JP2006001894A - Method for producing dehydrogenated compound and catalyst filling method therefor - Google Patents

Method for producing dehydrogenated compound and catalyst filling method therefor Download PDF

Info

Publication number
JP2006001894A
JP2006001894A JP2004180859A JP2004180859A JP2006001894A JP 2006001894 A JP2006001894 A JP 2006001894A JP 2004180859 A JP2004180859 A JP 2004180859A JP 2004180859 A JP2004180859 A JP 2004180859A JP 2006001894 A JP2006001894 A JP 2006001894A
Authority
JP
Japan
Prior art keywords
catalyst
dehydrogenation
dehydrogenated
oxidation
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004180859A
Other languages
Japanese (ja)
Inventor
Shin Wajiki
伸 和食
Takahito Nishiyama
貴人 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004180859A priority Critical patent/JP2006001894A/en
Publication of JP2006001894A publication Critical patent/JP2006001894A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a dehydrogenated compound which can inhibit the lowering of the hydrogen conversion in the oxidation step and can inhibit the formation of carbon dioxide, and a catalyst filling method therefor. <P>SOLUTION: This method for producing a dehydrogenated compound uses a reaction apparatus having both a dehydrogenation catalyst filled layer and an oxidation catalyst filled layer and renders the amount of the dehydrogenation catalyst mixed into the oxidation catalyst filled layer less than 1.0 wt.%. This catalyst filling method comprises settling down the dust of the dehydrogenation catalyst after filling the dehydrogenation catalyst and then filling the oxidation catalyst. Further, the catalyst filling method comprises filling the dehydrogenation catalyst at least after cutting the connection between the oxidation catalyst filling section or the oxidation catalyst filled layer formed and the dehydrogenation catalyst filling section. The method for producing a dehydrogenated compound uses a reaction apparatus in which a dehydrogenation catalyst filled layer and an oxidation catalyst filled layer are formed by these catalyst filling methods. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させる脱水素工程と、該工程より得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程とを含む脱水素化合物の製造方法、及びそのための触媒充填方法に関する。   The present invention comprises a dehydrogenation step in which a raw material hydrocarbon compound is brought into contact with a dehydrogenation catalyst, and a dehydrogenation reaction mixed gas obtained from the step is brought into contact with an oxidation catalyst in the presence of an oxygen-containing gas. And an oxidation process for selectively oxidizing hydrogen in the mixed gas, and a catalyst filling method therefor.

原料炭化水素を脱水素して脱水素化合物を製造するプロセス、例えば、エチルベンゼンを脱水素してスチレンを製造するプロセスは、従来から工業的に広く実施されている。しかし、一般に脱水素反応は、平衡の制約を強く受けること、脱水素反応が吸熱反応であるため断熱反応装置での反応では反応の進行と共に反応温度が低下すること、等の理由から、高い収率を得ることが困難であり、そのため、脱水素反応で生成した水素を、酸化触媒を用いて選択的に酸化する酸化工程を脱水素工程に組み合わせることが、従前より提案されている。   A process for producing a dehydrogenated compound by dehydrogenating raw material hydrocarbons, for example, a process for producing styrene by dehydrogenating ethylbenzene has been widely practiced industrially. However, in general, the dehydrogenation reaction is strongly constrained by equilibrium, and since the dehydrogenation reaction is an endothermic reaction, the reaction temperature in an adiabatic reactor decreases with the progress of the reaction. Therefore, it has been proposed to combine an oxidation step of selectively oxidizing hydrogen generated by a dehydrogenation reaction with an oxidation catalyst in the dehydrogenation step.

例えば、特許文献1には、複数の脱水素工程と酸化工程とを組み合わせた脱水素化合物の製造方法が提案されている。その他にも、酸化触媒や酸化工程の改良手法が種々提案されており、例えば、特許文献2には、長時間安定した性能を有する酸化触媒が提案されている。又、脱水素触媒の定常反応時に微量の二酸化炭素があるだけで反応活性は低下し、二酸化炭素の分圧が増すにつれて反応活性は更に低下していくことが非特許文献1に報告されており、それに関連し特許文献3には、酸化工程に供給される反応混合物中のアルカリ性物質を予め除去しておくことにより、酸化触媒上での二酸化炭素の生成を抑制する方法が提案されている。
特公平5−38800号公報。 特開2000−342969号公報。 特開平11−80045号公報。 触媒, 29,(8),641(1987)。
For example, Patent Document 1 proposes a method for producing a dehydrogenated compound in which a plurality of dehydrogenation steps and an oxidation step are combined. In addition, various methods for improving the oxidation catalyst and the oxidation process have been proposed. For example, Patent Document 2 proposes an oxidation catalyst having stable performance for a long time. Further, it is reported in Non-Patent Document 1 that the reaction activity decreases only when there is a small amount of carbon dioxide during the steady-state reaction of the dehydrogenation catalyst, and the reaction activity further decreases as the partial pressure of carbon dioxide increases. In this regard, Patent Document 3 proposes a method for suppressing the generation of carbon dioxide on the oxidation catalyst by removing in advance alkaline substances in the reaction mixture supplied to the oxidation step.
Japanese Patent Publication No. 5-38800. JP 2000-342969. Japanese Patent Application Laid-Open No. 11-80045. Catalyst, 29, (8), 641 (1987).

しかしながら、本発明者らの検討によると、これらの酸化触媒や酸化工程の改良手法を使用し脱水素化合物の製造を行ったにも拘らず、常に満足すべき反応結果が得られる訳ではないことが判明した。   However, according to the study by the present inventors, despite the production of dehydrogenated compounds using these oxidation catalysts and methods for improving the oxidation process, it is not always possible to obtain satisfactory reaction results. There was found.

本発明は前記の実状に鑑みなされたものであり、その目的は、原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させる脱水素工程と、該工程より得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程とを含む脱水素化合物の製造方法において、酸化工程における水素転化率の低下を抑制できると共に、二酸化炭素の生成を抑制できる脱水素化合物の製造方法、及びそのための触媒充填方法を提供することにある。   The present invention has been made in view of the above-mentioned circumstances, and the object thereof is a dehydrogenation process in which a raw material hydrocarbon compound is brought into contact with a dehydrogenation catalyst to perform a dehydrogenation reaction, and a dehydrogenation reaction mixed gas obtained from the process. In a method for producing a dehydrogenated compound comprising contacting an oxygen catalyst with an oxidation catalyst in the presence of an oxygen-containing gas to selectively oxidize hydrogen in the mixed gas, a reduction in hydrogen conversion rate in the oxidation step is suppressed. Another object of the present invention is to provide a method for producing a dehydrogenated compound capable of suppressing the production of carbon dioxide, and a catalyst filling method therefor.

