JP2006002819A - Power supply driving circuit for rotation transmitting device - Google Patents

Power supply driving circuit for rotation transmitting device Download PDF

Info

Publication number
JP2006002819A
JP2006002819A JP2004178639A JP2004178639A JP2006002819A JP 2006002819 A JP2006002819 A JP 2006002819A JP 2004178639 A JP2004178639 A JP 2004178639A JP 2004178639 A JP2004178639 A JP 2004178639A JP 2006002819 A JP2006002819 A JP 2006002819A
Authority
JP
Japan
Prior art keywords
engagement
transmission device
rotation transmission
electromagnetic clutch
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004178639A
Other languages
Japanese (ja)
Inventor
万寿夫 ▲高▼木
Masuo Takagi
Hiroyuki Hakamata
博之 袴田
Yoshitaka Nagano
佳孝 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004178639A priority Critical patent/JP2006002819A/en
Publication of JP2006002819A publication Critical patent/JP2006002819A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply driving circuit for a rotation transmitting device of the electromagnetic clutch type provided on a power transmission path or a wheel of a vehicle to supply sufficient voltage and current enough to switch current carrying and shutting-off in a short time freely. <P>SOLUTION: In this power supply driving circuit for the rotation transmitting device, an electromagnetic clutch controls engagement and shutting-off of a clutch provided with an engaging piece and an elastic member for releasing engagement by the engaging piece between both members using a rear wheel shaft 7 end as an inward member and a hub wheel 18 as an outward member by an electromagnet and the elastic member at a joint position of the rear wheel shaft 7 end and the hub wheel 18 of the vehicle, a power cable P<SB>2</SB>of a feeder circuit for supplying power to the electromagnet through a driver 21 is connected with a battery 22 having high voltage power supply of 36 V above voltage of a battery for starting an engine, and this battery 22 is a battery power supply having capacity for supplying voltage above feeding voltage by which engaging operation from start of engagement to completion of engagement of the electromagnetic clutch is performed within predetermined time and supplying current required for complete engagement to perform engagement and shutting-off operation of the electromagnetic clutch freely at high speed required for a mechanism provided with the rotation transmitting device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、車両の動力伝達経路上での2駆/4駆への切替や、フリーホイールハブなどの車輪と車軸との結合をする回転伝達装置を車両の運転状態や運転者の意図に応じて応答性良く切替えるための回転伝達装置用電源駆動回路に関する。   According to the present invention, a rotation transmission device for switching to a 2WD / 4WD on a power transmission path of a vehicle or coupling a wheel such as a free wheel hub and an axle according to a driving state of the vehicle or a driver's intention. The present invention relates to a power transmission circuit for a rotation transmission device for switching with good response.

車両の動力伝達経路等において、動力の伝達と遮断を切替える手段として、係合子タイプの電磁クラッチを用いた回転伝達装置が利用されている。その一例として、特許文献1による電磁式ローラクラッチを用いた「回転伝達装置」が公知である。この回転伝達装置は、4輪駆動車の動力伝達経路で4WDと2WDの切替えをスムーズで確実に行なえるように、ローラ式のクラッチの係合、遮断を電磁石の磁力で切替えて動力の伝達と遮断を行なうようにしたものである。この回転伝達装置は、入力軸の端の軸端部とこれに嵌合する外輪のいずれか一方の対向面にカム面を形成し、両対向面間にはポケットにローラを有する保持器を配設し、保持器の端にスイッチばねを係合させ、かつ保持器と回転不能で軸方向に移動可能なアーマチュアを取り付け、外輪と軸端部との間に摩擦部材とアーマチュアを吸着させる電磁石とを組込んで構成されている。   As a means for switching between transmission and interruption of power in a vehicle power transmission path or the like, a rotation transmission device using an engagement type electromagnetic clutch is used. As an example, a “rotation transmission device” using an electromagnetic roller clutch according to Patent Document 1 is known. This rotation transmission device switches the engagement and disengagement of the roller clutch with the magnetic force of the electromagnet so that the switching between 4WD and 2WD can be performed smoothly and reliably in the power transmission path of the four-wheel drive vehicle. It is designed to shut off. In this rotation transmission device, a cam surface is formed on one of the opposing surfaces of the shaft end of the input shaft and the outer ring fitted to the input shaft, and a cage having a roller in a pocket is disposed between the opposing surfaces. An electromagnet that engages a switch spring at the end of the cage and attaches a cage and a non-rotatable armature that can move in the axial direction to adsorb the friction member and the armature between the outer ring and the shaft end. Is built in.

上記の構成とした回転伝達装置の電磁クラッチは、電磁石への通電をオン、オフ制御することにより動力の伝達及び遮断を行なう。このような通常の使用形態では、車載のエンジン始動用バッテリ12Vから電磁石のコイルへ給電する回路にドライバとしてFETトランジスタ等のスイッチング素子を挿置しておき、手動スイッチ又は制御回路から切替えのための制御信号をスイッチング素子へ送って電磁石への通電、遮断が行なわれる。このような回転伝達装置に対し、近年走行中の路面状況に応じて瞬時に2WD/4WDのいずれかに切換えるため、回転伝達装置を短時間で制御自在とすることが要求されている。   The electromagnetic clutch of the rotation transmission device configured as described above transmits and interrupts power by controlling on / off of energization to the electromagnet. In such a normal usage mode, a switching element such as an FET transistor is inserted as a driver in a circuit that feeds power from an in-vehicle engine starting battery 12V to an electromagnet coil, and switching from a manual switch or a control circuit is performed. A control signal is sent to the switching element to turn on and off the electromagnet. For such a rotation transmission device, it is required to make the rotation transmission device controllable in a short time in order to switch instantaneously to either 2WD / 4WD according to the road surface condition during traveling.

さらに、従来の四輪駆動車4WDに必須の構成であったエンジン駆動力を後輪へ伝達するプロペラシャフト上にカップリング等を設けた機械的動力伝達機構を廃止し、代わりに後輪に後輪駆動モータを連結し、エンジンに取付けたジェネレータからの電力で後輪駆動モータを駆動する電気式4輪駆動システムが非特許文献1により提案されている。この電気式4輪駆動システムは、後輪駆動モータの出力を、減速ギヤで駆動トルクを増幅し、湿式多板クラッチとデファレンシャルギヤを介して後輪の車軸に伝達する後輪駆動ユニットを備え、湿式多板クラッチは電磁式であり、クラッチとカム機構が動いて多板クラッチの押付力を発生させる構成とされている。   In addition, the mechanical power transmission mechanism, which has a coupling on the propeller shaft that transmits the engine driving force to the rear wheels, which was essential for the conventional four-wheel drive vehicle 4WD, has been abolished. Non-Patent Document 1 proposes an electric four-wheel drive system that connects a wheel drive motor and drives the rear wheel drive motor with electric power from a generator attached to the engine. This electric four-wheel drive system includes a rear wheel drive unit that amplifies the drive torque of the rear wheel drive motor with a reduction gear and transmits it to the rear wheel axle via a wet multi-plate clutch and a differential gear. The wet multi-plate clutch is of an electromagnetic type and is configured to generate a pressing force of the multi-plate clutch by moving the clutch and the cam mechanism.

