JP2006002976A - Heat storage body, heat storing method, space heater and water heater - Google Patents

Heat storage body, heat storing method, space heater and water heater Download PDF

Info

Publication number
JP2006002976A
JP2006002976A JP2004178538A JP2004178538A JP2006002976A JP 2006002976 A JP2006002976 A JP 2006002976A JP 2004178538 A JP2004178538 A JP 2004178538A JP 2004178538 A JP2004178538 A JP 2004178538A JP 2006002976 A JP2006002976 A JP 2006002976A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage body
foam metal
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004178538A
Other languages
Japanese (ja)
Inventor
Hiroshi Usami
浩 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAIDO DENKI KK
Sumitomo Electric Industries Ltd
Original Assignee
HOKKAIDO DENKI KK
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAIDO DENKI KK, Sumitomo Electric Industries Ltd filed Critical HOKKAIDO DENKI KK
Priority to JP2004178538A priority Critical patent/JP2006002976A/en
Publication of JP2006002976A publication Critical patent/JP2006002976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage body of small capacity, capable of efficiently storing heat. <P>SOLUTION: This heat storage body 1 has a heat storage material and a heat transfer material for transferring the heat to the heat storage material. The heat storage material and the heat transfer material are stored, for example, inside of a container 2. The heat transfer material is composed of foam metal 3 having a number of pores, and the foam metal 3 is mounted in a state of being kept into contact with the heat storage material. By placing the heat storage material in the pores of the foam metal, the heat can be efficiently moved between the inside and the outside of the heat storage material of small heat conductivity. The effect can be improved by using pentaerythritol as the heat storage material. Further by using nickel-chrome alloy foam metal 3 of high electric resistance, the heat storage body can be effectively used as a heat generating material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蓄熱体、蓄熱方法、暖房器および温水器に関するものである。特に、深夜電力等を用いて夜間蓄えたエネルギーで暖房や給湯をする暖房器、温水器に利用することが好適な蓄熱体に関する。   The present invention relates to a heat storage body, a heat storage method, a heater, and a water heater. In particular, the present invention relates to a heat storage body suitable for use in a heater or a water heater for heating or hot water supply using energy stored at night using midnight power or the like.

電力需要の増大に伴って昼夜における電力負荷の格差はますます拡大する方向にある。この電力負荷の平準化対策として多くの蓄熱装置がビル暖房や冷房、給湯器などに設備されるようになってきている。   With the increase in power demand, the difference in power load between day and night is increasingly widening. As a measure for leveling the electric power load, many heat storage devices are installed in building heating, cooling, water heaters, and the like.

このような蓄熱装置に用いる蓄熱体として、蓄熱材であるパラフィンを鋼鉄製の槽内に入れた蓄熱体がある。ところが、固体のパラフィンは熱伝導率が悪いため、伝熱促進剤として炭素繊維を容器の中に納める必要がある。その炭素繊維は高価であるため、この技術は実用性において難がある。   As a heat storage body used for such a heat storage apparatus, there is a heat storage body in which paraffin which is a heat storage material is placed in a steel tank. However, since solid paraffin has poor thermal conductivity, it is necessary to store carbon fiber in a container as a heat transfer accelerator. Since the carbon fiber is expensive, this technique has difficulty in practical use.

また、固体氷を蓄熱材として用いるスタティック型の蓄熱装置がある(例えば特許文献1)。この装置は、吸水性繊維などからなる吸水性物質を水で膨潤させて含水蓄熱体を形成し、この含水蓄熱体を水と相溶性のない冷媒と共に蓄熱槽内に充填する。そして、これは含水蓄熱体との間に冷媒を流動させて、含水蓄熱体を凍結・解凍する氷蓄熱装置である。この装置は、水が冷却されて伝熱面に氷が生成してくると氷の熱伝導率が低いため、氷自身が熱抵抗体となり、運転の経過と共に伝熱特性が悪化して、冷凍システムの運転効率が低下する。   There is also a static heat storage device that uses solid ice as a heat storage material (for example, Patent Document 1). In this apparatus, a water-absorbing material composed of water-absorbing fibers and the like is swollen with water to form a water-containing heat storage body, and the water-containing heat storage body is filled in a heat storage tank together with a refrigerant that is not compatible with water. This is an ice heat storage device that freezes and thaws the water-containing heat storage body by flowing a refrigerant between the water-containing heat storage body. When water is cooled and ice is generated on the heat transfer surface, the heat conductivity of the ice is low, so the ice itself becomes a thermal resistor, and the heat transfer characteristics deteriorate with the progress of operation. The operating efficiency of the system is reduced.