本発明者らは、前記課題を解決すべく鋭意検討した結果、酸化工程において反応装置に充填される酸化触媒中に脱水素触媒が不可避的に混入し、それが水素転化率を低下させ、更に、二酸化炭素の生成に影響を及ぼしていること、及び、酸化触媒中に混入する脱水素触媒の量を低減化することにより前記目的を達成できることを見出し本発明に到達した。即ち、本発明の要旨は、原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させ、脱水素化合物、未反応の原料炭化水素化合物、及び水素を含有する脱水素反応混合ガスを生成する脱水素工程と、該工程より得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程とを含む脱水素化合物の製造方法において、脱水素触媒充填層と酸化触媒充填層を併有し、且つ、該酸化触媒充填層において混入している脱水素触媒の量を1.0重量%未満とした反応装置を用いる脱水素化合物の製造方法、に存する。   As a result of intensive studies to solve the above problems, the present inventors have inevitably mixed a dehydrogenation catalyst into the oxidation catalyst charged in the reactor in the oxidation step, which reduces the hydrogen conversion rate, The present inventors have found that the object can be achieved by affecting the production of carbon dioxide and reducing the amount of the dehydrogenation catalyst mixed in the oxidation catalyst. That is, the gist of the present invention is to bring a raw material hydrocarbon compound into contact with a dehydrogenation catalyst to cause a dehydrogenation reaction, thereby generating a dehydrogenation reaction mixture gas containing the dehydrogenation compound, the unreacted raw material hydrocarbon compound, and hydrogen. A dehydrogenation step, and a dehydrogenation step of contacting the dehydrogenation reaction mixed gas obtained from the step with an oxidation catalyst in the presence of an oxygen-containing gas to selectively oxidize hydrogen in the mixed gas. In the method for producing a compound, a reactor having both a dehydrogenation catalyst packed bed and an oxidation catalyst packed bed, wherein the amount of the dehydrogenation catalyst mixed in the oxidation catalyst packed bed is less than 1.0% by weight. A method for producing a dehydrogenated compound to be used.

更に、本発明の要旨は、脱水素化合物を製造するための反応装置内に脱水素触媒充填層と酸化触媒充填層を形成する際に、脱水素触媒を充填して脱水素触媒充填層を形成した後、脱水素触媒の粉塵が鎮静化した後に酸化触媒を充填して酸化触媒充填層を形成する触媒充填方法、及び、脱水素化合物を製造するための反応装置内に脱水素触媒充填層と酸化触媒充填層を形成する際に、少なくとも脱水素触媒の充填による脱水素触媒充填層の形成を、酸化触媒充填部分又は形成された酸化触媒充填層と、脱水素触媒充填部分との間を縁切りした後に行う触媒充填方法、並びに、原料炭化水素化合物から脱水素化合物を製造する際に、反応装置内にそれらの触媒充填方法によって脱水素触媒充填層と酸化触媒充填層とが形成された反応装置を用いる脱水素化合物の製造方法、に存する。   Further, the gist of the present invention is to form a dehydrogenation catalyst packed bed by filling a dehydrogenation catalyst when forming a dehydrogenation catalyst packed layer and an oxidation catalyst packed layer in a reactor for producing a dehydrogenated compound. Then, after the dust of the dehydrogenation catalyst has subsided, a catalyst filling method for filling the oxidation catalyst to form an oxidation catalyst packed bed and a dehydrogenation catalyst packed bed in the reactor for producing the dehydrogenated compound When forming the oxidation catalyst packed bed, at least the formation of the dehydrogenation catalyst packed bed by filling the dehydrogenation catalyst is cut off between the oxidation catalyst packed part or the formed oxidation catalyst packed bed and the dehydrogenation catalyst packed part. And a reaction apparatus in which a dehydrogenation catalyst packed bed and an oxidation catalyst packed bed are formed in the reaction apparatus by the catalyst filling method when producing the dehydrogenated compound from the raw material hydrocarbon compound. Use Method for producing hydrogen compounds, consists in.

本発明によれば、原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させる脱水素工程と、該工程より得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程とを含む脱水素化合物の製造方法において、酸化工程における水素転化率の低下を抑制できると共に、二酸化炭素の生成を抑制できる脱水素化合物の製造方法、及び、そのための触媒充填方法を提供することができる。   According to the present invention, a dehydrogenation step in which a raw material hydrocarbon compound is brought into contact with a dehydrogenation catalyst to perform a dehydrogenation reaction, and a dehydrogenation reaction mixed gas obtained from the step is brought into contact with an oxidation catalyst in the presence of an oxygen-containing gas. In the method for producing a dehydrogenation compound comprising an oxidation step of selectively oxidizing hydrogen in the mixed gas, dehydrogenation capable of suppressing a decrease in hydrogen conversion rate in the oxidation step and suppressing generation of carbon dioxide It is possible to provide a method for producing a compound and a catalyst filling method therefor.

以下に本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に特定はされない。
本発明の脱水素化合物の製造方法に供される原料炭化水素化合物としては、特に限定されないが、脱水素可能な炭化水素鎖を有する芳香環族化合物であるのが好ましく、具体的には、例えば、エチルベンゼン、ジエチルベンゼン、エチルナフタレン、ジエチルナフタレン等が挙げられ、エチルベンゼン、エチルナフタレンが特に好ましい。これらは、2種以上を併用することもできる。又、これらの原料炭化水素化合物が固体の場合は、溶媒に溶解させた溶液として、或いは、融点以上の温度に融解させた溶融物として用いることもできる。
The present invention will be described in detail below, but the description of the constituent elements described below is a representative example of the embodiment of the present invention, and is not specified by these contents.
Although it does not specifically limit as a raw material hydrocarbon compound used for the manufacturing method of the dehydrogenation compound of this invention, It is preferable that it is an aromatic ring compound which has a hydrocarbon chain which can be dehydrogenated, Specifically, for example, Ethylbenzene, diethylbenzene, ethylnaphthalene, diethylnaphthalene and the like, and ethylbenzene and ethylnaphthalene are particularly preferable. These can also use 2 or more types together. Moreover, when these raw material hydrocarbon compounds are solid, they can also be used as a solution dissolved in a solvent or as a melt melted at a temperature higher than the melting point.

本発明の脱水素化合物の製造方法は、前記原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させる脱水素工程と、該工程より得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程とを含む。   The method for producing a dehydrogenation compound of the present invention comprises a dehydrogenation step in which the raw material hydrocarbon compound is brought into contact with a dehydrogenation catalyst and a dehydrogenation reaction, and a dehydrogenation reaction mixed gas obtained from the step is coexistent with an oxygen-containing gas. And an oxidation step of selectively oxidizing hydrogen in the mixed gas by contacting with an oxidation catalyst below.

ここで、前記原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させる脱水素工程において、脱水素触媒としては、その機能を有する限り特に限定されるものではなく、従来公知の、鉄と、周期表第1族又は/及び第2族の金属、具体的には、例えば、リチウム、ナトリウム、カリウム、ベリリウム、マグネシウム、カルシウム等の金属、を主要活性成分として含有する脱水素触媒が用いられ、後者金属としてはカリウムが好ましい。   Here, in the dehydrogenation step in which the raw material hydrocarbon compound is brought into contact with a dehydrogenation catalyst to perform a dehydrogenation reaction, the dehydrogenation catalyst is not particularly limited as long as it has its function, and conventionally known iron and In addition, a dehydrogenation catalyst containing a metal of Group 1 or 2 and / or Group 2 of the periodic table, specifically, for example, a metal such as lithium, sodium, potassium, beryllium, magnesium, calcium, etc. as a main active component is used. The latter metal is preferably potassium.

又、脱水素工程における脱水素反応は、例えばエチルベンゼンを原料炭化水素としてスチレンを製造する場合、500〜800℃の範囲の温度、絶対圧力0.05〜10気圧の範囲の圧力下でなされ、この脱水素反応により、脱水素工程では、脱水素化合物、未反応の原料炭化水素化合物、及び水素を含有する脱水素反応混合ガスが生成する。尚、この脱水素反応において水蒸気を共存させることもでき、その場合、脱水素工程では、原料炭化水素化合物は、反応温度まで昇温させるスチームによってガス状とされ、脱水素反応により、脱水素化合物、未反応の原料炭化水素化合物、水素、及び水蒸気を含有する脱水素反応混合ガスが生成することとなる。   In addition, the dehydrogenation reaction in the dehydrogenation step is performed at a temperature in the range of 500 to 800 ° C. and an absolute pressure in the range of 0.05 to 10 atm, for example, when styrene is produced using ethylbenzene as a raw material hydrocarbon. By the dehydrogenation reaction, in the dehydrogenation step, a dehydrogenation reaction mixture gas containing a dehydrogenation compound, an unreacted raw material hydrocarbon compound, and hydrogen is generated. In this dehydrogenation reaction, water vapor can also coexist. In that case, in the dehydrogenation process, the raw material hydrocarbon compound is turned into a gaseous form by steam that is heated to the reaction temperature, and the dehydrogenation reaction results in the dehydrogenation compound. Then, a dehydrogenation reaction mixed gas containing unreacted raw material hydrocarbon compound, hydrogen, and water vapor is generated.

前記脱水素工程で得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程において、酸素含有ガスとしては、分子状酸素を1〜100%含有するガスが用いられ、具体的には、例えば、空気、酸素富化空気、酸素、不活性ガスで希釈した空気、不活性ガスで希釈した酸素等が好適に用いられる。又、酸素含有ガスに水蒸気を含有させることもできる。   In the oxidation step in which the dehydrogenation reaction mixed gas obtained in the dehydrogenation step is brought into contact with an oxidation catalyst in the presence of an oxygen-containing gas to selectively oxidize hydrogen in the mixed gas, as the oxygen-containing gas, A gas containing 1 to 100% of molecular oxygen is used. Specifically, for example, air, oxygen-enriched air, oxygen, air diluted with an inert gas, oxygen diluted with an inert gas, and the like are preferable. Used. Also, water vapor can be included in the oxygen-containing gas.

又、酸化工程における酸化触媒としては、水素を酸素含有ガスにて選択的に酸化する触媒である限り特に限定されるものではないが、好ましくは、耐熱性無機担体上に白金族金属を含有する酸化触媒である。ここで、耐熱性無機担体としては、一般的に触媒担体として用いられる担体ならば使用することができるが、例えば、アルミニウム、珪素、チタン、ゲルマニウム、ニオブ、モリブデン、錫、タンタル、タングステン等の金属原子を含む無機担体が用いられ、中で、タンタル、アルミニウム、チタン、及びニオブからなる群より選択された少なくとも1種の金属原子を含む無機担体が耐熱性や脱水素反応の選択性(燃焼反応が少ない)の点から好ましい。これら無機担体の調製には、一般には、酸化アルミニウム、酸化珪素、酸化チタン、酸化ゲルマニウム、酸化ニオブ、酸化モリブデン、酸化錫、酸化タンタル、及び酸化タングステン等が用いられ、好ましくは、酸化タンタル、酸化アルミニウム、酸化チタン、及び酸化ニオブが用いられる。これらの耐熱性無機担体の調製は2種以上が用いられてもよく、又、2種以上が用いられる場合において、調製に用いられた酸化物の存在形態としては、複合酸化物となっていてもよく、用いられた酸化物同士の混合物でもよい。   Further, the oxidation catalyst in the oxidation step is not particularly limited as long as it is a catalyst that selectively oxidizes hydrogen with an oxygen-containing gas, but preferably contains a platinum group metal on a heat-resistant inorganic support. It is an oxidation catalyst. Here, as the heat-resistant inorganic carrier, any carrier generally used as a catalyst carrier can be used. For example, metals such as aluminum, silicon, titanium, germanium, niobium, molybdenum, tin, tantalum, tungsten, etc. An inorganic carrier containing atoms is used. Among them, an inorganic carrier containing at least one metal atom selected from the group consisting of tantalum, aluminum, titanium, and niobium is resistant to heat resistance and dehydrogenation reaction (combustion reaction). Is less). These inorganic carriers are generally prepared using aluminum oxide, silicon oxide, titanium oxide, germanium oxide, niobium oxide, molybdenum oxide, tin oxide, tantalum oxide, tungsten oxide, or the like, preferably tantalum oxide, oxide Aluminum, titanium oxide, and niobium oxide are used. Two or more kinds of these heat-resistant inorganic carriers may be prepared. When two or more kinds are used, the existence form of the oxide used for the preparation is a complex oxide. Alternatively, a mixture of the oxides used may be used.

又、酸化触媒としては、白金族金属を有する触媒が好ましく用いられる。ここで、白金族金属とは、周期表第8族〜第10族のルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、及び白金よりなる群の元素であり、これらは単独で含まれても、又は2種以上が含まれていてもよい。このうち白金、又は/及びパラジウムが好ましい。   As the oxidation catalyst, a catalyst having a platinum group metal is preferably used. Here, the platinum group metal is an element of the group consisting of ruthenium, rhodium, palladium, osmium, iridium, and platinum of Groups 8 to 10 of the periodic table, and these may be included alone or 2 More than species may be included. Of these, platinum and / or palladium are preferred.

又、酸化工程の温度としては、この酸化反応が、温度が高すぎると水素の選択性が減少し、炭化水素の燃焼が多くなる傾向があり、温度が低すぎると水素を酸化する活性が低下する可能性がある。そのため、300〜800℃の範囲の温度で行われることが好ましく、更に好ましくは400〜700℃の範囲の温度で行われる。   As the temperature of the oxidation step, if the temperature is too high, the hydrogen selectivity tends to decrease and the combustion of hydrocarbons tends to increase. If the temperature is too low, the activity of oxidizing hydrogen decreases. there's a possibility that. Therefore, it is preferably performed at a temperature in the range of 300 to 800 ° C, more preferably at a temperature in the range of 400 to 700 ° C.

尚、通常の酸化反応において、酸素を過剰に供給する方法と、酸素を全て消費する方法が行われる。特に、反応器内に炭化水素と酸素を導入して反応させ、酸素を全て消費する反応においては、酸素が全て消費した後に触媒上にコーキングが起こることが知られている。本発明において用いられる酸化触媒も、酸素を全て消費した場合にはその後の触媒上にコーキングが起こるが、水素を選択的に酸化する選択性において劣化することはなく、酸素濃度を上げることによってデコーキングすることも可能である。従って、酸素を過剰に供給する方法と酸素を全て消費する方法のいずれの方法でも行うことができるが、通常は酸素を全て消費する方法が好ましく用いられる。   In a normal oxidation reaction, a method of supplying excess oxygen and a method of consuming all oxygen are performed. In particular, it is known that coking occurs on the catalyst after all the oxygen is consumed in a reaction in which hydrocarbons and oxygen are introduced into the reactor and reacted to consume all the oxygen. In the oxidation catalyst used in the present invention, when all the oxygen is consumed, coking occurs on the subsequent catalyst. However, the selectivity for selectively oxidizing hydrogen does not deteriorate, and the oxygen concentration is increased by increasing the oxygen concentration. Caulking is also possible. Therefore, it can be performed by either a method of supplying oxygen excessively or a method of consuming all oxygen, but usually a method of consuming all oxygen is preferably used.

本発明の脱水素化合物の製造方法は、前記脱水素工程と前記酸化工程とを含む限り、いかなるプロセスにも適用される。その代表的プロセスとしては以下のようなプロセスが挙げられる。例えば、脱水素触媒が充填された第1段の反応層において、原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させた後に、この第1段反応層から出る、脱水素化合物、未反応の原料炭化水素化合物、及び水素を含有する脱水素反応混合ガスを、脱水素反応混合ガス中の水素を選択的に酸化させる酸化触媒が充填された第2段の反応層へ送り、この第2段反応層において、酸化触媒と接触させて新たに導入された酸素含有ガスにより水素を選択的に酸化させる。これにより、第1段の吸熱反応である脱水素反応により低下した温度を発熱反応により上昇させ、かつ、水素を消費することにより脱水素反応の平衡的制約を除去する。更に、この第2段反応層から出たガスを、第1段反応層と同様の、脱水素触媒が充填された第3段反応層に送り、未反応の炭化水素化合物を脱水素反応させると、既に第2段反応層において反応に必要な温度が回復されており、かつ平衡的制約も除去されているので、第3段反応層において更に高い収率を得ることができる。又、必要に応じて、更にこれらの選択的酸化反応と脱水素反応との組み合わせを追加して反応を実施することもできる。   The method for producing a dehydrogenation compound of the present invention is applicable to any process as long as it includes the dehydrogenation step and the oxidation step. Typical processes include the following processes. For example, in the first-stage reaction layer filled with the dehydrogenation catalyst, the raw hydrocarbon compound is brought into contact with the dehydrogenation catalyst and subjected to the dehydrogenation reaction, and then the dehydrogenation compound, unexposed from the first-stage reaction layer is discharged. The raw material hydrocarbon compound of the reaction and the dehydrogenation reaction mixed gas containing hydrogen are sent to the second stage reaction layer filled with an oxidation catalyst for selectively oxidizing hydrogen in the dehydrogenation reaction mixed gas. In the two-stage reaction layer, hydrogen is selectively oxidized by the oxygen-containing gas newly introduced in contact with the oxidation catalyst. As a result, the temperature lowered by the dehydrogenation reaction, which is the first endothermic reaction, is raised by the exothermic reaction, and the hydrogen is consumed to remove the equilibrium limitation of the dehydrogenation reaction. Further, when the gas emitted from the second-stage reaction layer is sent to a third-stage reaction layer filled with a dehydrogenation catalyst similar to the first-stage reaction layer, an unreacted hydrocarbon compound is dehydrogenated. Since the temperature necessary for the reaction has already been recovered in the second stage reaction layer and the equilibrium constraint has been removed, a higher yield can be obtained in the third stage reaction layer. If necessary, the reaction can be carried out by further adding a combination of these selective oxidation reaction and dehydrogenation reaction.

前記の代表的プロセスの具体例の一つが、エチルベンゼンの脱水素プロセスによるスチレンの製造例である。この脱水素プロセスは、例えば、エチルベンゼンと水蒸気の混合ガスを鉄とアルカリ金属を主要活性成分とする脱水素触媒が充填された第1段反応層に送り、500〜800℃の範囲の温度、絶対圧力0.05〜10気圧の範囲の圧力で脱水素反応させる。その後、生成したスチレンモノマー、未反応のエチルベンゼン、水素、及び水蒸気の混合ガスを、酸化触媒が充填された第2段反応層へ送って水素を選択的に酸化させ、次に、この反応ガスを、脱水素触媒が充填された第3段反応層へ送り、ここで未反応のエチルベンゼンを脱水素反応させることにより、高い収率でスチレンモノマーを得るものである。   One specific example of the representative process is an example of producing styrene by an ethylbenzene dehydrogenation process. In this dehydrogenation process, for example, a mixed gas of ethylbenzene and water vapor is sent to the first stage reaction layer filled with a dehydrogenation catalyst containing iron and alkali metal as main active components, and a temperature in the range of 500 to 800 ° C., absolute The dehydrogenation reaction is performed at a pressure in the range of 0.05 to 10 atmospheres. After that, the produced styrene monomer, unreacted ethylbenzene, hydrogen, and steam mixed gas are sent to the second-stage reaction layer filled with the oxidation catalyst to selectively oxidize hydrogen, and then this reaction gas is The styrene monomer is obtained in a high yield by sending it to the third-stage reaction layer filled with the dehydrogenation catalyst and dehydrogenating the unreacted ethylbenzene.

以上の脱水素化合物の製造方法において、本発明では、脱水素触媒充填層と酸化触媒充填層を併有し、且つ、該酸化触媒充填層において混入している脱水素触媒の量を1.0重量%未満とした反応装置を用いることを特徴とする。酸化触媒中に不純物として含まれる脱水素触媒量が1.0重量%以上であると酸化触媒の性能が低下することとなる。脱水素触媒量としては、0.5重量%以下とするのが好ましい。   In the above method for producing a dehydrogenation compound, in the present invention, the dehydrogenation catalyst packed bed and the oxidation catalyst packed bed are combined, and the amount of the dehydrogenation catalyst mixed in the oxidation catalyst packed bed is 1.0. It is characterized by using a reactor having a weight of less than%. If the amount of the dehydrogenation catalyst contained as an impurity in the oxidation catalyst is 1.0% by weight or more, the performance of the oxidation catalyst will deteriorate. The amount of the dehydrogenation catalyst is preferably 0.5% by weight or less.

本発明の脱水素化合物の製造方法に適用される反応装置は、脱水素触媒充填層と酸化触媒充填層とが形成され得るものである限り特に限定されるものではないが、適用が好ましい例として脱水素触媒充填層と酸化触媒充填層の間が触媒保持スクリーンで分離されている反応装置が挙げられる。   The reaction apparatus applied to the method for producing a dehydrogenation compound of the present invention is not particularly limited as long as a dehydrogenation catalyst packed bed and an oxidation catalyst packed bed can be formed. Examples include a reactor in which a dehydrogenation catalyst packed bed and an oxidation catalyst packed bed are separated by a catalyst holding screen.

その反応装置において、反応装置に充填された酸化触媒中に脱水素触媒が不純物として含まれる原因として、本発明者らは、脱水素触媒及び酸化触媒が反応装置内に充填されるときの触媒粉化によって触媒粉塵が生じ、それが相互に他方の触媒層内に混入することを見出した。又、その解決策の一態様として、脱水素触媒を充填した後、脱水素触媒の粉塵が鎮静化した後に酸化触媒を充填することによって、酸化触媒中への脱水素触媒の混入を抑制することができ、酸化触媒中の脱水素触媒量を前記範囲内に留めることができた。その際、脱水素触媒充填後、酸化触媒の充填開始迄の時間は、反応装置の容量により変動するが、通常は5分〜15時間、好ましくは5分〜12時間、更に好ましくは10分〜8時間程度である。一般的には、数時間で本発明の目的が達せられる場合が多いが、実際の工程では夜間に作業を実施しない場合もあり、この場合は酸化触媒の充填開始迄の時間が長くなることがある。又、その際、脱水素触媒充填層を形成した後、該脱水素触媒充填層を乾燥した空気や窒素ガスでブローし付着した粉体を飛ばすことも効果的である。   In the reactor, the reason why the dehydrogenation catalyst is contained as an impurity in the oxidation catalyst charged in the reaction device is that the present inventors have described catalyst powder when the dehydrogenation catalyst and the oxidation catalyst are filled in the reaction device. It has been found that catalyst dust is produced by the conversion and is mixed into the other catalyst layer. In addition, as one aspect of the solution, after the dehydrogenation catalyst is filled, the dehydrogenation catalyst dust is subsided and then the oxidation catalyst is filled to suppress the dehydrogenation catalyst from being mixed into the oxidation catalyst. It was possible to keep the amount of the dehydrogenation catalyst in the oxidation catalyst within the above range. At that time, the time from the filling of the dehydrogenation catalyst to the start of the filling of the oxidation catalyst varies depending on the capacity of the reactor, but is usually 5 minutes to 15 hours, preferably 5 minutes to 12 hours, more preferably 10 minutes to About 8 hours. In general, the object of the present invention is often achieved within a few hours, but in the actual process, there is a case where the work is not performed at night, and in this case, the time until the start of the filling of the oxidation catalyst may become long. is there. At that time, after forming the dehydrogenation catalyst packed bed, it is also effective to blow the dehydrogenation catalyst packed bed with dry air or nitrogen gas to blow off the adhered powder.

又、本発明の脱水素化合物の製造方法を実施するための反応装置内での触媒層の形成方法のもう一つの異なった態様として、少なくとも脱水素触媒の充填による脱水素触媒充填層の形成を、酸化触媒充填部分又は形成された酸化触媒充填層と、脱水素触媒充填部分との間を縁切りした後に行うことによっても抑制し得、酸化触媒中の脱水素触媒量を前記範囲内に留めることができた。その際の縁切り材としては、例えば、樹脂製のシートや金属製のシート等が挙げられる。   As another different embodiment of the method for forming the catalyst layer in the reaction apparatus for carrying out the method for producing the dehydrogenated compound of the present invention, the formation of the dehydrogenated catalyst packed layer by at least charging of the dehydrogenated catalyst is performed. It can also be suppressed by cutting between the oxidation catalyst filling portion or the formed oxidation catalyst filling layer and the dehydrogenation catalyst filling portion, and the amount of the dehydrogenation catalyst in the oxidation catalyst is kept within the above range. I was able to. Examples of the edge cutting material at that time include a resin sheet and a metal sheet.

この後者態様の具体例としては、例えば、酸化触媒充填部分と脱水素触媒充填部分との間を縁切りした後、酸化触媒を充填して酸化触媒層を形成し、次いで、脱水素触媒を充填して脱水素触媒層を形成する場合、酸化触媒充填部分と脱水素触媒充填部分との間を縁切りした後、脱水素触媒を充填して脱水素触媒層を形成し、次いで、酸化触媒を充填して酸化触媒層を形成する場合、或いは、酸化触媒を充填して酸化触媒充填層を形成した後に、脱水素触媒充填部分との間を縁切りし、次いで、脱水素触媒を充填して脱水素触媒充填層を形成する場合、等が挙げられる。   As a specific example of this latter aspect, for example, after cutting between the oxidation catalyst filling portion and the dehydrogenation catalyst filling portion, the oxidation catalyst is filled to form an oxidation catalyst layer, and then the dehydrogenation catalyst is filled. When the dehydrogenation catalyst layer is formed by cutting the gap between the oxidation catalyst filling portion and the dehydrogenation catalyst filling portion, the dehydrogenation catalyst is filled to form the dehydrogenation catalyst layer, and then the oxidation catalyst is filled. In the case of forming an oxidation catalyst layer, or after forming an oxidation catalyst packed layer by filling the oxidation catalyst, the dehydrogenation catalyst filling portion is cut off, and then the dehydrogenation catalyst is filled and the dehydrogenation catalyst is filled. When forming a packed bed, etc. are mentioned.

更に後者態様においては、脱水素触媒充填層と酸化触媒充填層とが反応装置内に形成された状態から、例えば製造運転を行って劣化した脱水素触媒だけを入れ替える場合も、酸化触媒充填層との間を粉塵が実質上通らないように縁切りされた脱水素触媒充填層から脱水素触媒を抜き出し、新たに脱水素触媒を充填することによっても、酸化触媒中の脱水素触媒量を前記範囲内に留めることができる。   Further, in the latter embodiment, when the dehydrogenation catalyst packed bed and the oxidation catalyst packed bed are formed in the reactor, for example, when only the dehydrogenated catalyst deteriorated by performing the production operation is replaced, By removing the dehydrogenation catalyst from the dehydrogenation catalyst packed bed that has been cut so that dust does not substantially pass through the space between the two, the dehydrogenation catalyst amount in the oxidation catalyst is within the above range by filling the dehydrogenation catalyst. Can be stopped.

これらの触媒充填方法により脱水素触媒充填層と酸化触媒充填層とが形成された反応装置を用いて脱水素化合物を製造することによって、酸化工程における水素転化率の低下を抑制することができると共に、二酸化炭素の生成を抑制することができる。   By producing a dehydrogenated compound using a reactor in which a dehydrogenation catalyst packed bed and an oxidation catalyst packed bed are formed by these catalyst filling methods, it is possible to suppress a decrease in hydrogen conversion rate in the oxidation step. , Generation of carbon dioxide can be suppressed.

こうして得られた反応混合物は、脱水素化合物、未反応の原料炭化水素化合物、水素、スチーム等を含んでいるが、通常は、冷却、気液分離、油水分離、蒸留による精製工程等の操作により、脱水素化合物が製品として分離される。その際、未反応原料炭化水素は原料として反応器へリサイクルされてもよい。   The reaction mixture thus obtained contains a dehydrogenated compound, an unreacted raw material hydrocarbon compound, hydrogen, steam, etc., but usually it is subjected to operations such as cooling, gas-liquid separation, oil-water separation, and purification steps by distillation. The dehydrogenated compound is isolated as a product. At that time, the unreacted raw material hydrocarbon may be recycled to the reactor as a raw material.

以下、実施例を用いて本発明を更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例によって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited by a following example, unless the summary is exceeded.