このような電気式4輪駆動システムは、左右後輪への動力配分の制御機能がなく、常に等トルクで動力配分が行なわれ、又湿式多板クラッチの引きずり抵抗を無くすことができないなどの問題がある。そこで、このような問題を解消し得る手段として、上述した後輪駆動ユニットに含まれる湿式多板クラッチとデファレンシャルギヤを廃止し、後輪軸の両端で特許文献1による回転伝達装置を左右の後輪に組込んで駆動力配分を制御することが考えられる。   Such an electric four-wheel drive system does not have a function of controlling power distribution to the left and right rear wheels, and power distribution is always performed with equal torque, and the drag resistance of the wet multi-plate clutch cannot be eliminated. There is. Therefore, as means for solving such a problem, the wet multi-plate clutch and the differential gear included in the rear wheel drive unit described above are eliminated, and the rotation transmission device according to Patent Document 1 is installed at both ends of the rear wheel shaft at the left and right rear wheels. It is conceivable to control the driving force distribution by incorporating it into the.

しかし、このような機構を実現する場合、左右の後輪に特許文献1の回転伝達装置を組込むだけでは次のような問題が生じる。即ち、ディファレンシャルギヤを廃止するため、左右の後輪の回転数の差をそれぞれの回転伝達装置で吸収する必要があり、又回転伝達装置をオン、オフ制御することにより駆動力配分を行なうこととなる。このため、回転伝達装置の電磁クラッチへの通電、遮断は短時間に繰り返されることとなり、当然電磁クラッチが係合状態となるまでの過渡応答時間はできるだけ短時間とする必要がある。   However, when such a mechanism is realized, the following problem occurs only by incorporating the rotation transmission device of Patent Document 1 into the left and right rear wheels. That is, in order to eliminate the differential gear, it is necessary to absorb the difference in the rotational speed between the left and right rear wheels by each rotation transmission device, and to distribute the driving force by controlling the rotation transmission device on and off. Become. For this reason, energization and disconnection of the rotation transmission device to the electromagnetic clutch are repeated in a short time, and naturally, the transient response time until the electromagnetic clutch is engaged needs to be as short as possible.

ところが、前述のように特許文献1の回転伝達装置では、エンジン始動用バッテリから12V電源が通常は使用されているため、スイッチング素子をオンにして回路を閉じても、その直後の過渡応答での電流の立上り速度が遅いため、完全な係合状態となるまでの応答時間が長くかかり、電気式4輪駆動システムのような通電、遮断が短時間で繰り返されるような用途への電磁クラッチとしてこの回転伝達装置をそのまま用いることはできない。
特開平11−336799号公報 「自動車工学」、株式会社鉄道日本社、2002年11月号、P.46〜48
However, as described above, in the rotation transmission device of Patent Document 1, a 12V power source is normally used from the engine starting battery, so even if the switching element is turned on and the circuit is closed, the transient response immediately after that is Since the rising speed of the current is slow, it takes a long response time until it is completely engaged, and this is an electromagnetic clutch for applications where energization and shutoff are repeated in a short time like an electric four-wheel drive system. The rotation transmission device cannot be used as it is.
JP 11-336799 A "Automotive Engineering", Railway Japan Co., Ltd., November 2002, pages 46-48

この発明は、上記の問題に留意して、車両の動力伝達経路上又は車輪に設けられる電磁クラッチ形式の回転伝達装置における通電、遮断を短時間に切換え自在とし、応答性十分な電圧、電流を供給し得る回転伝達装置用電源駆動回路を提供することを課題とする。この場合、上記電源駆動回路により回転伝達装置の係合の後、係合保持する際には回路のオン、オフ制御により電磁クラッチの発熱、過大な消費電力を防止し、省電力化を図ることができるようにする。   In consideration of the above problems, the present invention makes it possible to switch between energization and interruption in a rotation transmission device of an electromagnetic clutch type provided on a power transmission path of a vehicle or a wheel in a short time, and to provide a voltage and current with sufficient responsiveness. It is an object to provide a power transmission circuit for a rotation transmission device that can be supplied. In this case, when the rotation transmission device is engaged by the power supply driving circuit, when the engagement is held, on / off control of the circuit prevents heat generation of the electromagnetic clutch and excessive power consumption, thereby saving power. To be able to.

この発明は、上記の課題を解決する手段として、内方部材と外方部材の間に嵌合される係合子による両部材の係合、解除を弾性部材の弾性力と電磁石の電磁力とにより制御する電磁クラッチから成る回転伝達装置において、電磁石を駆動するための高圧の電源をドライバを介して給電する給電回路により電磁石のコイルに接続し、係合起動から完全係合に必要な電流となるまでの過渡動作時間が少なくとも電磁クラッチの係合、遮断の繰返し操作時に必要とされる係合時間内となる以上の電圧と、上記完全係合に要する電流とを供給し得る容量のバッテリ電源を用い、電磁クラッチを操作する制御信号を駆動回路に入力することにより、電磁クラッチの係合、遮断の操作を自在としたことを特徴とする回転伝達装置用電源駆動回路としたのである。   As a means for solving the above-mentioned problems, the present invention uses both the elastic force of the elastic member and the electromagnetic force of the electromagnet to engage and release the two members by the engagement member fitted between the inner member and the outer member. In a rotation transmission device composed of an electromagnetic clutch to be controlled, a high-voltage power source for driving an electromagnet is connected to a coil of an electromagnet by a power feeding circuit that feeds power through a driver, and a current necessary for complete engagement is obtained from the start of engagement. A battery power source having a capacity capable of supplying a voltage exceeding the engagement time required at the time of repeated operation of engagement and disengagement of the electromagnetic clutch and a current required for the complete engagement. Since the control signal for operating the electromagnetic clutch is input to the drive circuit, the power transmission drive circuit for the rotation transmission device is characterized in that the electromagnetic clutch can be engaged and disconnected freely. That.

上記の構成としたこの発明の回転伝達装置用電源駆動回路は、車両の動力伝達経路上又は車輪に設けられた回転伝達装置において運転状態の変化や運転者の意図に対応して回転伝達装置の係合に必要とされる短時間でのクラッチの迅速な係合、あるいはその後に係合と遮断が短時間に繰り返される場合でも、クラッチとしての係合、遮断の機能を十分確保することができる。   The power transmission drive circuit for the rotation transmission device of the present invention having the above-described configuration is provided in the rotation transmission device in response to a change in the driving state or the driver's intention in the rotation transmission device provided on the power transmission path of the vehicle or on the wheel. Even when the quick engagement of the clutch in a short time required for the engagement or the subsequent engagement and disengagement are repeated in a short time, it is possible to sufficiently secure the engagement and disengagement functions as the clutch. .

上記電磁石への通電は、車両のエンジン始動用バッテリ電源の電圧以上で上記過渡動作時間が係合時間内となる以上の電圧、電流を供給し得る容量のバッテリ電源を接続することにより行なわれる。この高圧の電源は、上記のような高電圧でかつ弾性部材の弾性の大きさに打勝つに必要な電流を供給でき、上記回転伝達装置の係合に必要とされる短時間での動作に適合する容量のバッテリ電源である。   Energization of the electromagnet is performed by connecting a battery power supply having a capacity capable of supplying a voltage and current that are equal to or higher than the voltage of the battery power supply for starting the engine of the vehicle and the transient operation time is within the engagement time. This high-voltage power supply can supply a current necessary for overcoming the elasticity of the elastic member at a high voltage as described above, and can operate in a short time required for the engagement of the rotation transmission device. It is a battery power source with suitable capacity.

従って、このバッテリ電源はエンジン始動用のものとは独立に設けるのが好ましいが、エンジン始動用のものを昇圧回路を用いて上記のような高電圧に昇圧して用いてもよい。又、一旦クラッチの係合が行なわれた後は、係合状態を保持するのに必要な電磁石による吸着力は少し低下させても保持できるから、電流、電圧をオン、オフ制御して係合起動時よりその平均電圧が所定割合小さい電圧を通電する、あるいはPWM制御等により消費電力を抑制するのが好ましい。そして、このような制御により電磁コイルの発熱、過大な消費電力を防止する。   Therefore, this battery power supply is preferably provided independently of the engine starter, but the engine starter may be boosted to the high voltage as described above using a booster circuit. In addition, once the clutch is engaged, it can be maintained even if the attractive force by the electromagnet required to maintain the engaged state is slightly reduced. It is preferable to apply a voltage whose average voltage is smaller by a predetermined percentage than at the time of startup, or to suppress power consumption by PWM control or the like. And by such control, the heat_generation | fever of an electromagnetic coil and excessive power consumption are prevented.

このような電源駆動回路で駆動される回転伝達装置を車両の後輪に設ける場合は、後輪軸端の等速自在継手の出力軸を内方部材とし、車輪ハブに直接連結された回転軸を外方部材としてその嵌合位置に設けられる。内方部材と外方部材間には係合子と、その係合子による係合を解除するように弾性部材とが介在され、弾性部材による弾性力に逆らって係合子が両部材間に係合するように電磁石に通電し、その吸着力を作用させて電磁クラッチの係合が行なわれ、電磁石への通電を遮断すると弾性部材の弾性によりクラッチを非係合状態に戻して遮断される。   When a rotation transmission device driven by such a power supply circuit is provided on the rear wheel of the vehicle, the output shaft of the constant velocity universal joint at the rear wheel shaft end is used as an inner member, and the rotation shaft directly connected to the wheel hub is used. The outer member is provided at the fitting position. An engaging member and an elastic member are interposed between the inner member and the outer member so as to release the engagement by the engaging member, and the engaging member engages between both members against the elastic force of the elastic member. In this way, the electromagnet is energized and the attraction force is applied to engage the electromagnetic clutch. When the electromagnet is de-energized, the elastic member elastically returns the clutch to the non-engaged state and is blocked.

上記の回転伝達装置とその電源駆動回路を電気式4輪駆動システムの後輪の車輪に直接組込んだ場合、クラッチの係合、遮断を外部の制御部から制御信号を送り込んで制御すれば、左右の後輪の回転数差を吸収してディファレンシャルギヤを設けない後輪軸であっても4輪駆動による走行が可能となる。   When the above rotation transmission device and its power supply drive circuit are directly incorporated into the rear wheels of the electric four-wheel drive system, the clutch engagement and disengagement can be controlled by sending a control signal from an external control unit. Even if the rear wheel shaft does not have a differential gear by absorbing the difference between the rotational speeds of the left and right rear wheels, traveling by four-wheel drive is possible.

この発明の回転伝達装置用電源駆動回路は、弾性部材を介在させたクラッチに電磁コイルを組込んだ電磁クラッチ、電磁コイルへは大容量電源を接続し、かつ短時間に係合、遮断を繰り返すのに適合する電流、電圧で電力を供給するようにしたから、2輪から4輪への切換、あるいは走行中に左右の車輪の回転数差が生じる場合でも、必要十分なクラッチ切替え動作を行なうことができる。又、完全係合の後の係合保持状態では電流、電圧をオン、オフ制御することにより電磁コイルの発熱、過大電力の防止を図ることができる。   The power transmission drive circuit for a rotation transmission device according to the present invention is an electromagnetic clutch in which an electromagnetic coil is incorporated in a clutch with an elastic member interposed therebetween, and a large-capacity power source is connected to the electromagnetic coil and repeatedly engaged and disconnected in a short time. Since power is supplied at a current and voltage suitable for the above, the necessary and sufficient clutch switching operation is performed even when switching from two wheels to four wheels or when there is a difference in rotational speed between the left and right wheels during driving. be able to. Moreover, in the engagement holding state after complete engagement, the current and voltage are controlled on and off to prevent the electromagnetic coil from generating heat and preventing excessive power.

以下、この発明の実施形態の回転伝達装置用電源駆動回路について図面を参照して説明する。図1は回転伝達装置用電源駆動回路の全体概略ブロック図である。図1に示すように、この実施形態の駆動対象の回転伝達装置10は、FFベースの4輪駆動車(4WD車)Aの後輪WRR、WRLに組込まれている。4WD車Aは、電気式4輪駆動車であり、4WDの制御部(ECU)1からの制御により発電機3による電力を後輪用の駆動モータ4へジャンクションボックス(以下TJ/Bと略称する)5を経て送り、その出力を減速機6を経て左右の後輪軸7、7へ伝達し、後輪軸7、7を駆動するようにしている。なお、後輪軸7、7は中央の歯車を貫通する1本の軸である。8は等速自在継手である。 A power transmission drive circuit for a rotation transmission device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall schematic block diagram of a power transmission drive circuit for a rotation transmission device. As shown in FIG. 1, the rotation transmission device 10 to be driven according to this embodiment is incorporated in the rear wheels W RR and W RL of an FF-based four-wheel drive vehicle (4WD vehicle) A. The 4WD vehicle A is an electric four-wheel drive vehicle and is a junction box (hereinafter abbreviated as TJ / B) for supplying electric power from the generator 3 to the rear-wheel drive motor 4 under the control of the control unit (ECU) 1 of the 4WD. ), And the output is transmitted to the left and right rear wheel shafts 7 and 7 through the speed reducer 6 to drive the rear wheel shafts 7 and 7. The rear wheel shafts 7, 7 are a single shaft that passes through the central gear. 8 is a constant velocity universal joint.

発電機3は、4WD車Aの走行時にエンジン9の動力によって発電を行ない、その電力をパワーケーブルP1 を通り、TJ/B5を経由して駆動モータ4へ送り、4WDと2WDを切替えるための4WDスイッチ2からのスイッチ信号により4WDが選択されている場合、TJ/B5を経て電力がモータ4へ供給される。CF は、発電機3、駆動モータ4それぞれの界磁電流を制御するラインである。駆動モータ4内蔵の電機子、電流センサとモータ界磁電流センサ(図示せず)により通電電流を監視し、発電機3及びモータ界磁電流を制御して、前後輪の車輪速度差に応じて必要となる後輪駆動モータトルクを発生させるように制御部1による制御が行なわれる。 The generator 3 generates power by the power of the engine 9 when the 4WD vehicle A travels, and sends the electric power to the drive motor 4 via the power cable P 1 via the TJ / B5 to switch between 4WD and 2WD. When 4WD is selected by the switch signal from the 4WD switch 2, electric power is supplied to the motor 4 via TJ / B5. C F is a line for controlling the field current of each of the generator 3 and the drive motor 4. The energizing current is monitored by an armature, a current sensor and a motor field current sensor (not shown) built in the drive motor 4, and the generator 3 and the motor field current are controlled to respond to the wheel speed difference between the front and rear wheels. Control by the control unit 1 is performed so as to generate the necessary rear wheel drive motor torque.

図示の4WD車では、減速機6の歯車と後輪軸7、7の間に通常設けられているディファレンシャルギヤが省略され、これに代えて左右の後輪WRR、WRLにそれぞれ回転伝達装置10を独立に設けることにより左右輪の回転数差を吸収するようにしている。この回転伝達装置10は、図2に示すように、後輪軸7、7端の等速自在継手8、8とハブ輪18、18との間にそれぞれ独立に設けられており、後述するように係合子としてのローラを含むクラッチを電磁石により係合、遮断する電磁クラッチから成る。図2にもとづいて上記回転伝達装置10の構造を説明する。なお、以下では片側の回転伝達装置10について説明する。図2(a)は上記回転伝達装置10の主断面図であり、図2(b)は(a)図のB−B断面図である。 In the illustrated 4WD vehicle, the differential gear that is normally provided between the gear of the speed reducer 6 and the rear wheel shafts 7 and 7 is omitted. Instead, the rotation transmission device 10 is provided to the left and right rear wheels W RR and W RL , respectively. Is provided independently to absorb the difference in rotation speed between the left and right wheels. As shown in FIG. 2, the rotation transmission device 10 is provided independently between the constant velocity universal joints 8 and 8 at the ends of the rear wheel shafts 7 and 7 and the hub wheels 18 and 18, as will be described later. It consists of an electromagnetic clutch that engages and disengages a clutch including a roller as an engagement element by an electromagnet. The structure of the rotation transmission device 10 will be described with reference to FIG. Hereinafter, the one-side rotation transmission device 10 will be described. 2A is a main cross-sectional view of the rotation transmission device 10, and FIG. 2B is a cross-sectional view taken along line BB in FIG.

上記回転伝達装置10は、特許文献1に示されたものと基本構成は同じであるが、その使用状態が全く異なる。図示のように、この回転伝達装置10は、等速自在継手8のステム部8aを内方部材とし、その外周に嵌合される保持器11の複数個のポケットに対応する複数箇のローラ12を配設し、ローラ12の外側に外方部材13を嵌合させたクラッチ10aと、外方部材13の外周に設けた電磁石16とを備えている。保持器11の一端(図2の(a)では左側端)にはアーマチュア14が周方向に保持器11と一体化され、かつ軸方向には保持器11に対してわずかに移動可能に設けられ、このアーマチュア14は外方部材13の一端(左側端)のフランジ部13aと対向して配設されている。   The rotation transmission device 10 has the same basic configuration as that disclosed in Patent Document 1, but is completely different in use state. As shown in the figure, this rotation transmission device 10 uses a stem portion 8a of the constant velocity universal joint 8 as an inner member, and a plurality of rollers 12 corresponding to a plurality of pockets of a cage 11 fitted to the outer periphery thereof. And a clutch 10 a in which the outer member 13 is fitted to the outside of the roller 12, and an electromagnet 16 provided on the outer periphery of the outer member 13. At one end of the retainer 11 (the left end in FIG. 2A), an armature 14 is integrated with the retainer 11 in the circumferential direction, and is provided so as to be slightly movable relative to the retainer 11 in the axial direction. The armature 14 is disposed to face the flange portion 13a at one end (left end) of the outer member 13.

アーマチュア14とフランジ部13a間には皿ばねのような弾性部材による離反ばね15が設けられ、両者が常に離反する方向に付勢されている。内方部材のステム部8aの外周には各ローラ12に対応して複数のカム面8cが設けられ、各カム面8cと外方部材13の内周面間に形成される楔状空間に基づいて、ローラ12がカム面8cの中央に位置しているときはローラ12と外方部材13の内周面との間にわずかな隙間が生じ、ローラ12がカム面8cの両端のいずれかに寄ると隙間がなくなりローラ12を介して内方部材のステム部8aの回転が外方部材13へ伝達される。   A separation spring 15 made of an elastic member such as a disc spring is provided between the armature 14 and the flange portion 13a, and both are always biased in a direction away from each other. A plurality of cam surfaces 8 c are provided on the outer periphery of the stem portion 8 a of the inner member corresponding to each roller 12, and based on a wedge-shaped space formed between each cam surface 8 c and the inner peripheral surface of the outer member 13. When the roller 12 is positioned at the center of the cam surface 8c, a slight gap is generated between the roller 12 and the inner peripheral surface of the outer member 13, and the roller 12 is moved to either end of the cam surface 8c. The rotation of the stem portion 8 a of the inner member is transmitted to the outer member 13 through the roller 12.

図2(b)に示すように、保持器11のアーマチュア14と反対側の端面にはその端面に設けられた溝内に前述したスイッチばね17が保持され、ステム部8aの肩部に形成された溝の周壁と保持器11の両者に円周方向の一部に形成された切欠きにスイッチばね17の先端を撓ませて挿入されている。スイッチばね17は、電磁石16に通電されていない限り、その弾性力で保持器11をカム面8cの中央にローラ12が位置するように作用する。電磁石16が通電されると、その吸着力でアーマチュア14を引き付けてアーマチュア14は保持器11と回転に対し一体となり、外方部材13のフランジ部13aと摩擦係合する。   As shown in FIG. 2B, the switch spring 17 described above is held in a groove provided on the end surface of the retainer 11 opposite to the armature 14, and is formed on the shoulder portion of the stem portion 8a. The tip of the switch spring 17 is inserted into a notch formed in a part in the circumferential direction on both the peripheral wall of the groove and the retainer 11. As long as the electromagnet 16 is not energized, the switch spring 17 acts so that the roller 12 is positioned at the center of the cam surface 8c by the elastic force. When the electromagnet 16 is energized, the armature 14 is attracted by the attraction force, and the armature 14 is integrated with the cage 11 with respect to the rotation, and is frictionally engaged with the flange portion 13 a of the outer member 13.