その他、凝固点の異なる2つの液体を用いた蓄熱装置もある(例えば特許文献2)。すなわち、凝固点の異なる2つの液体を用いて、液体で液体を冷却しようとするものである。蓄熱体である第1の液体を多く含む蓄熱槽内で、低温になった第2の液体を第1の液体中に吹き込んでこれを製氷、凝固させる。この製氷工程において、蓄熱槽内部の製氷および第2の液体の流れを制御でき、氷充填効率の向上および解氷効果の向上が図れる潜熱蓄熱装置を特許文献2は提供している。   In addition, there is also a heat storage device using two liquids having different freezing points (for example, Patent Document 2). That is, two liquids having different freezing points are used to cool the liquid with the liquid. In the heat storage tank containing a large amount of the first liquid, which is a heat storage body, the low-temperature second liquid is blown into the first liquid to make it ice and solidify. Patent Document 2 provides a latent heat storage device that can control the ice making and the flow of the second liquid inside the heat storage tank in this ice making process, and can improve the ice filling efficiency and the ice-melting effect.

特開平6-249474号公報JP-A-6-249474 特開平7-19536号公報Japanese Patent Laid-Open No. 7-19536

しかし、特許文献2に記載の技術では、蓄熱装置が大きくなるという課題がある。つまり、この蓄熱装置では2種類の液体を用いている。従って、蓄熱体の他に、第2の液体、熱移動するための配管、第2の液体を加熱、冷却するための装置やポンプなどが必要となり、蓄熱体以外の装置構成が大きくなって、蓄熱装置が大きくならざるを得ない。   However, the technique described in Patent Document 2 has a problem that the heat storage device becomes large. That is, this heat storage device uses two types of liquids. Therefore, in addition to the heat accumulator, a second liquid, piping for heat transfer, a device for heating and cooling the second liquid, a pump, etc. are required, and the device configuration other than the heat accumulator is increased, The heat storage device must be large.

従って、本発明の主目的は、コンパクトで効率的に蓄熱と放熱が可能な蓄熱体を提供することにある。   Accordingly, a main object of the present invention is to provide a heat storage body that is compact and can store and release heat efficiently.

本発明は、伝熱材と蓄熱材とを有する蓄熱体において、伝熱材に発泡金属を用いることで上記の目的を達成する。   This invention achieves said objective by using a foam metal for a heat-transfer material in the heat storage body which has a heat-transfer material and a heat storage material.

本発明の蓄熱体は、蓄熱材と、蓄熱材に熱伝達を行う伝熱材とを有し、伝熱材が多数の空孔を有する発泡金属からなり、この発泡金属は蓄熱材に接して配置されていることを特徴とする。   The heat storage body of the present invention has a heat storage material and a heat transfer material that transfers heat to the heat storage material, and the heat transfer material is made of a foam metal having a large number of holes, and the foam metal is in contact with the heat storage material. It is arranged.

蓄熱材は一般的に熱伝導率が低いので、蓄熱材の内部を加熱したり、蓄熱材に蓄熱されている熱を外部に取り出しにくい。そこで、本発明は、発泡金属を伝熱材に用いることでこの課題を解決している。すなわち、本発明では発泡金属を熱の良導体として利用することで、蓄熱材に効率的な熱伝達を行い、蓄熱材の内部への十分な蓄熱も可能にしている。逆に、蓄熱材の内部の熱を外部に取り出す場合、発泡金属が熱の良導体となって蓄熱体内部の熱を外部に効率よく取り出すことができる。   Since the heat storage material generally has a low thermal conductivity, it is difficult to heat the inside of the heat storage material or to extract the heat stored in the heat storage material to the outside. Therefore, the present invention solves this problem by using a foam metal as a heat transfer material. That is, in the present invention, by using the foam metal as a good heat conductor, efficient heat transfer is performed to the heat storage material, and sufficient heat storage inside the heat storage material is also possible. On the contrary, when taking out the heat inside the heat storage material to the outside, the foam metal becomes a good conductor of heat, and the heat inside the heat storage body can be taken out efficiently.

発泡金属は蓄熱材に接して配置されることが重要である。蓄熱材に発泡金属を接触させることで、効率的な熱伝導を行うことができる。この構成により発泡金属と蓄熱材との接触面積を増やし、一層効率的な熱伝導が可能になる。従って、発泡金属を用いることにより、コンパクトで効率的な蓄熱・放熱が可能な蓄熱体を提供することができる。   It is important that the foam metal is placed in contact with the heat storage material. By bringing the foam metal into contact with the heat storage material, efficient heat conduction can be performed. With this configuration, the contact area between the foam metal and the heat storage material is increased, and more efficient heat conduction is possible. Therefore, by using the foam metal, it is possible to provide a heat storage body capable of storing heat and releasing heat in a compact and efficient manner.

蓄熱材は、ペンタエリトリトールであることが望ましい。ペンタエリトリトール(C5H12O4)は、188℃で固相/固相の結晶転移を起こし、極めて大きな転移熱(潜熱量は104cal/cc)を有していて、蓄熱状態で結晶である点において取り扱いの容易な材料である。 The heat storage material is preferably pentaerythritol. Pentaerythritol (C 5 H 12 O 4 ) undergoes a solid phase / solid phase crystal transition at 188 ° C., has a very large heat of transition (latent heat amount is 104 cal / cc), and is crystalline in a heat storage state. It is a material that is easy to handle.

発泡金属は、ニッケル-クロム合金であることが望ましい。発泡金属を発熱材として利用すると共に、蓄熱体内部の熱を外部に伝達するために使用する。ニッケル-クロム合金の電気抵抗と熱伝導率は、上記の目的のためにバランスがとれている。発泡金属は、多数の空孔を有する多孔質の金属体である。代表的には、空孔の割合が90体積%以上98体積%以下で、残りが金属でできている。より具体的には、住友電気工業株式会社製のセルメット(登録商標)が挙げられる。このセルメットは、一般的には、発泡ウレタン樹脂などに金属をメッキしたのち、加熱により樹脂を除去して製造される。   The foam metal is preferably a nickel-chromium alloy. While using a foam metal as a heat generating material, it is used to transmit the heat inside the heat storage body to the outside. The electrical resistance and thermal conductivity of the nickel-chromium alloy are balanced for the above purpose. The foam metal is a porous metal body having a large number of pores. Typically, the void ratio is 90% by volume or more and 98% by volume or less, and the rest is made of metal. More specifically, Celmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd. may be mentioned. This cermet is generally manufactured by plating a foamed urethane resin or the like with a metal and then removing the resin by heating.

また、本発明蓄熱方法は、上記の蓄熱体を用いることを特徴とする。すなわち、上記の蓄熱体を用い、蓄熱体が備える発泡金属に通電して発熱させた熱を蓄熱体に蓄熱する。蓄熱材は、熱伝導率の高い発泡金属の空孔内に設けられているので、発泡金属との接触面積が増加し、蓄熱材の内部まで効率的に蓄熱できるという特徴を有する。   Moreover, this invention heat storage method uses said heat storage body, It is characterized by the above-mentioned. That is, using the heat storage body, the heat generated by energizing the foam metal included in the heat storage body is stored in the heat storage body. Since the heat storage material is provided in the pores of the foam metal having a high thermal conductivity, the contact area with the foam metal is increased and heat can be efficiently stored up to the inside of the heat storage material.

次に、本発明暖房器は、上記の蓄熱体を用いることを特徴とする。すなわち、上記の蓄熱体を備えた暖房器であって、前記蓄熱体の周囲に気体を供給する給気口と、蓄熱体の熱で加熱された気体を排出する排気口とを有する。蓄熱体の熱で加熱された気体は温風として排気口から放出できるため、クリーンで効率的な暖房器を構成することができる。   Next, this invention heater uses said heat storage body, It is characterized by the above-mentioned. That is, it is a heater provided with said heat storage body, Comprising: It has an air supply port which supplies gas around the said heat storage body, and an exhaust port which discharges | emits the gas heated with the heat | fever of the heat storage body. Since the gas heated by the heat of the heat storage body can be discharged from the exhaust port as warm air, a clean and efficient heater can be configured.

蓄熱体の加熱は、蓄熱体に設けられた発泡金属に通電して発熱させて行えばよい。つまり、熱を蓄熱体に一度蓄熱し、その熱を用いて暖房を行う。   The heat storage body may be heated by energizing the foam metal provided in the heat storage body to generate heat. That is, heat is once stored in the heat storage body, and heating is performed using the heat.