実施例1
<酸化触媒の調製>
五酸化ニオブ(Nb2 5 )70gに水26gを加えて混練し、この混練物を押出成型して成型した直径3mmの円柱状の成型品を、120℃で3時間乾燥し、900℃で3時間焼成した後、長さ1〜5mmに切断してペレットとした。続いて、そのペレットを、白金0.14gを含有する塩化白金酸(H2 PtCl6 ・6H2 O)水溶液21mlに浸漬した後、ロータリーエバポレーターにて減圧下60℃で1時間乾燥した後、更に乾燥器にて120℃で3時間乾燥し、その後、空気下650℃で3時間焼成した。続いて、カリウム0.21gを含有する炭酸カリウム(K2 CO3 )水溶液21mlに浸漬した後、ロータリーエバポレーターにて減圧下60℃で1時間乾燥した後、更に乾燥器にて120℃で3時間乾燥し、その後、空気下650℃で3時間焼成することにより、白金0.2重量%、カリウム0.3重量%、他は酸化ニオブからなる白金/カリウム/酸化ニオブの酸化触媒を調製した。
Example 1
<Preparation of oxidation catalyst>
26 g of water was added to 70 g of niobium pentoxide (Nb 2 O 5 ) and kneaded. A cylindrical molded product having a diameter of 3 mm formed by extrusion molding this kneaded product was dried at 120 ° C. for 3 hours, and then at 900 ° C. After baking for 3 hours, it was cut into lengths of 1 to 5 mm to form pellets. Subsequently, the pellet was immersed in 21 ml of a chloroplatinic acid (H 2 PtCl 6 .6H 2 O) aqueous solution containing 0.14 g of platinum, and then dried at 60 ° C. under reduced pressure for 1 hour using a rotary evaporator. It dried at 120 degreeC with the dryer for 3 hours, and was baked at 650 degreeC under air for 3 hours after that. Subsequently, after immersing in 21 ml of an aqueous potassium carbonate (K 2 CO 3 ) solution containing 0.21 g of potassium, it was dried for 1 hour at 60 ° C. under reduced pressure on a rotary evaporator, and further 3 hours at 120 ° C. in a dryer. The catalyst was dried and then calcined at 650 ° C. for 3 hours in air to prepare an oxidation catalyst of platinum / potassium / niobium oxide composed of 0.2% by weight of platinum, 0.3% by weight of potassium and the other niobium oxide.

<脱水素触媒の調製>
特表2002−509790号公報の実施例2に基づき、脱水素触媒の調製を行った。即ち、酸化鉄(Fe2 3 )600g、炭酸カリウム(K2 CO3 )111g、メチルセルロース10g、コーンスターチ20g、水180gを加えて混練した。この混練物を直径3mmの円筒状に押し出し成型した成型品を、120℃で3時間乾燥し、600℃で3時間焼成した。本操作を、以下の落下に必要な触媒量が得られるまで繰り返し行った。こうして得られた脱水素触媒5,000gを、反応器モデルの管径38.9mm、長さ10mの管内で落下させ、下部でSUS316製板で受けた。落下させた脱水素触媒中、径0.85mm以下の粉体量は0.97重量%であった。これを脱水素触媒Aとする。
<Preparation of dehydrogenation catalyst>
A dehydrogenation catalyst was prepared based on Example 2 of JP-T-2002-509790. That is, 600 g of iron oxide (Fe 2 O 3 ), 111 g of potassium carbonate (K 2 CO 3 ), 10 g of methyl cellulose, 20 g of corn starch and 180 g of water were added and kneaded. A molded product obtained by extruding the kneaded material into a cylindrical shape having a diameter of 3 mm was dried at 120 ° C. for 3 hours and baked at 600 ° C. for 3 hours. This operation was repeated until a catalyst amount required for the following dropping was obtained. 5,000 g of the dehydrogenation catalyst thus obtained was dropped in a tube of a reactor model having a tube diameter of 38.9 mm and a length of 10 m, and received at the bottom by a SUS316 plate. In the dropped dehydrogenation catalyst, the amount of powder having a diameter of 0.85 mm or less was 0.97% by weight. This is designated as dehydrogenation catalyst A.

触媒充填のモデル試験として、網目間隔2mmの網で形成され、大きさ8cm×8cm、高さ20cmの網目状筒の外側上部から、前記で調製した脱水素触媒Aを充填し、30分間静置した後、目視にて酸化触媒充填部の粉塵の飛散が収まったのを確認し、筒の外側に前記で調製した酸化触媒を充填した。充填した酸化触媒を抜き出し、目開き径0.85mmの篩にて篩分けしたところ、脱水素触媒由来の赤色粉が0.2重量%混入していた。   As a model test for catalyst filling, the dehydrogenation catalyst A prepared above was filled from the outside upper part of a mesh tube of 8 cm × 8 cm in size and 20 cm in height formed by a mesh with a mesh spacing of 2 mm and left to stand for 30 minutes. After that, it was visually confirmed that the scattering of dust in the oxidation catalyst filling portion was settled, and the oxidation catalyst prepared above was filled on the outside of the cylinder. The filled oxidation catalyst was extracted and sieved with a sieve having an opening diameter of 0.85 mm. As a result, 0.2% by weight of red powder derived from the dehydrogenation catalyst was mixed.

実施例2
実施例1で用いた網目状筒の内側に、前記で調製した酸化触媒を充填した後、網目状部にポリエチレン製シートを設置して脱水素触媒充填部分との間を縁切りした後、前記で調製した脱水素触媒Aを充填し、その後、ポリエチレン製シートを取り外した。充填した酸化触媒を抜き出し、その中に混入している脱水素触媒由来の触媒の存在を確認したところ、混入は認められなかった。
Example 2
After filling the inside of the mesh tube used in Example 1 with the oxidation catalyst prepared above, a polyethylene sheet was placed on the mesh portion and the dehydrogenation catalyst filling portion was cut off, The prepared dehydrogenation catalyst A was filled, and then the polyethylene sheet was removed. When the filled oxidation catalyst was extracted and the presence of the catalyst derived from the dehydrogenation catalyst mixed therein was confirmed, no contamination was observed.

比較例1
脱水素触媒A充填後の静置時間を30秒とした外は、実施例1と同様として酸化触媒を充填した。充填した酸化触媒を抜き出し、その中に混入している脱水素触媒由来の触媒量を測定したところ1.1重量%であった。
Comparative Example 1
The oxidation catalyst was filled in the same manner as in Example 1 except that the standing time after filling the dehydrogenation catalyst A was 30 seconds. The charged oxidation catalyst was extracted, and the amount of catalyst derived from the dehydrogenation catalyst mixed therein was measured to be 1.1% by weight.

比較例2
酸化触媒充填後にポリエチレン製シートを用いなかった外は、実施例2と同様にして脱水素触媒Aを充填した。充填した酸化触媒を抜き出し、その中に混入している脱水素触媒由来の触媒量を測定したところ1.4重量%であった。
Comparative Example 2
The dehydrogenation catalyst A was filled in the same manner as in Example 2 except that the polyethylene sheet was not used after filling the oxidation catalyst. The charged oxidation catalyst was extracted, and the amount of the catalyst derived from the dehydrogenation catalyst mixed therein was measured and found to be 1.4% by weight.

