JP2006000720A - Gas separation method and apparatus for vapor mixture - Google Patents

Gas separation method and apparatus for vapor mixture Download PDF

Info

Publication number
JP2006000720A
JP2006000720A JP2004177988A JP2004177988A JP2006000720A JP 2006000720 A JP2006000720 A JP 2006000720A JP 2004177988 A JP2004177988 A JP 2004177988A JP 2004177988 A JP2004177988 A JP 2004177988A JP 2006000720 A JP2006000720 A JP 2006000720A
Authority
JP
Japan
Prior art keywords
pressure
gas
separation membrane
vapor
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004177988A
Other languages
Japanese (ja)
Other versions
JP4148190B2 (en
Inventor
Masao Kikuchi
政夫 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004177988A priority Critical patent/JP4148190B2/en
Publication of JP2006000720A publication Critical patent/JP2006000720A/en
Application granted granted Critical
Publication of JP4148190B2 publication Critical patent/JP4148190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for stabilizing the supply side pressure of a separation membrane module, in the method and the apparatus for separating and recovering a gas mixture containing a vapor mixture, using the gas separation membrane module. <P>SOLUTION: In this gas separation method, the gas mixture containing the vapor mixture is supplied to the supply side of the gas separation membrane module, at least a first vapor in the gas mixture containing the vapor mixture is made to selectively permeate, and the gas mixture is separated into a permeating flow with the highly concentrated first vapor and a non-permeating flow with the low concentrated first vapor, and recovered. The non-permeating flow from the gas separation membrane module is introduced into a pressure regulating tank through a condenser which is provided with a pressure regulating means by the input and output of atmospheric gas. The pressure regulating means stabilizes the supply side pressure of the separation membrane module. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蒸気混合物を含むガス混合物をガス分離膜モジュールの供給側へ供給し、蒸気混合物を含むガス混合物中の少なくとも第1蒸気を選択的に透過させて、第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離回収するガス分離方法であって、ガス分離膜モジュールからの非透過流が凝縮器を介して調圧槽に導入され、且つ前記調圧槽は雰囲気ガスの出し入れによる圧力調整手段を備えており、前記圧力調整手段によって分離膜モジュールの供給側圧力を安定化することを特徴とするガス分離方法およびそのガス分離装置に関する。   In the present invention, the gas mixture containing the vapor mixture is supplied to the supply side of the gas separation membrane module, and at least the first vapor in the gas mixture containing the vapor mixture is selectively permeated to increase the concentration of the first vapor. A gas separation method for separating and collecting a permeate flow and a non-permeate flow in which the first vapor is reduced in concentration, wherein the non-permeate flow from the gas separation membrane module is introduced into the pressure regulating tank through a condenser, and The pressure regulating tank is provided with a pressure adjusting means by taking in and out the atmospheric gas, and relates to a gas separation method and a gas separation apparatus thereof, wherein the pressure adjusting means stabilizes the supply side pressure of the separation membrane module.

特許文献1には、有機物を含有する水溶液を蒸発器で気化させて有機物蒸気と水蒸気とを含むガス混合物を生成させ、前記ガス混合物をガス分離膜と接触させて水蒸気を選択的に透過させることによって有機物を脱水濃縮し、次いで脱水濃縮された有機蒸気は冷却凝縮して製品タンクに回収する方法が開示されている。
このように、液体混合物を蒸発器で気化させて蒸気混合物を含むガス混合物としてガス分離膜に供給し、蒸気混合物の第1蒸気を選択的に透過させて第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離し、次いで第1蒸気が低濃度化した非透過流を冷却凝縮して液体として回収する場合には、供給する液体や凝集して回収する液体の系内への出し入れ及び気化工程や凝縮工程の不安定性のために圧力変動が避け難いので、ガス分離膜の供給側(非透過側)の圧力を安定化させることが難しい。ガス分離膜における特定成分の透過速度は分離膜を挟む両側のガス成分の分圧差に依存するので、ガス分離膜の供給側(非透過側)の圧力変動が生じるとその都度透過速度が変動して、高精度で分離回収することが困難になる。このため、圧力変動を抑制した分離回収方法が求められてきた。
In Patent Document 1, an aqueous solution containing an organic substance is vaporized by an evaporator to generate a gas mixture containing organic vapor and water vapor, and the gas mixture is contacted with a gas separation membrane to selectively permeate water vapor. Discloses a method of dehydrating and concentrating organic matter, and then cooling and condensing the organic vapor dehydrated and concentrated and recovering it in a product tank.
In this way, the liquid mixture is vaporized by the evaporator and supplied to the gas separation membrane as a gas mixture containing the vapor mixture, and the first vapor of the vapor mixture is selectively permeated to increase the concentration of the first vapor. And the non-permeate flow in which the first vapor is reduced in concentration, and then the non-permeate flow in which the first vapor is reduced in concentration is cooled and condensed to be recovered as a liquid, the liquid to be supplied or agglomerated and recovered Since it is difficult to avoid pressure fluctuations due to the instability of the liquid in and out of the system and the vaporization process and the condensation process, it is difficult to stabilize the pressure on the supply side (non-permeation side) of the gas separation membrane. Since the permeation rate of a specific component in a gas separation membrane depends on the partial pressure difference between the gas components on both sides of the separation membrane, the permeation rate fluctuates each time a pressure fluctuation occurs on the supply side (non-permeation side) of the gas separation membrane. Therefore, it becomes difficult to separate and collect with high accuracy. For this reason, a separation and recovery method that suppresses pressure fluctuation has been demanded.

特開平5−177111号公報JP-A-5-177111

この発明は、蒸気混合物を含むガス混合物をガス分離膜モジュールの供給側へ供給し、蒸気混合物を含むガス混合物中の少なくとも第1蒸気を選択的に透過させて、第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離回収するガス分離方法であって、ガス分離膜モジュールからの非透過流が凝縮器を介して調圧槽に導入され、且つ前記調圧槽は雰囲気ガスの出し入れによる圧力調整手段を備えており、前記圧力調整手段によって分離膜モジュールの供給側圧力を安定化することを特徴とするガス分離方法およびそのガス分離装置を提供することを目的とする。   In the present invention, the gas mixture containing the vapor mixture is supplied to the supply side of the gas separation membrane module, and at least the first vapor in the gas mixture containing the vapor mixture is selectively permeated to increase the concentration of the first vapor. A gas separation method for separating and collecting a permeate flow and a non-permeate flow in which the first vapor is reduced in concentration, wherein the non-permeate flow from the gas separation membrane module is introduced into the pressure regulating tank through a condenser, and Provided is a gas separation method and a gas separation device characterized in that the pressure regulating tank includes pressure adjusting means by taking in and out the atmospheric gas, and the supply pressure of the separation membrane module is stabilized by the pressure adjusting means. With the goal.

この発明は、蒸気混合物を含むガス混合物をガス分離膜モジュールの供給側へ供給し、蒸気混合物を含むガス混合物中の少なくとも第1蒸気を選択的に透過させて、第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離回収するガス分離方法において、ガス分離膜モジュールからの非透過流が凝縮器を介して調圧槽に導かれ、且つ前記調圧槽は雰囲気ガスの出し入れによる圧力調整手段を備えており、前記圧力調整手段によって分離膜モジュールの供給側圧力を安定化することを特徴とするガス分離方法に関する。
さらに、この発明は、蒸気混合物を含むガス混合物をガス分離膜モジュールの供給側へ供給し、蒸気混合物を含むガス混合物中の少なくとも第1蒸気を選択的に透過させて、第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離回収するガス分離装置において、ガス分離膜モジュールからの非透過流が凝縮器を介して調圧槽に導かれ、且つ前記調圧槽は雰囲気ガスの出し入れによる圧力調整手段を備えており、前記圧力調整手段によって分離膜モジュールの供給側圧力を安定化するように構成されたことを特徴とするガス分離装置に関する。
In the present invention, the gas mixture containing the vapor mixture is supplied to the supply side of the gas separation membrane module, and at least the first vapor in the gas mixture containing the vapor mixture is selectively permeated to increase the concentration of the first vapor. In the gas separation method of separating and recovering the permeate flow and the non-permeate flow in which the first vapor is reduced in concentration, the non-permeate flow from the gas separation membrane module is led to the pressure regulating tank through a condenser, and the pressure regulation The tank is provided with a pressure adjusting means by taking in and out the atmospheric gas, and the pressure adjusting means stabilizes the supply side pressure of the separation membrane module.
Furthermore, the present invention supplies a gas mixture containing a vapor mixture to the supply side of the gas separation membrane module, selectively permeates at least the first vapor in the gas mixture containing the vapor mixture, and the first vapor has a high concentration. In the gas separation device for separating and recovering the permeated flow and the non-permeated flow in which the first vapor is reduced in concentration, the non-permeated flow from the gas separation membrane module is led to the pressure adjusting tank through the condenser, and The pressure regulating tank includes a pressure adjusting means by taking in and out the atmospheric gas, and relates to a gas separation apparatus configured to stabilize the supply side pressure of the separation membrane module by the pressure adjusting means.

