced degradation studies and stability indicating studies of drugs
Yol et al. Multidimensional mass spectrometry methods for the structural characterization of cyclic polymers
CN111272930A (en) Liquid chromatography-mass spectrometry detection method for photoinitiator migration amount in UV (ultraviolet) printing ink for paper printing
Ji et al. Characterization of hydroxyl-end-capped polybutadiene and polystyrene produced by anionic polymerization technique via TLC/MALDI TOF mass spectrometry
Canto et al. Determination of the composition of styrene–glycidyl methacrylate copolymers by FTIR and titration
Belu et al. End-functionalized polymers. 2. Quantification of functionalization by time-of-flight secondary ion mass spectrometry
Amin et al. Synthesis and characterization molecularly imprinted polymers for analysis of dimethylamylamine using acrylamide as monomer functional
RU2735168C1 (en) Qualitative and quantitative determination of phthalates in polymer materials
Boeris et al. Simultaneous spectrophotometric determination of phenobarbital, phenytoin and methylphenobarbital in pharmaceutical preparations by using partial least-squares and principal component regression multivariate calibration
Al-Bayati Preparation of Selective Sensors for Cyproheptadine Hydrochloride based on Molecularly Imprinted Polymer used N, N-Diethylaminoethyl Methacrylate as Functional Monomer
EP2271602A2 (en) Surfactant-based monolithic columns, methods for making the same, and methods for using the same
Slemr et al. Study of the relative response factors of various gas chromatograph–flame ionisation detector systems for measurement of C2–C9 hydrocarbons in air
Esser et al. Chromatographic investigations of macromolecules in the critical range of liquid chromatography, XIII. Separation of blends of styrene‐butadiene rubber and butyl rubber
Quirk et al. Anionic synthesis of ω‐dimethylamino‐functionalized polymers by functionalization of polymeric organolithiums with 3‐dimethylaminopropyl chloride
Dempwolf et al. Analysis of Nitroxide‐Mediated Polymerization of Styrene by Soft‐Ionization‐MS–A Challenging Task
Kim et al. Advanced molecular recognition of 3-nitro-L-tyrosine: The use of zwitterion embedded molecularly imprinted mesoporous organosilica with sub-nanomolar sensitivity
ES2287717T3 (en) POLICE PREPARATION PROCEDURE (A-METILESTIRENE).
Ji et al. MALDI-TOF MS characterization of carboxyl-end-capped polystyrenes synthesized using anionic polymerization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees