JP2005520175A5 - - Google Patents

Download PDF

Info

Publication number
JP2005520175A5
JP2005520175A5 JP2003586580A JP2003586580A JP2005520175A5 JP 2005520175 A5 JP2005520175 A5 JP 2005520175A5 JP 2003586580 A JP2003586580 A JP 2003586580A JP 2003586580 A JP2003586580 A JP 2003586580A JP 2005520175 A5 JP2005520175 A5 JP 2005520175A5
Authority
JP
Japan
Prior art keywords
complex
assay
binding ligand
capture binding
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003586580A
Other languages
Japanese (ja)
Other versions
JP2005520175A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2002/029445 external-priority patent/WO2003089895A2/en
Publication of JP2005520175A publication Critical patent/JP2005520175A/en
Publication of JP2005520175A5 publication Critical patent/JP2005520175A5/ja
Pending legal-status Critical Current

Links

Claims (13)

サンプル内の少なくとも第1及び第2の標的分子を検出する方法において、
(a)少なくとも第1の捕捉結合配位子を有する導電性の酸化還元反応検出電極を備える固体支持体を提供するステップと、
(b)前記第1の標的分子が1つの捕捉結合配位子と第1の検定錯体を形成し、前記第2の標的分子が1つの捕捉結合配位子と第2の検定錯体を形成するとの条件下で、前記サンプルを前記電極に接触させるステップであって、前記第1の検定錯体は、第1の酸化還元電位を有する第1の予め選択された標識を含み、前記第2の検定錯体は、第2の酸化還元電位を有する第2の予め選択された標識を含むステップと、
(c)前記検定錯体を、(i)第1の酸化還元反応で前記第1の予め選択された標識を酸化して、触媒反応で第1の遷移金属錯体の還元型を再生する前記第1の遷移金属錯体と、(ii)第2の酸化還元反応で前記第2の予め選択された標識を酸化して、触媒反応で第2の遷移金属錯体の還元型を再生する前記第2の遷移金属錯体とに接触させるステップと、
(d)前記第1及び第2の酸化還元反応を検出することにより前記標的検体の存在を検出するステップと
を含む方法。
In a method for detecting at least first and second target molecules in a sample,
(A) providing a solid support comprising a conductive redox reaction detection electrode having at least a first capture binding ligand;
(B) the first target molecule forms a first assay complex with one capture binding ligand, and the second target molecule forms a second assay complex with one capture binding ligand. Contacting the sample with the electrode under the conditions of: wherein the first assay complex comprises a first preselected label having a first redox potential and the second assay. The complex includes a second preselected label having a second redox potential;
(C) the assay complex, (i) oxidizing the first preselected label in a first redox reaction and regenerating the reduced form of the first transition metal complex in a catalytic reaction. (Ii) the second transition that oxidizes the second preselected label in a second redox reaction and regenerates the reduced form of the second transition metal complex in a catalytic reaction Contacting with the metal complex;
(D) detecting the presence of the target analyte by detecting the first and second oxidation-reduction reactions.
前記サンプルは、1つの捕捉結合配位子と第3の検定錯体を形成する第3の標的分子を含み、前記第3の検定錯体は、第3の酸化還元反応で前記第3の予め選択された標識を酸化して、触媒反応で第3の遷移金属錯体の還元型を再生する前記第3の遷移金属錯体を含む、請求項1に記載の方法。   The sample includes a third target molecule that forms a third assay complex with one capture binding ligand, and the third assay complex is selected from the third preselected in a third redox reaction. The method of claim 1, wherein the method comprises the third transition metal complex that oxidizes the labeled and regenerates the reduced form of the third transition metal complex in a catalytic reaction. 前記サンプルは、1つの捕捉結合配位子と第4の検定錯体を形成する第4の標的分子を含み、前記第4の検定錯体は、第4の酸化還元反応で前記第4の予め選択された標識を酸化して、触媒反応で第4の遷移金属錯体を再生する前記第4の遷移金属錯体を含む、請求項2に記載の方法。   The sample includes a fourth target molecule that forms a fourth assay complex with one capture binding ligand, and the fourth assay complex is selected in the fourth pre-selected reaction in a fourth redox reaction. 3. The method of claim 2, comprising the fourth transition metal complex that oxidizes the labeled and regenerates the fourth transition metal complex in a catalytic reaction. 前記第1の捕捉結合配位子は前記第1、第2、第3及び第4の標的分子を結合する、請求項1から3のうちのいずれか1項に記載の方法。   4. The method according to any one of claims 1 to 3, wherein the first capture binding ligand binds the first, second, third and fourth target molecules. 前記電極は付加的な1つ又は複数の捕捉結合配位子を含む、前記第1、第2、第3及び第4の標的分子のそれぞれはそれぞれ異なる1つの捕捉結合配位子に結合する、請求項1から3のうちのいずれか1項に記載の方法。   The electrode includes one or more additional capture binding ligands, each of the first, second, third and fourth target molecules binding to a different capture binding ligand; 4. A method according to any one of claims 1 to 3. 前記検定錯体のそれぞれは、1つの捕捉結合配位子及び1つの標的検体を含む、請求項1から5のうちのいずれか1項に記載の方法。   6. The method of any one of claims 1-5, wherein each of the assay complexes comprises one capture binding ligand and one target analyte. 前記検定錯体のそれぞれは1つの捕捉結合配位子、1つの標的検体及び1つの標識結合配位子を含み、前記結合配位子のそれぞれは対応する前記予め選択された標識を含む、請求項1から5のうちのいずれか1項に記載の方法。   Each of said assay complexes comprises one capture binding ligand, one target analyte and one label binding ligand, each of said binding ligands comprising a corresponding said preselected label. 6. The method according to any one of 1 to 5. 前記標的分子のうちの1つは核酸であり、前記標的分子のうちの別の1つは蛋白質である、請求項1から7のうちのいずれか1項に記載の方法。   8. A method according to any one of claims 1 to 7, wherein one of the target molecules is a nucleic acid and another one of the target molecules is a protein. 前記標的分子のすべてが核酸である、請求項1から7のうちのいずれか1項に記載の方法。   The method according to any one of claims 1 to 7, wherein all of the target molecules are nucleic acids. 前記方法は、前記接触ステップの前に前記核酸を増幅することを含む、請求項9に記載の方法。   The method of claim 9, wherein the method comprises amplifying the nucleic acid prior to the contacting step. 前記遷移金属錯体のうちの少なくとも1つは、Ru(bpy)3 2+,Ru(Me2−bpy)3 2+,Ru(Me2−phen)3 2+,Fe(bpy)3 2+,Fe(5−Cl−phen)3 2+,Os(5−Cl−phen)3 2+、及びReO2(py)4 1+から成る群から選択される、請求項1から10のうちのいずれか1項に記載の方法。 At least one of the transition metal complexes includes Ru (bpy) 3 2+ , Ru (Me 2 -bpy) 3 2+ , Ru (Me 2 -phen) 3 2+ , Fe (bpy) 3 2+ , 11. Any one of claims 1 to 10 selected from the group consisting of Fe (5-Cl-phen) 3 2+ , Os (5-Cl-phen) 3 2+ , and ReO 2 (py) 4 1+. The method according to claim 1. 前記予め選択された塩基のうちの少なくとも1つは、アデニン、7−デアザアデニン、グアニン、6−メルカプトグアニン、8−オキソグアニン、イソグアニン、7−デアザグアニン、1−ヒドロキシイソグアニン、及び8−ブロモグアニンから成る群から選択される、請求項1から10のうちのいずれか1項に記載の方法。   At least one of the preselected bases is from adenine, 7-deazaadenine, guanine, 6-mercaptoguanine, 8-oxoguanine, isoguanine, 7-deazaguanine, 1-hydroxyisoguanine, and 8-bromoguanine. 11. A method according to any one of claims 1 to 10, wherein the method is selected from the group consisting of: 前記固体支持体は、複数の前記電極から成る1つの配列を含む、請求項1から11のうちのいずれか1項に記載の方法。   12. A method according to any one of the preceding claims, wherein the solid support comprises an array of a plurality of the electrodes.
JP2003586580A 2001-09-24 2002-07-17 Method for electrochemical detection of multiple target compounds Pending JP2005520175A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32438801P 2001-09-24 2001-09-24
PCT/US2002/029445 WO2003089895A2 (en) 2001-09-24 2002-07-17 Methods for the electrochemical detection of multiple target compounds

Publications (2)

Publication Number Publication Date
JP2005520175A JP2005520175A (en) 2005-07-07
JP2005520175A5 true JP2005520175A5 (en) 2006-01-05

Family

ID=29250424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003586580A Pending JP2005520175A (en) 2001-09-24 2002-07-17 Method for electrochemical detection of multiple target compounds

Country Status (5)

Country Link
EP (1) EP1583842A4 (en)
JP (1) JP2005520175A (en)
AU (1) AU2002367807B2 (en)
CA (1) CA2461562A1 (en)
WO (1) WO2003089895A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133137A (en) * 2004-11-08 2006-05-25 Eiichi Tamiya Method for detecting material to be inspected
CN112763558B (en) * 2020-12-23 2022-06-10 杭州市红十字会医院 Staphylococcus aureus detection method
WO2023054231A1 (en) * 2021-09-29 2023-04-06 日東電工株式会社 Mixed reagent for electrochemical measurement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871918A (en) * 1996-06-20 1999-02-16 The University Of North Carolina At Chapel Hill Electrochemical detection of nucleic acid hybridization
US6132971A (en) * 1995-06-27 2000-10-17 The University Of North Carolina At Chapel Hill Microelectronic device
US6127127A (en) * 1995-06-27 2000-10-03 The University Of North Carolina At Chapel Hill Monolayer and electrode for detecting a label-bearing target and method of use thereof
US5968745A (en) * 1995-06-27 1999-10-19 The University Of North Carolina At Chapel Hill Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof
US7202028B2 (en) * 2001-09-24 2007-04-10 The University Of North Carolina At Chapel Hill Methods for the electrochemical detection of multiple target compounds

Similar Documents

Publication Publication Date Title
Yang et al. Aptamer/protein proximity binding-triggered molecular machine for amplified electrochemical sensing of thrombin
Yang et al. Proximity binding and metal ion-dependent DNAzyme cyclic amplification-integrated aptasensor for label-free and sensitive electrochemical detection of thrombin
Islam et al. Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level
Liu et al. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation
Hocek et al. Nucleobase modification as redox DNA labelling for electrochemical detection
JP2002542794A5 (en)
Zeng et al. A novel ultrasensitive electrochemical DNA sensor based on double tetrahedral nanostructures
US20150247843A1 (en) Method of detecting target substance
Liu et al. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification
Zhang et al. Immobilization-free DNA-based homogeneous electrochemical biosensors
Seiwert et al. Ferrocene-based derivatization in analytical chemistry
Chen et al. Ultrasensitive electrochemical biosensor developed by probe lengthening for detection of genomic DNA in human serum
JP2008508268A5 (en)
US20060292624A1 (en) Methods for the electrochemical detection of multiple target compounds
JP5201573B2 (en) Method and apparatus for measuring a test substance in a sample
Ju Signal amplification for highly sensitive immunosensing
Kaur et al. Multiplexed nucleic acid sensing with single-molecule FRET
US9657333B2 (en) Method for detecting target substance, assay kit, and detection apparatus
Yang et al. Toward electrochemical resolution of two genes on one electrode: using 7-deaza analogues of guanine and adenine to prepare PCR products with differential redox activity
Zhang et al. Double hairpin DNAs recognition induced a novel cascade amplification for highly specific and ultrasensitive electrochemiluminescence detection of DNA
Liu et al. A novel ligase chain reaction-based electrochemical biosensing strategy for highly sensitive point mutation detection from human whole blood
Megalathan et al. Single-molecule FRET-based dynamic DNA sensor
Chen et al. DNA nanosieve-based regenerative electrochemical biosensor utilizing nucleic acid flexibility for accurate allele typing in clinical samples
Lei et al. 2′-Fluoro ribonucleic acid modified DNA dual-probe sensing strategy for enzyme-amplified electrochemical detection of double-strand DNA of PML/RARα related fusion gene
Chapman et al. New twists in the plot: Recent advances in electrochemical genosensors for disease screening