さらに、本発明温水器は、上記の蓄熱体を用いたことを特徴とする。すなわち、上記蓄熱体を備えた温水器であって、前記蓄熱体の周囲に水を供給する給水口と、蓄熱体の熱で加熱された温水を排出する排水口とを有する。   Furthermore, this invention water heater is characterized by using said heat storage body. That is, it is a water heater provided with the said heat storage body, Comprising: It has a water supply port which supplies water around the said heat storage body, and a drain outlet which discharges | emits the warm water heated with the heat | fever of the heat storage body.

この温水器でも、蓄熱体の加熱は、蓄熱体に設けられた発泡金属に通電して発熱させて行えばよい。つまり、熱を蓄熱体に一度蓄熱し、その熱を用いて給湯を行う。   Even in this water heater, the heat storage body may be heated by energizing a foam metal provided in the heat storage body to generate heat. That is, heat is once stored in the heat storage body, and hot water is supplied using the heat.

本発明は、発泡金属を伝熱材とし、この発泡金属と蓄熱材が接するようにすることで、蓄熱材を効率的に加熱、冷却することができる。   In the present invention, the heat storage material can be efficiently heated and cooled by using the foam metal as a heat transfer material and contacting the foam metal and the heat storage material.

また、蓄熱材に蓄熱された熱を放熱する場合、熱伝導率の高い発泡金属を介して効率的に放熱することもできる。   Moreover, when radiating the heat stored in the heat storage material, the heat can be efficiently radiated through the foam metal having high thermal conductivity.

そして、発熱材と蓄熱材とが同一空間に混在した形態とできるため、蓄熱体のサイズをコンパクト化することができる。   Since the heat generating material and the heat storage material can be mixed in the same space, the size of the heat storage body can be made compact.

図1は、本発明の蓄熱体の一例を示す外観斜視図である。蓄熱体1は、容器2の中に発泡金属3を熱の良導体として納め、その発泡金属3の周囲および空孔内に蓄熱材を配した構成である。   FIG. 1 is an external perspective view showing an example of a heat storage body of the present invention. The heat storage body 1 has a configuration in which a foam metal 3 is housed in a container 2 as a good heat conductor, and a heat storage material is arranged around the foam metal 3 and in the holes.

発泡金属3の端部は接続線4によって電気的につながっている。本例では、複数本の細長い棒状の発泡金属3を容器2内の行方向と列方向に整列配置する。行方向に隣接する発泡金属3の一端同士と他端同士を交互に接続して直列とし、さらに各行の一端に位置する発泡金属3と、その発泡金属の次行で同列の発泡金属3の端部同士とを接続して、全発泡金属3を直列に接続している。そして、直列につながれた発泡金属3の両端にリード線6を接続し、その先端を電源7と接続することで、通電加熱により発泡金属3を発熱させることができる。   The ends of the foam metal 3 are electrically connected by a connecting wire 4. In this example, a plurality of elongated rod-shaped foam metal 3 are aligned in the row direction and the column direction in the container 2. One end and the other end of the foam metal 3 adjacent to each other in the row direction are alternately connected in series, and the foam metal 3 located at one end of each row and the end of the foam metal 3 in the same row in the next row of the foam metal The parts are connected to each other, and all the foam metal 3 is connected in series. Then, the lead wire 6 is connected to both ends of the foam metal 3 connected in series, and the tip is connected to the power source 7, whereby the foam metal 3 can be heated by energization heating.

発泡金属3の端部は、スペーサー10から突出していて、容器2を覆う蓋5の内部に収納されている。容器2の内部では、発泡金属3の空孔の中に蓄熱材が備えられているので、蓄熱材の内部まで熱伝導を良くすることができる。   The end of the foam metal 3 protrudes from the spacer 10 and is stored in the lid 5 that covers the container 2. Inside the container 2, since the heat storage material is provided in the pores of the foam metal 3, heat conduction can be improved to the inside of the heat storage material.

