JP2006002571A - Turbine control device, its control method and turbine system - Google Patents

Turbine control device, its control method and turbine system Download PDF

Info

Publication number
JP2006002571A
JP2006002571A JP2004176340A JP2004176340A JP2006002571A JP 2006002571 A JP2006002571 A JP 2006002571A JP 2004176340 A JP2004176340 A JP 2004176340A JP 2004176340 A JP2004176340 A JP 2004176340A JP 2006002571 A JP2006002571 A JP 2006002571A
Authority
JP
Japan
Prior art keywords
flow rate
valve
test
turbine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004176340A
Other languages
Japanese (ja)
Other versions
JP4475027B2 (en
Inventor
Yusuke Kono
有亮 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004176340A priority Critical patent/JP4475027B2/en
Publication of JP2006002571A publication Critical patent/JP2006002571A/en
Application granted granted Critical
Publication of JP4475027B2 publication Critical patent/JP4475027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a conventional control requires to acquire a steam flow rate characteristic by combination of valves not to be tested when controlling a valve on the basis of a steam flow rate characteristic formed by combining flow rates of valves other than a test valve. <P>SOLUTION: A turbine control device for controlling a control valve by converting a demand flow rate signal from a flow rate command section into opening signals of a plurality of control valves for adjusting a fluid flow of one turbine, is equipped with functions for calculating a flow rate flowing in the turbine on the basis of openings of one valve to be tested and the other control valves, for calculating a correction amount with respect to a fluctuation portion of the test valve based on the calculated flow rate and for adding the correction amount to the demand flow rate signal during executing a valve test of one of the control valves. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弁の動作機能を確認する弁テスト時に生じるタービンに供給される流体流量の変動を制御する装置に関する。   The present invention relates to an apparatus for controlling fluctuations in the flow rate of a fluid supplied to a turbine that occurs during a valve test for confirming the operation function of a valve.

タービンの制御は、一つのタービンが有する複数の制御弁を制御し、タービンに流入する流体流量を調整することによって制御される。タービンの流量を決める流量指令部からの要求流量信号を、複数の制御弁の開度信号に変換して制御弁を制御する。   Control of the turbine is controlled by controlling a plurality of control valves of one turbine and adjusting the flow rate of fluid flowing into the turbine. The control flow rate signal from the flow rate command unit that determines the flow rate of the turbine is converted into opening signals of a plurality of control valves to control the control valves.

この複数の制御弁については、弁が故障していないか確認する為、タービンを動作させ流量を維持したまま、一つのタービンについて備えられた複数の制御弁のうちの一つの弁を開閉動作させることにより弁テストを行っている。この弁テストの際には、タービンの流量を変動させない様に補償することが必要である。   About this control valve, in order to confirm whether the valve has failed, one valve of the plurality of control valves provided for one turbine is opened and closed while operating the turbine and maintaining the flow rate. The valve test is carried out. In this valve test, it is necessary to compensate so as not to fluctuate the flow rate of the turbine.

特開平9−189204号公報には、予め弁テスト対象外の弁の組合せによる蒸気流量特性を求め、これらをそれぞれの補正開度指令設定手段に記憶させることにより、補正開度指令を算出する流量補償の技術(〔0027〕,〔0028〕,図3)が記載されている。これは、一つのタービンに4つの弁が備わっている場合、一つのテスト弁を補償する為にテスト弁以外の3つの弁の蒸気流量特性を別途作成し、他の弁をテストする場合や、テストの際の維持する流量によっても蒸気流量特性は異なるため、多数の蒸気流量特性を予め求める必要がある。   Japanese Patent Application Laid-Open No. 9-189204 discloses a flow rate for calculating a corrected opening degree command by previously obtaining a steam flow rate characteristic of a combination of valves that are not subjected to a valve test and storing them in respective corrected opening degree command setting means. The compensation technique ([0027], [0028], FIG. 3) is described. This is because when one turbine has four valves, the steam flow characteristics of three valves other than the test valve are separately created to compensate for one test valve, and other valves are tested. Since the steam flow characteristics vary depending on the flow rate maintained during the test, it is necessary to obtain a large number of steam flow characteristics in advance.

特開平9−189204号公報JP-A-9-189204

上記従来の弁テストでは、テスト弁以外の弁の流量を組み合せた蒸気流量特性に基づいて弁を制御することについては記載されているが、その為に弁テスト対象外の弁の組合せによる蒸気流量特性を求めておく必要がある。   In the above conventional valve test, it is described that the valve is controlled based on the steam flow characteristics obtained by combining the flow rates of valves other than the test valve. It is necessary to obtain the characteristics.

一つの蒸気流量特性に基づいた簡単な構成で、テスト弁の流量変動を補償することを目的とする。   The purpose is to compensate the flow fluctuation of the test valve with a simple configuration based on one steam flow characteristic.

本発明は、複数の制御弁の一つの弁テストを実施中に、弁テスト対象弁とその他の制御弁の開度に基づいてタービンに流入する流量を算出し、前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出し、流量指令部からの要求流量信号へ前記補正量を加算することを特徴とする。   The present invention calculates the flow rate flowing into the turbine based on the opening degree of the valve test target valve and the other control valves during the valve test of one of the plurality of control valves, and performs the test based on the calculated flow rate. A correction amount for the variation of the valve is calculated, and the correction amount is added to the required flow rate signal from the flow rate command unit.

一つの蒸気流量特性に基づいた簡単な構成で、テスト弁の流量変動を補償できる制御を達成することができる。   With a simple configuration based on one steam flow rate characteristic, it is possible to achieve control capable of compensating for the flow rate variation of the test valve.

以下図面を用いて本発明を説明する。   The present invention will be described below with reference to the drawings.

図1は本発明の弁テスト要求流量補償回路を備えたタービン制御回路を示し、弁テスト要求流量補償回路1を追設したことを特徴とする。図においてタービンに流入する蒸気流量を調整する弁CV−A〜D(加減弁A〜D)が設けられているが、弁テスト時に一つの弁が閉方向に動作を開始することによって、タービンに供給される蒸気流量が変動する。本発明では追設した弁テスト要求流量補償回路1にて蒸気流量の変動を補償する。   FIG. 1 shows a turbine control circuit provided with a valve test required flow rate compensation circuit according to the present invention, which is characterized in that a valve test required flow rate compensation circuit 1 is additionally provided. In the figure, valves CV-A to D (adjustment valves A to D) for adjusting the flow rate of steam flowing into the turbine are provided. When one valve starts operation in the closing direction during the valve test, The supplied steam flow fluctuates. In the present invention, fluctuation of the steam flow rate is compensated by the valve test required flow rate compensation circuit 1 additionally provided.

蒸気流量指令部6は、負荷とタービン回転速度によりCV蒸気要求流量信号29を求め、出力する。CV−A〜Dの各々に対して定められた関数f1(x)〜f4(x)10〜13は、CV蒸気要求流量信号29を開度指令値信号20〜23に変換する。弁のテスト時ではない通常運転時は、変換された開度指令値信号20〜23によりCV−A〜Dの各弁は制御される。テスト時には、テスト信号発生器9は、CV−A弁テストが開始されると、CV−Aを一定の速度で全閉位置まで閉方向に動作させる指令値をもつCV−Aの弁テスト信号28を出力する。弁テスト要求流量補償回路1は、CV−A〜D各弁の開度指令値信号に基づいてCV蒸気要求流量信号29に補正量を加え、変動を抑制する。 The steam flow rate command unit 6 obtains and outputs a CV required steam flow rate signal 29 based on the load and the turbine rotational speed. Functions f 1 (x) to f 4 (x) 10 to 13 defined for each of CV-A to D convert the CV steam required flow rate signal 29 into opening command value signals 20 to 23. During normal operation, not during the valve test, the valves CV-A to D are controlled by the converted opening command value signals 20 to 23. At the time of the test, when the CV-A valve test is started, the test signal generator 9 has a CV-A valve test signal 28 having a command value for operating the CV-A to the fully closed position at a constant speed. Is output. The valve test required flow rate compensation circuit 1 adds a correction amount to the CV steam required flow rate signal 29 based on the opening command value signal of each valve of CV-A to D, and suppresses fluctuations.

弁テスト要求流量補償回路1は、ON信号発生器24,スイッチ5,関数f5(x)
8(x)14〜17,加算回路18,保持回路2,比較器3,減算器8,積分器4を有する。
The valve test required flow compensation circuit 1 includes an ON signal generator 24, a switch 5, a function f5 (x) to
f 8 (x) 14 to 17, an adder circuit 18, a holding circuit 2, a comparator 3, a subtracter 8, and an integrator 4.

ON信号発生器24は、CV−Aの弁テスト信号28が0以外の指令値を入力した場合にON信号を出力し、そのON信号によって保持回路2とスイッチ5が動作する。   The ON signal generator 24 outputs an ON signal when the CV-A valve test signal 28 inputs a command value other than 0, and the holding circuit 2 and the switch 5 are operated by the ON signal.

スイッチ5は弁テスト要求流量補償回路1を動作させるためのスイッチである。   The switch 5 is a switch for operating the valve test required flow rate compensation circuit 1.

関数f5(x)〜f8(x)14〜17は、弁開度指令値から各弁の蒸気流量信号へ変換し、各弁の蒸気流量をCV蒸気要求流量信号29に対する蒸気流量を算出するものである。詳細は後述する。 The functions f 5 (x) to f 8 (x) 14 to 17 convert the valve opening command value into the steam flow signal of each valve and calculate the steam flow for each valve to the CV steam required flow signal 29. To do. Details will be described later.

加算回路18は、関数f5(x)〜f8(x)14〜17からの出力である各弁の蒸気流量信号を加算した総和流量を出力する。これは現在の制御弁蒸気流量信号30である。保持回路2は、発生器24のON信号によって動作し、弁テストを開始する前の各制御弁の蒸気流量信号を演算して得られる現在の制御弁蒸気流量信号30を保持する。 The adding circuit 18 outputs a total flow rate obtained by adding the steam flow rate signals of the respective valves, which are outputs from the functions f 5 (x) to f 8 (x) 14 to 17. This is the current control valve steam flow signal 30. The holding circuit 2 is operated by the ON signal of the generator 24 and holds the current control valve steam flow signal 30 obtained by calculating the steam flow signal of each control valve before starting the valve test.

比較器3は、保持された制御弁蒸気流量信号33(FH)と現在の制御弁蒸気流量信号30(Fn)とを比較器3にて比較し、両信号が等しくない場合は積分器4へ信号を出力する。   The comparator 3 compares the held control valve steam flow signal 33 (FH) with the current control valve steam flow signal 30 (Fn) by the comparator 3, and if both signals are not equal to the integrator 4. Output a signal.

減算器8は、保持された制御弁蒸気流量信号33(FH)と現在の制御弁蒸気流量信号30(Fn)との偏差を算出する。この制御弁蒸気流量信号33(FH)と現在の制御弁蒸気流量信号30(Fn)の偏差34(ΔFn)は、テスト弁の変動分に対する補正量を表している。つまり、この偏差34(ΔFn)が0となる場合は、テスト弁の変動分に対して、テスト弁以外の制御弁による補償ができていることを表し、この偏差34(ΔFn)が0とならない場合は、テスト弁以外の弁の補償が不十分であり、テスト弁の変動分に対する補正量が残っていることを表す。   The subtractor 8 calculates a deviation between the retained control valve steam flow signal 33 (FH) and the current control valve steam flow signal 30 (Fn). A deviation 34 (ΔFn) between the control valve steam flow signal 33 (FH) and the current control valve steam flow signal 30 (Fn) represents a correction amount for the variation of the test valve. That is, when the deviation 34 (ΔFn) is 0, this means that the fluctuation of the test valve is compensated by a control valve other than the test valve, and the deviation 34 (ΔFn) does not become 0. In this case, the compensation of the valves other than the test valve is insufficient, and the correction amount for the variation of the test valve remains.

積分器4は、比較器3から信号を入力した場合、つまり、制御弁蒸気流量信号33
(FH)と現在の制御弁蒸気流量信号30(Fn)とが等しくない場合、減算器8により得られる両信号の偏差34(ΔFn)を、両信号が等しくなるまで積分演算し、それを補正量35(FS)としてCV蒸気要求流量信号29に加算する。
The integrator 4 receives the signal from the comparator 3, that is, the control valve steam flow signal 33.
If (FH) and the current control valve steam flow signal 30 (Fn) are not equal, the deviation 34 (ΔFn) of both signals obtained by the subtractor 8 is integrated and corrected until both signals are equal. The amount 35 (FS) is added to the CV steam request flow rate signal 29.

この補正量35(FS)を加算されたCV蒸気要求流量信号29を、関数f1(x)
4(x)10〜13で各弁の開度信号に変換して制御弁を制御することで、テスト弁の変動流量に対してテスト弁以外の弁を制御する。一つのタービンに対する各弁の蒸気流量特性を一つ備えるだけの簡単な構成での制御ができ、テスト用に別途、テスト弁以外の他の弁の蒸気流量特性を求めることなく制御が可能である。
The CV steam required flow rate signal 29 to which the correction amount 35 (FS) is added is expressed as a function f 1 (x) to
By controlling the control valve by converting the opening signal of each valve at f4 (x) 10 to 13, valves other than the test valve are controlled with respect to the fluctuation flow rate of the test valve. It is possible to control with a simple configuration with only one steam flow characteristic of each valve for one turbine, and it is possible to control without obtaining the steam flow characteristics of other valves other than the test valve separately for testing. .

図2の流量補償回路動作フローを説明する。   An operation flow of the flow compensation circuit of FIG. 2 will be described.

ステップ1では、弁テスト開始によりスイッチがオンとなり、蒸気流量補償回路が機能し、テスト開始直前の制御弁蒸気流量を保持する。CV−A弁テストが開始されると、テスト信号発生器9により、CV−Aを一定の速度で全閉位置まで閉方向に動作させる指令値をもつCV−Aの弁テスト信号28が発せられ、この弁テストに用いられる弁テスト信号28が入ったCV−A制御回路は本来の開度指令値信号20とは無関係にCV−Aの弁テスト信号28の指令によりCV−Aを制御し、CV−A弁テストを実施する。同時に、CV−A弁テスト信号が0以外の指令値をもつ場合にON信号を発する発生器24を用い、そのON信号によって保持回路2が動作し、弁テストを開始する直前の各制御弁の弁開度を演算して得られる現在の制御弁蒸気流量信号30(Fn)が保持回路2に保持され、また弁テスト要求流量補償回路1を動作させるスイッチ5がオンされる。この保持回路2は、弁テストを開始する直前のCV蒸気要求流量信号29を保持する構成としても良い。この保持回路2により、テスト前の流量としてCV蒸気要求流量信号29又は現在の制御弁蒸気流量信号30が、保持された制御弁蒸気流量信号33(FH)として保持される。   In Step 1, the switch is turned on when the valve test is started, and the steam flow compensation circuit functions to maintain the control valve steam flow immediately before the start of the test. When the CV-A valve test is started, the test signal generator 9 generates a CV-A valve test signal 28 having a command value for operating the CV-A in the closing direction to the fully closed position at a constant speed. The CV-A control circuit containing the valve test signal 28 used for the valve test controls the CV-A according to the command of the valve test signal 28 of the CV-A regardless of the original opening command value signal 20, Perform CV-A valve test. At the same time, the generator 24 that emits an ON signal when the CV-A valve test signal has a command value other than 0 is used, and the holding circuit 2 operates in response to the ON signal. The current control valve vapor flow signal 30 (Fn) obtained by calculating the valve opening is held in the holding circuit 2, and the switch 5 for operating the valve test required flow compensation circuit 1 is turned on. The holding circuit 2 may be configured to hold the CV steam required flow rate signal 29 immediately before starting the valve test. The holding circuit 2 holds the CV steam request flow signal 29 or the current control valve steam flow signal 30 as the flow before the test as the held control valve steam flow signal 33 (FH).

ステップ2,3では、保持された制御弁蒸気流量信号33(FH)と現在の制御弁蒸気流量信号30(Fn)とを比較する。加減弁制御においては、負荷とタービン回転速度により求められるCV蒸気要求流量信号29をCV−A〜Dの各々に対して定められた関数f1(x)〜f4(x)10〜13にて開度指令値信号20〜23に変換し、弁制御を行う。各加減弁の開度指令値信号は関数f5(x)〜f8(x)14〜17により各制御弁からタービンに流入する蒸気流量信号に変換され、その総和を加算回路18にて求め、現在の制御弁蒸気流量信号30(Fn)を得る。テスト時にテスト信号28が入力されている場合の開度指令値信号20は、テスト信号発生器から送信される開度指令値信号を用いる。前記保持された制御弁蒸気流量信号33(FH)と現在の制御弁蒸気流量信号30(Fn)とを比較器3にて比較する。 In Steps 2 and 3, the held control valve steam flow signal 33 (FH) is compared with the current control valve steam flow signal 30 (Fn). In the control valve, the CV steam required flow rate signal 29 obtained from the load and the turbine rotational speed is changed to functions f 1 (x) to f 4 (x) 10 to 13 determined for each of CV-A to D. Are converted into opening command value signals 20 to 23, and valve control is performed. The opening command value signal of each adjusting valve is converted into a steam flow signal flowing from each control valve into the turbine by functions f 5 (x) to f 8 (x) 14 to 17, and the sum is obtained by the adding circuit 18. The current control valve steam flow signal 30 (Fn) is obtained. As the opening command value signal 20 when the test signal 28 is input during the test, the opening command value signal transmitted from the test signal generator is used. The held control valve steam flow signal 33 (FH) is compared with the current control valve steam flow signal 30 (Fn) by the comparator 3.

ステップ4,5,7では、ステップ3で両信号が等しくない場合、減算器8により得られる両信号の偏差34(ΔFn)を、積分器4により両信号が等しくなるまで積分演算し(Step4,5)、それを補正量35(FS)としてCV蒸気要求流量信号29に加算する(Step7)。   In steps 4, 5 and 7, if both signals are not equal in step 3, the deviation 34 (ΔFn) of both signals obtained by the subtractor 8 is integrated by the integrator 4 until both signals become equal (Step 4, 5) It is added to the CV steam required flow rate signal 29 as a correction amount 35 (FS) (Step 7).

ステップ6,7では、比較器にて両信号が等しくなると、積分器4は前記積分演算を終了し、出力信号を積分器の(B)にフィードバックすることで補正量35を保持し、それをCV蒸気要求流量信号29に加算する(Step6,7)。   In Steps 6 and 7, when both signals become equal in the comparator, the integrator 4 ends the integration operation, and feeds back the output signal to the integrator (B) to hold the correction amount 35. It adds to the CV steam demand flow signal 29 (Steps 6 and 7).

比較器にて再び両信号が等しくなくなると(Step2,3)、偏差34を積分演算した値に、保持していた値を付加して出力し、それを補正量35としてCV蒸気要求流量信号
29に加算する(Step4,5,7)。
When both signals are not equal again in the comparator (Steps 2 and 3), the value obtained by integrating the deviation 34 is added and output, and this value is output as a correction amount 35. (Steps 4, 5, and 7).

CV−Aが全閉した後、CV−A弁テスト信号28がもつ指令値はCV−Aを一定の速度でテスト前の位置まで開方向に動作させるものとなり、CV−Aが開方向に動作をする場合も同様に弁テスト要求流量補償回路1では、上記の動作を繰り返し行う。   After CV-A is fully closed, the command value of CV-A valve test signal 28 will cause CV-A to move in the open direction to the pre-test position at a constant speed, and CV-A will operate in the open direction. Similarly, in the valve test required flow rate compensation circuit 1, the above operation is repeated.

ステップ8では、その後弁テスト信号28の指令値が0となると、CV−Aがテスト前の位置に復帰し、ON信号発生器24の出力がOFFとなることで、保持回路の動作、及びテスト弁要求流量補償回路のスイッチもOFFとなり、弁テストを終了する(Step8)。   In Step 8, when the command value of the valve test signal 28 becomes 0 thereafter, the CV-A returns to the position before the test, and the output of the ON signal generator 24 is turned OFF. The switch of the valve request flow rate compensation circuit is also turned OFF, and the valve test is finished (Step 8).

尚、理解を容易とする為、比較器3を記載したが、積分器4が常に前回の補正量と今回の偏差を積算するので、今回の偏差が0の場合も同様に前回の補正量を出力する為、判定器36は無くても良い。   For the sake of easy understanding, the comparator 3 is described. However, since the integrator 4 always adds the previous correction amount and the current deviation, the previous correction amount is similarly calculated even when the current deviation is zero. In order to output, the determination device 36 may be omitted.

積分器4について詳細を説明する。積分器4は、偏差34(ΔFn)を積分演算している。これは、定常状態時のオフセット分に対する追従性を上げるものである。積分器4が無い場合、比例制御により補償し、定常状態となったときに、オフセット分が生じる。積分器4を設けることにより、このオフセット分を補正し目標値であるCV蒸気要求流量信号29へ追従させることができる。このオフセット分が微小であるとして補正する必要が無い場合は、積分器4は不要である。   Details of the integrator 4 will be described. The integrator 4 integrates the deviation 34 (ΔFn). This improves the followability to the offset in the steady state. When the integrator 4 is not provided, an offset is generated when compensation is performed by proportional control and a steady state is reached. By providing the integrator 4, it is possible to correct this offset and follow the CV steam required flow rate signal 29 that is a target value. If there is no need to correct the offset amount as being minute, the integrator 4 is unnecessary.

関数f1(x)〜f4(x)10〜13について詳細を説明する。関数f1(x)〜f4(x)10〜
13は、CV蒸気要求流量信号29を各弁の弁開度指令値へ変換するものである。その変換の一例を図4に示す。図4は、部分噴射方式における蒸気流量要求信号と弁開度との関係を示したものである。複数弁の制御弁が個々の非線形特性を備え、複数弁間で互いの弁流入量を補正し、総合的にタービン蒸気流量を決定する部分噴射方式においては、各弁単位で弁テスト時の補正量が大きく相違してしまう。例として、図4中に点線矢印で示す
T1点でCV−Aの弁テストを開始した場合、蒸気流量要求信号が増方向に変化しても
CV−C,Dは閉方向に動作する。各弁の開度とその開度での出力流量の関係は一対一に定まる。図4では、CV蒸気要求流量信号と各弁の開度を対応づけているが、この弁開度を流量に変換すれば、CV蒸気要求流量と各弁の流量が対応することとなる。
The functions f 1 (x) to f 4 (x) 10 to 13 will be described in detail. Functions f 1 (x) to f 4 (x) 10
13 converts the CV steam required flow rate signal 29 into a valve opening command value of each valve. An example of the conversion is shown in FIG. FIG. 4 shows the relationship between the steam flow rate request signal and the valve opening degree in the partial injection method. In the partial injection method, where the control valves of multiple valves have individual nonlinear characteristics, correct the inflow of each other between multiple valves, and determine the turbine steam flow in a comprehensive manner, correction at the time of valve test for each valve The amount will vary greatly. As an example, when a CV-A valve test is started at a point T1 indicated by a dotted arrow in FIG. 4, CV-C and D operate in the closing direction even if the steam flow request signal changes in the increasing direction. The relationship between the opening of each valve and the output flow rate at that opening is determined in a one-to-one relationship. In FIG. 4, the CV steam request flow rate signal and the opening degree of each valve are associated with each other. However, if this valve opening degree is converted into a flow rate, the CV steam request flow rate corresponds to the flow rate of each valve.

関数f5(x)〜f8(x)14〜17について詳細を説明する。関数f5(x)〜f8(x)14〜
17は、弁開度指令値を各弁の蒸気流量信号へ変換する関数である。弁の開度とその開度での出力流量の関係は各弁の仕様として一対一に定まるので、各弁についての弁開度と流量の関係を予め定めたものを関数f5(x)〜f8(x)14〜17として設定する。
The functions f 5 (x) to f 8 (x) 14 to 17 will be described in detail. Function f 5 (x) to f 8 (x) 14 to
17 is a function for converting the valve opening command value into a steam flow signal of each valve. Since the relationship between the opening degree of the valve and the output flow rate at the opening degree is determined one-to-one as the specification of each valve, a function f 5 (x) ~ Set as f 8 (x) 14-17.

図3に図4に示す特性をもつ弁テストを実施した際のテスト対象弁(CV−A)の開度,他弁(CV−B〜D)の開度,補正量,現在の制御弁蒸気要求流量,負荷の状態を示す。   FIG. 3 shows the opening degree of the valve to be tested (CV-A), the opening degree of the other valves (CV-BD), the correction amount, and the current control valve steam when the valve test having the characteristics shown in FIG. Indicates the required flow rate and load status.

まず、T1にて弁テストを開始し、CV−Aが一定のレートで閉方向に動作を始める。このとき、その特性からCV−C,Dも同様に閉方向に動作するため、保持された制御弁蒸気要求流量信号と現在の制御弁蒸気要求流量信号との間に大きな偏差が生じ、CV−Cが開方向に動作を始めるT2まで補正量は速やかに増加する。T2にてCV−Cが開方向に動作を始めた為、補正量の増加は多少緩やかとなり、さらにCV−Dも開方向に動作を始めるT4を超えた後は、補正量が偏差に追従するため、補正量は一定に増加する。制御弁蒸気要求流量と負荷は、T3を超えたあたりでもとの状態にもどり、そのまま一定に推移する。   First, a valve test is started at T1, and CV-A starts to operate in the closing direction at a constant rate. At this time, CV-C and D also operate in the closing direction due to their characteristics, so that a large deviation occurs between the held control valve steam request flow rate signal and the current control valve steam request flow rate signal. The correction amount increases rapidly until T2 when C starts operating in the opening direction. Since CV-C starts to move in the opening direction at T2, the increase in the correction amount becomes somewhat gentle. Further, after C4-D starts to operate in the opening direction, the correction amount follows the deviation. Therefore, the correction amount increases constantly. The control valve steam required flow rate and load return to the original state even when T3 is exceeded, and remain constant.

T4にてCV−Aが全閉し、続いてT5からCV−Aはもとの開度まで一定のレートで開方向に動作を始める。このとき、各種状態は前記CV−Aが閉方向に動作する場合とは逆の変化を示し、CV−Aがテスト前の位置に戻った後、弁テストを終了する。   At T4, CV-A is fully closed, and then from T5, CV-A starts to move in the opening direction at a constant rate from the original opening. At this time, various states show changes opposite to those in the case where the CV-A operates in the closing direction, and after the CV-A returns to the position before the test, the valve test is terminated.

図1の様に補償する際に、タービンの制御結果を表示する表示装置を設け、保持された制御弁蒸気流量信号33(FH)と現在の制御弁蒸気流量信号30(Fn)を表示し、これらを監視する制御システムとすれば、テスト前の流量に対する現在の弁全体としての総和流量の追従性を把握することができる。   When compensating as shown in FIG. 1, a display device for displaying the turbine control result is provided, and the retained control valve steam flow signal 33 (FH) and the current control valve steam flow signal 30 (Fn) are displayed. If a control system for monitoring these is used, it is possible to grasp the followability of the total flow rate as the entire current valve with respect to the flow rate before the test.

図5に別の補償回路の例を示す。図1と異なる個所を説明する。   FIG. 5 shows another example of the compensation circuit. Different points from FIG. 1 will be described.

保持回路2は、テスト前の流量を保持せず、テスト前の各テスト弁の開度信号を保持している。保持回路2が動作するのは、図1と同様にON信号発生器24による。   The holding circuit 2 does not hold the flow rate before the test, but holds the opening signal of each test valve before the test. The holding circuit 2 operates by the ON signal generator 24 as in FIG.

減算器37は、テスト弁CV−Aについての減算器であり、保持回路2によりテスト前に保持された開度信号と、現在の開度信号である弁テスト信号28の開度信号を流量変換したのち、減算し、テスト時におけるCV−Aの変動流量40を算出する。   The subtracter 37 is a subtractor for the test valve CV-A, and converts the opening signal held before the test by the holding circuit 2 and the opening signal of the valve test signal 28 which is the current opening signal. Then, subtraction is performed to calculate the CV-A fluctuation flow rate 40 during the test.

減算器38は、テスト弁以外の弁についての減算器であり、保持回路2によりテスト前に保持された各弁の開度信号と、現在の各弁の開度信号を流量変換したのち、減算し、テスト時におけるCV−B〜Dの変動流量41を算出する。   The subtractor 38 is a subtractor for valves other than the test valve, and after subtracting the flow rate of each valve opening signal held by the holding circuit 2 before the test and the current valve opening signal, the subtraction is performed. Then, the fluctuation flow rate 41 of CV-B to D during the test is calculated.

減算器39は、CV−Aの変動流量40とCV−B〜Dの変動流量41を減算することにより偏差34(ΔFn)を算出する。この偏差34が0で無い場合は、テスト弁のCV−Aの減少量に対して、CV−B〜Dの増加分が補償されておらず、この偏差34は補正量35としてCV蒸気要求流量信号29に加算される。この偏差34が0の場合は、テスト弁のCV−Aの減少量に対して、CV−B〜Dの増加分が補償されたので、補正は十分となったこととなる。   The subtractor 39 calculates the deviation 34 (ΔFn) by subtracting the fluctuation flow rate 40 of CV-A and the fluctuation flow rate 41 of CV-B to D. When this deviation 34 is not 0, the increase in CV-B to D is not compensated for the decrease in CV-A of the test valve. It is added to the signal 29. When the deviation 34 is 0, the increase in CV-B to D is compensated for the decrease amount of CV-A of the test valve, so that the correction is sufficient.

この図では、テスト弁CV−Aについて記載したが、テスト弁CV−Bについてテストをする際には、減算器37に入力する信号をテスト弁CV−Bの信号に変え、減算器38に入力する信号も、テスト弁CV−B以外のCV−A,C,D弁について変更すれば良い。この変更は弁テスト信号に基づいて切替えることとすれば良い。   In this figure, the test valve CV-A is described. However, when testing the test valve CV-B, the signal input to the subtractor 37 is changed to the signal of the test valve CV-B and input to the subtractor 38. The signal to be changed may be changed for the CV-A, C, D valves other than the test valve CV-B. This change may be switched based on the valve test signal.

図5の様に補償する際に、タービンの制御結果を表示する表示装置を設け、変動流量
40,41を表示し、これらを監視する制御システムとすればテスト弁の変動流量40に対する他の弁の変動流量41の追従性を把握することができる。
When compensating as shown in FIG. 5, a display device for displaying the control result of the turbine is provided, and the variable flow rates 40 and 41 are displayed. The followability of the variable flow rate 41 can be grasped.

また、図5においても、図1と同様に、積分器4を更に設け、定常状態のオフセット分に対する追従性を上げることができる。   Also in FIG. 5, as in FIG. 1, an integrator 4 can be further provided to improve the followability with respect to the offset in the steady state.

図1及び図5に記載した構成の共通するタービン制御装置として、流量指令部からの要求流量信号を、一つのタービンの流体流量を調整する複数の制御弁の開度信号に変換して制御弁を制御するタービン制御装置において、複数の制御弁の一つの弁テストを実施中に、弁テスト対象弁とその他の制御弁の開度信号に基づいてタービンに流入する流量を算出する機能と、算出した流量に基づいてテスト弁の変動分に対する補正量を算出する機能と、要求流量信号へ補正量を加算する機能を備えるタービン制御装置が挙げられる。これにより、一つの蒸気流量特性に基づいた簡単な構成での制御ができる。   As a common turbine control device having the configuration described in FIGS. 1 and 5, the control flow rate signal from the flow rate command unit is converted into opening signals of a plurality of control valves that adjust the fluid flow rate of one turbine. In the turbine control device that controls the engine, a function for calculating the flow rate flowing into the turbine based on the opening signals of the valve test target valve and the other control valve during the valve test of one of the plurality of control valves, and the calculation And a turbine control device having a function of calculating a correction amount for the variation of the test valve based on the flow rate and a function of adding the correction amount to the required flow rate signal. Thereby, it is possible to control with a simple configuration based on one steam flow rate characteristic.

また、本発明のタービン制御装置をタービンに適用することで、テスト用に別途流量特性を求めることなく、一つの蒸気流量特性に基づいた簡単な構成でタービンを制御でき、弁の開度を用いて制御する為、タービン出力として実測される計測値に反映される前に、テスト弁の変動分を早期に補償でき、タービンの要求流量への追従性を向上することができる。   Further, by applying the turbine control device of the present invention to a turbine, the turbine can be controlled with a simple configuration based on one steam flow rate characteristic without using a separate flow rate characteristic for testing, and the valve opening is used. Therefore, the fluctuation of the test valve can be compensated at an early stage before being reflected in the measured value actually measured as the turbine output, and the followability to the required flow rate of the turbine can be improved.

尚、本例は発明を実施する最良の形態であり、従来使用されている蒸気圧力量,蒸気タービン内の発電機出力を補正量として更に加えても良い。   This example is the best mode for carrying out the invention, and the conventionally used steam pressure amount and the generator output in the steam turbine may be further added as correction amounts.

また、上記実施例では、蒸気タービンについて説明したが、ガスタービン等の他の流体によるタービン制御についても適用できる。   Moreover, although the steam turbine was demonstrated in the said Example, it is applicable also to turbine control by other fluids, such as a gas turbine.

また、上記実施例では、開度指令値信号を用いているが、弁の開度を実測した開度信号を用いても良い。開度指令値信号を用いる方が弁の応答を介在しない分、追従性が良い。しかし、実測した弁の開度信号を用いる方が、実際のタービン出力に沿ったものとすることができる。これら両方を含んで開度信号とする。   Moreover, in the said Example, although the opening degree command value signal is used, you may use the opening degree signal which measured the opening degree of the valve. The use of the opening command value signal has better followability because no valve response is involved. However, using the measured valve opening signal can be more in line with the actual turbine output. Both of these are used as the opening signal.

また、本発明の制御装置や補償回路等は、計算機にその機能を達成させる為のプログラムや、そのプログラムを記憶した記憶媒体とすることによっても利用することができる。   Further, the control device, the compensation circuit, etc. of the present invention can also be used by making a computer a program for causing the computer to achieve its function or a storage medium storing the program.

弁テスト要求流量補償回路を備えたタービン制御回路の一実施例。An example of the turbine control circuit provided with the valve test demand flow compensation circuit. 流量補償回路動作フロー図。Flow compensation circuit operation flow diagram. 弁テスト実施時の動作状態。The operating state during the valve test. 部分噴射方式における蒸気流量要求信号と弁開度との関係。Relationship between steam flow request signal and valve opening in partial injection method. 弁テスト要求流量補償回路を備えたタービン制御回路の別の実施例。6 is another embodiment of a turbine control circuit including a valve test required flow compensation circuit.

符号の説明Explanation of symbols

1…弁テスト要求流量補償回路、2…保持回路、3…比較器、4…積分器、5…スイッチ、6…蒸気流量指令部、7…加算器、8…減算器、9…テスト信号発生器、10〜13…関数f1(x)〜f4(x)、14〜17…関数f5(x)〜f8(x)、18…加算回路、20〜23…開度指令値信号、24…ON信号発生器、28…弁テスト信号、29…CV蒸気要求流量信号、30…現在の制御弁蒸気流量信号、31…リセット、33…保持された制御弁蒸気流量信号、34…偏差、35…補正量。
DESCRIPTION OF SYMBOLS 1 ... Valve test request | requirement flow compensation circuit, 2 ... Holding circuit, 3 ... Comparator, 4 ... Integrator, 5 ... Switch, 6 ... Steam flow command part, 7 ... Adder, 8 ... Subtractor, 9 ... Test signal generation vessel, 10 to 13 ... function f 1 (x) ~f 4 ( x), 14~17 ... function f 5 (x) ~f 8 ( x), 18 ... adding circuit, 20 to 23 ... opening command value signal , 24 ... ON signal generator, 28 ... Valve test signal, 29 ... CV steam demand flow signal, 30 ... Current control valve steam flow signal, 31 ... Reset, 33 ... Control valve steam flow signal held, 34 ... Deviation 35: Correction amount.

Claims (10)

流量指令部からの要求流量信号を、一つのタービンの流体流量を調整する複数の制御弁の開度信号に変換して制御弁を制御するタービン制御装置において、前記複数の制御弁の一つの弁テストを実施中に、弁テスト対象弁とその他の制御弁の開度に基づいてタービンに流入する流量を算出する機能と、前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出する機能と、前記要求流量信号へ前記補正量を加算する機能を備えることを特徴とするタービン制御装置。   In a turbine control device for controlling a control valve by converting a required flow signal from a flow command unit into opening signals of a plurality of control valves for adjusting a fluid flow rate of one turbine, one valve of the plurality of control valves During the test, a function for calculating the flow rate flowing into the turbine based on the opening degree of the valve test target valve and other control valves, and a correction amount for the variation of the test valve based on the calculated flow rate are calculated. A turbine control device comprising a function and a function of adding the correction amount to the required flow rate signal. 請求項1に記載のタービン制御装置において、
前記要求流量信号へ前記補正量を加算する機能は、前記テスト弁の変動分に対する補正量を積分演算したものを補正量として前記要求流量信号へ加算する機能を有することを特徴とするタービン制御装置。
The turbine control device according to claim 1,
The function of adding the correction amount to the required flow rate signal has a function of adding, to the required flow rate signal, a correction amount obtained by integrating the correction amount for the variation of the test valve. .
請求項1に記載のタービン制御装置において、前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出する機能は、前記弁テストに用いられる弁テスト信号が入力される前の蒸気流量信号を保持する保持回路と、前記算出した流量の総和の流量と前記保持した蒸気流量信号の差を補正量として算出する減算器とで構成されることを特徴とするタービン制御装置。   2. The turbine control device according to claim 1, wherein the function of calculating a correction amount for a variation of the test valve based on the calculated flow rate is a steam flow signal before a valve test signal used for the valve test is input. And a subtractor for calculating a difference between the total flow rate of the calculated flow rate and the held steam flow rate signal as a correction amount. 請求項1に記載のタービン制御装置において、前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出する機能は、前記弁テストに用いられる弁テスト信号が入力される前の各弁の開度信号を保持する保持回路と、弁テスト対象弁についての前記算出した流量と弁テスト前の流量の偏差を算出する減算器と、その他の制御弁についての前記算出した流量と弁テスト前の流量の偏差を算出する減算器と、前記2つの偏差の差を補正量として算出する減算器とで構成されることを特徴とするタービン制御装置。   2. The turbine control device according to claim 1, wherein the function of calculating a correction amount for a variation of the test valve based on the calculated flow rate is provided for each valve before a valve test signal used for the valve test is input. A holding circuit for holding an opening signal, a subtractor for calculating a deviation between the calculated flow rate for the valve test target valve and a flow rate before the valve test, and the calculated flow rate and other values before the valve test for other control valves. A turbine control device comprising: a subtractor that calculates a flow rate deviation; and a subtractor that calculates a difference between the two deviations as a correction amount. 一つのタービンの有する複数の制御弁のうちの、一つの弁をテストする制御弁のテスト方法において、弁テスト対象弁への開度信号を入力し、弁テスト対象弁とその他の制御弁の開度信号に基づいてタービンに流入する流量を算出し、前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出し、前記要求流量信号へ前記補正量を加算し、前記補正量を加算された要求流量を前記複数の制御弁の開度信号に変換してテスト弁以外の弁を制御することを特徴とする制御弁のテスト方法。   In a control valve test method for testing one of a plurality of control valves of a turbine, an opening signal is input to the valve test target valve, and the valve test target valve and other control valves are opened. The flow rate flowing into the turbine is calculated based on the degree signal, the correction amount for the variation of the test valve is calculated based on the calculated flow rate, the correction amount is added to the required flow rate signal, and the correction amount is added A control valve test method comprising: converting the required flow rate into opening signals of the plurality of control valves to control valves other than the test valves. 請求項5に記載の制御弁のテスト方法において、
前記要求流量信号へ前記補正量を加算する際は、前回算出した補正量と今回算出した補正量を加算したものを補正量として前記要求流量信号へ加算することを特徴とする制御弁のテスト方法。
The test method for a control valve according to claim 5,
When adding the correction amount to the required flow rate signal, a control valve test method comprising adding a correction amount calculated last time and a correction amount calculated this time as a correction amount to the required flow rate signal .
請求項5に記載の制御弁のテスト方法において、
前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出する際は、前記弁テストを実施する際に入力される弁テスト信号が入力される直前の流量を保持し、前記算出した流量の総和の流量と前記保持した流量の差を補正量として算出することを特徴とする制御弁のテスト方法。
The test method for a control valve according to claim 5,
When calculating the correction amount for the variation of the test valve based on the calculated flow rate, the flow rate immediately before the valve test signal input when performing the valve test is held, and the calculated flow rate is maintained. The control valve test method is characterized in that a difference between the total flow rate and the retained flow rate is calculated as a correction amount.
請求項5に記載の制御弁のテスト方法において、前記算出した流量に基づいてテスト弁の変動分に対する補正量を算出する際は、前記弁テストを実施する際に入力される弁テスト信号が入力される直前の各弁の開度を保持し、弁テスト対象弁についての前記算出した流量と弁テスト前の流量の偏差を算出し、その他の制御弁についての前記算出した流量と弁テスト前の流量の偏差を算出し、前記2つの偏差の差を補正量として算出することを特徴とする制御弁のテスト方法。   6. The control valve test method according to claim 5, wherein when calculating a correction amount for a variation of the test valve based on the calculated flow rate, a valve test signal input when the valve test is performed is input. The opening of each valve immediately before being held is maintained, the deviation between the calculated flow rate for the valve test target valve and the flow rate before the valve test is calculated, and the calculated flow rate for the other control valves and before the valve test are calculated. A control valve test method, comprising: calculating a flow rate deviation, and calculating a difference between the two deviations as a correction amount. タービンと、一つのタービンの流体流量を調整する複数の制御弁を制御するタービン制御装置と、前記タービンの制御結果を表示する表示装置とを有するタービン制御システムにおいて、前記制御装置は、前記複数の制御弁の一つの弁テストを実施中に、弁テスト対象弁とその他の制御弁の開度信号に基づいてタービンに流入する流量を算出する機能と、前記算出した流量の総和流量を算出する機能と、前記表示装置に前記算出した総和流量とテスト前の流量とを表示する機能を有することを特徴とするタービン制御システム。   In a turbine control system comprising a turbine, a turbine control device that controls a plurality of control valves that adjust a fluid flow rate of one turbine, and a display device that displays a control result of the turbine, the control device includes the plurality of control devices. A function for calculating the flow rate flowing into the turbine based on the opening signals of the valve test target valve and the other control valves during one valve test of the control valve, and a function for calculating the total flow rate of the calculated flow rates And a function of displaying the calculated total flow rate and the flow rate before the test on the display device. 請求項9に記載のタービン制御システムにおいて、前記算出した流量の総和流量を算出する機能と、前記表示装置に前記算出した総和流量を表示する機能に代えて、弁テスト対象弁についての、前記算出した流量と弁テスト前の流量の偏差を算出する機能と、その他の制御弁についての、前記算出した流量と弁テスト前の流量の偏差を算出する機能と、前記2つの算出した偏差を表示する機能を有することを特徴とするタービン制御システム。
The turbine control system according to claim 9, wherein the calculation for the valve test target valve is performed instead of the function of calculating the total flow rate of the calculated flow rate and the function of displaying the calculated total flow rate on the display device. A function for calculating a deviation between the calculated flow rate and the flow rate before the valve test, a function for calculating the deviation between the calculated flow rate and the flow rate before the valve test, and the two calculated deviations are displayed. A turbine control system having a function.
JP2004176340A 2004-06-15 2004-06-15 Turbine control device, control method thereof, and turbine system Expired - Fee Related JP4475027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176340A JP4475027B2 (en) 2004-06-15 2004-06-15 Turbine control device, control method thereof, and turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176340A JP4475027B2 (en) 2004-06-15 2004-06-15 Turbine control device, control method thereof, and turbine system