実施例3
<脱水素触媒の調製>
特表2002−509790号公報の比較用実施例1に基づき、酸化カリウム(K2 O)11.2重量%と酸化鉄(Fe2 3 )88.8重量%の組成を有する脱水素触媒の合成に必要な量の炭酸カリウム(K2 CO3 )と酸化鉄(Fe2 3 )を乳鉢上で潰しながら混合し、その後、600℃で3時間焼成することにより、脱水素触媒Bを調製した。
Example 3
<Preparation of dehydrogenation catalyst>
A dehydrogenation catalyst having a composition of 11.2% by weight of potassium oxide (K 2 O) and 88.8% by weight of iron oxide (Fe 2 O 3 ) based on Comparative Example 1 of JP-T-2002-509790 A dehydrogenation catalyst B is prepared by mixing potassium carbonate (K 2 CO 3 ) and iron oxide (Fe 2 O 3 ) in an amount necessary for synthesis while crushing in a mortar and then calcining at 600 ° C. for 3 hours. did.

上下に略同粒径の石英チップを充填した内径6.7mmの石英製反応管に、前記で調製した酸化触媒に前記で調製した脱水素触媒B0.5重量%を混入させることによりモデル的に調製した酸化触媒を2ml充填した後、窒素流通下600℃まで昇温し、次いで、エチルベンゼン、スチレンモノマー、水、水素、酸素、及び窒素の混合ガス(モル比;エチルベンゼン/スチレンモノマー/水/水素/酸素/窒素=1/0.87/17.6/0.65/0.17/1.28)を、触媒に供給するガス換算の空間速度を8448h-1として、反応管に導入して酸化反応を行った。反応管出口のガス及び液受器でトラップされた液についてガスクロマトグラフにて分析を行った結果、水素転化率は37.4モル%、酸素転化率は100モル%であり、以下の式で算出した二酸化炭素生成率は0.09モル%であった。
二酸化炭素生成率(モル%)=〔生成した二酸化炭素のモル数×8/(供給したエチルベンゼンのモル数+供給したスチレンモノマーのモル数)〕×100
By mixing 0.5 wt% of the dehydrogenation catalyst B prepared above into the oxidation catalyst prepared above into a quartz reaction tube having an inner diameter of 6.7 mm filled with quartz chips having substantially the same particle size at the top and bottom. After charging 2 ml of the prepared oxidation catalyst, the temperature was raised to 600 ° C. under nitrogen flow, and then a mixed gas of ethylbenzene, styrene monomer, water, hydrogen, oxygen, and nitrogen (molar ratio; ethylbenzene / styrene monomer / water / hydrogen). /Oxygen/nitrogen=1/0.87/17.6/0.65/0.17/1.28) was introduced into the reaction tube with a space velocity in terms of gas supplied to the catalyst of 8448 h −1. An oxidation reaction was performed. As a result of gas chromatograph analysis of the gas at the outlet of the reaction tube and the liquid trapped in the liquid receiver, the hydrogen conversion rate was 37.4 mol% and the oxygen conversion rate was 100 mol%. The carbon dioxide production rate was 0.09 mol%.
Carbon dioxide production rate (mol%) = [number of moles of produced carbon dioxide × 8 / (number of moles of supplied ethylbenzene + number of moles of fed styrene monomer)] × 100

実施例4
前記で調製した酸化触媒に対して前記で調製した脱水素触媒Bを混入させなかった外は、実施例3と同様にして酸化反応させた。その結果、水素転化率は37.5モル%、酸素転化率は100モル%、二酸化炭素生成率は0.08モル%であった。
Example 4
The oxidation reaction was performed in the same manner as in Example 3 except that the dehydrogenation catalyst B prepared above was not mixed into the oxidation catalyst prepared above. As a result, the hydrogen conversion rate was 37.5 mol%, the oxygen conversion rate was 100 mol%, and the carbon dioxide production rate was 0.08 mol%.

比較例3
前記で調製した酸化触媒に対して前記で調製した脱水素触媒Bを1.0重量%混入させた外は、実施例3と同様にして酸化反応を行った。その結果、水素転化率は35.2モル%、酸素転化率は100モル%、二酸化炭素生成率は0.12モル%であった。
Comparative Example 3
The oxidation reaction was performed in the same manner as in Example 3 except that 1.0% by weight of the dehydrogenation catalyst B prepared above was mixed with the oxidation catalyst prepared above. As a result, the hydrogen conversion rate was 35.2 mol%, the oxygen conversion rate was 100 mol%, and the carbon dioxide production rate was 0.12 mol%.

比較例4
前記で調製した酸化触媒に対して前記で調製した脱水素触媒Bを5.0重量%混入させた外は、実施例3と同様にして酸化反応を行った。その結果、水素転化率は27.2モル%、酸素転化率は100モル%、二酸化炭素生成率は0.19モル%であった。
Comparative Example 4
The oxidation reaction was performed in the same manner as in Example 3 except that 5.0% by weight of the dehydrogenation catalyst B prepared above was mixed with the oxidation catalyst prepared above. As a result, the hydrogen conversion rate was 27.2 mol%, the oxygen conversion rate was 100 mol%, and the carbon dioxide production rate was 0.19 mol%.

以上の実施例3、4、及び比較例3、4における酸化反応の結果を表1に纏めた。   The results of the oxidation reaction in Examples 3 and 4 and Comparative Examples 3 and 4 are summarized in Table 1.

Figure 2006001894
Figure 2006001894

Claims (8)