この発明においては、液体混合物を蒸発器で気化させて蒸気混合物を含むガス混合物とし、前記ガス混合物をガス分離膜に供給し、蒸気混合物の第1蒸気を選択的に透過させて第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離し、次いで第1蒸気が低濃度化した非透過流を冷却凝縮して液体として回収する場合でも、より簡便な装置で圧力変動を容易に抑制することができ、分離膜モジュールの供給側圧力を安定化してガス分離回収をおこなうことができる。   In the present invention, the liquid mixture is vaporized by an evaporator to form a gas mixture containing a vapor mixture, the gas mixture is supplied to a gas separation membrane, and the first vapor of the vapor mixture is selectively permeated so that the first vapor is Even when the permeate stream having a high concentration is separated into the non-permeate stream in which the first vapor is reduced in concentration, and then the non-permeate flow in which the first vapor is reduced in concentration is cooled and condensed and recovered as a liquid, it is more convenient. The apparatus can easily suppress pressure fluctuations, stabilize the supply side pressure of the separation membrane module, and perform gas separation and recovery.

図1はこの発明のガス分離方法の概要を説明するためのフロー図である。以下図1に基づき説明する。
図1において、液体混合物がヒーター3を底部に備えた蒸発器2へ供給される。蒸発器2ではヒーター3によって液体混合物が加熱されて蒸気混合物を発生する。前記蒸気混合物は雰囲気ガスと共にガス分離膜モジュール5へ供給される。供給された蒸気混合物と雰囲気ガスとからなるガス混合物はガス分離膜モジュール5の供給側(非透過側)をガス分離膜と接触しながら流れ、その間に第1蒸気が選択的に分離膜を透過し、第1蒸気が高濃度化した透過流6と第1蒸気が低濃度化した非透過流7とに分離する。そして前記透過流6と非透過流7はそれぞれガス分離膜モジュール5から排出する。ガス分離膜モジュール5から排出した非透過流7は凝縮器8によって冷却凝縮されて蒸気成分が液化され、液体と雰囲気ガスになる。次いでこの液体と雰囲気ガスは調圧槽9へ導かれる。液体は調圧槽9に溜められ、必要に応じて調圧槽9から排出される。この発明において調圧槽9は雰囲気ガスの出し入れによる圧力調整手段10(破線で囲んでいる)を備えている。この圧力調整手段10は、図1の場合には、雰囲気ガスを供給及び排出する導管11に圧力を調製するための圧力調整弁12と背圧調整弁13とを配置し、圧力調整弁12と背圧調整弁13との間の導管から枝分かれした導管14によって調圧槽9と連通するように構成されている。
FIG. 1 is a flowchart for explaining the outline of the gas separation method of the present invention. Hereinafter, description will be given with reference to FIG.
In FIG. 1, the liquid mixture is supplied to an evaporator 2 equipped with a heater 3 at the bottom. In the evaporator 2, the liquid mixture is heated by the heater 3 to generate a vapor mixture. The vapor mixture is supplied to the gas separation membrane module 5 together with the atmospheric gas. The gas mixture composed of the supplied vapor mixture and the atmospheric gas flows while contacting the gas separation membrane on the supply side (non-permeation side) of the gas separation membrane module 5, while the first vapor selectively permeates the separation membrane. Then, the first steam is separated into a permeate stream 6 having a high concentration and a non-permeate stream 7 in which the first steam has a low concentration. The permeate stream 6 and the non-permeate stream 7 are discharged from the gas separation membrane module 5, respectively. The non-permeate flow 7 discharged from the gas separation membrane module 5 is cooled and condensed by the condenser 8, and the vapor component is liquefied to become liquid and atmospheric gas. Next, the liquid and the atmospheric gas are guided to the pressure regulating tank 9. The liquid is stored in the pressure regulating tank 9, and is discharged from the pressure regulating tank 9 as necessary. In the present invention, the pressure regulating tank 9 is provided with pressure adjusting means 10 (enclosed by a broken line) by taking in and out the atmospheric gas. In the case of FIG. 1, the pressure adjusting means 10 includes a pressure adjusting valve 12 and a back pressure adjusting valve 13 for adjusting pressure in a conduit 11 that supplies and discharges atmospheric gas. The pressure regulating tank 9 is configured to communicate with the pressure regulating tank 9 by a conduit 14 branched from a conduit between the back pressure regulating valve 13 and the back pressure regulating valve 13.

この発明のガス分離方法では、供給する液体や冷却凝縮して回収する液体の出し入れ及び気化工程や冷却凝縮工程での不安定性のためにガス分離膜モジュールの供給側(非透過側)の圧力が影響を受けた場合でも、圧力調整手段10によって圧力変動が抑制されて供給側(非透過側)の圧力は安定化される。具体的には、分離膜モジュールの供給側(非透過側)の圧力が所定圧よりも低下すると調圧槽9の圧力も低下するが、圧力調整弁12によって加圧されて所定圧に維持され、一方分離膜モジュールの供給側(非透過側)の圧力が所定圧よりも増大すると調圧槽9の圧力も増大するが、背圧調整弁13によって減圧されて所定圧に維持される。   In the gas separation method of the present invention, the pressure on the supply side (non-permeation side) of the gas separation membrane module is reduced due to instability in the supply / removal of the liquid to be supplied or the liquid to be recovered by cooling and condensation, and the vaporization process or the cooling condensation process. Even when affected, the pressure adjustment means 10 suppresses pressure fluctuations and stabilizes the pressure on the supply side (non-permeation side). Specifically, when the pressure on the supply side (non-permeate side) of the separation membrane module is lower than a predetermined pressure, the pressure in the pressure adjusting tank 9 is also reduced, but is pressurized by the pressure regulating valve 12 and maintained at the predetermined pressure. On the other hand, when the pressure on the supply side (non-permeation side) of the separation membrane module increases above a predetermined pressure, the pressure in the pressure regulating tank 9 also increases, but is reduced by the back pressure regulating valve 13 and maintained at the predetermined pressure.

すなわち、この発明では、ガス分離膜モジュールからの非透過流(蒸気を含有するガス混合物)が凝縮器で蒸気成分が液化されて調圧槽へ導かれ、調圧槽に溜められ且つ必要に応じて調圧槽から排出される一連の流れにおいて、その流れから枝分れした雰囲気ガスの出し入れによる圧力調整手段によって、ガス分離膜モジュールの供給側(非透過側)の圧力変動を抑制して安定化させている。   That is, in the present invention, the non-permeate flow (gas mixture containing steam) from the gas separation membrane module is liquefied by the condenser, led to the pressure regulating tank, stored in the pressure regulating tank, and as necessary. In the series of flows discharged from the pressure adjustment tank, the pressure adjustment means by taking in and out the atmospheric gas branched from the flow suppresses the pressure fluctuation on the supply side (non-permeate side) of the gas separation membrane module and stabilizes it. It has become.

この発明のガス分離方法では、液体混合物は断続的又は連続的に蒸発器へ供給される。液体混合物は蒸発器のヒーターによって加熱・蒸気化され、雰囲気ガスと混合してガス混合物になる。蒸気化は一定量の蒸気混合物が分離膜モジュールへ供給されるように液体混合液の蒸発器の液体混合物量や蒸発器の加熱の程度を制御することが好適である。通常は、蒸発器内の液体混合物量が一定に保たれるように蒸発器の液面コントローラによって送液ポンプを制御し、且つ蒸発器の蒸発量を一定にするために温度コントローラによってヒーター温度を制御する。   In the gas separation method of the present invention, the liquid mixture is supplied to the evaporator intermittently or continuously. The liquid mixture is heated and vaporized by the heater of the evaporator and mixed with the atmospheric gas to become a gas mixture. In the vaporization, it is preferable to control the amount of the liquid mixture in the evaporator of the liquid mixture and the degree of heating of the evaporator so that a certain amount of the vapor mixture is supplied to the separation membrane module. Normally, the liquid feed pump is controlled by the liquid level controller of the evaporator so that the amount of liquid mixture in the evaporator is kept constant, and the heater temperature is controlled by the temperature controller in order to keep the evaporation amount of the evaporator constant. Control.

この発明のガス分離方法では、蒸気混合物を含むガス混合物は、ガス分離膜モジュールへ供給する前に、加熱手段(過熱器)でスーパーヒート(過熱)することが好ましい。スーパーヒートはガス分離膜モジュールで処理中に蒸気混合物が凝縮することを防止するためであり、蒸発器で蒸気化した蒸気温度よりも2〜3℃程度以上好ましくは5℃以上高い温度になるようにするのが好適である。スーパーヒートする場合はガス混合物の温度を一定にするためにスーパーヒート後のガス混合物の温度を測定して過熱器を制御することが好適である。   In the gas separation method of the present invention, the gas mixture containing the vapor mixture is preferably superheated (superheated) by a heating means (superheater) before being supplied to the gas separation membrane module. The superheat is to prevent the vapor mixture from condensing during the treatment with the gas separation membrane module, so that the temperature becomes about 2 to 3 ° C. or more, preferably 5 ° C. or more higher than the vapor temperature vaporized by the evaporator. Is preferable. In the case of superheating, it is preferable to control the superheater by measuring the temperature of the gas mixture after superheating in order to keep the temperature of the gas mixture constant.

この発明のガス分離方法では、ガス分離膜モジュールへ供給する蒸気混合物と雰囲気ガスを含むガス混合物の温度と圧力は、蒸気の種類と処理量などによって決まるが、通常は50〜250℃好ましくは80〜200℃特に80〜150℃で、0.01〜1MPa(絶対圧)好ましくは大気圧〜0.6MPa(絶対圧)である。また、ガス分離膜モジュールは供給されるガス混合物の温度が保たれるように、同程度の温度に加熱されることが好適である。ガス分離膜モジュールや凝縮器に至る配管などは、凝縮器前で凝縮が起こらないように断熱材等で保温するのが好適である。   In the gas separation method of the present invention, the temperature and pressure of the gas mixture containing the vapor mixture and the atmospheric gas supplied to the gas separation membrane module are determined by the type of steam and the amount of treatment, but are usually 50 to 250 ° C., preferably 80 ° C. ˜200 ° C., particularly 80˜150 ° C., 0.01˜1 MPa (absolute pressure), preferably atmospheric pressure˜0.6 MPa (absolute pressure). Further, it is preferable that the gas separation membrane module is heated to a similar temperature so that the temperature of the supplied gas mixture is maintained. It is preferable that the gas separation membrane module and the pipe leading to the condenser are kept warm with a heat insulating material or the like so that condensation does not occur in front of the condenser.

この発明のガス分離方法では、ガス分離膜モジュールの非透過側から得られる非透過流は、第1蒸気がガス分離膜を選択的に透過した結果第1蒸気が低濃度化した(第2蒸気が高濃度化した)蒸気混合物を含むガス混合物になっている。このガス混合物は冷却機能を備えた凝縮器に導入されて、蒸気成分が液化されて調圧槽へ送られる。この分離回収した液体は第1蒸気成分が低濃度化した(第2蒸気成分が高濃度化した)液体混合物であり、調圧槽で溜められるか、又は更に調圧槽と連通した貯蔵槽へ送られて溜められる。調圧槽又は貯蔵槽へ液体混合物が溜まる工程では、調圧槽又は貯蔵槽と連通したガス分離膜モジュールの供給側(非透過側)の空間は、液体量の増加のために空間の体積が減少するから、圧力は増大するが、圧力調整手段によって(図1では、閉じていた背圧調整弁13が開いて)、圧力が一定に保たれる。また、調圧槽又は貯蔵槽に所定量の液体混合物が溜まると、液体混合部は調圧槽又は貯蔵槽から抜き出される。この工程では、調圧槽又は貯蔵槽と連通しているガス分離膜モジュールの供給側(非透過側)の空間は、液体量が減って空間の体積が増加するから、圧力は減少するが、圧力調整手段によって(図1では、閉じていた圧力調整弁12が開いて)、圧力が一定に保たれる。   In the gas separation method of the present invention, the non-permeate flow obtained from the non-permeate side of the gas separation membrane module has a reduced concentration of the first vapor as a result of the first vapor selectively permeating the gas separation membrane (second vapor). Is a gas mixture containing a vapor mixture. This gas mixture is introduced into a condenser having a cooling function, and the vapor component is liquefied and sent to a pressure regulating tank. The separated and recovered liquid is a liquid mixture in which the concentration of the first vapor component is reduced (the concentration of the second vapor component is increased), and is stored in the pressure adjustment tank, or further to a storage tank connected to the pressure adjustment tank. Sent and stored. In the process in which the liquid mixture is accumulated in the pressure adjusting tank or the storage tank, the space on the supply side (non-permeation side) of the gas separation membrane module communicating with the pressure adjusting tank or the storage tank has a volume of space due to an increase in the amount of liquid. Since the pressure decreases, the pressure increases, but the pressure is kept constant by the pressure adjusting means (the closed back pressure adjusting valve 13 in FIG. 1 is opened). Further, when a predetermined amount of the liquid mixture is accumulated in the pressure adjusting tank or the storage tank, the liquid mixing unit is extracted from the pressure adjusting tank or the storage tank. In this process, the space on the supply side (non-permeation side) of the gas separation membrane module communicating with the pressure regulating tank or the storage tank is reduced in pressure because the liquid volume decreases and the volume of the space increases. The pressure is kept constant by the pressure adjusting means (the closed pressure adjusting valve 12 is opened in FIG. 1).

この発明のガス分離方法では、ガス分離膜モジュールの透過側は、エジェクターや真空ポンプによって0.01〜70kPa(絶対圧)程度特に5〜70kPa(絶対圧)程度の減圧にすること、及び/又は透過ガスを分離膜の透過側の空間から掃引するための掃引ガスを流通することが好適である。さらに、ガス分離膜モジュールからの透過流が凝縮器を介して別の調圧槽に接続され、且つ前記調圧槽は圧力調整手段によって分離膜モジュールの透過側圧力を安定化しても構わない。ガス分離膜モジュールの透過側から得られる第1蒸気が高濃度化した透過流は、冷却機能を備えた凝縮器によって液化されて、調圧槽又は貯蔵槽に溜められることが好適である。   In the gas separation method of the present invention, the permeation side of the gas separation membrane module is reduced to about 0.01 to 70 kPa (absolute pressure), particularly about 5 to 70 kPa (absolute pressure) by an ejector or a vacuum pump, and / or It is preferable to flow a sweep gas for sweeping the permeate gas from the space on the permeate side of the separation membrane. Further, the permeate flow from the gas separation membrane module may be connected to another pressure regulating tank via a condenser, and the pressure regulating tank may stabilize the permeation side pressure of the separation membrane module by pressure adjusting means. The permeate flow in which the first vapor obtained from the permeation side of the gas separation membrane module has a high concentration is preferably liquefied by a condenser having a cooling function and stored in a pressure-regulating tank or a storage tank.

前記掃引ガスは、第1蒸気を含有しないガスであれば、いずれのガスでも使用することができ、例えばガス分離膜モジュールの非透過側から得られる第1蒸気が低濃度化したガス混合物の一部を循環して使用することもできるが、空気、又は窒素ガスやアルゴンガスなどの不活性ガスを好適に用いることができる。また、掃引ガスは分離膜の供給側(非透過側)のガス流に対して向流に流通させることが好適である。   The sweep gas may be any gas as long as it does not contain the first vapor. For example, the sweep gas is a gas mixture in which the concentration of the first vapor obtained from the non-permeate side of the gas separation membrane module is reduced. Although it is possible to circulate the part, it is possible to suitably use air or an inert gas such as nitrogen gas or argon gas. In addition, the sweep gas is preferably circulated countercurrently to the gas flow on the supply side (non-permeation side) of the separation membrane.

この発明において、前記圧力調整手段は雰囲気ガスの出し入れによって圧力を調整するもので、圧力調整弁と背圧調整弁とを配置し、圧力調整弁と背圧調整弁との間から導管によって圧力を調整すべき空間に連通させたものが好適であるが、その他の背圧調節機能を備えた調圧弁や電子調圧器で調整しても構わない。このような圧力調整手段は、簡便な装置であるが、非透過側の圧力を高精度で調整できる。   In the present invention, the pressure adjusting means adjusts the pressure by taking in and out the atmospheric gas. A pressure adjusting valve and a back pressure adjusting valve are arranged, and the pressure is adjusted by a conduit between the pressure adjusting valve and the back pressure adjusting valve. Although the thing connected to the space which should be adjusted is suitable, you may adjust with the pressure regulating valve or electronic pressure regulator provided with the other back pressure adjustment function. Such pressure adjusting means is a simple device, but can adjust the pressure on the non-permeating side with high accuracy.

この発明において、雰囲気ガスは圧力を調節するために分離装置外から必要に応じて分離装置内へ出し入れするものである。あらかじめ所定の圧力以上に調圧される。凝縮器で凝縮しない沸点を有し且つ分離対象の有機蒸気に対して不活性なガスが好適であって、蒸発器内の雰囲気ガスと同じガスでよく、例えば空気、又は窒素ガスやアルゴンガスなどの不活性ガスを好適に挙げることができる。   In this invention, the atmospheric gas is taken in and out of the separation device as needed from the outside of the separation device in order to adjust the pressure. The pressure is adjusted in advance to a predetermined pressure or higher. A gas that has a boiling point that does not condense in the condenser and is inert to the organic vapor to be separated is suitable, and may be the same gas as the atmospheric gas in the evaporator, for example, air, nitrogen gas, argon gas, etc. The inert gas can be preferably mentioned.

この発明において、蒸気とは蒸気相で存在し得るものであって、1気圧、−100℃で液体のもの、好ましくは1気圧、−50℃で液体のもの、更に1気圧、10℃で液体のものが加熱などによって沸点以上になって気化し蒸気相になったものを意味する。特に限定されないが、例えば、水、フレオンなどのクロロフルオロカーボン類、六フッ化エタンなどのパーフルオロ化合物類、塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素類、ベンゼン、トルエン、シクロヘキサンなどの非ハロゲン化炭化水素類、メタノール、イソプロパノールなどのアルコール類、アセトンなどのケトン類、酢酸エチル、MEKなどのエステル類、フェノール、クレゾールなどのフェノール類、ギ酸、酢酸などの有機酸類、トリエチルアミン、ピリジンなどのアミン類、アセトニロリル、ジメチルホルムアミド、N−メチル−2−ピロリドンなどの有機溶媒などを好適に挙げることができる。   In this invention, the vapor can exist in the vapor phase and is liquid at 1 atm and −100 ° C., preferably at 1 atm and −50 ° C., and further at 1 atm and 10 ° C. Means that the product has evaporated to a vapor phase when heated above the boiling point. Although not particularly limited, for example, chlorofluorocarbons such as water and freon, perfluoro compounds such as hexafluoroethane, halogenated hydrocarbons such as methylene chloride and chlorobenzene, and nonhalogenated carbons such as benzene, toluene and cyclohexane. Hydrogens, alcohols such as methanol and isopropanol, ketones such as acetone, esters such as ethyl acetate and MEK, phenols such as phenol and cresol, organic acids such as formic acid and acetic acid, amines such as triethylamine and pyridine, Preferable examples include organic solvents such as acetonitrile, dimethylformamide, and N-methyl-2-pyrrolidone.

蒸気混合物は、化学工業分野や食品分野や半導体分野などの、例えば化学反応プロセス、蒸留プロセス、醗酵プロセス、洗浄プロセスなどの工業的プロセスから供給される。これらの蒸気混合物はガス分離膜を用いないで分離精製できる場合もあるが、蒸気混合物を構成する各成分の沸点が近い場合や共沸性を有する場合はガス分離膜による方法が好適に採用される。分離精製された蒸気成分は通常再利用するのが目的であるから高純度を要求される。従って、ガス分離膜で分離精製するときには、特定の高純度で分離回収されるように分離工程での圧力の安定化が重要になる。さらに、このような分離精製工程では微量な不純物の混入を防ぐことを要求される場合がある。圧力調整手段を蒸発器からガス分離膜を経て精製液槽までの一連の流路に挿入すると圧力調整手段の駆動部などから不純物が混入することを防ぎきれない。この発明のように、ガス分離膜の後流側だけでしかも枝分れした部分で圧力調整するように構成すると、駆動部からの不純物の混入は極力排除できるので好適である。   The steam mixture is supplied from an industrial process such as a chemical reaction process, a distillation process, a fermentation process, or a cleaning process, such as the chemical industry field, the food field, or the semiconductor field. In some cases, these vapor mixtures can be separated and purified without using a gas separation membrane. However, when the boiling points of the components constituting the vapor mixture are close or azeotropic, a method using a gas separation membrane is preferably employed. The Since the vapor component separated and purified is usually intended to be reused, high purity is required. Therefore, when performing separation and purification with a gas separation membrane, it is important to stabilize the pressure in the separation process so that the gas can be separated and recovered with a specific high purity. Furthermore, in such a separation / purification process, it may be required to prevent a very small amount of impurities from being mixed. If the pressure adjusting means is inserted into a series of flow paths from the evaporator through the gas separation membrane to the purified liquid tank, it is impossible to prevent impurities from being mixed from the drive part of the pressure adjusting means. As in the present invention, it is preferable to adjust the pressure only at the downstream side of the gas separation membrane and at the branched portion, since the contamination of impurities from the drive unit can be eliminated as much as possible.

この発明において、ガス分離膜モジュールは、用いられる条件下で蒸気混合物のいずれかの成分を選択的に透過できるガス分離膜を、ガス供給口、透過ガス排出口、非透過ガス排出口を備えた容器内にガス分離膜の供給側(非透過側)と透過側の空間が隔絶するようにして装着されたものを好適に用いることができる。   In the present invention, the gas separation membrane module comprises a gas separation membrane that can selectively permeate any component of the vapor mixture under the conditions used, a gas supply port, a permeate gas discharge port, and a non-permeate gas discharge port. It is possible to suitably use a container in which the space on the gas separation membrane supply side (non-permeation side) and the permeation side are separated from each other.

ガス分離膜は、平膜などでもよいが、厚みが薄く径が小さい中空糸膜が、装置が小型化でき高膜面積になるので分離効率がよく経済的であるので好適である。また、ガス分離膜は、均質性でもよく、複合膜や非対称膜などの不均一性でもよく、また微多孔性でも非多孔性でもよい。前記中空糸膜の膜厚は10〜500μmで外径は50〜2000μmのものを好適に挙げることができる。更に、この発明のガス分離膜は、蒸気混合物と化学反応することがなく、又蒸気混合物によって分離性能が低下しないガス分離膜であることが好適である。ガス分離膜は、例えばポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリカーボネート、ポリ(ホスファゼン)、フルオロカーボン重合体、シリコーン樹脂、セルロース系ポリマーなどのポリマー材料、ゼオライトなどのセラミックス材料などで形成されるガス分離膜を用いたものを挙げることができるが、特にポリイミドやセラミックス材料から形成されたものが、耐熱性や耐溶剤性が優れるので好適である。   The gas separation membrane may be a flat membrane or the like, but a hollow fiber membrane having a small thickness and a small diameter is suitable because the apparatus can be miniaturized and has a large membrane area, so that the separation efficiency is good and economical. Further, the gas separation membrane may be homogeneous, may be non-uniform such as a composite membrane or an asymmetric membrane, and may be microporous or nonporous. A hollow fiber membrane having a thickness of 10 to 500 μm and an outer diameter of 50 to 2000 μm can be preferably exemplified. Furthermore, it is preferable that the gas separation membrane of the present invention is a gas separation membrane that does not chemically react with the vapor mixture and in which the separation performance is not deteriorated by the vapor mixture. The gas separation membrane is formed of, for example, a polymer material such as polyimide, polyetherimide, polyamide, polyamideimide, polysulfone, polycarbonate, poly (phosphazene), fluorocarbon polymer, silicone resin, cellulose polymer, or ceramic material such as zeolite. In particular, those made of polyimide or a ceramic material are preferable because they have excellent heat resistance and solvent resistance.