ここで用いた発泡金属3は、空孔の割合が90体積%以上98体積%以下で、残りが金属でできている材料である。一般的には、発泡ウレタン樹脂などに金属をメッキしたのち、樹脂を除去して製造される。同じ形状の発泡金属において、空孔の割合を高くすると金属量が減少するので、電気抵抗は高くなる。本例では、住友電気工業株式会社製セルメット(登録商標)を用いた。   The foam metal 3 used here is a material having a void ratio of 90 volume% or more and 98 volume% or less, and the remainder made of metal. Generally, it is manufactured by removing a resin after plating a foamed urethane resin or the like with a metal. In the foam metal having the same shape, the electrical resistance is increased because the amount of metal is reduced when the proportion of the holes is increased. In this example, Selmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd. was used.

図2は、発泡金属を本発明蓄熱体として使用できるように組み立てた一例を示す正面図、図3は同上面図である。図2、3の点線は、容器を示し発泡金属は、容器の中に収納されている。これらの図は、多くの棒状の発泡金属3をスペーサー10に取り付けて組み立てている例である。   FIG. 2 is a front view showing an example in which a foam metal is assembled so that the heat storage body of the present invention can be used, and FIG. 3 is a top view thereof. The dotted lines in FIGS. 2 and 3 indicate the container, and the foam metal is accommodated in the container. These drawings are examples in which a large number of rod-shaped foamed metals 3 are attached to a spacer 10 for assembly.

発泡金属を発熱材として利用する1つの方法は、細い棒状の発泡金属3を直列につないで所定の電気抵抗に合わせる。このとき、発泡金属同士が接触すると短絡するので、絶縁材料を用いたスペーサー10により接触を防止すると共に、1つのブロックとして組み立てることが好適である。ここでは、発泡金属3の配列に応じた矩形の孔が行方向と列方向に整列形成された枠状のスペーサー10を用い、発泡金属の上方と下方の2箇所をスペーサー10で保持している。その結果、複数の発泡金属3を組み立て体として取り扱えるので、取り扱いが容易になる。   One method of using a foam metal as a heat generating material is to connect a thin rod-shaped foam metal 3 in series to match a predetermined electric resistance. At this time, when the metal foams come into contact with each other, they are short-circuited. Therefore, it is preferable to prevent contact with the spacer 10 using an insulating material and to assemble as one block. Here, a frame-shaped spacer 10 in which rectangular holes according to the arrangement of the foam metal 3 are aligned in the row direction and the column direction is used, and the upper and lower portions of the foam metal are held by the spacer 10. . As a result, since a plurality of foamed metals 3 can be handled as an assembly, handling becomes easy.

1kWhの熱量を、深夜電力を8時間で蓄えることができる蓄熱体を以下のような方法で設計、作製した。蓄熱材として、ペンタエリトリトールを用いることとした。1kWhに相当する熱量を蓄えるためには、ペンタエリトリトールの188℃の固相/固相の結晶転移を起こす際の潜熱量が104cal/ccを考慮すると、
1kWh=859,845calであるから
必要な蓄熱材の体積量は、下記の計算により約8.3リットルとなる。
859,845cal÷104cal/cc=8268cc
A heat storage body that can store 1kWh of heat and midnight power in 8 hours was designed and manufactured by the following method. Pentaerythritol was used as the heat storage material. In order to store the amount of heat corresponding to 1 kWh, considering the calorific potential of 104 cal / cc when causing the crystal transition of solid phase / solid phase of pentaerythritol at 188 ° C,
Since 1 kWh = 859,845 cal, the required volume of heat storage material is approximately 8.3 liters according to the following calculation.
859,845cal ÷ 104cal / cc = 8268cc

次に、発泡金属製の伝熱材について検討を加えた。この場合、伝熱材は発熱材としても用いられている。電源電圧を200Vとし、8時間で1kWhを発熱するためには、1kWh÷8h=125Wとなるので、必要とする電気抵抗の値は、(200V)2÷125W=320Ωとなる。 Next, a heat transfer material made of foam metal was examined. In this case, the heat transfer material is also used as a heat generating material. In order to generate 1 kWh in 8 hours with a power supply voltage of 200 V, 1 kWh ÷ 8 h = 125 W, so the required electrical resistance value is (200 V) 2 ÷ 125 W = 320 Ω.