原料炭化水素化合物を脱水素触媒と接触させて脱水素反応させ、脱水素化合物、未反応の原料炭化水素化合物、及び水素を含有する脱水素反応混合ガスを生成する脱水素工程と、該工程より得られた脱水素反応混合ガスを酸素含有ガスの共存下で酸化触媒と接触させて、該混合ガス中の水素を選択的に酸化させる酸化工程とを含む脱水素化合物の製造方法において、脱水素触媒充填層と酸化触媒充填層を併有し、且つ、該酸化触媒充填層において混入している脱水素触媒の量を1.0重量%未満とした反応装置を用いることを特徴とする脱水素化合物の製造方法。 A dehydrogenation step of bringing a raw material hydrocarbon compound into contact with a dehydrogenation catalyst to cause a dehydrogenation reaction to produce a dehydrogenation compound, an unreacted raw material hydrocarbon compound, and a dehydrogenation reaction mixed gas containing hydrogen; In the method for producing a dehydrogenated compound, the dehydrogenation reaction mixed gas is brought into contact with an oxidation catalyst in the presence of an oxygen-containing gas to selectively oxidize hydrogen in the mixed gas. A dehydrogenation comprising a catalyst packed bed and an oxidation catalyst packed bed, wherein the amount of the dehydrogenation catalyst mixed in the oxidized catalyst packed bed is less than 1.0% by weight. Compound production method. 脱水素触媒が少なくとも鉄、並びに周期表第1族又は/及び第2族の金属を含有し、且つ、酸化触媒が耐熱性無機担体上に少なくとも白金族金属が担持されたものである請求項1に記載の脱水素化合物の製造方法。 2. The dehydrogenation catalyst contains at least iron and a metal of Group 1 or / and 2 of the periodic table, and the oxidation catalyst is one in which at least a platinum group metal is supported on a heat-resistant inorganic support. A method for producing the dehydrogenated compound according to 1. 酸化触媒の耐熱性無機担体が、タンタル、アルミニウム、チタン、及びニオブからなる群より選択された少なくとも1種の金属原子を含有するものである請求項2に記載の脱水素化合物の製造方法。 The method for producing a dehydrogenated compound according to claim 2, wherein the heat-resistant inorganic carrier of the oxidation catalyst contains at least one metal atom selected from the group consisting of tantalum, aluminum, titanium, and niobium. 酸化工程における反応温度が300℃以上800℃以下である請求項1乃至3のいずれかに記載の脱水素化合物の製造方法。 The method for producing a dehydrogenated compound according to any one of claims 1 to 3, wherein a reaction temperature in the oxidation step is 300 ° C or higher and 800 ° C or lower. 原料炭化水素化合物がエチルベンゼン又は/及びジエチルベンゼンである請求項1乃至4のいずれかに記載の脱水素化合物の製造方法。 The method for producing a dehydrogenated compound according to any one of claims 1 to 4, wherein the raw material hydrocarbon compound is ethylbenzene and / or diethylbenzene. 脱水素化合物を製造するための反応装置内に脱水素触媒充填層と酸化触媒充填層を形成する際に、脱水素触媒を充填して脱水素触媒充填層を形成した後、脱水素触媒の粉塵が鎮静化した後に酸化触媒を充填して酸化触媒充填層を形成することを特徴とする触媒充填方法。 When the dehydrogenation catalyst packed bed and the oxidation catalyst packed bed are formed in the reactor for producing the dehydrogenated compound, the dehydrogenated catalyst packed bed is formed by filling the dehydrogenated catalyst and then the dehydrogenated catalyst dust. A catalyst filling method characterized by forming an oxidation catalyst packed layer by filling an oxidation catalyst after the sedation has subsided. 脱水素化合物を製造するための反応装置内に脱水素触媒充填層と酸化触媒充填層を形成する際に、少なくとも脱水素触媒の充填による脱水素触媒充填層の形成を、酸化触媒充填部分又は形成された酸化触媒充填層と、脱水素触媒充填部分との間を縁切りした後に行うことを特徴とする触媒充填方法。 When forming the dehydrogenation catalyst packed bed and the oxidation catalyst packed bed in the reaction apparatus for producing the dehydrogenated compound, at least the formation of the dehydrogenated catalyst packed bed by filling the dehydrogenation catalyst, the formation part of the oxidation catalyst or the formation A catalyst filling method, which is carried out after cutting the gap between the oxidized catalyst packed bed and the dehydrogenated catalyst packed portion. 原料炭化水素化合物から脱水素化合物を製造する際に、反応装置内に請求項6又は7に記載の触媒充填方法によって脱水素触媒充填層と酸化触媒充填層とが形成された反応装置を用いることを特徴とする請求項1乃至5のいずれかに記載の脱水素化合物の製造方法。 When producing a dehydrogenated compound from a raw material hydrocarbon compound, a reactor in which a dehydrogenated catalyst packed bed and an oxidation catalyst packed bed are formed in the reactor by the catalyst filling method according to claim 6 or 7 is used. The method for producing a dehydrogenated compound according to any one of claims 1 to 5.
JP2004180859A 2004-06-18 2004-06-18 Method for producing dehydrogenated compound and catalyst filling method therefor Withdrawn JP2006001894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180859A JP2006001894A (en) 2004-06-18 2004-06-18 Method for producing dehydrogenated compound and catalyst filling method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180859A JP2006001894A (en) 2004-06-18 2004-06-18 Method for producing dehydrogenated compound and catalyst filling method therefor

Publications (1)

Publication Number Publication Date
JP2006001894A true JP2006001894A (en) 2006-01-05

Family

ID=35770592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180859A Withdrawn JP2006001894A (en) 2004-06-18 2004-06-18 Method for producing dehydrogenated compound and catalyst filling method therefor

Country Status (1)

Country Link
JP (1) JP2006001894A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110974A (en) * 2006-10-16 2008-05-15 Rohm & Haas Co Integrated catalytic process for converting alkane to alkene and catalyst useful for the process
CN102219214A (en) * 2010-04-15 2011-10-19 中国石油化工股份有限公司 Method for hydrogen removal of CO mixed gas by selective oxidation
WO2015068554A1 (en) * 2013-11-08 2015-05-14 三菱化学株式会社 Method for recovering oxidation catalyst and method for oxidizing hydrogen using recovered oxidation catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110974A (en) * 2006-10-16 2008-05-15 Rohm & Haas Co Integrated catalytic process for converting alkane to alkene and catalyst useful for the process
CN102219214A (en) * 2010-04-15 2011-10-19 中国石油化工股份有限公司 Method for hydrogen removal of CO mixed gas by selective oxidation
WO2015068554A1 (en) * 2013-11-08 2015-05-14 三菱化学株式会社 Method for recovering oxidation catalyst and method for oxidizing hydrogen using recovered oxidation catalyst

Similar Documents

Publication Publication Date Title
WO2001090043A1 (en) Process for the production of vinyl acetate
TW200728294A (en) A method for reusing rhenium from a donor spent epoxidation catalyst
US8119559B2 (en) Catalyst, its preparation and use
FR2700766A1 (en) Process for the fluorination of perchlorethylene or pentachloroethane
US7435703B2 (en) Catalyst comprising iron oxide made by heat decomposition of an iron halide and a lanthanide
CA2558547A1 (en) Catalyst used for the oxidation of hydrogen, and method for the dehydrogenation of hydrocarbons
JP2008266339A (en) Method for producing styrene
RU2346741C2 (en) Oxidation catalyst and its preparation
RU2503650C1 (en) Method of producing butadiene by converting ethanol (versions)
TWI327143B (en) A method of manufacturing ethylene oxide
CN1429217A (en) Method for epoxidation of hydrocarbons
CA2685679A1 (en) A catalyst, its preparation and use
JP2006001894A (en) Method for producing dehydrogenated compound and catalyst filling method therefor
RU2554879C2 (en) Method of selective oxidative dehydrogenation of hydrogen-containing gas, mixed with co
KR100932416B1 (en) Ethane oxidation catalyst and process utilising the catalyst
WO1992001656A1 (en) Method for converting methane into higher hydrocarbons
TW201026389A (en) A high performance catalyst for dehydrogenation of alkyl aromatic compounds in the presence of highly concentrated CO2, a process for preparation thereof, and a process for dehydrogenation using it
JP2013529640A (en) Method for producing fluorinated olefin
WO2008084075A1 (en) Catalyst system and process for the production of epoxides
JP3831444B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
WO1999003806A1 (en) Process for producing styrene
WO2008137592A2 (en) A catalyst, its preparation and use
JP2013100298A (en) Method for producing propylene oxide
JP3794235B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP3801352B2 (en) Method for producing oxidation catalyst, oxidation catalyst, and hydrocarbon dehydrogenation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090616

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091023