そして、内方部材のステム部8aがいずれかの方向に回転すると、上記摩擦係合によりその回転力が保持器11、アーマチュア14から外方部材13のフランジ部13aへ伝達されるが、摩擦係合であるためステム部8aの回転に対し保持器11の回転は少し遅れ、これにより保持器11とステム部8aの肩部の切欠きの位相が少しずれてスイッチばね17の先端が押され、ローラ12は楔空間のステム部8aの進む方向と反対側の端へ寄る。このため、ステム部8aはローラ12と係合し、このローラ12を介して外方部材13へ直接回転を伝達することとなる。電磁石16への通電が遮断されると、アーマチュア14が保持器11、フランジ部13aと引き離され、スイッチばね17の弾性力でローラ12は中立位置へ戻されて回転は遮断される。   When the stem portion 8a of the inner member rotates in any direction, the rotational force is transmitted from the retainer 11 and the armature 14 to the flange portion 13a of the outer member 13 by the friction engagement. Therefore, the rotation of the retainer 11 is slightly delayed with respect to the rotation of the stem portion 8a, whereby the phase of the notch of the shoulder portion of the retainer 11 and the stem portion 8a is slightly shifted, and the tip of the switch spring 17 is pushed, The roller 12 approaches the end of the wedge space opposite to the direction in which the stem portion 8a advances. For this reason, the stem portion 8 a is engaged with the roller 12, and the rotation is directly transmitted to the outer member 13 through the roller 12. When the energization of the electromagnet 16 is interrupted, the armature 14 is separated from the retainer 11 and the flange portion 13a, and the roller 12 is returned to the neutral position by the elastic force of the switch spring 17, and the rotation is interrupted.

上記回転伝達装置10の電磁石16に対して、図1に示すように、この実施形態ではドライバ21を経て高電圧電源である専用のバッテリ22から給電回路のパワーケーブルP2 により高電圧で所要電流の電源が供給されるように接続されている。バッテリ22は、図示の例では電圧36Vで20Aの大電流を供給し得る電池であり、エンジン9の始動やその他の補機を駆動する通常の車両用の12V系のバッテリとは別途設けられるものである。ドライバ21には、例えばFETトランジスタなどのスイッチング素子が用いられている。 With respect to the electromagnet 16 of the rotation transmission device 10, as shown in FIG. 1, in this embodiment, a required current at a high voltage is supplied from a dedicated battery 22, which is a high voltage power source, via a driver 21 through a power cable P 2 of a power feeding circuit. Are connected to be supplied with power. In the illustrated example, the battery 22 is a battery that can supply a large current of 20 A at a voltage of 36 V, and is provided separately from a 12 V battery for a normal vehicle that starts the engine 9 and drives other auxiliary machines. It is. For the driver 21, for example, a switching element such as an FET transistor is used.

図3に電磁クラッチの電磁石16のコイル23へ電源を供給する回路の一例を示す。なお、ドライバ21はコイル23の陰極側に設けているが、陽極側に設けてもよい。24は逆起電圧放電回路用の還流ダイオードである。又、コイルは抵抗RとインダクタンスLの直列等価回路で表わされるから、その値を適宜値に設定することにより必要な電磁力を設定している。図示の例では、抵抗値R=3.25Ω、インダクタンス値0.09Hである。   FIG. 3 shows an example of a circuit for supplying power to the coil 23 of the electromagnet 16 of the electromagnetic clutch. The driver 21 is provided on the cathode side of the coil 23, but may be provided on the anode side. Reference numeral 24 denotes a free-wheeling diode for a counter electromotive voltage discharge circuit. Further, since the coil is represented by a series equivalent circuit of a resistance R and an inductance L, the necessary electromagnetic force is set by setting the value to an appropriate value. In the illustrated example, the resistance value R = 3.25Ω and the inductance value 0.09H.

又、4WDの制御部1は、図1で説明したように、発電機3、駆動モータ4の界磁電流を制御し、4WD制御下では制御ラインC5 によりTJ/B5をオンにして後輪軸7、7を回転駆動し、かつ走行中に左右後輪WRL、WRRの回転数差が生じるとこれを吸収するため左右後輪の回転伝達装置10、10の電磁クラッチをそれぞれ独立にオン、オフ制御するように制御ラインC21がドライバ21、21にそれぞれ接続されている。又、制御部1内には各電磁クラッチがその過渡応答における係合起動時には一定時間まで連結通電し、その後係合保持における消費電力を抑制するためPWM(Pulse Width Modulation)制御をするPWM制御部としてのプログラムが内蔵されている。 The control unit 1 of the 4WD, as described in FIG. 1, the generator 3, by controlling the field current of the drive motor 4, the rear wheel shaft and turn on the TJ / B5 by the control line C 5 under 4WD control 7 and 7 are driven to rotate, and when the rotational speed difference between the left and right rear wheels W RL and W RR occurs during traveling, the electromagnetic clutches of the rotation transmission devices 10 and 10 for the left and right rear wheels are independently turned on to absorb this difference. The control line C 21 is connected to the drivers 21 and 21 so as to perform the off control. Further, in the control unit 1, each electromagnetic clutch is connected and energized for a certain time when the engagement is started in the transient response, and then PWM control unit for performing PWM (Pulse Width Modulation) control in order to suppress power consumption in the engagement holding. As a built-in program.

上記のように構成した実施形態の回転伝達装置用電源駆動回路では、車両の走行中に必要に応じて電磁クラッチの制御により回転伝達装置の駆動が次のように行なわれる。4WDスイッチ2からのスイッチ信号により4WD制御が始まると、電磁クラッチを係合させる信号により電磁クラッチがオンとなる。このとき、電磁クラッチとしての係合動作は、次の順序で行なわれる。即ち、ドライバ21のスイッチング素子がオンとなり電磁石に電流が流れ、電磁石が吸引力(電磁力)を発生する。その吸引力が離反ばね15の弾性力に打ち勝ってアーマチュア14がロータである外方部材13のフランジ部13aと接触する。   In the power transmission drive circuit for the rotation transmission device of the embodiment configured as described above, the rotation transmission device is driven as follows by controlling the electromagnetic clutch as necessary during traveling of the vehicle. When 4WD control is started by a switch signal from the 4WD switch 2, the electromagnetic clutch is turned on by a signal for engaging the electromagnetic clutch. At this time, the engaging operation as the electromagnetic clutch is performed in the following order. That is, the switching element of the driver 21 is turned on, a current flows through the electromagnet, and the electromagnet generates an attractive force (electromagnetic force). The suction force overcomes the elastic force of the separation spring 15 and the armature 14 comes into contact with the flange portion 13a of the outer member 13 which is a rotor.