Publications (2)

Publication Number Publication Date
JP2006002571A true JP2006002571A (en) 2006-01-05
JP4475027B2 JP4475027B2 (en) 2010-06-09

Family

ID=35771189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176340A Expired - Fee Related JP4475027B2 (en) 2004-06-15 2004-06-15 Turbine control device, control method thereof, and turbine system

Country Status (1)

Country Link
JP (1) JP4475027B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105135A (en) * 2004-09-30 2006-04-20 General Electric Co <Ge> Flow compensation for turbine control valve test
JP2009041379A (en) * 2007-08-07 2009-02-26 Hitachi Ltd Turbine controller and turbine control method
JP2014037816A (en) * 2012-08-20 2014-02-27 Toshiba Corp Valve control device and valve control method
CN105156159A (en) * 2015-07-17 2015-12-16 国家电网公司 Turbine flow characteristic optimization method based on optimal overlapping degree of control valves
JP2016521814A (en) * 2013-05-20 2016-07-25 ゼネラル・エレクトリック・カンパニイ A system for feedforward valve test compensation.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275508B (en) * 2015-11-06 2017-01-18 国网河南省电力公司电力科学研究院 Steam turbine flow curve identification and optimization method based on power value calculation
CN105317476B (en) * 2015-11-06 2017-01-18 国网河南省电力公司电力科学研究院 Turbine flow curve identification and optimization method based on feature flow area
CN105240058B (en) * 2015-11-06 2017-03-22 国网河南省电力公司电力科学研究院 Steam turbine flow curve identifying and optimizing method based on spray nozzle flow calculation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105135A (en) * 2004-09-30 2006-04-20 General Electric Co <Ge> Flow compensation for turbine control valve test
JP2011149441A (en) * 2004-09-30 2011-08-04 General Electric Co <Ge> Flow compensation for turbine control valve test
JP2009041379A (en) * 2007-08-07 2009-02-26 Hitachi Ltd Turbine controller and turbine control method
JP2014037816A (en) * 2012-08-20 2014-02-27 Toshiba Corp Valve control device and valve control method
JP2016521814A (en) * 2013-05-20 2016-07-25 ゼネラル・エレクトリック・カンパニイ A system for feedforward valve test compensation.
CN105156159A (en) * 2015-07-17 2015-12-16 国家电网公司 Turbine flow characteristic optimization method based on optimal overlapping degree of control valves

Also Published As

Publication number Publication date
JP4475027B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5271380B2 (en) Flow compensation for turbine control valve testing
TWI492013B (en) Multi-mode control loop with improved performance for mass flow controller
KR20160047430A (en) Flow-rate control device and flow-rate control program
JP4475027B2 (en) Turbine control device, control method thereof, and turbine system
Diop et al. Preserving stability/performance when facing an unknown time-delay
JP2010007665A (en) Method for primary control of combined gas and steam turbine arrangement
JPH09317404A (en) Steam turbine starting controller
JP6010354B2 (en) Positioner
GB2522997A (en) Method and system for combustion mode transfer for a gas turbine engine
JP2018526564A (en) Method and corresponding apparatus for controlling the pressure and mixing ratio of a rocket engine
JP3960420B2 (en) Engine test equipment
US10248137B2 (en) Method for controlling flow rate of fluid, mass flow rate control device for executing method, and mass flow rate control system utilizing mass flow rate control device
US9729156B2 (en) Supply device for supplying an electronic circuit
JP2017174073A (en) Positioner
JP6248764B2 (en) Boiler system
US20060004470A1 (en) Multivalue control system and method for controlling a multivalue controlled system
JP4839279B2 (en) Turbine control device and turbine control method
JPH0876811A (en) Process controller
JPH10220618A (en) Valve positioner
JPH0968056A (en) Fuel switching method and device in gas turbine plant
JPS63284603A (en) Process plant controller
JP2005155391A (en) Turbine control system
JPS5813725B2 (en) Turbine hinges
RU2172857C1 (en) Gas-turbine engine automatic control system
CN110598310A (en) Signal conditioning method, circuit system, conditioning apparatus and storage medium

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R151 Written notification of patent or utility model registration

Ref document number: 4475027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees