JP2005527767A - How to get argon by cryogenic air decomposition - Google Patents

How to get argon by cryogenic air decomposition Download PDF

Info

Publication number
JP2005527767A
JP2005527767A JP2003584591A JP2003584591A JP2005527767A JP 2005527767 A JP2005527767 A JP 2005527767A JP 2003584591 A JP2003584591 A JP 2003584591A JP 2003584591 A JP2003584591 A JP 2003584591A JP 2005527767 A JP2005527767 A JP 2005527767A
Authority
JP
Japan
Prior art keywords
column
argon
air
oxygen
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003584591A
Other languages
Japanese (ja)
Inventor
グラットハール ラインハルト
クンツ クリスティアン
ランケ ハラルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002116269 external-priority patent/DE10216269A1/en
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of JP2005527767A publication Critical patent/JP2005527767A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04933Partitioning walls or sheets
    • F25J3/04939Vertical, e.g. dividing wall columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本発明は空気の低温分解によりアルゴンを取得する方法に関する。精留装置(2,4)が少なくとも1個の空気分解カラム(4)を有し、該カラムをカラム長手方向に伸びる分離壁(5)が第1部分および第2部分(6,7)に分ける。第1部分(6)に酸素およびアルゴンを有する流体(3)を導入する。第2部分(7)から酸素およびアルゴンを有する流れ(13)をアルゴン濃度15〜50%で取り出す。The present invention relates to a method for obtaining argon by cryogenic decomposition of air. The rectification device (2, 4) has at least one air decomposition column (4), and a separation wall (5) extending in the longitudinal direction of the column is formed in the first part and the second part (6, 7). Divide. A fluid (3) having oxygen and argon is introduced into the first part (6). A stream (13) with oxygen and argon is withdrawn from the second part (7) with an argon concentration of 15-50%.

Description

本発明は3つの一列に配置された精留部分を有する精留装置中で空気の低温分解によりアルゴンを取得する方法に関し、その際第1および第2精留部分および第2および第3精留部分がそれぞれ気体側および液体側で互いに結合され、第2精留部分が2つの部分を有し、これらが気体側および液体側で互いに結合されてなく、平行に貫流し、2つの部分の第1部分に酸素およびアルゴンを有する流体が導入され、2つの部分の第2部分から酸素およびアルゴンを有する流れが取り出される。   The present invention relates to a method for obtaining argon by cryogenic decomposition of air in a rectifying apparatus having three rectifying parts arranged in a row, wherein the first and second rectifying parts and the second and third rectifying parts are obtained. The parts are connected to each other on the gas side and the liquid side, respectively, and the second rectifying part has two parts, which are not connected to each other on the gas side and the liquid side, flow in parallel, A fluid with oxygen and argon is introduced into one part and a stream with oxygen and argon is taken from the second part of the two parts.

アルゴンの沸点は酸素の沸点と窒素の沸点の間にある。2工程の精留による古典的な空気の低温分解において低圧カラムの中間部分にアルゴンが蓄積される。アルゴンを取得するためにはこの部分から一般にガス状部分を取り出し、ガス状部分は主に酸素とアルゴンからなる。この約10%アルゴンが蓄積された部分をいわゆる粗製アルゴンカラムに供給し、ここで酸素とアルゴンの精留器分離を行う。粗製アルゴンカラムの頭部でアルゴンを排出し、底部で主に酸素を有する液体を収集し、液体を低圧カラムに戻すことができる。   The boiling point of argon is between the boiling point of oxygen and the boiling point of nitrogen. Argon accumulates in the middle part of the low-pressure column in the classical air cryogenic decomposition by two-stage rectification. In order to acquire argon, generally a gaseous part is taken out from this part, and a gaseous part mainly consists of oxygen and argon. The portion in which about 10% argon is accumulated is supplied to a so-called crude argon column, where oxygen and argon rectifiers are separated. Argon can be evacuated at the top of the crude argon column, liquid having mainly oxygen at the bottom can be collected, and liquid can be returned to the low pressure column.

実際にはしばしば95%より高いアルゴン純度が必要である。公知方法において粗製アルゴンカラムに約10%にすぎないアルゴンを有する流れを供給する。この流れを所望の高いアルゴン純度に濃縮し、粗製アルゴンカラムの頭部で所望の生成物量を取り出すことができるために、粗製アルゴンカラムにかなりの蒸気量を導入し、ここで精留しなければならない。粗製アルゴンカラムの断面を相当して大きく選択しなければならず、これによりかなりの投入費用が生じる。   In practice, argon purity often higher than 95% is required. In a known manner, a crude argon column is fed with a stream having only about 10% argon. Since this stream can be concentrated to the desired high argon purity and the desired amount of product can be removed at the head of the crude argon column, a significant amount of steam must be introduced into the crude argon column where it must be rectified. Don't be. The cross section of the crude argon column must be chosen considerably larger, which results in considerable input costs.

特に炭化水素取得の分野から三成分混合物を分解するためにいわゆる分離壁カラムを使用することがすでに知られている。分離壁カラムの場合にカラムの一部がカラムの長手方向に配置された壁により2つの部分に分かれる。分離壁の上側および下側で2つの部分がそれぞれ流動側で結合している。相当する方法の実施の場合に分離壁の1つの面の部分に導入される三成分混合物を唯一のカラムで3つの部分に分解することができる。最も容易に沸騰する成分を分離壁カラムの頭部で、中沸点成分を分離壁の供給と反対の側で、最も沸騰しにくい成分を底部から取得することができる。分離壁を有しないカラムに比べて分離壁カラムを使用して側面排出口でより高い濃度の中沸点成分を得ることができる。   In particular, it is already known from the field of hydrocarbon acquisition to use so-called separation wall columns to crack ternary mixtures. In the case of a separation wall column, a part of the column is divided into two parts by a wall arranged in the longitudinal direction of the column. On the upper and lower sides of the separation wall, the two parts are joined together on the flow side. In the implementation of the corresponding method, the ternary mixture introduced into a part of one face of the separation wall can be broken down into three parts with a single column. The most easily boiled component can be obtained from the top of the separation wall column, the medium boiling component from the side opposite the separation wall feed, and the least boiled component from the bottom. Higher concentrations of mesoboiling components can be obtained at the side outlet using a separation wall column compared to a column without a separation wall.

低温空気分解において、分離壁カラムは、従来は、その困難な調節のためにほとんど使用されなかった。欧州特許(EP−B1)第0638778号において分離壁カラム内で空気を低温分解する方法が記載されている。低圧カラムが中間部分で分離壁により分かれる。分離壁の一方の面に圧力カラムから溜まり物液体を供給し、分離壁の他方の面でアルゴン含有流体を取り出す。方法の調節を改良するために、溜まり物液体を導入する分離壁の面で廃物流を取り出す。方法パラメーターは得られるアルゴン含有流体が少なくとも70%のアルゴン濃度を有するように選択される。   In cryogenic air decomposition, separation wall columns have hitherto been rarely used due to their difficult adjustments. European Patent (EP-B1) No. 0638778 describes a method for cryogenic decomposition of air in a separation wall column. The low pressure column is separated by a separation wall in the middle part. The reservoir liquid is supplied from the pressure column to one side of the separation wall, and the argon-containing fluid is taken out from the other side of the separation wall. In order to improve the control of the process, the waste stream is removed in the face of the separation wall into which the pool liquid is introduced. The process parameters are selected such that the resulting argon-containing fluid has an argon concentration of at least 70%.

アルゴン濃度70%の範囲の生成物が必要な場合は、欧州特許(EP−B1)第0638778号に記載された方法を使用して粗製アルゴンカラム中の理論的棚板の数を減少し、構造高さを節約することができる。しかし例えば95%より高いアルゴン濃度が必要である場合は、低圧カラムから排出され、粗製アルゴンカラムに供給される流体の70%より高いアルゴンの値までの濃縮の利点が常に減少する。これは高いアルゴン濃度を達成するために、アルゴンから酸素の最終的%割合を除去するために粗製アルゴンカラム中に多数の理論的棚板が必要であることによる。すなわち高い純度の要求の場合は粗製アルゴンカラムに導入される流体の出発濃度が少ない役割を果たす。   If a product with an argon concentration in the range of 70% is required, the method described in European Patent (EP-B1) 0638778 is used to reduce the number of theoretical shelves in the crude argon column. The height can be saved. However, if an argon concentration higher than 95%, for example, is required, the advantage of concentrating to a value of argon higher than 70% of the fluid discharged from the low pressure column and fed to the crude argon column is always reduced. This is due to the need for a large number of theoretical shelves in the crude argon column to remove the final percentage of oxygen from the argon in order to achieve a high argon concentration. That is, in the case of a high purity requirement, the starting concentration of the fluid introduced into the crude argon column plays a role.

従って本発明の課題は低温空気分解によりアルゴンを取得する改良された方法を示すことである。   The object of the present invention is therefore to show an improved method of obtaining argon by low temperature aerolysis.

前記課題は、本発明により、冒頭に記載された形式の方法により、第2部分から排出される流れ中のアルゴン濃度が15〜50%、有利に15〜40%、特に有利に20〜35%であることにより解決される。   The object is that according to the invention, the concentration of argon in the stream discharged from the second part is 15 to 50%, preferably 15 to 40%, particularly preferably 20 to 35%, according to the method of the type described at the outset. It is solved by being.

本発明はアルゴン生成物の量と純度を一定にして粗製アルゴンカラムに導入される流れ中のアルゴンの出発濃度の増加が過剰に供給される蒸気量の減少を生じるという認識にもとづく。これは粗製アルゴンカラムの断面を相当して減少し、費用を節約できる限りで有利である。   The present invention is based on the recognition that increasing the starting concentration of argon in a stream introduced to a crude argon column with a constant amount and purity of argon product results in a decrease in the amount of vapor supplied in excess. This is advantageous as long as the crude argon column has a correspondingly reduced cross section, saving costs.

しかし空気分解カラムの側面排出口でのアルゴン濃度の増加は空気分解カラムの複雑な実施および費用のかかる調節と結びついている。更に高い生成物の要求の場合に空気分解カラムから側面排出口でのアルゴン濃縮の利点が常に減少することを配慮すべきであり、それは前記のようにこの場合に粗製アルゴンカラム中の理論的棚板の数が実質的に達成される最終濃度に依存し、出発濃度に依存しないからである。   However, increasing the argon concentration at the side outlet of the air cracking column is associated with complex implementation and costly adjustment of the air cracking column. It should be taken into account that the advantage of argon concentration at the side outlet from the air cracking column is always reduced in the case of higher product demands, as described above, in this case the theoretical shelf in the crude argon column. This is because the number of plates depends substantially on the final concentration achieved and not on the starting concentration.

試験により粗製アルゴンカラムに規則通りの機能に供給しなければならない最低の蒸気量がアルゴン濃度の増加とともにまず減少するが、50%のアルゴン濃度から一定になることが示された。すなわち50%より高い値までの側面排出口の引き続くアルゴン蓄積が粗製アルゴンカラムに導入される蒸気量を更に減少せず、従って粗製アルゴンカラムの引き続く断面の減少の可能性を生じない。粗製アルゴンカラムに供給される混合物中の高いアルゴン濃度の利点のみが維持される。アルゴン純度の要求が高い場合に粗製アルゴンカラム中の理論的棚板の数が実質的に出発濃度に依存しないので、空気分解カラムから取り出される流れ中のアルゴン濃度の引き続く増加はもはや重要でない。本発明の枠内でこの事情は詳細に研究され、第2部分から取り出される流れ中の15〜50%のアルゴン濃度が特に有利であることが確認された。   Tests have shown that the minimum amount of vapor that must be supplied to a regular function in a crude argon column first decreases with increasing argon concentration, but remains constant from 50% argon concentration. That is, the subsequent argon accumulation at the side outlet to a value higher than 50% does not further reduce the amount of vapor introduced into the crude argon column, and therefore does not give rise to the possibility of subsequent cross-sectional reduction of the crude argon column. Only the advantage of high argon concentration in the mixture fed to the crude argon column is maintained. Since the number of theoretical shelves in the crude argon column is substantially independent of the starting concentration when the argon purity requirement is high, the subsequent increase in the argon concentration in the stream removed from the air cracking column is no longer important. This situation has been studied in detail within the framework of the present invention and it has been found that an argon concentration of 15-50% in the stream withdrawn from the second part is particularly advantageous.

実際に第2部分から15〜40%、有利に20〜35%のアルゴン濃度を有する流れを取り出す方法の実施が特別な利点を生じることが判明した。   In practice, it has been found that the implementation of a process for removing a stream having an argon concentration of 15 to 40%, preferably 20 to 35%, from the second part has particular advantages.

本発明は特に分離壁カラムを使用する場合に有利である。この場合に精留装置が少なくとも1個の空気分解カラムを有し、カラムは3つの一列に配置された精留部分を有し、その際それぞれ互いに隣接する精留部分がガス側および液体側で互いに結合している。中間の精留部分は1つの分離壁を有し、分離壁は精留部分を2つの部分に分ける。第2精留部分の内部で分離壁による2つの部分の間のガス交換および液体交換が阻止される。しかし2つの部分はその上およびその下に存在する精留部分と流動側で結合している。   The present invention is particularly advantageous when a separation wall column is used. In this case, the rectification device has at least one air cracking column, which has three rectification sections arranged in one row, with the rectification sections adjacent to each other on the gas side and liquid side, respectively. Are connected to each other. The middle rectifying part has one separating wall, which separates the rectifying part into two parts. Gas exchange and liquid exchange between the two parts by the separation wall are prevented inside the second rectification part. However, the two parts are joined on the flow side with the rectifying part present above and below it.

分離壁カラムの代わりに2つの互いに平行に配置されたカラムにより2つの平行に貫流する部分に分けることができる。第1空気分解カラムから中間位置で液体を排出し、第2カラムに供給する。ガスを第2中間位置で第1空気分解カラムから取り出し、第2カラムに導入する。第2カラムの頭部で生じるガスおよび第2カラムの溜まり物からの液体を有利に2つの中間位置で第1空気分解カラムに返送する。2つの流動側で分離される部分をこの実施態様では分離壁でなく、2つの平行に接続されるカラムにより実現する。   Instead of a separation wall column, it can be divided into two parallel flow-through parts by two columns arranged parallel to each other. The liquid is discharged from the first air decomposition column at an intermediate position and supplied to the second column. Gas is withdrawn from the first air decomposition column at the second intermediate position and introduced into the second column. The gas produced at the head of the second column and the liquid from the second column pool are preferably returned to the first air cracking column at two intermediate positions. The part separated on the two flow sides is realized in this embodiment by two parallel connected columns rather than a separation wall.

第2部分から実施に応じて空気分解カラムからまたは第2カラムから取り出される流れを有利に粗製アルゴンカラムに導く。ここで生じる主に酸素を有する溜まり物液体を有利に第2部分、すなわちアルゴン含有部分が取り出される部分に返送する。   Depending on the implementation from the second part, the stream withdrawn from or from the air cracking column is preferably led to a crude argon column. The resulting mainly liquid liquid with oxygen is preferably returned to the second part, ie the part from which the argon-containing part is removed.

本発明は有利に圧力カラムと低圧カラムを有する精留装置に適しており、その際低圧カラムに分離壁が配置され、第1部分に圧力カラムから酸素が蓄積された流体、有利に溜まり物液体を導入する。   The present invention is preferably suitable for a rectification apparatus having a pressure column and a low pressure column, in which a separation wall is arranged in the low pressure column and oxygen is accumulated in the first part from the pressure column, preferably a pool liquid. Is introduced.

本発明の方法の利点は特に95%より高い、有利に98%より高い純度を有するアルゴンおよび/または100ppm未満、有利に10ppm未満の酸素含量を有するアルゴンが粗製アルゴンカラムで得られる場合に示される。本発明は粗製アルゴンカラムに100より多い理論的棚板、有利に150〜200の理論的棚板を装入する場合に特に有利である。この場合に粗製アルゴンカラムの構造高さはいずれにしても高い最終純度に必要な数の理論的棚板により決定される。粗製アルゴンカラムの直径は分離カラムのない従来の方法に比べて明らかに減少できる。   The advantages of the process according to the invention are shown in particular when argon having a purity higher than 95%, preferably higher than 98% and / or argon having an oxygen content of less than 100 ppm, preferably less than 10 ppm, is obtained in a crude argon column. . The invention is particularly advantageous when the crude argon column is loaded with more than 100 theoretical shelves, preferably 150-200 theoretical shelves. In this case, the structural height of the crude argon column is in any case determined by the number of theoretical shelves required for high final purity. The diameter of the crude argon column can be clearly reduced compared to conventional methods without a separation column.

有利に空気分解カラムに精留のために充填物を装入する。この場合に充填物が多くの互いに重なっている部分、いわゆるベッドに配置されている場合が有利であり、その際精留すべき液体および/または精留すべきガスがそれぞれ2つのベッドに集められ、新たに次の充填物ベッドに分配される。充填物の代わりに他の取り付け部品または装置を空気分解カラムでの精留に使用する場合に、カラムでの悪い分配を避けるために、空気分解カラムに決められた間隔で収集装置および/または分配装置を設けることが同様に有利である。   Advantageously, the air cracking column is charged with packing for rectification. In this case, it is advantageous if the packing is arranged in many overlapping parts, so-called beds, in which the liquid to be rectified and / or the gas to be rectified are collected in two beds, respectively. , Newly dispensed to the next packed bed. When using other fittings or devices instead of packing for rectification in an air cracking column, collection devices and / or distributions at defined intervals in the air cracking column to avoid bad partitioning in the column It is likewise advantageous to provide a device.

空気分解カラム中の2つの分かれた部分の間の分離壁は有利にそれぞれ充填物ベッドの上方端部または下方端部でもしくは他のカラム取り付け部品を使用する場合は収集装置/分配装置により隣接する部分から分けられる相当する部分の上方端部または下方端部で終了する。いずれにしても2つのカラム部分のこの衝突位置に収集装置/分配装置が配置されるので、分離壁を使用する場合に付加的な収集装置/分配装置を用意する必要がない。分離壁の上にじかに配置される収集装置/分配装置のみを、分離壁により互いに分かれる2つの部分に所望のやり方で液体が分配されるように変更しなければならない。分離壁カラムの代わりに第1空気分解カラムに平行に配置される第2カラムを使用する場合に相当することが該当する。   The separation wall between the two separate parts in the air cracking column is preferably adjacent to the upper or lower end of the packed bed, respectively, or by a collector / distributor if other column fittings are used. It ends at the upper or lower end of the corresponding part divided from the part. In any case, since the collector / distributor is arranged at this collision position of the two column portions, it is not necessary to prepare an additional collector / distributor when using the separation wall. Only the collector / distributor placed directly on the separation wall must be modified so that the liquid is dispensed in the desired manner in two parts separated from each other by the separation wall. This corresponds to the case where a second column arranged in parallel to the first air decomposition column is used instead of the separation wall column.

その際空気分解カラム、特に二重カラム装置の低圧カラムを4つの部分にもしくは充填物を使用する場合は4つの充填物ベッドに分け、第2部分および第3部分の高さに分離壁を用意することが特に有利であると示された。   In that case, the air decomposition column, especially the low-pressure column of the double column apparatus, is divided into four parts or, if packing is used, four packing beds, and a separation wall is prepared at the height of the second and third parts. It has been shown to be particularly advantageous.

第1部分および第2部分に有利に上昇するガスに対して同じ圧力の低下を生じる物質交換部品を使用する。   A mass exchange part is used which causes the same pressure drop for the gas to rise advantageously in the first part and the second part.

本発明および本発明の詳細を以下に図面に示された実施例により詳細に説明する。   The invention and details of the invention are explained in more detail below by means of an embodiment shown in the drawings.

図1は本発明の方法を実施する装置を示し、図2は本発明の他の実施例を示し、図3はアルゴン濃度に依存する粗製アルゴンカラムに供給すべき比蒸気量を示し、図4は粗製アルゴンカラムに供給される蒸気中のアルゴン濃度に依存するアルゴン収率を示す。   FIG. 1 shows an apparatus for carrying out the method of the present invention, FIG. 2 shows another embodiment of the present invention, FIG. 3 shows the specific vapor amount to be supplied to a crude argon column depending on the argon concentration, and FIG. Indicates the argon yield depending on the argon concentration in the steam supplied to the crude argon column.

図1にアルゴンを取得する低温空気分解装置の精留部分が示されている。装入空気1は相当する洗浄および冷却後圧力カラム2に導入する。圧力カラム2の底部に集まる酸素が蓄積された液体を導管3により低圧カラム4に移送する。   FIG. 1 shows a rectifying portion of a cryogenic air decomposition apparatus for obtaining argon. Charge air 1 is introduced into pressure column 2 after corresponding cleaning and cooling. The liquid in which oxygen collected at the bottom of the pressure column 2 is accumulated is transferred to the low pressure column 4 through the conduit 3.

低圧カラム4は分離壁カラムとして形成される。精留部品として低圧カラム4に充填物が用意され、充填物は複数の重なるベッド19,20,21,22に配置され、ベッドはそれぞれ約6mの高さを有する。それぞれ2つのベッドの間に収集装置/分配装置23,24,25,26,27が低圧カラム4中を下に流れる液体の収集および分配のために用意されている。   The low pressure column 4 is formed as a separation wall column. A packing is prepared in the low-pressure column 4 as a rectifying part, and the packing is arranged in a plurality of overlapping beds 19, 20, 21, and 22. Each bed has a height of about 6 m. Collecting / dispensing devices 23, 24, 25, 26, 27 are provided for collecting and distributing the liquid flowing down in the low-pressure column 4 between each two beds.

低圧カラム4の中間部分に分離壁5が配置され、低圧カラム4を2つの部分6,7に分ける。その際分離壁5は2つの中間充填物ベッド20および21の全部の長さにわたり延びている。2つの分離された部分6,7の間のガス交換および液体交換はこの部分で不可能である。   A separation wall 5 is arranged in the middle part of the low-pressure column 4 and divides the low-pressure column 4 into two parts 6 and 7. In this case, the separating wall 5 extends over the entire length of the two intermediate packing beds 20 and 21. Gas exchange and liquid exchange between the two separated parts 6, 7 are not possible in this part.

これに対して分離された部分6,7の上方および下方のベッド19および22は低圧カラム4の全部の断面にわたり延びており、2つの部分6,7に分離して上昇もしくは下降するガス流もしくは液体流が再び結合する。   On the other hand, the upper and lower beds 19 and 22 of the separated parts 6 and 7 extend over the entire cross section of the low-pressure column 4, and the gas flow or rising or lowering separately into the two parts 6 and 7 or The liquid flow combines again.

低圧カラム4に、分かれた部分6に、導管3により圧力カラム2から溜まり物液体が供給される。導管12により更にタービン空気が低圧カラム4に導入できる。低圧カラム4の頭部で導管8によりガス状生成物窒素を取得できる。更に分かれた部分6,7の上方に不純な窒素の排出口9が用意されている。低圧カラム4の底部から導管10および11によりガス状もしくは液状生成物酸素を取り出すことができる。   Reservoir liquid is supplied from the pressure column 2 to the low pressure column 4 via the conduit 3 to the separated portion 6. Turbine air can be further introduced into the low-pressure column 4 via the conduit 12. Gaseous product nitrogen can be obtained by the conduit 8 at the head of the low pressure column 4. Further, an impure nitrogen discharge port 9 is prepared above the divided portions 6 and 7. Gaseous or liquid product oxygen can be withdrawn from the bottom of the low pressure column 4 via conduits 10 and 11.

2つの部分6および7に同じ比表面積を有する充填物が取り付けられている。低圧カラム4中を上昇する蒸気は2つの部分6,7で同じ圧力損失を受ける。下降する液体は分配装置24,25を使用して2つの部分6,7に分配する。有利に2つの部分6,7に同じ液体量が与えられる。方法の実施を最適にするために部分6,7に異なる液体供給量を用意することが重要である。2つの部分6,7への上昇する蒸気の分配は反対に流れる液体量および充填物ベッド20,21での圧力損失に依存して自然に有利に調節される。   The two parts 6 and 7 are fitted with a packing having the same specific surface area. The vapor rising in the low pressure column 4 undergoes the same pressure loss in the two parts 6, 7. The descending liquid is distributed into the two parts 6 and 7 using the distribution devices 24 and 25. The same amount of liquid is preferably provided in the two parts 6,7. It is important to have different liquid feeds in sections 6 and 7 to optimize the performance of the method. The distribution of the rising vapor to the two parts 6, 7 is naturally advantageously adjusted depending on the amount of liquid flowing opposite and the pressure loss in the packing beds 20, 21.

部分7から主にアルゴンおよび酸素を有する流れ13を、アルゴン濃度35%を有して取り出し、充填物を備えた粗製アルゴンカラム14に導入する。粗製アルゴンカラム14中で酸素−アルゴン混合物を精留する。粗製アルゴンカラム14の頭部で生じるアルゴンを頭部凝縮器15で凝縮し、一部を生成物16として10ppm未満の残留酸素含量で取得し、一部を還流液17として再び粗製アルゴンカラム14に供給する。粗製アルゴンカラム14の底部で液体の酸素を収集し、導管18により低圧カラム4の分かれた部分7に返送する。   A stream 13 comprising mainly argon and oxygen is taken from part 7 with an argon concentration of 35% and introduced into a crude argon column 14 equipped with packing. The oxygen-argon mixture is rectified in a crude argon column 14. Argon generated at the head of the crude argon column 14 is condensed by the head condenser 15, a part is obtained as a product 16 with a residual oxygen content of less than 10 ppm, and a part thereof is returned to the crude argon column 14 as a reflux liquid 17. Supply. Liquid oxygen is collected at the bottom of the crude argon column 14 and returned to a separate portion 7 of the low pressure column 4 via conduit 18.

低圧カラム4中で分離壁5により圧力カラム2からの溜まり物液体の供給物3およびタービン空気12をアルゴン排出流13から分離する。この方法でアルゴン排出流13中で分離壁のないカラムより明らかに高いアルゴン濃度が調節できる。   A separation wall 5 separates the pool liquid feed 3 from the pressure column 2 and the turbine air 12 from the argon exhaust stream 13 in the low pressure column 4. In this way, a significantly higher argon concentration can be adjusted in the argon discharge stream 13 than a column without separation walls.

図2に本発明の1つの実施例が示され、分離壁5の代わりに平行な側面カラム30が用意されている。2つの図で同じ部品は同じ符号が付けられている。   FIG. 2 shows an embodiment of the present invention in which a parallel side column 30 is provided instead of the separation wall 5. In the two figures, the same parts are given the same reference numerals.

この場合に低圧カラム4は分離壁なしに形成されている。精留部分22から下降する液体は、一部は分配装置24によりベッド20,21に分配され、ベッドは第1部分を形成する。第2部分は側面カラム30により実現される。充填物ベッド22から下降する液体の一部は導管31により低圧カラム4から取り出され、側面カラム30の頭部に供給される。側面カラム30の頭部で生じるガスは導管32により低圧カラム4に充填物ベッド21の上方に返送される。相当して導管33により液体を側面カラム30から低圧カラム4に導入し、または導管34により低圧カラム14から側面カラム30に導入する。   In this case, the low-pressure column 4 is formed without a separation wall. A part of the liquid descending from the rectifying part 22 is distributed to the beds 20 and 21 by the distributor 24, and the bed forms the first part. The second part is realized by the side column 30. A part of the liquid descending from the packing bed 22 is removed from the low pressure column 4 by the conduit 31 and supplied to the head of the side column 30. The gas generated at the head of the side column 30 is returned to the low pressure column 4 above the packing bed 21 by a conduit 32. Correspondingly, liquid is introduced from the side column 30 to the low pressure column 4 via the conduit 33 or from the low pressure column 14 to the side column 30 via the conduit 34.

図1および図2による実施態様での処理方法は同じであり、わずかに図2において低圧カラム4の精留部分20、21が第1部分6を表し、側面カラム30が第2部分7を表す。相当して流れ3,12を低圧カラム4に導入し、側面カラム30からアルゴン含有流れ13を取り出す。   The processing method in the embodiment according to FIGS. 1 and 2 is the same, slightly in FIG. 2 the rectifying parts 20, 21 of the low pressure column 4 represent the first part 6 and the side column 30 represents the second part 7. . Correspondingly, streams 3 and 12 are introduced into the low pressure column 4 and the argon containing stream 13 is removed from the side column 30.

本発明の枠内で模擬試験により粗製アルゴンカラム14に供給すべき比蒸気量、すなわちアルゴン生成物量に関する蒸気量を蒸気のアルゴン濃度に依存して測定する。測定された依存性は図3に示される。その際98.5%のアルゴン生成物純度および一定のアルゴン収率、すなわち装入空気中のアルゴン生成物とアルゴン量の一定の比から出発する。   Within the framework of the present invention, the specific steam volume to be supplied to the crude argon column 14 by a simulation test, that is, the steam volume related to the argon product volume, is measured depending on the argon concentration of the steam. The measured dependence is shown in FIG. In this case, an argon product purity of 98.5% and a constant argon yield, ie a constant ratio of argon product to argon content in the charge air, are started.

直線の曲線は無限の理論的棚板数での理論的最低蒸気量を示す。点線の曲線は50個の理論的棚板数で計算された状態の経過を示す。2つの曲線は実質的に同じ経過を有する。しかし最終的な棚板数の曲線からこの場合に理論的曲線に比べて約30〜40%大きい蒸気量を使用しなければならないことが理解できる。   The straight curve shows the theoretical minimum steam volume with an infinite number of theoretical shelves. The dotted curve shows the course of the state calculated with 50 theoretical shelves. The two curves have substantially the same course. However, it can be seen from the final shelf number curve that in this case a steam volume of about 30-40% greater than the theoretical curve must be used.

2つの曲線はまずアルゴン濃度が上昇するとともに所望の純度および量のアルゴンを得るために粗製アルゴンカラム14にいっそう少ない蒸気を移送しなければならないことを示す。曲線はアルゴン濃度約50%でそれぞれ下限値に接近する。アルゴン濃度がこれより高い場合に供給すべき蒸気量の低下が期待できないかまたは更に少ない低下のみが期待できる。   The two curves show that less argon must first be transferred to the crude argon column 14 to obtain the desired purity and amount of argon as the argon concentration increases. The curves each approach the lower limit at an argon concentration of about 50%. When the argon concentration is higher than this, a decrease in the amount of vapor to be supplied cannot be expected, or only a further decrease can be expected.

粗製アルゴンカラム14への供給流中のアルゴン濃度が増加した場合に低下する蒸気量により粗製アルゴンカラムの直径を相当して小さく形成することができる。しかし蒸気量の低下は約50%のアルゴン濃度まででのみ観察できる。これに対して50%より高い濃度に増加した場合に本発明の条件下で蒸気量の更なる低下を達成できず、粗製アルゴンカラム断面の更なる縮小を達成できない。しかし濃度の増加と同時に起きる低圧カラム中の調節費用が明らかに増加する。   The diameter of the crude argon column can be made considerably smaller due to the amount of steam that decreases when the argon concentration in the feed stream to the crude argon column 14 increases. However, a decrease in vapor volume can only be observed up to an argon concentration of about 50%. On the other hand, when the concentration is increased to higher than 50%, further reduction of the vapor amount cannot be achieved under the conditions of the present invention, and further reduction of the crude argon column cross section cannot be achieved. However, the adjustment costs in the low pressure column that accompany the increase in concentration obviously increase.

粗製アルゴンカラム14中の理論的棚板数は98.5%の所望の生成物純度で供給すべき蒸気13中のアルゴン濃度の増加により著しく減少しないが、それは高い生成物純度で棚板の数が達成すべき最終濃度により決定され、出発濃度により決定されないからである。   The theoretical number of shelves in the crude argon column 14 is not significantly reduced by increasing the argon concentration in the steam 13 to be fed at the desired product purity of 98.5%, but it is the number of shelves at high product purity. Is determined by the final concentration to be achieved and not by the starting concentration.

低圧カラム4は本発明により側面排出流13で45%のアルゴン濃度が達成されるように運転する。この濃度で粗製アルゴンカラム14に導入される蒸気量を最低にし、粗製アルゴンカラム14の直径を蒸気量に相当して減少することができる。   The low pressure column 4 is operated in accordance with the invention so that a 45% argon concentration is achieved in the side discharge stream 13. At this concentration, the amount of steam introduced into the crude argon column 14 can be minimized, and the diameter of the crude argon column 14 can be reduced corresponding to the amount of steam.

図4にアルゴンカラムに供給される蒸気のアルゴン濃度に依存するアルゴン収率が示されている。直線の曲線は短い分離壁で計算された値を示し、点線の曲線は長い分離壁で計算された値を示す。その際低圧カラム中の棚板の数は一定に保たれる。   FIG. 4 shows the argon yield depending on the argon concentration of the vapor supplied to the argon column. The straight curve indicates the value calculated for the short separation wall, and the dotted curve indicates the value calculated for the long separation wall. At that time, the number of shelves in the low-pressure column is kept constant.

直線の曲線で、供給された蒸気中のアルゴン濃度10〜25%の範囲でアルゴン収率が実質的に一定であることが認識される。この曲線は25%で中断し、それは採用された分離壁の長さでは高いアルゴン濃度を達成できないからである。点線の曲線の計算の基礎となる長い分離壁の場合に30%より高く90%までの高いアルゴン濃度の範囲で実質的に一定のアルゴン収率が確認できる。従ってアルゴン濃度の増加は収率に不利に作用しない。   It can be seen from the linear curve that the argon yield is substantially constant in the range of 10-25% argon concentration in the supplied steam. This curve breaks at 25% because the high argon concentration cannot be achieved with the separation wall length employed. In the case of a long separation wall, which is the basis for the calculation of the dotted curve, a substantially constant argon yield can be seen in the range of high argon concentrations higher than 30% and up to 90%. Therefore, increasing the argon concentration does not adversely affect the yield.

本発明の方法を実施する装置を示す図である。FIG. 2 shows an apparatus for performing the method of the present invention.

本発明の他の実施例を示す図である。It is a figure which shows the other Example of this invention.

アルゴン濃度に依存する粗製アルゴンカラムに供給すべき比蒸気量を示す図である。It is a figure which shows the specific vapor amount which should be supplied to the crude argon column depending on argon concentration.

粗製アルゴンカラムに供給される蒸気中のアルゴン濃度に依存するアルゴン収率を示す図である。It is a figure which shows the argon yield depending on the argon concentration in the vapor | steam supplied to a crude argon column.

符号の説明Explanation of symbols

1 空気、 2 圧力カラム、 3 流れ、 4 低圧カラム、 5 分離壁、 6,7 部分、 8 導管、 9 排出口、 10、11、12 導管、 13 流れ、 14 粗製アルゴンカラム、 15 凝縮器、 16 生成物、 17 還流液、 18 導管、 19、20、21、22 精留部分、 23、24,25,26、27 収集装置/分配装置、 30 側面カラム、 31,32,33,34 導管   1 Air, 2 Pressure column, 3 Flow, 4 Low pressure column, 5 Separation wall, 6, 7 part, 8 Conduit, 9 Outlet, 10, 11, 12 Conduit, 13 flow, 14 Crude argon column, 15 Condenser, 16 Product, 17 reflux, 18 conduit, 19, 20, 21, 22 rectification part, 23, 24, 25, 26, 27 collector / distributor, 30 side column, 31, 32, 33, 34 conduit

Claims (13)

3つの一列に配置された精留部分を有する精留装置中で空気の低温分解によりアルゴンを取得する方法であり、その際第1および第2精留部分および第2および第3精留部分がそれぞれ気体側および液体側で互いに結合され、第2精留部分が2つの部分を有し、2つの部分が気体側および液体側で互いに結合されてなく、平行に貫流し、2つの部分の第1部分に酸素およびアルゴンを有する流体が導入され、2つの部分の第2部分から酸素およびアルゴンを有する流れが取り出される空気の低温分解によりアルゴンを取得する方法において、第2部分(7,30)から取り出される流れ(13)中のアルゴン濃度が15〜50%、有利に15〜40%、特に有利に20〜35%であることを特徴とする空気の低温分解によりアルゴンを取得する方法。   A method of obtaining argon by cryogenic decomposition of air in a rectifying apparatus having three rectifying portions arranged in a row, wherein the first and second rectifying portions and the second and third rectifying portions are Each connected to the gas side and the liquid side, the second rectification part has two parts, the two parts are not connected to each other on the gas side and the liquid side, and flow in parallel, In a method for obtaining argon by cryogenic decomposition of air in which a fluid with oxygen and argon is introduced into one part and a stream with oxygen and argon is taken from the second part of the two parts, the second part (7, 30) Argon is obtained by cryogenic decomposition of air, characterized in that the argon concentration in the stream (13) withdrawn from is 15-50%, preferably 15-40%, particularly preferably 20-35% Method. 精留装置が少なくとも1つの空気分解カラム(4)を有し、該カラムは3つの一列に配置された精留部分(19、20、21、22)を有し、その際第2精留部分(20、21)がカラムの長手方向に伸びる分離壁(5)を有し、これにより空気分解カラム(4)が分離壁(5)の高さで第1部分(6)および第2部分(7)に分けられる請求項1記載の方法。   The rectifying device has at least one air cracking column (4), which has three rectifying parts (19, 20, 21, 22) arranged in a row, wherein the second rectifying part (20, 21) has a separation wall (5) extending in the longitudinal direction of the column, whereby the air cracking column (4) is at the height of the separation wall (5) the first part (6) and the second part ( The method according to claim 1, which is divided into 7). 精留装置が少なくとも1つの第1空気分解カラム(4)および第2カラム(30)を有し、該カラムが上方端部および下方端部でガス側および液体側で第1空気分解カラム(4)の中間位置と結合され、その際第1空気分解カラム(4)の中間位置に存在する部分(20、21)と第2カラム(30)が2つの部分を形成する請求項1記載の方法。   The rectification apparatus has at least one first air decomposition column (4) and a second column (30), the first air decomposition column (4) on the gas side and the liquid side at the upper end and the lower end. 2), wherein the part (20, 21) and the second column (30) present in the intermediate position of the first air cracking column (4) form two parts. . 第2カラム(30)から酸素およびアルゴンを有する流れ(13)を取り出す請求項3記載の方法。   4. A process according to claim 3, wherein a stream (13) comprising oxygen and argon is withdrawn from the second column (30). 第2部分(7,30)から取り出される流れ(13)を粗製アルゴンカラム(14)に供給する請求項1から4までのいずれか1項記載の方法。   5. The process as claimed in claim 1, wherein the stream (13) withdrawn from the second part (7, 30) is fed to a crude argon column (14). 粗製アルゴンカラム(14)からの溜まり物液体を第2部分(7,30)に返送する請求項5記載の方法。   6. A method as claimed in claim 5, wherein the pool liquid from the crude argon column (14) is returned to the second part (7, 30). 粗製アルゴンカラム(14)中で95%より高い、有利に98%より高い純度を有するアルゴンを取得する請求項5または6記載の方法。   7. Process according to claim 5 or 6, wherein argon having a purity of greater than 95%, preferably greater than 98%, is obtained in a crude argon column (14). 粗製アルゴンカラム(14)中で10ppmより少ない酸素含量を有するアルゴンを取得する請求項5から7までのいずれか1項記載の方法。   8. The process as claimed in claim 5, wherein argon having an oxygen content of less than 10 ppm is obtained in the crude argon column (14). 粗製アルゴンカラム(14)が100より多い、有利に150〜200個の理論的棚板を有する請求項5から8までのいずれか1項記載の方法。   9. The process as claimed in claim 5, wherein the crude argon column (14) has more than 100, preferably 150 to 200 theoretical shelves. 精留のために精留部分(19、20、21、22)に少なくとも一部の充填物を装入する請求項1から9までのいずれか1項記載の方法。   10. The process as claimed in claim 1, wherein at least part of the filling is introduced into the rectification part (19, 20, 21, 22) for rectification. 酸素およびアルゴンを有する流体をそれぞれ2つの精留部分の間に収集するおよび/または分配する(23,24,25,26,27)請求項10記載の方法。   11. A method according to claim 10, wherein the fluid having oxygen and argon is collected and / or distributed (23, 24, 25, 26, 27), respectively, between two rectifying sections. 精留装置で、ガス状で排出される、酸素およびアルゴンを有する流体が、第1部分および第2部分(6,7)で同じ圧力損失を受ける請求項1から9までのいずれか1項記載の方法。   10. The fluid according to claim 1, wherein the fluid having oxygen and argon discharged in the gaseous state in the rectification device is subjected to the same pressure loss in the first part and the second part (6, 7). the method of. 精留装置が圧力カラム(2)および低圧カラム(4)を有し、その際分離壁(5)が低圧カラム(4)に配置され、第1部分(6)に圧力カラム(2)から酸素が蓄積された流体(3)を導入する請求項1から12までのいずれか1項記載の方法。   The rectification device has a pressure column (2) and a low pressure column (4), in which a separation wall (5) is arranged in the low pressure column (4), with oxygen from the pressure column (2) in the first part (6). 13. The method as claimed in claim 1, wherein the fluid (3) is introduced.
JP2003584591A 2002-04-12 2003-04-01 How to get argon by cryogenic air decomposition Withdrawn JP2005527767A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002116269 DE10216269A1 (en) 2002-04-12 2002-04-12 Process for recovering argon from air in a rectification system using a low temperature decomposition method comprises removing a stream having a specified argon concentration from a partial section of a rectification section
EP02011058 2002-05-17
PCT/EP2003/003395 WO2003087686A1 (en) 2002-04-12 2003-04-01 Method for extracting argon by low-temperature air separation

Publications (1)

Publication Number Publication Date
JP2005527767A true JP2005527767A (en) 2005-09-15

Family

ID=29251755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003584591A Withdrawn JP2005527767A (en) 2002-04-12 2003-04-01 How to get argon by cryogenic air decomposition

Country Status (9)

Country Link
US (1) US20060005574A1 (en)
EP (1) EP1495274A1 (en)
JP (1) JP2005527767A (en)
KR (1) KR20040101453A (en)
CN (1) CN1646869A (en)
AU (1) AU2003229590A1 (en)
CA (1) CA2502706A1 (en)
RU (1) RU2303211C2 (en)
WO (1) WO2003087686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169424A (en) * 2014-03-11 2015-09-28 大陽日酸株式会社 Air liquefaction separation device and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111630A1 (en) * 2011-08-25 2013-02-28 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of a fluid mixture
RU2014140213A (en) 2012-03-06 2016-04-27 Эр Продактс Энд Кемикалз, Инк. ORDERED NOZZLE
US9919238B2 (en) * 2013-07-18 2018-03-20 Lg Chem, Ltd. Distillation apparatus
EP3133361B1 (en) * 2015-08-20 2018-06-13 Linde Aktiengesellschaft Distillation column system and system for the production of oxygen by cryogenic decomposition of air
WO2020083528A1 (en) * 2018-10-23 2020-04-30 Linde Aktiengesellschaft Method and unit for low-temperature air separation
WO2023140986A1 (en) 2022-01-19 2023-07-27 Exxonmobil Chemical Patents Inc. Compositions containing tri-cyclopentadiene and processes for making same
CN114923313B (en) * 2022-05-17 2024-02-09 陕西聚能新创煤化科技有限公司 Crude argon refining liquid argon system and refining process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339648A (en) * 1993-08-05 1994-08-23 Praxair Technology, Inc. Distillation system with partitioned column
US5755933A (en) * 1995-07-24 1998-05-26 The M. W. Kellogg Company Partitioned distillation column
US5970742A (en) * 1998-04-08 1999-10-26 Air Products And Chemicals, Inc. Distillation schemes for multicomponent separations
EP0952415A1 (en) * 1998-04-21 1999-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Distillation process and apparatus for variable argon production
US5946942A (en) * 1998-08-05 1999-09-07 Praxair Technology, Inc. Annular column for cryogenic rectification
US6138474A (en) * 1999-01-29 2000-10-31 Air Products And Chemicals, Inc. Argon production control through argon inventory manipulation
US6250106B1 (en) * 1999-12-13 2001-06-26 Air Products And Chemicals, Inc. Process for separation of multicomponent fluids using a multizone distallation column
US6240744B1 (en) * 1999-12-13 2001-06-05 Air Products And Chemicals, Inc. Process for distillation of multicomponent fluid and production of an argon-enriched stream from a cryogenic air separation process
FR2831953B1 (en) * 2001-11-05 2004-09-24 Air Liquide AIR DISTILLATION PROCESS WITH ARGON PRODUCTION AND CORRESPONDING AIR DISTILLATION SYSTEM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169424A (en) * 2014-03-11 2015-09-28 大陽日酸株式会社 Air liquefaction separation device and method

Also Published As

Publication number Publication date
CA2502706A1 (en) 2003-10-23
US20060005574A1 (en) 2006-01-12
CN1646869A (en) 2005-07-27
EP1495274A1 (en) 2005-01-12
KR20040101453A (en) 2004-12-02
WO2003087686A1 (en) 2003-10-23
RU2303211C2 (en) 2007-07-20
RU2004133324A (en) 2006-01-27
AU2003229590A1 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
JP2516680B2 (en) Cryogenic separation of mixtures containing oxygen, nitrogen and argon
JP2001348222A (en) Method of purifying ammonia by distillation
JP2001224901A (en) Method and distillation column apparatus for distilling multi-component fluid
EP0328112B1 (en) Double column air separation apparatus and process with hybrid upper column
JPH07151457A (en) Distillation column for separating atmospheric gas
JP3256214B2 (en) Method and apparatus for purifying nitrogen
US5019144A (en) Cryogenic air separation system with hybrid argon column
CZ286287B6 (en) Process for cryogenic separation of atmospheric gas mixture
JP2006520784A (en) Low capital implementation of distributed distillation in ethylene recovery
JPH08271141A (en) Separation of air
JP2005527767A (en) How to get argon by cryogenic air decomposition
JPH09184680A (en) Air separator
JP2776461B2 (en) Air separation method by cryogenic distillation to produce ultra-high purity oxygen
JPH0926262A (en) Manufacturing of argon
KR20170070172A (en) Method and device for variably obtaining argon by means of low-temperature separation
CN107580670A (en) The equipment that oxygen is prepared by Cryogenic air separation
CN1084870C (en) Air separation
CN1098450C (en) Air separation
JPH05312469A (en) Apparatus and method for liquefying and separating air
US20160153712A1 (en) System and method for production of argon by cryogenic rectification of air
KR20020027181A (en) Structured packing system for reduced distillation column height
JPH02223786A (en) Manufacture of ultra high purity oxygen
EP0439126B2 (en) Cryogenic air separation system with hybrid argon column
JP2010210151A (en) Crude argon tower
JP3957842B2 (en) Nitrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080723