その結果、アーマチュア14とフランジ部13a間に摩擦力が発生する。同時にアーマチュア14の軸方向への移動によりアーマチュア14は保持器11と回転に対しては一体化され、内方部材のステム部8aの回転が保持器11を介してアーマチュア14へ伝達される。このため、アーマチュア14と外方部材13との位相がずれてスイッチばね17を押圧し、摩擦トルクがスイッチばね17に打ち勝つ。その結果、ローラ12が位相遅れの楔空間の係合位置に移動して係合し、内方部材の回転が外方部材13へ直接伝達される。   As a result, a frictional force is generated between the armature 14 and the flange portion 13a. At the same time, the armature 14 is integrated with the cage 11 by the movement of the armature 14 in the axial direction, and the rotation of the stem portion 8 a of the inner member is transmitted to the armature 14 through the cage 11. For this reason, the armature 14 and the outer member 13 are out of phase and press the switch spring 17, and the friction torque overcomes the switch spring 17. As a result, the roller 12 moves to the engagement position of the wedge space with a phase delay, and the rotation of the inner member is directly transmitted to the outer member 13.

従って、電磁クラッチの係合に要する時間は、アーマチュア14への吸引力が離反ばね15とスイッチばね17に打ち勝つのに必要な所定電流となるまでの立上り時間tA と、アーマチュア14の位相ずれによるローラ12の係合位置への移動時間tB との合計(クラッチ係合時間)となる。移動時間tB は、内方部材と外方部材13の相対回転速度に依存するので電磁石の電流とは無関係であるが、立上り時間tA は電流が大きくなればなる程短くなる。 Therefore, the time required for engaging the electromagnetic clutch depends on the rise time t A until the attraction force to the armature 14 reaches a predetermined current required to overcome the separation spring 15 and the switch spring 17 and the phase shift of the armature 14. This is the total (clutch engagement time) with the movement time t B of the roller 12 to the engagement position. Since the movement time t B depends on the relative rotational speed of the inner member and the outer member 13, it is irrelevant to the current of the electromagnet, but the rise time t A becomes shorter as the current increases.

図4に立上り時間tA と電圧、電流値との関係を示す。図4では12Vと36Vの電圧のバッテリ電源を用いた例を示しており、12Vより36Vでは動作時間が短くなることを示している。又、この図では電磁石への通電をクラッチの完全係合後もさらに続けた場合の電流値の変化を含めて示している。従って、例えば電流が20Aで必要十分な吸引力を発生し、完全係合するとした場合、36V電源では5ms程度で十分であるのに対し、従来のエンジン始動用のバッテリ12V電源では20msの時間を要することが分る。 FIG. 4 shows the relationship between the rise time t A and the voltage and current values. FIG. 4 shows an example using battery power supplies of 12V and 36V, and shows that the operating time is shorter at 12V than at 36V. This figure also shows the change in current value when the electromagnet is further energized after the clutch is completely engaged. Therefore, for example, when the current is 20A and the necessary and sufficient suction force is generated and fully engaged, about 5 ms is sufficient for the 36V power supply, while 20 ms is required for the conventional 12V battery for engine starting. You can see what it takes.

図示の例のように、ディファレンシャルギヤのない後輪に設けられた回転伝達装置10で駆動力配分のため電磁クラッチへの通電、遮断が繰り返されるような場合、その作動をスムーズに実現するためには一般的にクラッチの完全係合までの過渡応答時間は10ms以下とすべきと考えられているが、図4に示す結論から従来のエンジン始動用のバッテリ電源の定格電圧12Vそのままでは不十分であり、それ以上又はその数倍以上の電圧とすべきであることが理解される。   As shown in the example, when the rotation transmission device 10 provided on the rear wheel without a differential gear repeatedly energizes and shuts off the electromagnetic clutch for distributing the driving force, in order to realize the operation smoothly. In general, it is considered that the transient response time until the clutch is fully engaged should be 10 ms or less. However, from the conclusion shown in FIG. 4, the rated voltage 12 V of the conventional battery power source for starting the engine is not sufficient. It is understood that the voltage should be higher or more than several times.

又、実際には例えば20Aに到達後は、それ以上過大な電流が流れないように一旦制御信号をOFFとし、図5の(a)図に示すように、その後一定時間周期trごとに制御信号のONとOFFを繰り返すPWM制御が行なわれる。このようなPWM制御の必要性は、次のような理由による。即ち、初期のアーマチュア14の吸引に必要な電流量(吸引力に比例)は上述した通りであるが、吸引後に必要な電流量はそれ以下に減少するからである(図5の(b)図参照)。   Actually, for example, after reaching 20 A, the control signal is temporarily turned OFF so that no excessive current flows any more, and thereafter, as shown in FIG. PWM control that repeats ON and OFF is performed. The necessity for such PWM control is as follows. That is, the amount of current required for the initial armature 14 suction (proportional to the suction force) is as described above, but the amount of current required after the suction is reduced below that (FIG. 5B). reference).

係合解除のための離反ばね15の引離力はフックの法則に従って距離が短くなるに比例して大きくなるが、電磁石による吸引力は、アーマチュア14の位置が電磁石に近づく程(クーロンの法則に基づき距離の二乗に比例して、即ち、離反ばねの引離力の増大より大きい割合で)大きくなる。従ってアーマチュア14の吸引後に必要な電磁石の吸引力は吸引開始時に必要な吸引力より小さくてもよいこととなる。   The pulling force of the separation spring 15 for releasing the engagement increases proportionally as the distance is shortened according to the Hooke's law. However, the attracting force by the electromagnet increases as the position of the armature 14 approaches the electromagnet (according to Coulomb's law). On the basis of the square of the distance, i.e., at a rate greater than the increase in the separating force of the separating spring). Therefore, the attraction force of the electromagnet required after the armature 14 is attracted may be smaller than the attracting force necessary at the start of the attraction.

このように、アーマチュア14の吸引後には吸引力を減少させてよいため、PWM制御によって電圧を抑制する場合、コイルの抵抗、インダクタンス分から求められる時定数以下の時間にスイッチング素子のON、OFFを繰り返す時間を設定すれば、ONしている時間に応じて電圧を制御できることとなる。又、PWM制御しないで連続の通電状態を維持し続けると大きな消費電力が必要となり、消費電力がそのまま熱エネルギに変換されて電磁石が発熱し、電磁石の耐久性を短くすることを避けるためにも電力は必要最小限に抑制するのが好ましい。従って電磁クラッチの係合後の係合保持状態では、電力を最小限に抑制して発熱を防止する。   As described above, since the attractive force may be reduced after the armature 14 is attracted, when the voltage is suppressed by PWM control, the switching element is repeatedly turned on and off at a time equal to or less than the time constant obtained from the resistance and inductance of the coil. If the time is set, the voltage can be controlled according to the ON time. Also, if a continuous energization state is maintained without PWM control, a large amount of power consumption is required, so that the power consumption is directly converted into thermal energy and the electromagnet generates heat to avoid shortening the durability of the electromagnet. It is preferable to suppress the power to the minimum necessary. Therefore, in the engagement holding state after the electromagnetic clutch is engaged, the power is suppressed to the minimum to prevent heat generation.

なお、図示の例ではバッテリ22を36V電源とし、エンジン始動用のバッテリとは独立の電源を用いるとして説明したが、電源としてエンジン始動用のバッテリの定格出力電圧12Vを用い、その出力端とドライバ21との間にDC−DCコンバータのような電圧を昇圧させる昇圧回路を挿入して36Vのような高電圧を送るようにしてもよい。又、独立のバッテリ電源として図示の4輪駆動車の後輪を高速で繰返し係合、遮断する用途の場合は36Vの高圧電源が適することを示したが、このような高速繰返し操作を必要とする用途では一般に電磁クラッチの完全係合に許容される時間は10ms(0.01秒)以下とされており、この許容時間内で完全係合に必要な電流値(例えば20A)となるのを可能とする高圧の電圧は少なくとも30V以上であり、可能であれば36V以上としてもよい。又、電源としてエンジン始動用のバッテリの定格出力電圧を36Vのような高電圧電源を用いる場合は、バッテリ22を共用してもよい。   In the illustrated example, the battery 22 is described as a 36V power source and a power source independent of the engine starting battery is used. However, the rated output voltage 12V of the engine starting battery is used as the power source, and its output terminal and driver are used. A voltage boosting circuit for boosting a voltage such as a DC-DC converter may be inserted between the voltage 21 and the high voltage such as 36V. In addition, it has been shown that a 36V high-voltage power supply is suitable for an application in which the rear wheel of the illustrated four-wheel drive vehicle is repeatedly engaged and disconnected at high speed as an independent battery power supply. In general, the time allowed for complete engagement of the electromagnetic clutch is 10 ms (0.01 seconds) or less, and the current value (for example, 20 A) required for complete engagement is within this allowable time. The possible high voltage is at least 30V or more, and if possible, it may be 36V or more. In addition, when a high voltage power source such as a 36V rated output voltage of the battery for starting the engine is used as the power source, the battery 22 may be shared.

上記実施形態では回転伝達装置10を4輪駆動車の後輪に適用した例の電源駆動回路について説明したが、従来の車両でエンジン駆動力を後輪へ伝達するプロペラシャフト上に回転伝達装置10を設けたり、その他各種の用途に回転伝達装置10を設けることもでき、それぞれの場合に電磁クラッチの係合、遮断を短時間に繰返す必要のある用途では上記電源駆動回路を設けて電磁クラッチを制御すると有効である。   In the above embodiment, the power supply drive circuit of the example in which the rotation transmission device 10 is applied to the rear wheels of the four-wheel drive vehicle has been described. However, the rotation transmission device 10 is mounted on the propeller shaft that transmits the engine driving force to the rear wheels in a conventional vehicle. The rotation transmission device 10 can also be provided for various other purposes. In each case, the above-mentioned power supply drive circuit is provided and the electromagnetic clutch is installed in an application where it is necessary to repeatedly engage and disengage the electromagnetic clutch. It is effective to control.

この発明の回転伝達装置用電源駆動回路は、電磁クラッチの係合、遮断を高速で操作し得る電源電圧を供給し得るものであり、車両のうち4輪駆動車後輪だけでなく、回転伝達を高速で操作する必要のある機構に広く利用し得るものである。   The power transmission drive circuit for a rotation transmission device according to the present invention can supply a power supply voltage capable of operating the engagement and disengagement of the electromagnetic clutch at a high speed. Can be widely used for mechanisms that need to be operated at high speed.

実施形態の電気式4輪駆動車への回転伝達装置用電源駆動回路の適用例の全体概略ブロック図Whole schematic block diagram of application example of power transmission drive circuit for rotation transmission device to electric four-wheel drive vehicle of embodiment 実施形態の回転伝達装置の構造図の(a)主断面図、(b)矢視B−Bの断面図(A) Main sectional view of structural drawing of rotation transmission device of embodiment, (b) Cross sectional view of arrow BB 図1の回転伝達装置用電源駆動回路の詳細図Detailed view of power transmission drive circuit for rotation transmission device of FIG. 電磁クラッチの係合立上り時間と電流との関係の説明図Explanatory drawing of the relationship between the engagement rise time of the electromagnetic clutch and the current 電磁クラッチの係合とPWM制御との関係の説明図Illustration of relationship between electromagnetic clutch engagement and PWM control

符号の説明Explanation of symbols

1 制御部
2 4WDスイッチ
3 発電機
4 駆動モータ
5 ジャンクションボックス
6 減速機
7 後輪軸
8 等速自在継手
9 エンジン
10 回転伝達装置
11 保持器
12 ローラ
13 外方部材
14 アーマチュア
15 離反ばね
16 電磁石
17 スイッチばね
18 ハブ輪
21 ドライバ
22 バッテリ
23 コイル
DESCRIPTION OF SYMBOLS 1 Control part 2 4WD switch 3 Generator 4 Drive motor 5 Junction box 6 Reducer 7 Rear-wheel shaft 8 Constant velocity universal joint 9 Engine 10 Rotation transmission apparatus 11 Cage 12 Roller 13 Outer member 14 Armature 15 Retraction spring 16 Electromagnet 17 Switch Spring 18 Hub wheel 21 Driver 22 Battery 23 Coil

Claims (8)

内方部材と外方部材の間に嵌合される係合子による両部材の係合、解除を弾性部材の弾性力と電磁石の電磁力とにより制御する電磁クラッチから成る回転伝達装置において、電磁石を駆動するための高圧の電源をドライバを介して給電する給電回路により電磁石のコイルに接続し、係合起動から完全係合に必要な電流となるまでの過渡動作時間が少なくとも電磁クラッチの係合、遮断の繰返し操作時に必要とされる係合時間内となる以上の電圧と、上記完全係合に要する電流とを供給し得る容量のバッテリ電源を用い、電磁クラッチを操作する制御信号をドライバに入力することにより、電磁クラッチの係合、遮断の操作を自在としたことを特徴とする回転伝達装置用電源駆動回路。   In a rotation transmission device including an electromagnetic clutch that controls engagement and release of both members by an engagement member fitted between an inner member and an outer member by an elastic force of an elastic member and an electromagnetic force of an electromagnet. A high-voltage power source for driving is connected to the coil of the electromagnet by a power feeding circuit that feeds power through a driver, and the transient operation time from the start of engagement to the current required for complete engagement is at least engaged with the electromagnetic clutch, A control signal for operating the electromagnetic clutch is input to the driver using a battery power source with a capacity capable of supplying the voltage exceeding the engagement time required for repeated disconnection operations and the current required for complete engagement. Thus, the power transmission drive circuit for the rotation transmission device can freely engage and disengage the electromagnetic clutch. 前記高圧の電源を車両のエンジン始動用バッテリとし、その出力電圧を給電回路中に設けた昇圧回路により所要の電圧に昇圧するようにしたことを特徴とする請求項1に記載の回転伝達装置用電源駆動回路。   2. The rotation transmission device according to claim 1, wherein the high-voltage power supply is a battery for starting an engine of a vehicle, and its output voltage is boosted to a required voltage by a booster circuit provided in a power feeding circuit. Power supply drive circuit. 前記電磁クラッチを制御する制御部を設け、その制御信号をドライバに送り、電磁クラッチの係合、遮断を制御するようにしたことを特徴とする請求項1又は2に記載の回転伝達装置用電源駆動回路。   The power supply for a rotation transmission device according to claim 1 or 2, wherein a control unit for controlling the electromagnetic clutch is provided, and a control signal is sent to a driver to control engagement and disconnection of the electromagnetic clutch. Driving circuit. 前記制御部は電磁クラッチの完全係合の後、係合保持を持続する際に制御信号をドライバへ送り所定時間の間隔で通電をオン、オフ制御するようにしたことを特徴とする請求項3に記載の回転伝達装置用電源駆動回路。   4. The control unit according to claim 3, wherein a control signal is sent to a driver to control energization on and off at predetermined time intervals when maintaining the engagement after the electromagnetic clutch is completely engaged. A power supply drive circuit for a rotation transmission device according to 1. 前記制御部による回転伝達装置の係合保持状態でのオン、オフ制御をPWM制御部を介してPWM制御するようにしたことを特徴とする請求項4に記載の回転伝達装置用電源駆動回路。   5. The power transmission drive circuit for a rotation transmission device according to claim 4, wherein on / off control in the engagement holding state of the rotation transmission device by the control unit is PWM controlled via the PWM control unit. 前記回転伝達装置を車両の車軸端と車輪ハブとの間にそれぞれ設け、制御部からの制御信号によりそれぞれの電磁クラッチをオン、オフ制御して左右端の回転数差を吸収し、回転差を調整自在としたことを特徴とする請求項3乃至5のいずれかに記載の回転伝達装置用電源駆動回路。   The rotation transmission device is provided between the axle end of the vehicle and the wheel hub, and each electromagnetic clutch is controlled to be turned on and off by a control signal from the control unit to absorb the difference in rotational speed between the left and right ends. 6. The power transmission circuit for a rotation transmission device according to claim 3, wherein the power transmission circuit is adjustable. 前記回転伝達装置を車両の後輪の車軸端と車輪ハブとの間にそれぞれ設け、制御部には4WDと2WDの切換スイッチの信号を入力するように接続をし、切換スイッチからの信号により4WD駆動を自在としたことを特徴とする請求項6に記載の回転伝達装置用電源駆動回路。   The rotation transmission device is provided between the axle end of the rear wheel of the vehicle and the wheel hub, and is connected to the control unit so as to input a signal of a changeover switch of 4WD and 2WD. 7. The power transmission drive circuit for a rotation transmission device according to claim 6, wherein the drive is free. 前記回転伝達装置の電磁クラッチが、外方部材と外周面に複数のカム面を有する内方部材の間に設けた保持器のポケットに複数の係合子のローラを挿置したローラクラッチと、その外側に電磁石、保持器の端に設けられたアーマチュア、及び内方部材のアーマチュアと反対側端に設けられたスイッチばねを有する電磁ユニットから成り、アーマチュアは内方部材と回転方向には一体に、軸方向へは移動自在に設けられ、スイッチばねは保持器をローラがカム面の中央に位置するように弾性力を付与するように設けて構成したことを特徴とする請求項1乃至7のいずれかに記載の回転伝達装置用電源駆動回路。   An electromagnetic clutch of the rotation transmission device includes a roller clutch in which a plurality of engaging rollers are inserted in a pocket of a cage provided between an outer member and an inner member having a plurality of cam surfaces on an outer peripheral surface thereof, It consists of an electromagnet on the outside, an armature provided at the end of the cage, and an electromagnetic unit having a switch spring provided at the end opposite to the armature of the inner member. The armature is integrated with the inner member in the rotational direction. 8. The switch spring according to claim 1, wherein the switch spring is provided so as to be movable in an axial direction, and the retainer is provided so as to apply an elastic force so that the roller is positioned at the center of the cam surface. A power supply drive circuit for a rotation transmission device according to claim 1.
JP2004178639A 2004-06-16 2004-06-16 Power supply driving circuit for rotation transmitting device Withdrawn JP2006002819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178639A JP2006002819A (en) 2004-06-16 2004-06-16 Power supply driving circuit for rotation transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178639A JP2006002819A (en) 2004-06-16 2004-06-16 Power supply driving circuit for rotation transmitting device

Publications (1)

Publication Number Publication Date
JP2006002819A true JP2006002819A (en) 2006-01-05

Family

ID=35771377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178639A Withdrawn JP2006002819A (en) 2004-06-16 2004-06-16 Power supply driving circuit for rotation transmitting device

Country Status (1)

Country Link
JP (1) JP2006002819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063481A (en) * 2019-10-16 2021-04-22 スズキ株式会社 Idle stop device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063481A (en) * 2019-10-16 2021-04-22 スズキ株式会社 Idle stop device

Similar Documents

Publication Publication Date Title
US8961369B2 (en) Torque transfer unit with integrated electric drive motor
EP1449704B1 (en) Torque transfer device having an electric motor/brake actuator and friction clutch
US10384535B2 (en) Drive unit
US9849777B2 (en) Vehicle four-wheel drive apparatus
US9701196B2 (en) Four-wheel-drive vehicle
KR19980064098A (en) Rotary transmission device
JP2006036202A (en) Method for controlling power train of hybrid electric vehicle
US20150337913A1 (en) Engaging/disengaging mechanism
JP2007210399A (en) Motor-driven rotation transmission controller for vehicle
JP2006002819A (en) Power supply driving circuit for rotation transmitting device
JP4072486B2 (en) Method for controlling electric drive device of vehicle
JP2004092570A (en) Driving force transmission/control device
JPH1059011A (en) Rotation transmitter
JP2018523799A (en) System for operating the clutch
JP2005349917A (en) Sub-driving wheel driving unit control device of four-wheel drive vehicle
JP2005137169A (en) Driving force control device for vehicle
JPH1053044A (en) Rotation transmitting device
JP2010025170A (en) Driving force connecting/disconnecting device, control method of driving force connecting/disconnecting device, four-wheel-driving vehicle and control method of four-wheel-driving vehicle
JPH11159545A (en) Control method for rotation transmission device
JP2010006263A (en) Power transmission device and four-wheel drive vehicle using the same
JP2009019659A (en) Driving force transmission device
JP2004017807A (en) Drive
JPH11157355A (en) Control method of four-wheel drive vehicle mounted with rotation transmission device
US20180156316A1 (en) Control system for engagement device
JP4052689B2 (en) Rotation transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080110