JP2006001750A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2006001750A
JP2006001750A JP2004176806A JP2004176806A JP2006001750A JP 2006001750 A JP2006001750 A JP 2006001750A JP 2004176806 A JP2004176806 A JP 2004176806A JP 2004176806 A JP2004176806 A JP 2004176806A JP 2006001750 A JP2006001750 A JP 2006001750A
Authority
JP
Japan
Prior art keywords
reforming
bypass pipe
unit
raw material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004176806A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
勝蔵 粉川
Norio Yotsuya
規夫 肆矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004176806A priority Critical patent/JP2006001750A/en
Publication of JP2006001750A publication Critical patent/JP2006001750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a catalyst from degrading for enhancing reliability to durability in a hydrogen generator. <P>SOLUTION: This hydrogen generator is equipped with a reforming section 1 with a heating means to heat up raw materials and water, a CO-converting section 6 and a CO-removing section 7 sequentially connected to the reforming section 1, a bypass pipe 12 connecting a gas outlet port and a gas inlet port of the reforming section 1, and a transport means 13 disposed to the bypass pipe 12. By this configuration, supplied raw materials can pass through the reforming section 1 a plurality of times, thereby the raw materials flow can be brought into contact with whole of the catalyst, so that the reaction can be accelerated by substantially reducing an SV value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は固体高分子形燃料電池の燃料として用いる水素生成器に関し、更に詳しくは、所定の原料に水蒸気を用いて改質し水素ガスを生成する水素生成器に関する。   The present invention relates to a hydrogen generator used as a fuel for a polymer electrolyte fuel cell, and more particularly to a hydrogen generator that reforms a predetermined raw material using water vapor to generate hydrogen gas.

水素生成器は、最近開発が進められている固体高分子形燃料電池の燃料として水素が用いられ、この水素の製造法としては炭化水素の水蒸気改質法が多く使用されている。水蒸気改質法は、メタン、エタン、プロパン、ブタン、都市ガス、LPガス、天然ガス、その他の炭化水素ガスを水蒸気により改質して水素リッチな改質ガスを生成させる方法である。水蒸気改質法では改質部中での接触反応によりそれら炭化水素が水素リッチな改質ガスへ変えられる。そして、得られた水素リッチな改質ガスはCO除去部でCOを低減して利用される。   Hydrogen generators use hydrogen as a fuel for solid polymer fuel cells, which are being developed recently, and a hydrocarbon steam reforming method is often used as a method for producing this hydrogen. The steam reforming method is a method in which methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbon gases are reformed with steam to generate a hydrogen-rich reformed gas. In the steam reforming method, these hydrocarbons are converted into hydrogen-rich reformed gas by a catalytic reaction in the reforming section. The obtained hydrogen-rich reformed gas is used after reducing CO in the CO removal section.

図5は、水蒸気改質器を用いた原料、水蒸気の供給から水素ガスの出口に至るまでを示すブロック図である。燃焼部を配した加熱部と改質触媒を配置した改質部とにより構成される。高温となった改質部では炭化水素が水蒸気と反応して水素リッチな改質ガスが生成される。改質部は、炭化水素を原料とする場合には500〜700℃の温度に加温することが必要であり、改質触媒としては例えばNi系、Ru系等の触媒が用いられる。改質触媒は、原料ガス中の硫黄化合物により被毒し性能劣化を来たすので、それらの硫黄化合物を除去するために原料ガスは最初に脱硫部へ導入される。   FIG. 5 is a block diagram showing a raw material using a steam reformer, from supply of steam to the outlet of hydrogen gas. It comprises a heating section having a combustion section and a reforming section having a reforming catalyst. In the reforming section that has reached a high temperature, the hydrocarbon reacts with the steam to produce a hydrogen-rich reformed gas. When the hydrocarbon is used as a raw material, the reforming section needs to be heated to a temperature of 500 to 700 ° C. As the reforming catalyst, for example, a Ni-based or Ru-based catalyst is used. Since the reforming catalyst is poisoned by sulfur compounds in the raw material gas and deteriorates its performance, the raw material gas is first introduced into the desulfurization section in order to remove these sulfur compounds.

次いで、別途設けられた水蒸気発生部からの水蒸気を添加、混合して水蒸気改質器の改質部へ導入される。原料ガスがメタンである場合の改質反応はCH4+2H2O→CO2+4H2で示される。生成する改質ガス中には未反応のメタン、未反応の水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が発生して8〜15%程度含まれている。このため改質ガスは、この一酸化炭素を二酸化炭素と水素へ変えて除去するためにCO変成部にかけられる。CO変成部では例えばFe−Cr系触媒、Cu−Zn系触媒、あるいはPt触媒が用いられる。CO変成部中での反応はCO+H2O→CO2+H2で必要な水蒸気は改質部の残留水蒸気を利用する。そして、CO変成部から出る改質ガスは、未反応のメタンと余剰水蒸気と、水素と、二酸化炭素とからなる。   Next, steam from a steam generation section provided separately is added and mixed to be introduced into the reforming section of the steam reformer. The reforming reaction when the raw material gas is methane is represented by CH4 + 2H2O → CO2 + 4H2. The generated reformed gas contains about 8 to 15% of carbon monoxide (CO) generated in addition to unreacted methane, unreacted water vapor, and generated carbon dioxide. For this reason, the reformed gas is applied to the CO conversion section to remove the carbon monoxide by converting it to carbon dioxide and hydrogen. For example, a Fe—Cr based catalyst, a Cu—Zn based catalyst, or a Pt catalyst is used in the CO conversion portion. The reaction in the CO conversion part is CO + H 2 O → CO 2 + H 2, and the steam necessary for the steam uses the residual steam in the reforming part. The reformed gas exiting from the CO conversion section is composed of unreacted methane, excess steam, hydrogen, and carbon dioxide.

しかし、この改質ガスは、COは完全には除去されず、1%程度以下ではあるがCOが含まれている。燃料電池に供給する燃料水素中のCOの許容濃度は10ppm程度であり、これを越えると電池性能が著しく劣化するので、CO成分は燃料電池へ導入する前にできる限り除去する必要がある。このため、改質ガスはCO変成部によりCO濃度を1%前後まで低下させた後、CO除去部にかけられる。CO除去部では空気などの酸化剤が添加され、2CO+O2→2CO2とCO2に変えることでCOを除去し、改質ガスのCO濃度を10ppm以下に低減させる。   However, this reformed gas does not completely remove CO, but contains CO although it is about 1% or less. The allowable concentration of CO in the fuel hydrogen supplied to the fuel cell is about 10 ppm, and if it exceeds this, the cell performance is significantly deteriorated. Therefore, it is necessary to remove the CO component as much as possible before introducing it into the fuel cell. For this reason, the reformed gas is applied to the CO removal section after the CO concentration is lowered to around 1% by the CO shift section. An oxidant such as air is added to the CO removing unit, and CO is removed by changing the CO gas from 2CO + O 2 → 2CO 2 and CO 2 to reduce the CO concentration of the reformed gas to 10 ppm or less.

従来、この方式の水素生成器は性能向上のために、原料と水蒸気を均一に混合させることに注目されていた(例えば、特許文献1参照)。   Conventionally, this type of hydrogen generator has attracted attention for uniformly mixing raw materials and water vapor in order to improve performance (for example, see Patent Document 1).

図6は、水蒸気改質器の改質反応器の断面図である。改質反応器は、円筒状の容器1内の上部に、液体原料を気化しつつ別途供給される気体原料と均一混合した混合原料ガスとして改質反応部2に導く原料蒸発導入部3を備え、容器1内の下部には、改質触媒によって混合原料ガスを改質する改質反応部2と、改質反応部2に反応熱を供給する加熱部4とを備えている。そして、改質反応部2は、全体が円筒状に形成され、容器1の底部側に該容器1の底面との間に若干の空間を空けて、円筒状の容器1と同軸に配設されており、加熱部4は容器1の底面に設けられた燃焼器5と、この燃焼器5の燃焼ガスが容器1の軸に沿って上方に向けて通る燃焼ガス流路6と、この燃焼ガスを容器1の外に排気するために容器1の上面に設けた排気管7とで構成されている。   FIG. 6 is a cross-sectional view of the reforming reactor of the steam reformer. The reforming reactor is provided with a raw material evaporation introducing portion 3 that leads to the reforming reaction portion 2 as a mixed raw material gas that is uniformly mixed with a gaseous raw material that is separately supplied while vaporizing a liquid raw material, in the upper part of the cylindrical container 1. The lower part in the container 1 is provided with a reforming reaction part 2 for reforming the mixed raw material gas by the reforming catalyst and a heating part 4 for supplying reaction heat to the reforming reaction part 2. The reforming reaction section 2 is formed in a cylindrical shape as a whole, and is disposed coaxially with the cylindrical container 1 with a slight space between the bottom of the container 1 and the bottom surface of the container 1. The heating unit 4 includes a combustor 5 provided on the bottom surface of the container 1, a combustion gas passage 6 through which the combustion gas of the combustor 5 passes upward along the axis of the container 1, and the combustion gas. And an exhaust pipe 7 provided on the upper surface of the container 1 in order to exhaust the air from the container 1.

このため、改質反応器の改質原料即ち混合原料ガスは気体原料としてのメタンと液体原料としての水が気化されたスチーム(水)である。供給されたメタンに水が液滴化されて混入し、液滴下された水は細かい水滴となってメタンの流れに乗り、メタンと相俟って気液混相体となって、原料蒸発導入部3に供給される。この気液混相体は原料蒸発導入部3を流下して行く過程で、気液混相体中の水滴が気化(蒸発)して気液混相体は混合原料ガスとなって、反応部2に供給される。   For this reason, the reforming raw material of the reforming reactor, that is, the mixed raw material gas is steam (water) obtained by vaporizing methane as a gas raw material and water as a liquid raw material. Water is dropletized and mixed into the supplied methane, and the dropped water becomes fine water droplets and rides on the flow of methane. 3 is supplied. In the course of flowing down the raw material evaporation introducing unit 3, the gas / liquid mixed phase is vaporized (evaporated) in the gas / liquid mixed phase, and the gas / liquid mixed phase becomes mixed raw material gas, which is supplied to the reaction unit 2. Is done.

即ち、原料蒸発導入部3での蒸発は、第2成分であるメタンの存在により原料の流れ方向に沸点を順次変化しながら、メタン気相中に水分が飽和蒸気圧まで加湿していく蒸発形態であり、常に、一定の蒸発速度で安定した蒸発を実現させることができる。   That is, the evaporation in the raw material evaporation introducing unit 3 is an evaporation mode in which moisture is humidified to the saturated vapor pressure in the methane gas phase while the boiling point is sequentially changed in the flow direction of the raw material due to the presence of methane as the second component. Thus, stable evaporation can always be realized at a constant evaporation rate.

そのため、常に、均一混合された脈動の無い安定した混合原料ガスを供給することができる。又、脈動の無い安定した混合原料ガスが供給されるため、電池の電圧変動や改質反応部2の加熱部4の安定燃焼、即ちCOやNO等の発生が抑制されて、システムの運転を安定に行うことができる。又、改質反応部2に混合原料ガスとしての改質反応ガスが均一組成で供給されるため、従来のような、改質触媒への炭素析出や改質率の低下等が抑制される。
特開2003−119001号公報
Therefore, it is always possible to supply a uniform mixed raw material gas without pulsation that is uniformly mixed. In addition, since a stable mixed source gas without pulsation is supplied, battery voltage fluctuations and stable combustion of the heating unit 4 of the reforming reaction unit 2, that is, generation of CO, NO, and the like are suppressed, and the system is operated. It can be performed stably. Moreover, since the reforming reaction gas as the mixed raw material gas is supplied to the reforming reaction section 2 with a uniform composition, carbon deposition on the reforming catalyst and a decrease in the reforming rate are suppressed as in the conventional case.
JP 2003-119001 A

しかしながら、前記従来の構成では、気体原料としてのメタンと液体原料としての水が気化されたスチーム(水)を均一混合された脈動の無い安定した混合原料ガスを改質部に供給することができる。そのため、、電池の電圧変動や改質反応部2の加熱部4の安定燃焼、システムの運転を安定に行うことができ、改質触媒への炭素析出や改質率の低下等が抑制できる。   However, in the conventional configuration, a stable mixed raw material gas without pulsation in which methane as a gas raw material and steam (water) in which water as a liquid raw material is vaporized is uniformly mixed can be supplied to the reforming unit. . Therefore, the battery voltage fluctuation, the stable combustion of the heating unit 4 of the reforming reaction unit 2, the operation of the system can be performed stably, and the carbon deposition on the reforming catalyst and the reduction of the reforming rate can be suppressed.

一方、改質部は、原料と水蒸気を触媒による反応を促進させる構成とするため、改質部に充填する触媒は、原料と水蒸気の接触する通路の確保と吸熱反応に応じた加熱構成が重要である。そのため、改質部は、多数の粒状の担体に触媒を担持させてあり、原料と水蒸気は改質部の触媒の入口から入りこの触媒の粒の間を通って出口に至る。   On the other hand, since the reforming section is configured to promote the reaction between the raw material and water vapor by the catalyst, it is important for the catalyst filled in the reforming section to ensure a passage where the raw material and water vapor are in contact and to have a heating structure corresponding to the endothermic reaction. It is. For this reason, the reforming section has a catalyst supported on a number of granular carriers, and the raw material and water vapor enter from the catalyst inlet of the reforming section and reach the outlet through the catalyst particles.

しかし、改質部内を流れる原料と水蒸気に偏流を生じ、十分な性能の確保ができなかった。すなわち、原料と水蒸気は、入口から出口へ最短付近に多く流れる。また、初期の充填や運転による熱の繰り返しによって、触媒粒の並び方に偏りが生じ、触媒粒間の寸法が偏りを生じる。このため、原料と水蒸気は、隙間の大きい所を多く流れる。   However, the raw material flowing in the reforming section and water vapor drifted, and sufficient performance could not be ensured. That is, a large amount of raw material and steam flow from the inlet to the outlet in the vicinity of the shortest distance. In addition, due to the repetition of heat due to initial filling and operation, the arrangement of the catalyst particles is biased, and the size between the catalyst particles is biased. For this reason, the raw material and water vapor flow in many places with large gaps.

このため、改質部内の触媒の一部には原料と水蒸気が流れない所が生じ、また、触媒の他の部分には原料と水蒸気が過度に流れSV値(反応ガス流量を触媒の体積で割った値で示され、この値が小さいと反応ガスは触媒の中をゆっくりと流れ十分に反応できるが、触媒量が多くなる)が大きくなり十分触媒反応をしないうちに改質部から出て行くことになる。そのため、改質効率が低くなり、また、改質触媒への過度の負荷による劣化が生じ、長期信頼性を確保することができずシステム効率が低下するという課題を有していた。   For this reason, the raw material and water vapor do not flow in some of the catalyst in the reforming section, and the raw material and water vapor flow excessively in the other part of the catalyst, and the SV value (reaction gas flow rate is the volume of the catalyst). If this value is small, the reaction gas will flow slowly through the catalyst and can react sufficiently, but the amount of catalyst will increase), and it will leave the reforming section before it becomes sufficiently catalytic. Will go. Therefore, the reforming efficiency is lowered, and deterioration due to an excessive load on the reforming catalyst occurs, so that long-term reliability cannot be ensured and the system efficiency is lowered.

本発明は、前記従来の課題を解決するもので、原料の少なくとも一部を複数回改質部を通過させて繰り返して改質反応させることにより、改質効率の向上を図ると共に、触媒の劣化を防止し耐久信頼性に優れた水素生成器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and at least a part of the raw material is repeatedly passed through the reforming section a plurality of times and repeatedly undergoes a reforming reaction, thereby improving the reforming efficiency and deteriorating the catalyst. An object of the present invention is to provide a hydrogen generator that is excellent in durability and reliability.

前記従来の課題を解決するために、本発明の水素生成器は、原料と水を供給し加熱手段を有する改質部と、CO変成部と、CO除去部とを順次接続し、前記改質部のガス出口部とガス入口部を接続するバイパス管に搬送手段を介して構成している。このことにより、原料を複数回改質部に通過させることにより繰り返して改質反応させることができる。このため、改質部を流れる原料流量を多くして触媒全体に均一な流れとして、触媒全体の活用と過負荷を防止するとともに原料を改質部に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   In order to solve the above-described conventional problems, the hydrogen generator of the present invention sequentially connects a reforming unit that supplies raw materials and water and has a heating means, a CO conversion unit, and a CO removal unit, The gas outlet part and the gas inlet part are connected to a bypass pipe via a conveying means. Thus, the reforming reaction can be repeated by allowing the raw material to pass through the reforming section a plurality of times. For this reason, the flow rate of the raw material flowing through the reforming section is increased so that the flow is uniform throughout the catalyst, so that the entire catalyst is utilized and overload is prevented. Since the reaction can be promoted, an efficient system by improving the reforming efficiency and deterioration of the catalyst can be prevented, and a highly reliable hydrogen generator can be obtained.

本発明の水素生成器は、原料と水とを昇温する加熱手段を有する改質部と、該改質部に順次接続されたCO変成部及びCO除去部と、前記改質部に設けられた出口部と入口部とを接続するバイパス管と、該バイパス管に設けた搬送手段とを備えたことにより、原料を複数回にわたって改質部を通過させることが可能となり、その結果、改質部を流れる原料は触媒全体に触れる流れとなるので、触媒全体が有効に活用され過負荷を防止し、実質的にSV値を小さくして反応を促進することができる。即ち、改質効率の向上によって、触媒の劣化が防止され高耐久信頼性の水素生成器を実現することが可能となる。   The hydrogen generator according to the present invention is provided with a reforming unit having a heating means for raising the temperature of the raw material and water, a CO conversion unit and a CO removal unit sequentially connected to the reforming unit, and the reforming unit. Provided with a bypass pipe connecting the outlet part and the inlet part, and a conveying means provided in the bypass pipe, the raw material can be passed through the reforming part multiple times. Since the raw material flowing through the part is in contact with the entire catalyst, the entire catalyst is effectively utilized to prevent overload, and the reaction can be promoted by substantially reducing the SV value. That is, by improving the reforming efficiency, it is possible to realize a highly durable and reliable hydrogen generator that prevents deterioration of the catalyst.

請求項1記載の発明は、原料と水を供給し加熱手段を有する改質部と、CO変成部と、CO除去部とを順次接続し、前記改質部の出口部と入口部を接続するバイパス管に搬送手段を介して構成することを特徴とする。このことにより、原料を複数回改質部に通過させることにより繰り返して改質反応させることができる。このため、改質部を流れる原料流量を多くして触媒全体に均一な流れとして、触媒全体の活用と過負荷を防止するとともに原料を改質部に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   According to the first aspect of the present invention, a reforming unit that supplies a raw material and water and has a heating means, a CO conversion unit, and a CO removal unit are sequentially connected, and an outlet and an inlet of the reforming unit are connected. The bypass pipe is configured via a conveying means. Thus, the reforming reaction can be repeated by allowing the raw material to pass through the reforming section a plurality of times. For this reason, the flow rate of the raw material flowing through the reforming section is increased so that the flow is uniform throughout the catalyst, so that the entire catalyst is utilized and overload is prevented. Since the reaction can be promoted, an efficient system by improving the reforming efficiency and deterioration of the catalyst can be prevented, and a highly reliable hydrogen generator can be obtained.

請求項2記載の発明は、特に請求項1記載の水素生成器をバイパス管には電磁弁または逆止弁を介して接続した構成とし、前記電磁弁または逆止弁は、搬送手段運転中は開放し、かつ前記搬送手段停止時は閉止としたことにより、バイパス管は、運転中は確実に開放とし、運転停止時は閉塞してこの系に原料ガスや水蒸気の流入を防止することができる。そのために、バイパス管の運転停止時にこの管で水蒸気の凝縮して溜まることが無く高効率を維持できる。さらに、バイパス管の閉塞を可能とし原料ガスのショートカットを無くし、ガスの移動による改質部、CO変成部、CO除去部の触媒劣化も防止でき、耐久信頼性が向上する。   The invention according to claim 2 is particularly configured such that the hydrogen generator according to claim 1 is connected to a bypass pipe via a solenoid valve or a check valve, and the solenoid valve or the check valve is operated during the operation of the conveying means. By opening and closing when the conveying means is stopped, the bypass pipe can be surely opened during operation and closed when operation is stopped to prevent inflow of raw material gas and water vapor into this system. . Therefore, when the operation of the bypass pipe is stopped, high efficiency can be maintained without condensing and collecting water vapor in this pipe. Further, the bypass pipe can be closed, the shortcut of the raw material gas is eliminated, the catalyst deterioration of the reforming section, the CO conversion section, and the CO removal section due to gas movement can be prevented, and the durability reliability is improved.

請求項3記載の発明は、特に請求項1記載の水素生成器を水素の発生量を増減する時は、少なくとも、搬送手段を動作させる。このことにより、水素発生量が増減しても、転化率を高く反応を安定することができる。すなわち、水素生成器を水素の発生量を増減するために原料ガス流量や水蒸気量をこれに合わせて増減すると、加熱と吸熱量の増減により改質部の温度が変化し、また、水蒸気の蒸発遅れや原料ガスとの不均一な混合、一部でのS/Cの低下を生じた。そこで、水素の発生量を増減する時は、搬送手段を動作させバイパス管にガスを流して循環させることにより、改質部を流れるガス流量を多くして触媒全体に均一な流れとして触媒全体の活用と、原料を改質部に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、転化率を安定して高くたもつ事が可能となり、安定したシステムと触媒の劣化を防止して耐久信頼性の高い操作性と信頼性の優れた装置となる。   The invention described in claim 3 operates the conveying means at least when the hydrogen generator according to claim 1 increases or decreases the amount of hydrogen generated. Thereby, even if the amount of hydrogen generation increases or decreases, the conversion can be increased and the reaction can be stabilized. That is, if the hydrogen generator increases or decreases the amount of hydrogen generated to increase or decrease the amount of generated hydrogen, the temperature of the reforming section changes due to the increase or decrease in heating and endothermic amount, and the evaporation of water vapor. Delay, non-uniform mixing with the raw material gas, and a partial decrease in S / C occurred. Therefore, when increasing or decreasing the amount of hydrogen generated, the conveying means is operated and gas is circulated through the bypass pipe to increase the gas flow rate through the reforming section so that the flow of the entire catalyst is uniform. Utilization and the flow of raw materials to the reforming section multiple times can reduce the actual SV value and promote the reaction, making it possible to keep the conversion rate stable and high, and prevent stable system and catalyst deterioration. This makes it a highly durable and reliable device with excellent operability and reliability.

請求項4記載の発明は、特に請求項1〜3記載の水素生成器を水素の発生量を増減に応じて、バイパス管を流す流量を増減して、改質部を流れる流量を常に一定量としたことにより、より原料ガス流量変化に対して安定化でき、システムは負荷に対する動作応答良く、より操作性と信頼性の優れた装置となる。すなわち、負荷に応じて発生水素量を変化させても、改質部を流れる原料ガスとバイパスからのガスの和は一定となり、流量を常に同じに出来る。このため、流量の変化により生じる水蒸気の蒸発遅れや原料ガスとの不均一な混合、一部でのS/Cの低下は発生することが無く、システムは負荷に対する動作応答良く、操作性と信頼性の向上が図れる。   In the invention according to claim 4, the hydrogen generator according to claims 1 to 3, particularly, the flow rate of flowing through the reforming section is constantly increased by increasing or decreasing the flow rate of the bypass pipe according to the increase or decrease of the hydrogen generation amount. As a result, the system can be more stable against changes in the raw material gas flow rate, and the system has a better operational response to the load, and is a device with better operability and reliability. That is, even if the amount of generated hydrogen is changed according to the load, the sum of the raw material gas flowing through the reforming section and the gas from the bypass is constant, and the flow rate can always be the same. For this reason, there is no delay in evaporation of water vapor caused by changes in flow rate, non-uniform mixing with the raw material gas, or a partial decrease in S / C, and the system has good operational response to the load, operability and reliability. Can improve the performance.

請求項5記載の発明は、特に請求項1記載の水素生成器をバイパス管は、断熱して構成してある。改質部から出るガスは、多分の水蒸気を含んでおり、バイパス管で放熱すると液化してバイパス管を閉塞したり、改質部に戻るガスのS/Cが低下し水素改質反応を阻害する。また、バイパス管で放熱すると、改質部に戻るガスの温度が低下し、改質反応を保つ為に改質部を高温とするエネルギーが増加し、改質効率が低下する。バイパス管は、断熱したことにより、改質部から出てバイパス管を通り再び改質部に戻るガスの冷却を防止でき、水素の改質効率を高く安定して保ちかつ、放熱を防止して高効率なシステムとなる。   In the invention according to claim 5, the hydrogen generator according to claim 1 is constituted by insulating the bypass pipe. The gas coming out of the reforming part contains a lot of water vapor, and if it dissipates heat in the bypass pipe, it liquefies and closes the bypass pipe, or the S / C of the gas returning to the reforming part decreases and inhibits the hydrogen reforming reaction To do. In addition, when the heat is radiated through the bypass pipe, the temperature of the gas returning to the reforming section decreases, the energy for raising the reforming section to maintain the reforming reaction increases, and the reforming efficiency decreases. By insulating the bypass pipe, it is possible to prevent the cooling of the gas coming out of the reforming section, returning to the reforming section through the bypass pipe, keeping the hydrogen reforming efficiency high and stable, and preventing heat dissipation. It becomes a highly efficient system.

請求項6記載の発明は、特に請求項1記載の水素生成器をバイパス管には、加熱手段を構成したことにより、改質部から出るガスを加熱でき、バイパス管で放熱して液化してバイパス管を閉塞したり、改質部に戻るガスのS/Cが低下し水素改質反応を阻害することを防止できる。このため、改質部から出てバイパス管を通り再び改質部に戻るガスの水分結露を防止でき、水素の改質効率を高く安定して保ち高効率なシステムとなる。   The invention described in claim 6 is the hydrogen generator according to claim 1, in particular, because the bypass pipe is configured with a heating means, so that the gas emitted from the reforming section can be heated and radiated and liquefied by the bypass pipe. It is possible to prevent the hydrogen reforming reaction from being inhibited by closing the bypass pipe or reducing the S / C of the gas returning to the reforming section. For this reason, it is possible to prevent moisture condensation of the gas that comes out of the reforming section and returns to the reforming section through the bypass pipe, and the hydrogen reforming efficiency is kept high and stable, resulting in a highly efficient system.

請求項7記載の発明は、特に請求項1記載の水素生成器をバイパス管には、加熱手段と温度検知手段を構成したことにより、バイパス管の温度を温度検知手段により計測して加熱手段を動作させることが出来る。このため、加熱手段によりバイパス管を加熱しすぎて高温となりバイパス管内のガスが過熱して炭素が析出することや、バイパス管を加熱足りなくて低温となりバイパス管内のガス中の水蒸気が液化してバイパス管を閉塞したり、改質部に戻るガスのS/Cが低下し水素改質反応を阻害することを防止でき、水素の改質効率を高く安定して保ち高効率なシステムとなる。   In the invention according to claim 7, in particular, since the hydrogen generator according to claim 1 is provided with a heating means and a temperature detection means in the bypass pipe, the temperature of the bypass pipe is measured by the temperature detection means and the heating means is set. It can be operated. For this reason, the bypass pipe is overheated by the heating means and becomes high temperature, the gas in the bypass pipe is overheated and carbon is precipitated, or the bypass pipe is not heated enough to become low temperature and the water vapor in the gas in the bypass pipe is liquefied. It is possible to prevent the S / C of the gas returning to the reforming section from being blocked by blocking the bypass pipe and preventing the hydrogen reforming reaction, and the hydrogen reforming efficiency is kept high and stable, resulting in a highly efficient system.

請求項8記載の発明は、特に請求項1記載の水素生成器をCO変成部、CO除去部の少なくとも一方には、改質後の原料が通過する出口部と入口部が設けられ、且つこれら出口部と入口部とを接続するバイパス管に搬送手段を備えたことを特徴としている。このことにより、原料ガスを複数回CO変成部、CO除去部の少なくとも一方に通過させることにより繰り返して変成反応または選択酸化反応させることができる。このため、CO変成部、CO除去部の少なくとも一方を流れる原料ガス流量を多くして触媒全体に均一な流れとして、触媒全体の活用と過負荷を防止するとともに原料ガスをCO変成部、CO除去部の少なくとも一方に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、変成反応または選択酸化反応を促進して改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   In the invention described in claim 8, in particular, in the hydrogen generator according to claim 1, at least one of the CO conversion section and the CO removal section is provided with an outlet section and an inlet section through which the reformed raw material passes, and these The present invention is characterized in that a conveying means is provided in a bypass pipe that connects the outlet portion and the inlet portion. This allows the source gas to be repeatedly passed through at least one of the CO conversion section and the CO removal section, thereby repeatedly performing the conversion reaction or selective oxidation reaction. For this reason, the flow rate of the raw material gas flowing through at least one of the CO conversion section and the CO removal section is increased so that the flow is uniform over the entire catalyst, preventing the entire catalyst from being used and overloading. Since the actual SV value can be reduced and the reaction can be promoted by flowing multiple times in at least one of the parts, the transformation reaction or the selective oxidation reaction is promoted to prevent the efficient system and catalyst from being deteriorated by improving the reforming efficiency. It becomes a hydrogen generator with high durability and reliability.

請求項9記載の発明は、特に請求項8記載の水素生成器をバイパス管には電磁弁または逆止弁を介して接続した構成とし、前記電磁弁または逆止弁は、搬送手段運転中は開放し、かつ前記搬送手段停止時は閉止としたことにより、バイパス管は、運転中は確実に開放とし、運転停止時は閉塞してこの系に原料ガスや水蒸気の流入を防止することができる。そのために、バイパス管の運転停止時にこの管で水蒸気の凝縮して溜まることが無く高効率を維持できる。さらに、バイパス管の閉塞を可能とし原料ガスのショートカットを無くし、ガスの移動による改質部、CO変成部、CO除去部の触媒劣化も防止でき、耐久信頼性が向上する。   The invention according to claim 9 is configured such that the hydrogen generator according to claim 8 is connected to the bypass pipe via an electromagnetic valve or a check valve, and the electromagnetic valve or check valve is not operated during the operation of the conveying means. By opening and closing when the conveying means is stopped, the bypass pipe can be surely opened during operation and closed when operation is stopped to prevent inflow of raw material gas and water vapor into this system. . Therefore, when the operation of the bypass pipe is stopped, high efficiency can be maintained without condensing and collecting water vapor in this pipe. Further, the bypass pipe can be closed, the shortcut of the raw material gas is eliminated, the catalyst deterioration of the reforming section, the CO conversion section, and the CO removal section due to gas movement can be prevented, and the durability reliability is improved.

請求項10記載の発明は、特に請求項8、9記載の水素生成器を水素の発生量を増減に応じて、バイパス管を流す流量を増減して、CO変成部またはCO除去部を流れる流量を常に一定量としたことにより、より原料ガス流量変化に対して安定化でき、システムは負荷に対する動作応答良く、より操作性と信頼性の優れた装置となる。すなわち、負荷に応じて発生水素量を変化させても、CO変成部またはCO除去部を流れる原料ガスとバイパスからのガスの和は一定となり、流量を常に同じに出来る。このため、流量の変化により生じる水蒸気の蒸発遅れや原料ガスとの不均一な混合、一部でのS/Cの低下は発生することが無く、システムは負荷に対する動作応答良く、操作性と信頼性の向上が図れる。   The invention according to claim 10 is a flow rate at which the hydrogen generator according to claims 8 and 9 increases or decreases the flow rate of flowing through the bypass pipe in accordance with the increase or decrease in the amount of hydrogen generated, and flows through the CO conversion section or CO removal section. By always maintaining a constant amount, the system can be more stable with respect to changes in the raw material gas flow rate, and the system has a better operational response to the load, and becomes a device with better operability and reliability. That is, even if the amount of generated hydrogen is changed according to the load, the sum of the raw material gas flowing through the CO conversion section or the CO removal section and the gas from the bypass is constant, and the flow rate can always be the same. For this reason, there is no delay in evaporation of water vapor caused by changes in flow rate, non-uniform mixing with the raw material gas, or a partial decrease in S / C, and the system has good operational response to the load, operability and reliability. Can improve the performance.

請求項11記載の発明は、特に請求項8〜10記載の水素生成器をバイパス管は、断熱してある。CO変成部またはCO除去部から出るガスは、多分の水蒸気を含んでおり、バイパス管で放熱すると液化してバイパス管を閉塞したり、CO変成部またはCO除去部に戻るガスのS/Cが低下し水素改質反応を阻害する。また、バイパス管で放熱すると、CO変成部またはCO除去部に戻るガスの温度が低下し、改質反応を保つ為にCO変成部またはCO除去部を高温とするエネルギーが増加し、変成効率、選択酸化効率が低下する。バイパス管は、断熱したことにより、CO変成部またはCO除去部から出てバイパス管を通り再CO変成部またはCO除去部に戻るガスの冷却を防止でき、水素生成効率を高く安定して保ちかつ、放熱を防止して高効率なシステムとなる。   In the eleventh aspect of the present invention, in particular, the bypass pipe of the hydrogen generator according to the eighth to tenth aspects is insulated. The gas exiting from the CO conversion section or the CO removal section contains a large amount of water vapor, and when the heat is radiated in the bypass pipe, it liquefies and closes the bypass pipe, or the S / C of the gas returning to the CO conversion section or the CO removal section is It decreases and inhibits hydrogen reforming reaction. In addition, when the heat is radiated by the bypass pipe, the temperature of the gas returning to the CO conversion section or the CO removal section is reduced, and the energy for increasing the temperature of the CO conversion section or the CO removal section to maintain the reforming reaction is increased. Selective oxidation efficiency decreases. By bypassing the bypass pipe, it is possible to prevent cooling of the gas that exits the CO conversion section or CO removal section and returns to the re-CO conversion section or CO removal section through the bypass pipe, and keeps the hydrogen generation efficiency high and stable. , Prevents heat dissipation and becomes a highly efficient system.

請求項12記載の発明は、特に請求項8〜11記載の水素生成器をバイパス管には、加熱手段を構成したことにより、CO変成部またはCO除去部から出るガスを加熱でき、バイパス管で放熱して液化してバイパス管を閉塞したり、CO変成部またはCO除去部に戻るガスのS/Cが低下し水素改質反応を阻害することを防止できる。このため、CO変成部またはCO除去部から出てバイパス管を通り再びCO変成部またはCO除去部に戻るガスの水分結露を防止でき、水素生成効率を高く安定して保ち高効率なシステムとなる。   In the invention described in claim 12, in particular, the hydrogen generator according to claims 8-11 is provided with a heating means in the bypass pipe so that the gas emitted from the CO conversion section or the CO removal section can be heated. It is possible to prevent the hydrogen reforming reaction from being inhibited by reducing the S / C of the gas returning to the CO conversion section or the CO removal section by blocking the bypass pipe by radiating and liquefying. For this reason, it is possible to prevent moisture dew condensation of the gas that comes out of the CO conversion section or the CO removal section and returns to the CO conversion section or the CO removal section again through the bypass pipe, and it becomes a highly efficient system that keeps the hydrogen generation efficiency high and stable. .

請求項13記載の発明は、特に請求項12記載の水素生成器をバイパス管には、加熱手段と温度検知手段を構成したことにより、バイパス管の温度を温度検知手段により計測して加熱手段を動作させることが出来る。このため、加熱手段によりバイパス管を加熱しすぎて高温となりバイパス管内のガスが過熱して炭素が析出することや、バイパス管を加熱足りなくて低温となりバイパス管内のガス中の水蒸気が液化してバイパス管を閉塞したり、CO変成部またはCO除去部に戻るガスのS/Cが低下し水素改質反応を阻害することを防止でき、水素生成率を高く安定して保ち高効率なシステムとなる。   In the invention described in claim 13, the hydrogen generator according to claim 12 is provided with a heating means and a temperature detection means in the bypass pipe, and the temperature of the bypass pipe is measured by the temperature detection means. It can be operated. For this reason, the bypass pipe is overheated by the heating means and becomes high temperature, the gas in the bypass pipe is overheated and carbon is precipitated, or the bypass pipe is not heated enough to become low temperature and the water vapor in the gas in the bypass pipe is liquefied. A high-efficiency system that can block the bypass pipe or prevent the S / C of the gas returning to the CO conversion section or CO removal section from lowering and inhibiting the hydrogen reforming reaction, and maintaining a high and stable hydrogen production rate. Become.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における水素生成器のブロック図である。図1において、1は改質部であり、脱硫部2を介した炭化水素系原料(以下、原料と呼称)の供給手段3と水の供給手段4と加熱手段5に接続する。6はCO変成部、7はCO除去部であり、改質部1から、CO変成部6、CO除去部7を順次接続し燃料電池8と接続してある。加熱手段5は、発熱する燃焼部9と発生した熱を改質部1に伝熱する熱交換部10よりなる。燃焼部9には、燃料ガスと燃焼用空気を供給するとともに、燃料として燃料電池8のアノード側出口からオフガスを燃焼部9に導くオフガス燃料管11を接続してある。また、改質部1の改質ガス出口1Aから改質部1の原料ガス入口1Bにバイパス管12を設け、この途中に搬送手段であるポンプ13と、開閉弁14を設けてある。
(Embodiment 1)
FIG. 1 is a block diagram of a hydrogen generator according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a reforming unit, which is connected to a hydrocarbon-based raw material (hereinafter referred to as raw material) supply unit 3, a water supply unit 4, and a heating unit 5 via a desulfurization unit 2. Reference numeral 6 denotes a CO conversion unit, and 7 denotes a CO removal unit. The CO conversion unit 6 and the CO removal unit 7 are sequentially connected to the fuel cell 8 from the reforming unit 1. The heating means 5 includes a combustion section 9 that generates heat and a heat exchange section 10 that transfers the generated heat to the reforming section 1. The combustion unit 9 is connected to an off-gas fuel pipe 11 that supplies fuel gas and combustion air and guides off-gas from the anode outlet of the fuel cell 8 to the combustion unit 9 as fuel. Further, a bypass pipe 12 is provided from the reformed gas outlet 1A of the reforming unit 1 to the raw material gas inlet 1B of the reforming unit 1, and a pump 13 and an opening / closing valve 14 are provided on the way.

以上のように構成された水素生成器について、以下その動作、作用を説明する。改質部1は、原料を改質するための触媒を担持した多数の触媒粒が充填されている。触媒の担持には、例えば、鉄板やセラミックス等の支持体を用いることができる。気化された原料、水蒸気、空気が供給されると、水素および一酸化炭素が生成される。この反応は、通常、600℃前後の高温状態で行われる。そのため、加熱手段5は、発熱する燃焼部9と発生した熱を改質部1に伝熱する熱交換部10よりなり、改質部1を加熱する。高温となった改質部1では炭化水素が水蒸気と反応して水素リッチな改質ガスが生成される。改質部1は、炭化水素を原料とする場合には500〜700℃の温度に加温することが必要であり、改質触媒としては例えばNi系、Ru系等の触媒が用いられる。灯油その他の炭化水素系原料を使用する場合には、特に高級炭化水素系化合物に対し、改質時の条件によって、炭素が析出しやすいことが知られている。改質部1での改質条件は、反応を促進しつつ、炭素の析出を抑制するようにする。   The operation and action of the hydrogen generator configured as described above will be described below. The reforming section 1 is filled with a large number of catalyst particles carrying a catalyst for reforming the raw material. For supporting the catalyst, for example, a support such as an iron plate or ceramics can be used. When the vaporized raw material, water vapor, and air are supplied, hydrogen and carbon monoxide are generated. This reaction is usually performed at a high temperature of about 600 ° C. Therefore, the heating means 5 includes the combustion unit 9 that generates heat and the heat exchange unit 10 that transfers the generated heat to the reforming unit 1, and heats the reforming unit 1. In the reforming section 1 that has reached a high temperature, the hydrocarbon reacts with the steam to produce a hydrogen-rich reformed gas. The reforming section 1 needs to be heated to a temperature of 500 to 700 ° C. when a hydrocarbon is used as a raw material. As the reforming catalyst, for example, a Ni-based or Ru-based catalyst is used. In the case of using kerosene or other hydrocarbon-based raw materials, it is known that carbon is likely to precipitate depending on the conditions during reforming, particularly for higher hydrocarbon compounds. The reforming conditions in the reforming unit 1 suppress the carbon deposition while promoting the reaction.

脱硫部2は、原料供給手段3から送られた原料を脱硫する。硫黄分を含んだガスは改質部の触媒劣化のみならず燃料電池8の発電性能を劣悪にする。そのため、予め脱硫部2にて原料の硫黄分を吸着等により除去する。   The desulfurization unit 2 desulfurizes the raw material sent from the raw material supply means 3. The gas containing sulfur deteriorates not only the catalyst deterioration in the reforming section but also the power generation performance of the fuel cell 8. Therefore, the sulfur content of the raw material is removed beforehand by adsorption or the like in the desulfurization section 2.

CO変成部6について述べる。生成する改質ガス中には未反応のメタン、未反応の水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が発生して8〜15%程度含まれている。このため改質ガスは、この一酸化炭素を二酸化炭素と水素へ変えて除去するためにCO変成部を設ける。CO変成部6では例えばFe−Cr系触媒、Cu−Zn系触媒、あるいはPt触媒が用いられ、約300℃程度で反応が行われる。   The CO transformation unit 6 will be described. The generated reformed gas contains about 8 to 15% of carbon monoxide (CO) generated in addition to unreacted methane, unreacted water vapor, and generated carbon dioxide. For this reason, the reformed gas is provided with a CO conversion section for removing the carbon monoxide by converting it to carbon dioxide and hydrogen. For example, a Fe—Cr-based catalyst, a Cu—Zn-based catalyst, or a Pt catalyst is used in the CO conversion unit 6 and the reaction is performed at about 300 ° C.

CO変成部6中での反応は CO+H2O→CO2+H2で必要な水蒸気は改質部1の残留水蒸気を利用する。そして、CO変成部6から出る改質ガスは、未反応のメタンと余剰水蒸気と、水素と、二酸化炭素とからなる。しかし、この改質ガスには、COは完全には除去されず、1%程度以下ではあるがCOが含まれている。燃料電池8に供給する燃料水素中のCOの許容濃度は10ppm程度であり、これを越えると電池性能が著しく劣化するので、CO成分は燃料電池8へ導入する前にできる限り除去する必要がある。このため、改質ガスはCO変成部6によりCO濃度を1%前後まで低下させた後、CO除去部7を設ける。CO除去部7は、一酸化炭素を選択的に酸化する触媒が担持されており、空気などの酸化剤が添加され、2CO+O2→2CO2とCO2に変えることでCOを除去し、改質ガスのCO濃度を10ppm以下に低減させる。このような構成と動作で、定常時は原料ガスから水素に改質して燃料電池8を運転し発電を継続する。   The reaction in the CO conversion unit 6 is CO + H 2 O → CO 2 + H 2, and the steam required for the reforming unit 1 is used as the steam necessary for the reaction. The reformed gas exiting from the CO conversion unit 6 is composed of unreacted methane, excess steam, hydrogen, and carbon dioxide. However, this reformed gas does not completely remove CO, but contains CO although it is less than about 1%. The allowable concentration of CO in the fuel hydrogen supplied to the fuel cell 8 is about 10 ppm, and if it exceeds this, the cell performance is remarkably deteriorated. Therefore, it is necessary to remove the CO component as much as possible before introducing it into the fuel cell 8. . For this reason, the CO removal unit 7 is provided after the reformed gas has its CO concentration lowered to about 1% by the CO conversion unit 6. The CO removal unit 7 supports a catalyst that selectively oxidizes carbon monoxide, and an oxidant such as air is added to remove CO by changing from 2CO + O 2 → 2CO 2 and CO 2. Reduce the concentration to 10 ppm or less. With such a configuration and operation, in a steady state, the raw material gas is reformed to hydrogen, the fuel cell 8 is operated, and power generation is continued.

燃料電池8は、CO除去部7から供給された水素の多い改質ガスをアノード入口から流入し、カソード入口からは空気を供給する。そして発電反応後、カソード出口からは窒素の多い排気ガスを排出し、アノード出口からは水素が残ったオフガスが排出する。定常運転中は、このオフガスを燃焼部9にオフガス燃料管11で導き、燃焼部9で燃焼し改質部1の加熱に寄与させシステムの効率を向上させる。そして、運転中は、開閉弁14を開とし、ポンプ13を駆動してバイパス管12に原料ガスを流すことにより、改質ガスを改質部1に複数回導く。   In the fuel cell 8, the reformed gas containing a large amount of hydrogen supplied from the CO removing unit 7 flows from the anode inlet, and air is supplied from the cathode inlet. After the power generation reaction, exhaust gas rich in nitrogen is discharged from the cathode outlet, and off-gas with hydrogen remaining is discharged from the anode outlet. During steady operation, this off-gas is guided to the combustion section 9 by the off-gas fuel pipe 11 and burned in the combustion section 9 to contribute to the heating of the reforming section 1 and improve the efficiency of the system. During operation, the on-off valve 14 is opened, the pump 13 is driven, and the raw material gas is caused to flow through the bypass pipe 12, thereby guiding the reformed gas to the reforming unit 1 a plurality of times.

原料を複数回改質部1に通過させることにより繰り返して改質反応させることができる。このため、改質部1を流れる原料流量を多くして触媒全体に均一な流れとして、触媒全体の活用と過負荷を防止するとともに原料を改質部1に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   By allowing the raw material to pass through the reforming unit 1 a plurality of times, the reforming reaction can be repeated. Therefore, the flow rate of the raw material flowing through the reforming unit 1 is increased so that the flow is uniform throughout the catalyst, and the entire catalyst is utilized and overload is prevented. Since the reaction can be made smaller and the reaction can be promoted, an efficient system by improving reforming efficiency and deterioration of the catalyst can be prevented, and a highly reliable hydrogen generator can be obtained.

また、バイパス管12には電磁弁である開閉弁14を介して接続した構成としたことにより、開閉弁14は、搬送手段13運転中は開放し、かつ搬送手段13停止時は閉止としたことにより、バイパス管12は、運転中は確実に開放とし、運転停止時は閉塞してこの系に原料ガスや水蒸気の流入を防止することができる。そのために、バイパス管12の運転停止時にこの管で水蒸気の凝縮して溜まることが無く高効率を維持できる。さらに、バイパス管12の閉塞を可能とし原料ガスのショートカットを無くし、ガスの移動による改質部1、CO変成部6、CO除去部7の触媒劣化も防止でき、耐久信頼性が向上する。   Further, since the bypass pipe 12 is connected via an on-off valve 14 which is an electromagnetic valve, the on-off valve 14 is opened during the operation of the conveying means 13 and closed when the conveying means 13 is stopped. Thus, the bypass pipe 12 can be reliably opened during operation and closed when the operation is stopped to prevent the inflow of raw material gas and water vapor into the system. Therefore, when the operation of the bypass pipe 12 is stopped, the high efficiency can be maintained without condensing and collecting water vapor in this pipe. Furthermore, the bypass pipe 12 can be closed, the shortcut of the raw material gas is eliminated, catalyst deterioration of the reforming unit 1, the CO conversion unit 6 and the CO removal unit 7 due to gas movement can be prevented, and durability reliability is improved.

また、水素の発生量を増減する時は、少なくとも、搬送手段13を動作させることにより、水素発生量が増減しても、転化率を高く反応を安定することができる。すなわち、負荷に応じて水素生成器の水素発生量を増減するために原料ガス流量や水蒸気量をこれに合わせて増減すると、加熱と吸熱量の増減により改質部1の温度が変化し、また、水蒸気の蒸発遅れや原料ガスとの不均一な混合、一部でのS/Cの低下を生じた。そこで、水素の発生量を増減する時は、搬送手段13を動作させバイパス管12にガスを流して循環させることにより、改質部1を流れるガス流量を多くして触媒全体に均一な流れとして触媒全体の活用と、原料を改質部1に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、転化率を安定して高くたもつ事が可能となり、安定したシステムと触媒の劣化を防止して耐久信頼性の高い操作性と信頼性の優れた装置となる。   Further, when increasing or decreasing the amount of hydrogen generated, at least by operating the transport means 13, even if the amount of hydrogen generated increases or decreases, the conversion can be increased and the reaction can be stabilized. That is, when the raw material gas flow rate or the water vapor amount is increased or decreased in accordance with the load to increase or decrease the hydrogen generation amount of the hydrogen generator, the temperature of the reforming unit 1 changes due to the increase or decrease in heating and endothermic amount. , Water vapor evaporation delay, non-uniform mixing with the raw material gas, and partial S / C reduction occurred. Therefore, when increasing or decreasing the amount of generated hydrogen, the gas flow through the reforming unit 1 is increased by operating the conveying means 13 and flowing the gas through the bypass pipe 12 to circulate it so that the flow is uniform throughout the catalyst. By utilizing the entire catalyst and flowing the raw material through the reforming section 1 multiple times, the actual SV value can be reduced and the reaction can be promoted, so that the conversion rate can be stably increased. Deterioration is prevented, and the device has excellent durability and operability and reliability.

また、水素の発生量を増減に応じて、バイパス管12を流す流量を増減して、改質部1を流れる流量を常に一定量としたことにより、より原料ガス流量変化に対しても安定化が可能となり、システムは負荷に対する動作応答良く、より操作性と信頼性の優れた装置となる。すなわち、負荷に応じて発生水素量を変化させても、改質部1を流れる原料ガスとバイパス管12からのガスの和は一定となり、流量を常に同じに出来る。このため、流量の変化により生じる水蒸気の蒸発遅れや原料ガスとの不均一な混合、一部でのS/Cの低下は発生することが無く、システムは負荷に対する動作応答良く、操作性と信頼性の向上が図れる。   Further, the flow rate of the bypass pipe 12 is increased / decreased according to the increase / decrease of the hydrogen generation amount, and the flow rate of the reforming unit 1 is always kept constant, thereby further stabilizing the change in the raw material gas flow rate. Therefore, the system has a good operation response to the load, and becomes a device with higher operability and reliability. That is, even if the amount of generated hydrogen is changed according to the load, the sum of the raw material gas flowing through the reforming unit 1 and the gas from the bypass pipe 12 is constant, and the flow rate can be always the same. For this reason, there is no delay in evaporation of water vapor caused by changes in flow rate, non-uniform mixing with the raw material gas, or a partial decrease in S / C, and the system has good operational response to the load, operability and reliability. Can improve the performance.

(実施の形態2)
図2は、本発明の実施の形態2における水素生成器のブロック図である。実施例1と異なるところは、バイパス管は断熱材15で断熱し、加熱手段16と温度検知手段17を構成してある。
(Embodiment 2)
FIG. 2 is a block diagram of a hydrogen generator according to Embodiment 2 of the present invention. The difference from the first embodiment is that the bypass pipe is thermally insulated by a heat insulating material 15 to constitute a heating means 16 and a temperature detection means 17.

このことにより、改質部1から出るガスは、多分の水蒸気を含んでおり、バイパス管12で放熱すると液化してバイパス管12を閉塞したり、改質部1に戻るガスのS/Cが低下し水素改質反応を阻害する。また、バイパス管12で放熱すると、改質部1に戻るガスの温度が低下し、改質反応を保つ為に改質部1を高温とするエネルギーが増加し、改質効率が低下する。バイパス管は、断熱材15で断熱したことにより、改質部1から出てバイパス管12を通り再び改質部1に戻るガスの冷却を防止でき、水素の改質効率を高く安定して保ちかつ、放熱を防止して高効率なシステムとなる。   As a result, the gas exiting from the reforming section 1 contains a large amount of water vapor, and when the heat is radiated by the bypass pipe 12, it liquefies and closes the bypass pipe 12, or the S / C of the gas returning to the reforming section 1 It decreases and inhibits hydrogen reforming reaction. Further, when the heat is radiated by the bypass pipe 12, the temperature of the gas returning to the reforming unit 1 decreases, the energy for raising the reforming unit 1 to increase the temperature in order to maintain the reforming reaction, and the reforming efficiency decreases. By bypassing the bypass pipe with the heat insulating material 15, it is possible to prevent the cooling of the gas coming out of the reforming section 1 and returning to the reforming section 1 through the bypass pipe 12 and keeping the hydrogen reforming efficiency high and stable. In addition, heat dissipation is prevented and the system becomes highly efficient.

また、バイパス管12には、加熱手段16を構成したことにより、改質部1から出るガスを加熱でき、バイパス管12で放熱して液化してバイパス管12を閉塞したり、改質部1に戻るガスのS/Cが低下し水素改質反応を阻害することを防止できる。このため、改質部1から出てバイパス管12を通り再び改質部1に戻るガスの水分結露を防止でき、水素の改質効率を高く安定して保ち高効率なシステムとなる。   Further, since the bypass pipe 12 is provided with the heating means 16, the gas emitted from the reforming section 1 can be heated, and the bypass pipe 12 radiates and liquefies to close the bypass pipe 12, or the reforming section 1. It is possible to prevent the S / C of the gas returning to from decreasing and inhibiting the hydrogen reforming reaction. For this reason, it is possible to prevent moisture dew condensation of the gas that comes out of the reforming unit 1 and returns to the reforming unit 1 through the bypass pipe 12, and the hydrogen reforming efficiency is kept high and stable, resulting in a highly efficient system.

そして、バイパス管12には、加熱手段16と温度検知手段17を構成したことにより、バイパス管12の温度を温度検知手段17により計測して加熱手段16を動作させることが出来る。このため、加熱手段16によりバイパス管12を加熱しすぎて高温となりバイパス管12内のガスが過熱して炭素が析出することや、バイパス管12を加熱足りなくて低温となりバイパス管12内のガス中の水蒸気が液化してバイパス管12を閉塞したり、改質部1に戻るガスのS/Cが低下し水素改質反応を阻害することを防止でき、水素の改質効率を高く安定して保ち高効率なシステムとなり、システムは負荷に対する動作応答良く、より効率化と操作性と信頼性の優れた装置となる。   Since the bypass pipe 12 includes the heating means 16 and the temperature detection means 17, the temperature of the bypass pipe 12 can be measured by the temperature detection means 17 and the heating means 16 can be operated. For this reason, the bypass pipe 12 is heated too much by the heating means 16 and becomes high temperature, the gas in the bypass pipe 12 is overheated and carbon is precipitated, or the gas in the bypass pipe 12 becomes low temperature due to insufficient heating of the bypass pipe 12. It is possible to prevent the steam in the tank from liquefying and blocking the bypass pipe 12, or the S / C of the gas returning to the reforming unit 1 from being lowered and inhibiting the hydrogen reforming reaction. Therefore, the system becomes a highly efficient system, and the system has a good operation response to the load, and becomes a device with higher efficiency, operability and reliability.

(実施の形態3)
図3は、本発明の実施の形態3における水素生成器のブロック図である。実施例1と異なるところは、CO変成部6のガス出口部6Aとガス入口部6Bを接続するバイパス管18に搬送手段19と開閉弁20を介して構成し、CO除去部7のガス出口部7Aとガス入口部7Bを接続するバイパス管21に搬送手段22と開閉弁23を介して構成している。
(Embodiment 3)
FIG. 3 is a block diagram of a hydrogen generator according to Embodiment 3 of the present invention. The difference from the first embodiment is that a bypass pipe 18 connecting the gas outlet 6A and the gas inlet 6B of the CO shifter 6 is configured via a conveying means 19 and an on-off valve 20, and a gas outlet of the CO removing unit 7 is used. The bypass pipe 21 connecting the gas inlet 7B and the gas inlet 7B is configured via a conveying means 22 and an on-off valve 23.

このことにより、原料ガスを複数回CO変成部6、CO除去部7のおのおのに通過させることにより繰り返して変成反応と選択酸化反応させることができる。このため、CO変成部6、CO除去部7の流れる原料ガス流量を多くして触媒全体に均一な流れとして、触媒全体の活用と過負荷を防止するとともに原料ガスをCO変成部6、CO除去部7に複数回流れるため実質のSV値を小さくでき反応を促進できることにより、変成反応と選択酸化反応を促進して改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   This allows the source gas to pass through each of the CO conversion unit 6 and the CO removal unit 7 a plurality of times to repeatedly perform the conversion reaction and the selective oxidation reaction. For this reason, the flow rate of the raw material gas flowing through the CO conversion unit 6 and the CO removal unit 7 is increased so that the flow is uniform throughout the catalyst to prevent the entire catalyst from being used and overloaded, and the raw material gas is removed from the CO conversion unit 6 and CO. Since it flows to the part 7 multiple times, the actual SV value can be reduced and the reaction can be promoted, thereby promoting the transformation reaction and the selective oxidation reaction to prevent the deterioration of the efficient system and the catalyst due to the improvement of the reforming efficiency. It becomes a highly efficient hydrogen generator.

また、バイパス管18、21には電磁弁である開閉弁20、23を介して接続した構成により、開閉弁20、23は、搬送手段19、22運転中は開放し、かつ搬送手段19、20停止時は閉止としたことにより、バイパス管18、21は、運転中は確実に開放とし、運転停止時は閉塞してこの系に原料ガスや水蒸気の流入を防止することができる。そのために、バイパス管18、21の運転停止時にこの管で水蒸気の凝縮して溜まることが無く高効率を維持できる。さらに、バイパス管18、21の閉塞を可能とし原料ガスのショートカットを無くし、ガスの移動による改質部1、CO変成部6、CO除去部7の触媒劣化も防止でき、耐久信頼性が向上する。   The bypass pipes 18 and 21 are connected to the bypass pipes 18 and 21 through on-off valves 20 and 23, which are electromagnetic valves, so that the on-off valves 20 and 23 are opened during the operation of the transfer means 19 and 22, and the transfer means 19 and 20 are used. Since the bypass pipes 18 and 21 are closed during operation, the bypass pipes 18 and 21 can be reliably opened during operation, and can be closed during operation stop to prevent inflow of raw material gas and water vapor into the system. For this reason, when the operation of the bypass pipes 18 and 21 is stopped, the high-efficiency can be maintained without condensing and accumulating water vapor in the pipes. Further, the bypass pipes 18 and 21 can be closed, the raw material gas shortcut is eliminated, catalyst deterioration of the reforming unit 1, the CO conversion unit 6 and the CO removal unit 7 due to gas movement can be prevented, and durability reliability is improved. .

そして、水素の発生量を増減に応じて、バイパス管18、21を流す流量を増減して、CO変成部6とCO除去部7を流れる流量を常に一定量としたことにより、より原料ガス流量変化に対して安定化でき、システムは負荷に対する動作応答良く、より操作性と信頼性の優れた装置となる。すなわち、負荷に応じて発生水素量を変化させても、CO変成部6とCO除去部7を流れる原料ガスとバイパスからのガスの和は一定となり、流量を常に同じに出来る。このため、流量の変化により生じる水蒸気の蒸発遅れや原料ガスとの不均一な混合、一部でのS/Cの低下は発生することが無く、システムは負荷に対する動作応答良く、操作性と信頼性の向上が図れる。   Then, according to the increase or decrease of the amount of hydrogen generated, the flow rate of flowing through the bypass pipes 18 and 21 is increased or decreased so that the flow rate of flowing through the CO conversion unit 6 and the CO removal unit 7 is always a constant amount. The system can be stabilized against changes, and the system has a better response to the load, and is more operable and reliable. That is, even if the amount of generated hydrogen is changed according to the load, the sum of the raw material gas flowing through the CO conversion unit 6 and the CO removal unit 7 and the gas from the bypass is constant, and the flow rate can always be the same. For this reason, there is no delay in evaporation of water vapor caused by changes in flow rate, non-uniform mixing with the raw material gas, or a partial decrease in S / C, and the system has good operational response to the load, operability and reliability. Can improve the performance.

(実施の形態4)
図4は、本発明の実施の形態4における水素生成器のブロック図である。実施例1と異なるところは、バイパス管18、21の各々は、断熱材24、25で断熱され、加熱手段26、27と温度検知手段28、29が配設されている点である。そして、CO変成部6とCO除去部7から出るガスは、多分の水蒸気を含んでおり、バイパス管18、21で放熱すると液化してバイパス管18、21を閉塞したり、CO変成部6またはCO除去部21に戻るガスのS/Cが低下し水素改質反応を阻害する。また、バイパス管18、21で放熱すると、CO変成部6またはCO除去部21に戻るガスの温度が低下し、改質反応を保つ為にCO変成部6またはCO除去部21を高温とするエネルギーが増加し、変成効率、選択酸化効率が低下する。バイパス管18、21は、断熱したことにより、CO変成部6またはCO除去部21から出てバイパス管18、21を通り再CO変成部6またはCO除去部21に戻るガスの冷却を防止でき、水素生成効率が高く安定し、かつ放熱を防止して高効率なシステムとなる。
(Embodiment 4)
FIG. 4 is a block diagram of a hydrogen generator according to Embodiment 4 of the present invention. The difference from the first embodiment is that each of the bypass pipes 18 and 21 is thermally insulated by heat insulating materials 24 and 25, and heating means 26 and 27 and temperature detecting means 28 and 29 are provided. The gas exiting from the CO conversion unit 6 and the CO removal unit 7 contains a large amount of water vapor, and when the heat is radiated by the bypass pipes 18 and 21, the gas is liquefied and closes the bypass pipes 18 and 21, or the CO conversion unit 6 or The S / C of the gas that returns to the CO removal unit 21 is reduced, thereby inhibiting the hydrogen reforming reaction. Further, when the heat is radiated through the bypass pipes 18 and 21, the temperature of the gas returning to the CO conversion unit 6 or the CO removal unit 21 is lowered, and the energy that makes the CO conversion unit 6 or the CO removal unit 21 high temperature in order to maintain the reforming reaction. As a result, metamorphic efficiency and selective oxidation efficiency decrease. By bypassing the bypass pipes 18, 21, it is possible to prevent cooling of the gas that exits the CO conversion unit 6 or the CO removal unit 21, passes through the bypass pipes 18, 21, and returns to the re-CO conversion unit 6 or the CO removal unit 21. The hydrogen generation efficiency is high and stable, and heat dissipation is prevented, resulting in a highly efficient system.

そして、バイパス管18、21には、加熱手段26、27を構成したことにより、CO変成部6またはCO除去部7から出るガスを加熱でき、バイパス管18、21で放熱し液化してバイパス管18、21を閉塞したり、CO変成部6またはCO除去部7に戻るガスのS/Cが低下し水素改質反応を阻害することを防止できる。このため、CO変成部6またはCO除去部7から出てバイパス管18、21を通り再びCO変成部6またはCO除去部7に戻るガスの水分結露を防止でき、水素生成効率を高く安定して保ち高効率なシステムとなる。   The bypass pipes 18 and 21 are provided with heating means 26 and 27, so that the gas emitted from the CO conversion section 6 or the CO removal section 7 can be heated, and the bypass pipes 18 and 21 dissipate heat and liquefy it. It is possible to prevent the S / C of the gas returning to the CO conversion unit 6 or the CO removal unit 7 from being lowered and inhibiting the hydrogen reforming reaction. For this reason, it is possible to prevent moisture condensation of the gas that comes out of the CO conversion unit 6 or the CO removal unit 7 and returns to the CO conversion unit 6 or the CO removal unit 7 again through the bypass pipes 18 and 21, and the hydrogen generation efficiency is highly stable. Maintaining a highly efficient system.

そして、バイパス管18、21には、加熱手段26、27と温度検知手段28、29を構成したことにより、バイパス管18、21の温度を温度検知手段28、29により計測して加熱手段26、27を動作させ加熱量を変化させることが出来る。このため、加熱手段26、27によりバイパス管18、21を加熱しすぎて高温となりバイパス管18、21内のガスが過熱して炭素が析出することや、バイパス管18、21の加熱量不足により低温となりバイパス管18、21内のガス中の水蒸気が液化してバイパス管を閉塞したり、CO変成部6またはCO除去部7に戻るガスのS/Cが低下し水素改質反応を阻害することを防止でき、水素生成率を高く安定して保ち高効率なシステムとなる。   The bypass pipes 18 and 21 are configured with heating means 26 and 27 and temperature detection means 28 and 29, whereby the temperature of the bypass pipes 18 and 21 is measured by the temperature detection means 28 and 29, and the heating means 26, 27 can be operated to change the heating amount. For this reason, the bypass pipes 18 and 21 are heated too much by the heating means 26 and 27 and become high temperature, the gas in the bypass pipes 18 and 21 is overheated and carbon is deposited, or the bypass pipes 18 and 21 are not heated enough. The water vapor in the gas in the bypass pipes 18 and 21 is liquefied to close the bypass pipe, or the S / C of the gas returning to the CO conversion section 6 or the CO removal section 7 is lowered to inhibit the hydrogen reforming reaction. This can be prevented, and the hydrogen production rate can be kept high and stable, resulting in a highly efficient system.

本発明に係る水素生成器は、原料を複数回にわたって改質部を通過させることにより、原料は触媒全体に触れる流れとなるので、触媒全体が有効に活用され実質的にSV値を小さくして反応を促進することができ、固体高分子形燃料電池等の水素利用型燃料電池用として耐久信頼性に優れた水素供給器として適用できる。   In the hydrogen generator according to the present invention, since the raw material passes through the reforming section a plurality of times, the raw material is brought into contact with the entire catalyst, so that the entire catalyst is effectively utilized and the SV value is substantially reduced. The reaction can be promoted, and it can be applied as a hydrogen supplier excellent in durability and reliability for a hydrogen-based fuel cell such as a solid polymer fuel cell.

本発明の実施の形態1における水素生成器のブロック図Block diagram of a hydrogen generator in Embodiment 1 of the present invention 本発明の実施の形態2における水素生成器のブロック図Block diagram of a hydrogen generator in Embodiment 2 of the present invention 本発明の実施の形態3における水素生成器のブロック図Block diagram of a hydrogen generator in Embodiment 3 of the present invention 本発明の実施の形態4における水素生成器のブロック図Block diagram of a hydrogen generator in Embodiment 4 of the present invention 従来の水素生成器を示すブロック図Block diagram showing a conventional hydrogen generator 従来の水素生成器の改質反応器を示す断面図Sectional view showing a reforming reactor of a conventional hydrogen generator

符号の説明Explanation of symbols

1 改質部
6 CO変成部
7 CO除去部
8 燃料電池
12 バイパス管
13 搬送手段
14 開閉弁
DESCRIPTION OF SYMBOLS 1 Reforming part 6 CO conversion part 7 CO removal part 8 Fuel cell 12 Bypass pipe 13 Conveying means 14 On-off valve

Claims (13)

加熱手段を有し原料と水が供給され前記原料を改質する改質部と、該改質部に設けられ前記原料の流入する入口部及び原料が改質された後流出する出口部と、前記改質部に順次接続されたCO変成部及びCO除去部と、前記出口部と前記入口部とを接続するバイパス管と、該バイパス管に設けられた搬送手段とを備えた水素生成器。 A reforming section having heating means to supply the raw material and water and reforming the raw material; an inlet section provided in the reforming section and an outlet section for flowing out after the raw material is reformed; A hydrogen generator comprising: a CO conversion unit and a CO removal unit that are sequentially connected to the reforming unit; a bypass pipe that connects the outlet unit and the inlet unit; and a conveying means that is provided in the bypass pipe. バイパス管に電磁弁または逆止弁が配設され、前記電磁弁または逆止弁は搬送手段が運転中は開放され、停止中は閉止する請求項1記載の水素生成器。 2. The hydrogen generator according to claim 1, wherein an electromagnetic valve or a check valve is disposed in the bypass pipe, and the electromagnetic valve or the check valve is opened when the conveying means is in operation and closed when the conveying means is stopped. 水素の発生量を増減する時は、少なくとも搬送手段を動作させる請求項1又は2記載の水素生成器。 The hydrogen generator according to claim 1 or 2, wherein at least the transfer means is operated when increasing or decreasing the amount of generated hydrogen. 水素発生量の増減に対応してバイパス管を流れる流量を増減し、改質部を流れる流量を常に一定量とした請求項1、2又は3記載の水素生成器。 The hydrogen generator according to claim 1, 2, or 3, wherein the flow rate flowing through the bypass pipe is increased or decreased in accordance with the increase or decrease of the hydrogen generation amount, and the flow rate flowing through the reforming unit is always constant. バイパス管は断熱して構成される請求項1〜4のいずれか1項に記載の水素生成器。 The hydrogen generator according to claim 1, wherein the bypass pipe is insulated. バイパス管に加熱手段を配設した請求項1〜5のいずれか1項に記載の水素生成器。 The hydrogen generator according to any one of claims 1 to 5, wherein heating means is provided in the bypass pipe. バイパス管に温度検知手段を配設した請求項6記載の水素生成器。 The hydrogen generator according to claim 6, wherein temperature detection means is provided in the bypass pipe. 加熱手段を有し原料と水が供給され前記原料を改質する改質部と、該改質部に順次接続されたCO変成部及びCO除去部と、前記CO変成部、前記CO除去部の少なくとも一方に設けられ改質後の原料が流入する入口部及び流出する出口部と、前記入口部と出口部とを接続するバイパス管と、該バイパス管に設けた搬送手段とを備えた水素生成器。 A reforming unit having heating means to supply raw material and water to reform the raw material, a CO conversion unit and a CO removal unit sequentially connected to the reforming unit, the CO conversion unit, and the CO removal unit Hydrogen generation provided with at least one inlet portion into which the reformed raw material flows and an outlet portion through which the reformed raw material flows, a bypass pipe connecting the inlet portion and the outlet portion, and a conveying means provided in the bypass pipe vessel. バイパス管に電磁弁または逆止弁が配設され、前記電磁弁または逆止弁は搬送手段が運転中は開放され、停止中は閉止する請求項8記載の水素生成器。 The hydrogen generator according to claim 8, wherein an electromagnetic valve or a check valve is disposed in the bypass pipe, and the electromagnetic valve or the check valve is opened when the conveying unit is in operation and closed when the conveying unit is stopped. 水素発生量の増減に対応してバイパス管を流れる流量を増減し、CO変成部またはCO除去部を流れる流量を常に一定量とした請求項8又は9記載の水素生成器。 The hydrogen generator according to claim 8 or 9, wherein the flow rate flowing through the bypass pipe is increased or decreased in accordance with the increase or decrease of the hydrogen generation amount, and the flow rate flowing through the CO conversion unit or the CO removal unit is always constant. バイパス管は断熱して構成される請求項8、9又は10記載の水素生成器。 The hydrogen generator according to claim 8, 9 or 10, wherein the bypass pipe is insulated. バイパス管に加熱手段を配設した請求項8〜11のいずれか1項に記載の水素生成器。 The hydrogen generator according to any one of claims 8 to 11, wherein heating means is provided in the bypass pipe. バイパス管に温度検知手段を配設した請求項12記載の水素生成器。 The hydrogen generator according to claim 12, wherein a temperature detection means is provided in the bypass pipe.
JP2004176806A 2004-06-15 2004-06-15 Hydrogen generator Pending JP2006001750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176806A JP2006001750A (en) 2004-06-15 2004-06-15 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176806A JP2006001750A (en) 2004-06-15 2004-06-15 Hydrogen generator

Publications (1)

Publication Number Publication Date
JP2006001750A true JP2006001750A (en) 2006-01-05

Family

ID=35770458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176806A Pending JP2006001750A (en) 2004-06-15 2004-06-15 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP2006001750A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267603A (en) * 1994-03-23 1995-10-17 Toyota Motor Corp Reformer
JP2000012060A (en) * 1998-06-18 2000-01-14 Nissan Motor Co Ltd Fuel cell system
JP2000036314A (en) * 1998-07-16 2000-02-02 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformer with recirculation line
JP2000323164A (en) * 1999-05-11 2000-11-24 Fuji Electric Co Ltd Reforming device and operation method thereof and fuel cell generation device
JP2002243697A (en) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd Carbon monoxide sensor and fuel cell system using the same
JP2002293504A (en) * 2001-03-30 2002-10-09 Ishikawajima Harima Heavy Ind Co Ltd Reformer and method for its quick start-up
JP2003017109A (en) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd Polymer electrolyte fuel cell power generating system, and power generating method of polymer electrolyte fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267603A (en) * 1994-03-23 1995-10-17 Toyota Motor Corp Reformer
JP2000012060A (en) * 1998-06-18 2000-01-14 Nissan Motor Co Ltd Fuel cell system
JP2000036314A (en) * 1998-07-16 2000-02-02 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformer with recirculation line
JP2000323164A (en) * 1999-05-11 2000-11-24 Fuji Electric Co Ltd Reforming device and operation method thereof and fuel cell generation device
JP2002243697A (en) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd Carbon monoxide sensor and fuel cell system using the same
JP2003017109A (en) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd Polymer electrolyte fuel cell power generating system, and power generating method of polymer electrolyte fuel cell
JP2002293504A (en) * 2001-03-30 2002-10-09 Ishikawajima Harima Heavy Ind Co Ltd Reformer and method for its quick start-up

Similar Documents

Publication Publication Date Title
EP2985830B1 (en) Fuel cell system
KR101357431B1 (en) Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system
US20050132649A1 (en) Hydrogen generator, method of shutting down operation of hydrogen generator, and fuel cell system
JP4902859B2 (en) Autothermal reforming in fuel processors using non-ignitable shift catalysts
JP4933818B2 (en) Operation method of solid oxide fuel cell system
US9527055B2 (en) Hydrogen generator and fuel cell system
KR102238761B1 (en) Ship
JP5087445B2 (en) Hydrogen production apparatus and method for stopping the same
US7910253B2 (en) Reformer for fuel cell and fuel cell using the same
US7758984B2 (en) Shift reactor, fuel cell system employing the same, and operating method of the same
JPH0848501A (en) Reforming device
JP2005294207A (en) Fuel cell system
JP2008130266A (en) Circulation method of condensed water in fuel cell system
JP2006001750A (en) Hydrogen generator
JP2006282424A (en) Hydrogen generator
JP5809049B2 (en) Method of using steam reforming catalyst for fuel cell and hydrogen production system
JP2011184549A (en) Desulfurization process, desulfurizer, and fuel cell power generation system
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP4682518B2 (en) Fuel cell system
JP2005082436A (en) Hydrogen generator and fuel cell system using the same
JP5466871B2 (en) Fuel cell reformer
JP4977312B2 (en) Method for stopping fuel cell power generation system
JP2008280209A (en) Carbon monoxide remover and hydrogen production apparatus
JP2006225216A (en) Hydrogen generator and pretreatment method for safekeeping the same
JP2005213050A (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118