発熱材として一般的なNi-Cr合金の抵抗率から計算すると、1mm2の断面積で長さが1mのものの電気抵抗は1Ωとなる。発泡金属製の発熱材の形状を1mm×10mm×900mmとする。発泡金属は、金属の占める割合が5体積%で残りが空孔になっている多孔性の高い材料である。この実施例では、空孔が95体積%のものを用いた。5体積%が金属の割合である発泡金属の長さを100%使用するので、5%が発泡金属の断面積の割合である。よって、発泡金属の断面積を計算すると
1mm×10mm×0.05=0.5mm2となる。
これに長さ900mmを勘案すると、この形状の発熱材の電気抵抗は1.8Ωとなる。
When calculated from the resistivity of a general Ni—Cr alloy as a heating material, the electrical resistance of a 1 mm 2 cross-sectional area and a length of 1 m is 1Ω. The shape of the metal foam heating material is 1mm x 10mm x 900mm. Foam metal is a highly porous material in which the metal occupies 5% by volume and the remainder is a void. In this example, 95% by volume of holes were used. Since 100% of the length of the metal foam is used, where 5% by volume is the metal percentage, 5% is the percentage of the cross-sectional area of the metal foam. Therefore, when calculating the cross-sectional area of the foam metal
A 1mm × 10mm × 0.05 = 0.5mm 2 .
If the length of 900 mm is taken into consideration, the electrical resistance of this shape of the heating material is 1.8Ω.

まず、950mm×100mm×100mmの鉄製の容器を作製した。上述のように設計した発泡金属を製作し、設計どおりの電気抵抗を持つことを確認した。これを178本集めて絶縁性の樹脂からなるスペーサーを用いて図2および図3に示すように組み立てた。全ての発泡金属が直列になるように、接続線でつないだ。   First, an iron container of 950 mm × 100 mm × 100 mm was produced. The foam metal designed as described above was manufactured and confirmed to have the electrical resistance as designed. 178 of these were collected and assembled using spacers made of insulating resin as shown in FIGS. All the foam metals were connected by connecting wires so that they were in series.

これを上記の鉄製の容器に挿入して、蓄熱材としてペンタエリトリトール8.3リットルを充填する。まず、容器と発泡金属を250℃に加熱し、この中に約250℃に加熱された液状のペンタエリトリトールを真空中で注入した。   This is inserted into the iron container and filled with 8.3 liters of pentaerythritol as a heat storage material. First, the container and the metal foam were heated to 250 ° C., and liquid pentaerythritol heated to about 250 ° C. was poured into the container in a vacuum.

このようにすることで、発泡金属が蓄熱体の中に埋められ、発泡金属の空孔内にも蓄熱体が設けられた状態となった。図1に示すような蓄熱体を組み立てた後、リード線を200Vの電源に接続して蓄熱材を加熱した。設計どおりの蓄熱容量をもつことが確認できた。   By doing in this way, the metal foam was buried in the heat accumulator, and the heat accumulator was provided in the pores of the metal foam. After assembling the heat storage body as shown in FIG. 1, the lead wires were connected to a 200 V power source to heat the heat storage material. It was confirmed that it had the heat storage capacity as designed.

実施例1で作成した蓄熱体を用いて、暖房器と温水器を作製した。図4は、複数個の蓄熱体1を集合して暖房器20に用いた例である。空気は、給気口となるファン21により外部から取り入れられ、蓄熱体1の周囲を矢印のように通過した後、排気口22から出て行く。このとき、空気は蓄熱体により暖められて温風として放出されるので、この温風を用いて暖房することができる。   Using the heat storage body created in Example 1, a heater and a water heater were produced. FIG. 4 is an example in which a plurality of heat accumulators 1 are assembled and used in the heater 20. The air is taken in from the outside by a fan 21 serving as an air supply port, passes through the periphery of the heat storage body 1 as indicated by an arrow, and then exits from the exhaust port 22. At this time, since the air is warmed by the heat accumulator and discharged as warm air, the warm air can be used for heating.

一方、温水器は、以下のようにして得ることができる。すなわち、図5において水を給水口23から導入し、矢印の方向に水を送る。水は、蓄熱体1の周囲を通るので、蓄熱体1により温められ、温水となって排水口22から出て行く。この温められた温水を利用することで、温水器となる。   On the other hand, a water heater can be obtained as follows. That is, in FIG. 5, water is introduced from the water supply port 23 and is sent in the direction of the arrow. Since water passes around the heat storage body 1, the water is warmed by the heat storage body 1 and goes out from the drain outlet 22 as warm water. By using this warm water, it becomes a water heater.

本発明で得られる蓄熱体は、コンパクトなので、暖房器や温水器などの分野で利用される。   Since the heat storage body obtained by the present invention is compact, it is used in fields such as a heater and a water heater.

本発明の蓄熱体の斜視図。The perspective view of the thermal storage body of this invention. 本発明蓄熱体に用いる棒状発泡金属をスペーサーに固定した状態を示す正面図。The front view which shows the state which fixed the rod-shaped metal foam used for this invention heat storage body to the spacer. 本発明蓄熱体に用いる棒状発泡金属をスペーサーに固定した状態を示す上面図。The top view which shows the state which fixed the rod-shaped foam metal used for this invention heat storage body to the spacer. 本発明の蓄熱体を使用した暖房器の模式構成図。The schematic block diagram of the heater using the heat storage body of this invention. 本発明の蓄熱体を使用した温水器の模式構成図。The schematic block diagram of the water heater using the thermal storage body of this invention.

符号の説明Explanation of symbols

1 蓄熱体 2 容器
3 発泡金属 4 接続線
5 蓋 6 リード線
7 電源
10 スペーサー
20 暖房器 21 ファン
22 排気(水)口 23 給水口
1 Thermal storage 2 Container
3 Foam metal 4 Connecting wire
5 Lid 6 Lead wire
7 Power supply
10 Spacer
20 Heater 21 Fan
22 Exhaust (water) port 23 Water supply port

Claims (9)

蓄熱材と、蓄熱材に熱伝達を行う伝熱材とを有し、
前記伝熱材が多数の空孔を有する発泡金属からなり、
この発泡金属は蓄熱材に接して配置されていることを特徴とする蓄熱体。
It has a heat storage material and a heat transfer material that transfers heat to the heat storage material,
The heat transfer material is made of a foam metal having a large number of pores,
The heat storage body, wherein the foam metal is disposed in contact with the heat storage material.
前記蓄熱材は少なくとも発泡金属の空孔内に設けられていることを特徴とする請求項1に記載の蓄熱体。   2. The heat storage body according to claim 1, wherein the heat storage material is provided at least in the pores of the foam metal. 前記蓄熱材は、ペンタエリトリトールであることを特徴とする請求項1または2に記載の蓄熱体。   The heat storage material according to claim 1, wherein the heat storage material is pentaerythritol. 前記発泡金属は、ニッケル-クロム合金からなることを特徴とする請求項1から3のいずれかに記載の蓄熱体。   4. The heat storage body according to claim 1, wherein the foam metal is made of a nickel-chromium alloy. 請求項1〜4のいずれかに記載されている蓄熱体を用い、
前記蓄熱体が備える発泡金属に通電して発熱させた熱を蓄熱体に蓄熱することを特徴とする蓄熱方法。
Using the heat storage element described in any one of claims 1 to 4,
A heat storage method characterized in that heat generated by energizing a foam metal included in the heat storage body is stored in the heat storage body.
請求項1〜4のいずれかに記載されている蓄熱体を備えた暖房器であって、
前記蓄熱体の周囲に気体を供給する給気口と、
蓄熱体の熱で加熱された気体を排出する排気口とを有することを特徴とする暖房器。
A heater provided with the heat storage body according to any one of claims 1 to 4,
An air supply port for supplying a gas around the heat storage body;
A heater having an exhaust port for discharging a gas heated by heat of the heat storage body.
前記発泡金属に通電して発熱させた熱を蓄熱体に蓄熱することを特徴とする請求項6記載の暖房器。   7. The heater according to claim 6, wherein heat generated by energizing the foam metal is stored in a heat storage body. 請求項1〜4のいずれかに記載されている蓄熱体を備えた温水器であって、
前記蓄熱体の周囲に水を供給する給水口と、
蓄熱体の熱で加熱された温水を排出する排水口とを有することを特徴とする温水器。
A water heater comprising the heat storage element according to any one of claims 1 to 4,
A water supply port for supplying water around the heat storage body;
A water heater having a drain outlet for discharging hot water heated by heat of a heat storage body.
前記発泡金属に通電して発熱させた熱を蓄熱体に蓄熱することを特徴とする請求項8記載の温水器。   9. The water heater according to claim 8, wherein heat generated by energizing the foam metal is stored in a heat storage body.
JP2004178538A 2004-06-16 2004-06-16 Heat storage body, heat storing method, space heater and water heater Pending JP2006002976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178538A JP2006002976A (en) 2004-06-16 2004-06-16 Heat storage body, heat storing method, space heater and water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178538A JP2006002976A (en) 2004-06-16 2004-06-16 Heat storage body, heat storing method, space heater and water heater

Publications (1)

Publication Number Publication Date
JP2006002976A true JP2006002976A (en) 2006-01-05

Family

ID=35771516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178538A Pending JP2006002976A (en) 2004-06-16 2004-06-16 Heat storage body, heat storing method, space heater and water heater

Country Status (1)

Country Link
JP (1) JP2006002976A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070704A1 (en) * 2008-12-16 2010-06-24 社団法人日本銅センター Heat accumulator
CN102221303A (en) * 2011-05-26 2011-10-19 同济大学 Combined high-temperature phase-transition heat storage system
JP2013060186A (en) * 2011-09-14 2013-04-04 Hutchinson Sa Electric or hybrid motor vehicle bodywork structure, the vehicle, and method of controlling/modifying temperature of passenger compartment thereof
EP3438423A1 (en) * 2017-08-04 2019-02-06 Lumenion GmbH Energy storage device for the storage of electrical energy used as heat and method therefor
CN112212390A (en) * 2020-09-22 2021-01-12 东南大学 Millet electricity heat accumulation assembled wall body module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070704A1 (en) * 2008-12-16 2010-06-24 社団法人日本銅センター Heat accumulator
JP5350807B2 (en) * 2008-12-16 2013-11-27 社団法人日本銅センター Heat storage device
CN102221303A (en) * 2011-05-26 2011-10-19 同济大学 Combined high-temperature phase-transition heat storage system
JP2013060186A (en) * 2011-09-14 2013-04-04 Hutchinson Sa Electric or hybrid motor vehicle bodywork structure, the vehicle, and method of controlling/modifying temperature of passenger compartment thereof
EP3438423A1 (en) * 2017-08-04 2019-02-06 Lumenion GmbH Energy storage device for the storage of electrical energy used as heat and method therefor
WO2019025182A1 (en) * 2017-08-04 2019-02-07 Lumenion Gmbh Energy accumulator for storing electrical energy as heat and method for this purpose
CN111065798A (en) * 2017-08-04 2020-04-24 路蒙尼尔有限责任公司 Energy storage device for storing electrical energy as heat and method for this purpose
US10961872B2 (en) 2017-08-04 2021-03-30 Lumenion Gmbh Energy accumulator for storing electrical energy as heat and method for this purpose
AU2018312516B2 (en) * 2017-08-04 2023-01-19 Lumenion Gmbh Energy accumulator for storing electrical energy as heat and method for this purpose
CN112212390A (en) * 2020-09-22 2021-01-12 东南大学 Millet electricity heat accumulation assembled wall body module

Similar Documents

Publication Publication Date Title
EP3293792A1 (en) Battery system
US10403943B2 (en) Battery system
US9115913B1 (en) Fluid heater
US20020000306A1 (en) Methods and devices for storing energy
US20140367074A1 (en) Heat Transport Apparatus
JP2016538042A5 (en)
US20070107453A1 (en) Heat exchanger with embedded heater
DK2718634T3 (en) Device and method for heating a medium
JP2006002976A (en) Heat storage body, heat storing method, space heater and water heater
CN110114621B (en) Water storage type electric water heater with hot air generating function
US5703998A (en) Hot water tank assembly
EP1400762A1 (en) Aircraft water heating system
CN101779088B (en) Hot-water appliance
JP5040571B2 (en) Hot water storage water heater
JP2009502640A (en) Aircraft aircraft liquid supply system
JP4510478B2 (en) Emergency propane / air gas production equipment
KR20160030279A (en) Temperature control device for an electrochemical power source
EP0029010B1 (en) Electric storage heater
JP2010065889A (en) Pedestal for outdoor unit of air conditioner
EP3147618B1 (en) Heat energy accumulator based on solid-liquid phase-change materials, and method for producing the unit
JP2008249289A (en) Hot water storage type water heater
JPH1144495A (en) Heat storage device
KR101443611B1 (en) Manufacturing method of heat generating material, heat generating device including the heat generating material and refrigerator including the heat generating device
CN114041036A (en) Energy storage device and method of storing energy
KR20130076171A (en) Hot water storage tank