中空糸膜を用いた中空糸ガス分離膜モジュールは、中空糸膜の多数本(例えば、数百本から数十万本)を集束して中空糸束とし、その中空糸束の少なくとも一方の端部をエポキシ樹脂のような硬化性樹脂やポリアミド樹脂のような熱可塑性樹脂などで前記端部において中空糸膜が開口状態となるように固着して中空糸分離膜エレメントを構成し、更に単数個又は複数個の前記中空糸エレメントを、少なくともガス供給口、透過ガス排出口、及び非透過ガス排出口を有する容器内に、中空糸の内側へ通じる空間と中空糸の外側へ通じる空間が隔絶するように装着して構成されている。
この発明では、中空糸ガス分離膜モジュールは中空フィードタイプのもの、すなわち中空糸分離膜の中空糸内空間を供給側(非透過側)とし中空糸分離膜の外側空間を透過側とするものが好適に用いられる。
A hollow fiber gas separation membrane module using hollow fiber membranes is a bundle of hollow fiber membranes (for example, hundreds to hundreds of thousands) that is bundled into a hollow fiber bundle, and at least one end of the hollow fiber bundle. The hollow fiber separation membrane element is formed by fixing the end part with a curable resin such as an epoxy resin or a thermoplastic resin such as a polyamide resin so that the hollow fiber membrane is in an open state at the end portion. Alternatively, the space leading to the inside of the hollow fiber and the space leading to the outside of the hollow fiber are separated from each other in a container having at least a gas supply port, a permeate gas discharge port, and a non-permeate gas discharge port. It is configured to be mounted as follows.
In this invention, the hollow fiber gas separation membrane module is of the hollow feed type, that is, the hollow fiber separation membrane has a hollow fiber inner space as a supply side (non-permeation side) and a hollow fiber separation membrane outer space as a permeation side. Preferably used.

この発明のガス分離装置は、少なくとも蒸発器と分離膜モジュールと凝縮器と調圧槽とを備え、前記分離膜モジュールの非透過ガス排出口が凝縮器を介して調圧槽と接続し且つ前記調圧槽が雰囲気ガスの出し入れによる圧力調製手段を備えており、前記雰囲気ガスの出し入れによる圧力調製手段を備えた調圧槽によって分離膜モジュールの供給側圧力を安定化するように構成されたことを特徴とするガス分離装置である。   The gas separation device of the present invention includes at least an evaporator, a separation membrane module, a condenser, and a pressure regulating tank, and a non-permeate gas discharge port of the separation membrane module is connected to the pressure regulating tank through a condenser, and The pressure regulating tank has pressure adjusting means by taking in and out the atmospheric gas, and is configured to stabilize the supply side pressure of the separation membrane module by the pressure regulating tank having the pressure adjusting means by taking in and out the atmospheric gas. It is a gas separation device characterized by these.

この発明のガス分離装置の一つの実施態様は、例えば図2の概略のフロー図ように構成されている。図2において、原液槽20の液体は送液ポンプ21によって、ヒーター22を有する蒸発器23へ送付される。24は温度コントローラ、25は液面コントローラであり、蒸発器23内の液量と温度は温度コントローラ24や液面コントローラ25によって送液ポンプ21やヒーター22が制御されて所定の値に維持される。蒸発器23で発生した蒸気混合物を含む混合ガスは過熱器26でオーバーヒートされた後でガス分離膜モジュール29へ供給される。このガス混合物の温度は温度コントローラ27によって制御される。ガス分離膜モジュール29から排出される非透過流31は凝縮器33によって冷却凝縮されて蒸気成分が液化し調圧槽34へ導入されて溜められる。この調圧槽34は雰囲気ガス導入管35、圧力調整弁36及び背圧調整弁37からなる圧力調整手段を備えている。圧力調整弁36及び背圧調整弁37にはそれぞれ制御装置が付属しており、調圧槽内及び調圧槽と連通しているガス分離膜モジュール29の非透過側の圧力を予め設定した所定圧に保持するように作動する。ガス分離膜モジュール29から排出される透過流30は凝縮器41によって冷却凝縮されて蒸気成分は液化し、透過液槽42へ導入されて溜められる。さらにガス分離膜モジュール29の透過側は排気ポンプ43によって所定の減圧に保たれる。またガス分離膜モジュール29の透過側へは掃引ガス導入管32を通じて掃引ガスが導入される。この掃引ガスの流量は流量計45で制御される。   One embodiment of the gas separation device of the present invention is configured, for example, as shown in the schematic flow chart of FIG. In FIG. 2, the liquid in the stock solution tank 20 is sent by a liquid feed pump 21 to an evaporator 23 having a heater 22. Reference numeral 24 denotes a temperature controller, and 25 denotes a liquid level controller. The liquid amount and temperature in the evaporator 23 are maintained at predetermined values by controlling the liquid feed pump 21 and the heater 22 by the temperature controller 24 and the liquid level controller 25. . The mixed gas containing the vapor mixture generated in the evaporator 23 is overheated by the superheater 26 and then supplied to the gas separation membrane module 29. The temperature of this gas mixture is controlled by a temperature controller 27. The non-permeate flow 31 discharged from the gas separation membrane module 29 is cooled and condensed by the condenser 33, and the vapor component is liquefied and introduced into the pressure regulating tank 34 and stored. The pressure adjusting tank 34 includes pressure adjusting means including an atmospheric gas introduction pipe 35, a pressure adjusting valve 36, and a back pressure adjusting valve 37. A control device is attached to each of the pressure adjustment valve 36 and the back pressure adjustment valve 37, and the pressure on the non-permeate side of the gas separation membrane module 29 communicating with the pressure adjustment tank and the pressure adjustment tank is set in advance. Operates to hold pressure. The permeate stream 30 discharged from the gas separation membrane module 29 is cooled and condensed by the condenser 41, and the vapor component is liquefied, introduced into the permeate tank 42, and stored. Further, the permeation side of the gas separation membrane module 29 is maintained at a predetermined reduced pressure by the exhaust pump 43. A sweep gas is introduced to the permeate side of the gas separation membrane module 29 through the sweep gas introduction pipe 32. The flow rate of the sweep gas is controlled by the flow meter 45.

この発明を以下の実施例によって更に詳細に説明する。なお、実施例においては共沸性を有する含水イソプロピルアルコールを脱水して高純度のイソプロピルアルコールを分離回収する例を示す。なお、この発明は実施例に限定されるものではない。   The invention is illustrated in more detail by the following examples. In the examples, an example is shown in which high-purity isopropyl alcohol is separated and recovered by dehydrating hydrous isopropyl alcohol having azeotropic properties. In addition, this invention is not limited to an Example.

〔参考例1〕
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物100モル%のテトラカルボン酸成分と、4,4’−ジアミノジフェニルエーテル40モル%、及び1,4−ビス(4−アミノフェノキシ)ベンゼン60モル%からなるジアミン成分とを重合して得られた芳香族ポリイミド溶液を用いて、乾湿式製膜法によって芳香族ポリイミド製の非対称性中空糸膜(外径:500μm、内径:310μm)を準備した。この非対称性中空糸分離膜は、120℃における、水蒸気の透過速度が7.0×10−4cm/cm・sec・cmHgであって、水蒸気とイソプロピルアルコール蒸気との透過速度比(PH2O/Pi−PrOH)が約1350であった。前記非対称性中空糸膜を使用して中空糸束を作成し、その両端を硬化性樹脂で硬化・結束し、端面を裁断して各中空糸の両端が開口した有効長0.81mの糸束エレメントを作成し、ガス供給口、透過ガス排出口、非透過ガス排出口を備えた円筒形の容器内にガス分離膜の供給側(非透過側)と透過側の空間が隔絶するようにして装着して有効膜面積が5.9mのガス分離膜モジュールを製造した。
[Reference Example 1]
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 100 mol% tetracarboxylic acid component, 4,4′-diaminodiphenyl ether 40 mol%, and 1,4-bis (4-aminophenoxy) Asymmetric hollow fiber membrane made of aromatic polyimide (outer diameter: 500 μm, inner diameter: 310 μm) using an aromatic polyimide solution obtained by polymerizing a diamine component consisting of 60 mol% of benzene, by a dry-wet film forming method Prepared. This asymmetric hollow fiber separation membrane has a water vapor transmission rate of 7.0 × 10 −4 cm 3 / cm 2 · sec · cm Hg at 120 ° C., and a permeation rate ratio of water vapor to isopropyl alcohol vapor (P H2O / Pi-PrOH ) was about 1350. A hollow fiber bundle is prepared using the asymmetric hollow fiber membrane, and both ends of the hollow fiber are cured and bound with a curable resin, the end face is cut, and both ends of each hollow fiber have an effective length of 0.81 m. Create an element so that the gas separation membrane supply side (non-permeate side) and the permeate side space are isolated in a cylindrical container with gas supply port, permeate gas exhaust port, and non-permeate gas exhaust port A gas separation membrane module having an effective membrane area of 5.9 m 2 was manufactured by mounting.

〔実施例1〕
参考例1で製造したガス分離膜モジュールを装着した図2で説明したようなガス分離装置を準備し、原液槽にはイソプロピルアルコール90重量%と水10重量%からなる混合液を入れた。前記混合液を送液ポンプで蒸発器へ供給し、蒸発器のヒーターを必要な蒸発量が得られる255℃に設定し、その温度を保持しながら、平均18kg/時間の蒸発量になるように調整した。前記平均流量は原液槽の重量変化から求めた。約106℃で蒸発した蒸気混合物を含むガス混合物は過熱器で約120℃にスーパーヒートしてガス分離膜モジュールへ供給した。
ガス分離膜モジュールの透過側へは掃引ガスの乾燥窒素ガスを供給ガス流に対して向流方向に5.0リットル/分で流し、且つ分離膜を透過した主に水蒸気からなる蒸気混合物は凝縮器で冷却・凝縮し透過液槽へ導いて溜めた。また、ガス分離膜モジュールの透過側は、透過液槽に備えられた排気ポンプによって掃引ガスを排気し8kPa(絶対圧)の減圧に保持した。
調圧槽の圧力調整手段によって、具体的には圧力調整弁で0.143MPa(ゲージ圧)に調節した窒素で加圧し且つ背圧調整弁の設定を0.148MPa(ゲージ圧)にして、圧力調整をおこなった。ガス分離膜モジュールの非透過流は、高濃度化したイソプロピルアルコール蒸気からなるが、凝縮器で冷却凝縮されて液化され調圧槽に導入され、そこに一旦溜めてその液量を調整しながら精製液槽へ送液した。
ガス分離膜モジュールのガス供給口の上流側に取り付けた圧力計で測定したガス分離膜モジュールの供給側圧力は0.157MPa(ゲージ圧)であり、変動幅は0.003MPaと少なく安定していた。
精製液槽には非透過流の凝縮液が平均16.23kg/時間で回収された。前記回収量は精製液槽の重量変化から求めた。凝縮器と調圧器の間から定期的にサンプルを採取し電量滴定水分測定装置で水分を測定した結果、水分量は0.50±0.01重量%であった。精製液槽には純度99.50重量%のイソプロピルアルコールが回収された。
[Example 1]
A gas separation apparatus as shown in FIG. 2 equipped with the gas separation membrane module manufactured in Reference Example 1 was prepared, and a mixed liquid composed of 90% by weight of isopropyl alcohol and 10% by weight of water was placed in the stock solution tank. The liquid mixture is supplied to the evaporator with a liquid feed pump, and the heater of the evaporator is set to 255 ° C. at which the necessary amount of evaporation is obtained, and the average amount of evaporation is 18 kg / hour while maintaining the temperature. It was adjusted. The said average flow volume was calculated | required from the weight change of the stock solution tank. The gas mixture containing the vapor mixture evaporated at about 106 ° C. was superheated to about 120 ° C. with a superheater and supplied to the gas separation membrane module.
To the permeate side of the gas separation membrane module, dry nitrogen gas of sweep gas is flowed at 5.0 liter / min in the counterflow direction with respect to the supply gas flow, and the vapor mixture mainly composed of water vapor that has permeated the separation membrane is condensed. Cooled and condensed in a vessel, led to the permeate tank and stored. Further, the permeation side of the gas separation membrane module was evacuated with an exhaust pump provided in the permeate tank and kept at a reduced pressure of 8 kPa (absolute pressure).
The pressure is adjusted by the pressure adjusting means of the pressure adjusting tank, specifically, the pressure is adjusted with nitrogen adjusted to 0.143 MPa (gauge pressure) by the pressure adjusting valve, and the back pressure adjusting valve is set to 0.148 MPa (gauge pressure) to adjust the pressure. Adjustments were made. The non-permeate flow of the gas separation membrane module consists of highly concentrated isopropyl alcohol vapor, which is cooled and condensed by a condenser, liquefied and introduced into a pressure-regulating tank, where it is once stored and purified while adjusting its liquid volume. The solution was sent to the liquid tank.
The supply side pressure of the gas separation membrane module measured with a pressure gauge attached upstream of the gas supply port of the gas separation membrane module was 0.157 MPa (gauge pressure), and the fluctuation range was as small as 0.003 MPa and stable. .
A non-permeate flow condensate was recovered in the purified liquid tank at an average of 16.23 kg / hour. The recovered amount was determined from the change in weight of the purified liquid tank. As a result of periodically taking a sample from between the condenser and the pressure regulator and measuring the moisture with a coulometric titration moisture measuring device, the moisture content was 0.50 ± 0.01 wt%. Isopropyl alcohol having a purity of 99.50% by weight was recovered in the purified liquid tank.

〔実施例2〕
調圧槽の圧力調整手段によって、具体的には圧力調整弁で0.165MPa(ゲージ圧)に調節した窒素で加圧し且つ背圧調整弁の設定を0.167MPa(ゲージ圧)にして、圧力調整をおこなった以外は実施例1と同じ操作をおこなった。
ガス分離膜モジュールのガス供給口の上流側に取り付けた圧力計で測定したガス分離膜モジュールの供給側圧力は0.179MPa(ゲージ圧)であり、変動幅は0.003MPaと少なく安定していた。
精製液槽には非透過流の凝縮液が平均15.42kg/時間で回収された。前記回収量は精製液槽の重量変化から求めた。凝縮器と調圧器の間から定期的にサンプルを採取し電量滴定水分測定装置で水分を測定した結果、水分量は0.42±0.01重量%であった。精製液槽には純度99.58重量%のイソプロピルアルコールが回収された。
[Example 2]
The pressure is adjusted by the pressure adjusting means of the pressure adjusting tank, specifically, the pressure is adjusted with nitrogen adjusted to 0.165 MPa (gauge pressure) by the pressure adjusting valve, and the setting of the back pressure adjusting valve is set to 0.167 MPa (gauge pressure). The same operation as in Example 1 was performed except that the adjustment was performed.
The supply side pressure of the gas separation membrane module measured with a pressure gauge attached upstream of the gas supply port of the gas separation membrane module was 0.179 MPa (gauge pressure), and the fluctuation range was as small as 0.003 MPa and was stable. .
A non-permeate flow condensate was recovered in the purified liquid tank at an average of 15.42 kg / hour. The recovered amount was determined from the change in the weight of the purified liquid tank. A sample was periodically taken from between the condenser and the pressure regulator, and the moisture content was measured by a coulometric titration moisture measuring device. As a result, the moisture content was 0.42 ± 0.01 wt%. Isopropyl alcohol having a purity of 99.58% by weight was recovered in the purified liquid tank.

〔実施例3〕
蒸発器からの蒸発量が平均9kg/時間になるように調整したこと以外は実施例2と同じ操作をおこなった。
ガス分離膜モジュールのガス供給口の上流側に取り付けた圧力計で測定したガス分離膜モジュールの供給側圧力は0.179MPa(ゲージ圧)であり、変動幅は0.003MPaと少なく安定していた。
精製液槽には非透過流の凝縮液が平均8.05kg/時間で回収された。前記回収量は精製液槽の重量変化から求めた。凝縮器と調圧器の間から定期的にサンプルを採取し電量滴定水分測定装置で水分を測定した結果、水分量は0.039±0.001重量%であった。精製液槽には純度99.96重量%のイソプロピルアルコールが回収された。
Example 3
The same operation as in Example 2 was performed except that the amount of evaporation from the evaporator was adjusted to an average of 9 kg / hour.
The supply side pressure of the gas separation membrane module measured with a pressure gauge attached upstream of the gas supply port of the gas separation membrane module was 0.179 MPa (gauge pressure), and the fluctuation range was as small as 0.003 MPa and was stable. .
A non-permeate condensate was recovered in the purified liquid tank at an average of 8.05 kg / hour. The recovered amount was determined from the change in weight of the purified liquid tank. As a result of periodically taking a sample from between the condenser and the pressure regulator and measuring the moisture with a coulometric titration moisture measuring device, the moisture content was 0.039 ± 0.001 wt%. Isopropyl alcohol having a purity of 99.96% by weight was recovered in the purified liquid tank.

〔比較例1〕
実施例1のものから圧力調整手段を備えた調圧槽を外し且つガス分離膜モジュールからの非透過流がオリフィスを介して凝縮器に接続した、概略のフロー図が図3に示されたガス分離装置を用いた。すなわち、ガス分離膜モジュールの非透過側の圧力を非透過流のライン中に組み込んだオリフィスで調整するように構成したガス分離装置を用いた。
原液槽にはイソプロピルアルコール90重量%と水10重量%からなる混合液を入れ、前記混合液を送液ポンプで蒸発器へ供給し、蒸発器のヒーターを必要な蒸発量が得られる255℃に設定し、その温度を保持しながら、平均18kg/時間の蒸発量になるように調整した。前記平均流量は原液槽の重量変化から求めた。約102〜108℃で蒸発した蒸気混合物を含むガス混合物は過熱器で120℃にスーパーヒートしてガス分離膜モジュールへ供給した。
ガス分離膜モジュールの透過側へは掃引ガスの乾燥窒素ガスを供給ガス流に対して向流方向に5.0リットル/分で流し、且つ分離膜を透過した主に水蒸気からなる蒸気混合物は凝縮器で冷却・凝縮し精製液槽へ導いて溜めた。また、ガス分離膜モジュールの透過側は、透過液槽に備えられた排気ポンプによって掃引ガスを排気し8kPa(絶対圧)の減圧に保持した。
ガス分離膜モジュールの非透過側の圧力はオリフィスによって設定された。ガス分離膜モジュールのガス供給口の上流側に取り付けた圧力計で測定したガス分離膜モジュールの供給側圧力は0.157MPaであり、変動幅は0.024MPaと大きく変動した。
精製液槽には非透過流の凝縮液が平均16.23kg/時間で回収された。前記回収量は精製液槽の重量変化から求めた。凝縮器と精製液槽の間から定期的にサンプルを採取し電量滴定水分測定装置で水分を測定した結果、水分量は0.51±0.10重量%であった。精製液槽には純度99.49重量%のイソプロピルアルコールが回収された。
[Comparative Example 1]
FIG. 3 shows a schematic flow diagram in which the pressure-regulating tank provided with the pressure adjusting means is removed from that of Example 1 and the non-permeate flow from the gas separation membrane module is connected to the condenser via the orifice. A separator was used. That is, a gas separation device configured to adjust the pressure on the non-permeate side of the gas separation membrane module with an orifice incorporated in a non-permeate flow line was used.
In the stock solution tank, a mixed solution consisting of 90% by weight of isopropyl alcohol and 10% by weight of water is put, and the mixed solution is supplied to the evaporator by a feed pump, and the heater of the evaporator is heated to 255 ° C. at which a necessary evaporation amount can be obtained. While maintaining the temperature, the average amount of evaporation was adjusted to 18 kg / hour. The said average flow volume was calculated | required from the weight change of the stock solution tank. The gas mixture containing the vapor mixture evaporated at about 102 to 108 ° C. was superheated to 120 ° C. with a superheater and supplied to the gas separation membrane module.
To the permeate side of the gas separation membrane module, dry nitrogen gas of sweep gas is flowed at 5.0 liter / min in the counterflow direction with respect to the supply gas flow, and the vapor mixture mainly composed of water vapor that has permeated the separation membrane is condensed. Cooled and condensed in a vessel, led to the purified liquid tank and stored. Further, the permeation side of the gas separation membrane module was evacuated with an exhaust pump provided in the permeate tank and kept at a reduced pressure of 8 kPa (absolute pressure).
The pressure on the non-permeate side of the gas separation membrane module was set by an orifice. The pressure on the supply side of the gas separation membrane module measured with a pressure gauge attached upstream of the gas supply port of the gas separation membrane module was 0.157 MPa, and the fluctuation range was as large as 0.024 MPa.
A non-permeate flow condensate was recovered in the purified liquid tank at an average of 16.23 kg / hour. The recovered amount was determined from the change in weight of the purified liquid tank. A sample was periodically taken from between the condenser and the purified liquid tank, and the moisture content was measured by a coulometric titration moisture measuring device. As a result, the moisture content was 0.51 ± 0.10% by weight. Isopropyl alcohol having a purity of 99.49% by weight was recovered in the purified liquid tank.

〔比較例2〕
比較例2と同じガス分離装置を用いた。
原液槽にはイソプロピルアルコール90重量%と水10重量%からなる混合液を入れ、蒸発器からの蒸発量が平均9kg/時間になるように調整したこと以外は比較例1と同じ操作をおこなった。
ガス分離膜モジュールの非透過側の圧力はオリフィスによって設定された。ガス分離膜モジュールのガス供給口の上流側に取り付けた圧力計で測定したガス分離膜モジュールの供給側圧力は0.157MPa(ゲージ圧)であり、変動幅は0.023MPaと大きく変動した。
精製液槽には非透過流の凝縮液が平均8.05kg/時間で回収された。前記回収量は精製液槽の重量変化から求めた。凝縮器と精製液槽の間から定期的にサンプルを採取し電量滴定水分測定装置で水分を測定した結果、水分量は0.06±0.02重量%であった。精製液槽には純度99.94重量%のイソプロピルアルコールが回収された。
また、同じ圧力及び温度で、処理量のみを調整して、精製液槽に回収されるイソプロピルアルコールの純度を99.96重量%まで高めた。蒸発器からの蒸発量は平均8kg/時間となり、水分量は0.04±0.01重量%で、精製液槽には非透過流の凝縮液が平均7.15kg/時間で回収された。
[Comparative Example 2]
The same gas separation apparatus as in Comparative Example 2 was used.
The same operation as in Comparative Example 1 was performed except that a mixed solution consisting of 90% by weight of isopropyl alcohol and 10% by weight of water was placed in the stock solution tank and the amount of evaporation from the evaporator was adjusted to an average of 9 kg / hour. .
The pressure on the non-permeate side of the gas separation membrane module was set by an orifice. The pressure on the supply side of the gas separation membrane module measured with a pressure gauge attached upstream of the gas supply port of the gas separation membrane module was 0.157 MPa (gauge pressure), and the fluctuation range fluctuated as large as 0.023 MPa.
A non-permeate condensate was recovered in the purified liquid tank at an average of 8.05 kg / hour. The recovered amount was determined from the change in weight of the purified liquid tank. A sample was periodically taken from between the condenser and the purified liquid tank, and the moisture content was measured by a coulometric titration moisture measuring device. As a result, the moisture content was 0.06 ± 0.02 wt%. Isopropyl alcohol having a purity of 99.94% by weight was recovered in the purified liquid tank.
Moreover, only the throughput was adjusted at the same pressure and temperature, and the purity of isopropyl alcohol recovered in the purified liquid tank was increased to 99.96% by weight. The amount of evaporation from the evaporator averaged 8 kg / hour, the amount of water was 0.04 ± 0.01% by weight, and non-permeate condensate was recovered in the purified liquid tank at an average of 7.15 kg / hour.

実施例1〜3における非透過側の圧力変動幅は0.003MPaであり安定化することができたが、比較例1、2における非透過側の圧力変動幅は0.023〜0.024MPaと大きかった。このように圧力変動が大きいと、ガス分離を安定化しておこなうことは難しくなる。例えば、圧力変動が大きいと蒸気混合物の気化温度も変動するから、蒸発器や過熱器の温度制御などは極めて高精度であることが要求される。さらに、分離回収されるイソプロピルアルコールの純度も、長期間運転したときの平均値ではそれ程の差異はないが、圧力変動に伴ってその都度変動(多くの場合脈動)するから、頻繁に精製液槽から取り出して再利用するような場合には回収物の純度が変動するという不都合が生じる。また、比較例1、2ではガス分離膜モジュールの供給側圧力を0.157MPaに設定して運転したが、これ以上の高圧に設定すると圧力変動によって圧力が0.2MPaを越える可能性が生じる。運転圧力が0.2MPaを越える場合には高圧ガス取締法により装置に求められる耐圧性を高圧仕様に変更する必要がある。通常の耐圧仕様の装置では、実施例1〜3の方が比較例1、2よりもより高圧運転が可能になり高効率を達成し易い。   Although the pressure fluctuation range on the non-permeation side in Examples 1 to 3 was 0.003 MPa and could be stabilized, the pressure fluctuation range on the non-transmission side in Comparative Examples 1 and 2 was 0.023 to 0.024 MPa. It was big. When the pressure fluctuation is large in this way, it is difficult to stabilize the gas separation. For example, when the pressure fluctuation is large, the vaporization temperature of the vapor mixture also fluctuates, so that the temperature control of the evaporator and the superheater is required to have extremely high accuracy. In addition, the purity of the isopropyl alcohol separated and recovered is not so different in the average value when it is operated for a long time, but it changes each time with the pressure fluctuation (in many cases pulsation), so the purified liquid tank frequently When the product is taken out from the container and reused, there is a disadvantage that the purity of the recovered material fluctuates. In Comparative Examples 1 and 2, the gas separation membrane module was operated with the supply side pressure set to 0.157 MPa. However, when the pressure is set higher than this, the pressure may exceed 0.2 MPa due to pressure fluctuation. When the operating pressure exceeds 0.2 MPa, it is necessary to change the pressure resistance required for the apparatus to the high pressure specification by the high pressure gas control method. In an apparatus with a normal pressure resistance specification, the first to third embodiments can be operated at a higher pressure than the first and second comparative examples and can easily achieve high efficiency.

この発明は、例えば化学反応プロセス、蒸留プロセス、醗酵プロセス、洗浄プロセスなどのから発生する蒸気相で存在し得る混合物から蒸気混合物を発生させて、ガス分離膜モジュールからなるガス分離装置に供給し、分離膜モジュールの供給側圧力の変動を抑制して安定した状態で分離回収が可能になる。   The present invention generates a vapor mixture from a mixture that may exist in the vapor phase generated from, for example, a chemical reaction process, a distillation process, a fermentation process, a washing process, and the like, and supplies the vapor mixture to a gas separation device including a gas separation membrane module. Separation and recovery can be performed in a stable state while suppressing fluctuations in the pressure on the supply side of the separation membrane module.

この発明のガス分離方法の概要を説明するためのフロー図Flow chart for explaining the outline of the gas separation method of the present invention この発明のガス分離装置の一つの実施態様の概略のフロー図Schematic flow diagram of one embodiment of a gas separation device of the invention 比較例で用いたガス分離装置の概略のフロー図Schematic flow diagram of the gas separator used in the comparative example

符号の説明Explanation of symbols

1:液体混合物導入管
2:蒸発器
3:ヒーター
4:蒸気混合物をグ汲むガス混合物流
5:ガス分離膜モジュール
6:透過流
7:非透過流
8:凝縮器
9:調圧器
10:圧力調整手段
11:雰囲気ガス導入管
12:圧力調整弁
13:背圧調整弁
14:導管
20:原液槽
21:送液ポンプ
22:ヒーター
23:蒸発器
24:温度コントローラ
25:液面コントローラ
26:過熱器
27:温度コントローラ
28:圧力計
29:ガス分離膜モジュール
30:透過流
31:非透過流
32:掃引ガス導入管
33:凝縮器
34:調圧器
35:雰囲気ガス導入管
36:圧力調整弁
37:背圧調整弁
38:液面コントローラ
39:バルブ
40:精製液槽
41:凝縮器
42:透過液槽
43:排気ポンプ(エジェクター)
44:圧力計
45:流量計
46:試料採取口
47:オリフィス
1: Liquid mixture introduction pipe 2: Evaporator 3: Heater 4: Gas mixture stream 5 for drawing a vapor mixture 5: Gas separation membrane module 6: Permeate flow 7: Non-permeate flow 8: Condenser 9: Pressure regulator 10: Pressure adjustment Means 11: Atmospheric gas introduction pipe 12: Pressure adjustment valve 13: Back pressure adjustment valve 14: Conduit 20: Stock solution tank 21: Liquid feed pump 22: Heater 23: Evaporator 24: Temperature controller 25: Liquid level controller 26: Superheater 27: Temperature controller 28: Pressure gauge 29: Gas separation membrane module 30: Permeate flow 31: Non-permeate flow 32: Sweep gas introduction pipe 33: Condenser 34: Pressure regulator 35: Atmospheric gas introduction pipe 36: Pressure regulating valve 37: Back pressure adjusting valve 38: Liquid level controller 39: Valve 40: Purified liquid tank 41: Condenser 42: Permeated liquid tank 43: Exhaust pump (ejector)
44: Pressure gauge 45: Flow meter 46: Sampling port 47: Orifice

Claims (2)

蒸気混合物を含むガス混合物をガス分離膜モジュールの供給側へ供給し、蒸気混合物を含むガス混合物中の少なくとも第1蒸気を選択的に透過させて、第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離回収するガス分離方法において、
ガス分離膜モジュールからの非透過流が凝縮器を介して調圧槽に導かれ、且つ前記調圧槽は雰囲気ガスの出し入れによる圧力調整手段を備えており、前記圧力調整手段によって分離膜モジュールの供給側圧力を安定化することを特徴とするガス分離方法。
A gas mixture containing the vapor mixture is supplied to the supply side of the gas separation membrane module, and at least the first vapor in the gas mixture containing the vapor mixture is selectively permeated to obtain a permeate flow in which the first vapor has a high concentration and the first flow. In a gas separation method in which one vapor is separated and recovered into a non-permeate flow having a reduced concentration,
The non-permeate flow from the gas separation membrane module is led to a pressure regulating tank through a condenser, and the pressure regulating tank is provided with pressure adjusting means by taking in and out the atmospheric gas, and the pressure adjusting means allows the separation membrane module to A gas separation method characterized by stabilizing a supply-side pressure.
蒸気混合物を含むガス混合物をガス分離膜モジュールの供給側へ供給し、蒸気混合物を含むガス混合物中の少なくとも第1蒸気を選択的に透過させて、第1蒸気が高濃度化した透過流と第1蒸気が低濃度化した非透過流とに分離回収するガス分離装置において、
ガス分離膜モジュールからの非透過流が凝縮器を介して調圧槽に導かれ、且つ前記調圧槽は雰囲気ガスの出し入れによる圧力調整手段を備えており、前記圧力調整手段によって分離膜モジュールの供給側圧力を安定化するように構成されたことを特徴とするガス分離装置。
A gas mixture containing the vapor mixture is supplied to the supply side of the gas separation membrane module, and at least the first vapor in the gas mixture containing the vapor mixture is selectively permeated to obtain a permeate flow in which the first vapor has a high concentration and the first flow. In a gas separation apparatus that separates and collects a vapor into a non-permeate flow having a reduced concentration,
The non-permeate flow from the gas separation membrane module is led to a pressure regulating tank through a condenser, and the pressure regulating tank is provided with pressure adjusting means by taking in and out the atmospheric gas, and the pressure adjusting means allows the separation membrane module to A gas separation device configured to stabilize a supply-side pressure.
JP2004177988A 2004-06-16 2004-06-16 Gas separation method and gas separation apparatus for vapor mixture Expired - Fee Related JP4148190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177988A JP4148190B2 (en) 2004-06-16 2004-06-16 Gas separation method and gas separation apparatus for vapor mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177988A JP4148190B2 (en) 2004-06-16 2004-06-16 Gas separation method and gas separation apparatus for vapor mixture

Publications (2)

Publication Number Publication Date
JP2006000720A true JP2006000720A (en) 2006-01-05
JP4148190B2 JP4148190B2 (en) 2008-09-10

Family

ID=35769556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177988A Expired - Fee Related JP4148190B2 (en) 2004-06-16 2004-06-16 Gas separation method and gas separation apparatus for vapor mixture

Country Status (1)

Country Link
JP (1) JP4148190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816830A (en) * 2021-10-12 2021-12-21 北京石油化工工程有限公司 Method and system for reducing methanol content in methyl acetate hydrogenation reactor through membrane separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816830A (en) * 2021-10-12 2021-12-21 北京石油化工工程有限公司 Method and system for reducing methanol content in methyl acetate hydrogenation reactor through membrane separation

Also Published As

Publication number Publication date
JP4148190B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US5681433A (en) Membrane dehydration of vaporous feeds by countercurrent condensable sweep
EP0657205B1 (en) Pervaporation by countercurrent condensable sweep
US5843209A (en) Vapor permeation system
US4978430A (en) Method for dehydration and concentration of aqueous solution containing organic compound
AU690723B2 (en) Organic and inorganic vapor permeation by countercurrent condensable sweep
EP0532368A2 (en) Membrane-based removal of condensable vapors
US5427687A (en) Bubble reaction using vapor permeation
WO2015069882A1 (en) Two-step membrane gas separation process with membranes having different selectivities
JPH05177111A (en) Dehydration of water-organic matter solution
JP4148190B2 (en) Gas separation method and gas separation apparatus for vapor mixture
JP5734684B2 (en) Dehydration and concentration method for hydrous solvents
US8816045B2 (en) Membrane stripping process for removing volatile organic compounds from a latex
JPS63258601A (en) Concentration of aqueous organic solution
JP2005177535A (en) Concentration method for water-soluble organic substance and concentration device
WO2020066639A1 (en) Nitrous oxide purification method
JPH05226A (en) Dehydration and concentration of aqueous solution of organic matter
JP2002035530A (en) Method for operating gas separation membrane
JP2002331219A (en) Apparatus and method for separating and recovering halogen compound gas
JPH02222716A (en) Gas separating membrane and separation of gas
JPS63218233A (en) Removing of reaction water
JPH05123530A (en) Recovery of hydrophilic organic vapor
JPS63258602A (en) Separation of volatile mixture
JPH0335961B2 (en)
JPH0356113A (en) Method for recovering vapor of organic solvent
WO2023002146A1 (en) Method for the separation of phosphorus pentafluoride from hydrogen chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4148190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees