JP2005519105A - Method, reactor and system for producing bisphenol - Google Patents

Method, reactor and system for producing bisphenol Download PDF

Info

Publication number
JP2005519105A
JP2005519105A JP2003572930A JP2003572930A JP2005519105A JP 2005519105 A JP2005519105 A JP 2005519105A JP 2003572930 A JP2003572930 A JP 2003572930A JP 2003572930 A JP2003572930 A JP 2003572930A JP 2005519105 A JP2005519105 A JP 2005519105A
Authority
JP
Japan
Prior art keywords
reactor
catalyst
bed
bisphenol
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003572930A
Other languages
Japanese (ja)
Other versions
JP2005519105A5 (en
Inventor
キッシンジャー,ゲイロード・マイケル
コ,アレン・ワイ−イー
ジラト,マイケル・ディー
カービル,ブライアン・ティー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2005519105A publication Critical patent/JP2005519105A/en
Publication of JP2005519105A5 publication Critical patent/JP2005519105A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30215Toroid or ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method for producing bisphenol includes introducing a phenol and a ketone into a fixed, supported catalytic bed reactor system in a downflow mode, reacting the phenol and the ketone to form a reaction mixture, and recovering the bisphenol isomer from the reaction mixture. The preferred bisphenol isomer is bisphenol A, or p,p'-bisphenol A, produced from the reaction of phenol and acetone. The reactor for producing the bisphenol A from the reaction of phenol and acetone includes an ion exchange resin catalyst disposed in a bed and packing randomly distributed throughout the ion exchange resin catalyst to improve heat transfer efficiency and reduce compression of the catalyst bed.

Description

本発明は、一般に、充填触媒床に所定の支持を与える剛性充填物を用いた化学反応器系に関する。具体的には、本発明は、ランダムに分布した実質的に不活性な充填物が混在していて該充填物で支持される架橋イオン交換樹脂触媒の床に下降流を流すビスフェノールの生産に関する。   The present invention generally relates to a chemical reactor system using a rigid packing that provides a predetermined support to the packed catalyst bed. In particular, the present invention relates to the production of bisphenols that are mixed with randomly distributed substantially inert packings that flow down the bed of a cross-linked ion exchange resin catalyst supported by the packings.

反応化学種の最適な物理的接触を確保することは、化学反応器の設計における難題である。不適切に設計されると、多数の不都合な副生成物及び多量の未反応反応体によって系の経済性に重大な影響を生じかねない。ある反応に最適な反応器系を選択又は製作するに当たっては、反応器の種類、反応体及び生成物の拡散、圧力の影響、その他の要因を全て考慮しなければならない。   Ensuring optimal physical contact of reactive species is a challenge in chemical reactor design. If improperly designed, a large number of undesired byproducts and large amounts of unreacted reactants can have a significant impact on the economics of the system. In selecting or fabricating the optimum reactor system for a reaction, all types of reactors, reactant and product diffusion, pressure effects, and other factors must be considered.

反応器の滞留時間及び温度のような反応条件は原子又は分子の衝突の割合に影響し、収率、スループット及び選択性に影響を及ぼす。差圧によって球状触媒ビーズが圧迫・変形し、圧力降下の限界により液体スループットの低下を招く場合は、圧力が重要となる。   Reaction conditions such as reactor residence time and temperature affect the rate of atomic or molecular collisions and affect yield, throughput and selectivity. The pressure is important when the spherical catalyst beads are compressed and deformed by the differential pressure and the liquid throughput is reduced due to the pressure drop limit.

充填床を有する反応器では、流体の流動特性は往々にして流れの混乱、すなわち「チャネリング」による被害を受ける。これは特に上昇流方式で顕著である。チャネリングは、流体の流れる床の高さに対して圧力差が不適切なことで起こり得る状態であり、床成分の沈降に加えて床の高さに対して加えた差圧が低すぎることに複合的に起因する。床を流れる流体のランダムな流れを可能にする触媒又は同様の粒子状処理剤を床成分が含んでいると、床部分が短絡して流体と均一かつ確実に接触しなくなるおそれがある。かかる状態は、仕込んだ反応体の不十分な処理又は不十分な化学反応を招きかねない。そのため、ひいては触媒又は処理粒子の早期処分が必要となって、触媒の価値を損ないかねない。   In reactors with packed beds, fluid flow characteristics are often damaged by flow disruption, or “channeling”. This is particularly noticeable in the upward flow system. Channeling is a condition that can occur due to an inappropriate pressure difference with respect to the height of the bed through which the fluid flows, and that the differential pressure applied to the bed height is too low in addition to the sedimentation of the bed components. Due to multiple. If the bed component contains a catalyst or similar particulate treating agent that allows a random flow of fluid through the bed, the bed portion may short circuit and not be in uniform and reliable contact with the fluid. Such a state can lead to inadequate processing of the charged reactants or insufficient chemical reaction. As a result, early disposal of the catalyst or the treated particles is required, which may impair the value of the catalyst.

チャネリングの起こる量は、反応器の幾何学的構成及び型、反応体と反応器内で生成した中間体及び生成物の流体力学、その他の要因に関連している可能性がある。幾つかのプロセスでは、こうしたパラメーターの調節による生成物の製造の最適化は簡単に理解でき、簡明である。他では、こうした関係はさほど明らかではない。注意深く選択された触媒を用いると、反応器の設計と反応の制御は複雑になる。例えば、米国特許第5395857号では、下降流反応器でのビスフェノールA(BPA)の製造に当たり、イオン交換樹脂触媒の架橋度がプロセスの物理的性能のみならず反応の反応性と選択性に直接影響すると記載されている。この特許では、一方の層が2%以下の架橋度を示す二層触媒を使用することによって、触媒粒子の形状に起因する水圧効果と圧力に起因する触媒床の圧縮を低減できるという知見が得られている。この方法は固定床反応器の体積・時間収率を増大させることを目的とする。この設計では、反応体の大半の転化が起こる頂部で2%と低架橋度の触媒の特徴を活かしながら、床全体の剛性の向上によるスループット及び生産量の向上が得られる。米国特許第5395857号に記載された複合触媒床は他のものよりも高い選択性と活性を有しており、架橋度の大きい樹脂系触媒は失活し易く、不活性になり易いので望ましい。例えば、下降流プロセスでは、低架橋度のために触媒床が高流速で崩壊する可能性とこれが触媒の物理的性質に及ぼす影響を考慮しなければならず、この問題を低減又は解消する方策があれば有益である。   The amount of channeling can be related to the geometry and type of the reactor, the fluid dynamics of the reactants and intermediates and products produced in the reactor, and other factors. In some processes, the optimization of product production by adjusting these parameters is straightforward and straightforward. Elsewhere, these relationships are not so obvious. Using carefully selected catalysts complicates reactor design and reaction control. For example, in US Pat. No. 5,395,857, in the production of bisphenol A (BPA) in a downflow reactor, the degree of cross-linking of the ion exchange resin catalyst directly affects the reactivity and selectivity of the reaction as well as the physical performance of the process. Then it is described. This patent provides the knowledge that by using a two-layer catalyst in which one layer has a degree of crosslinking of 2% or less, the hydraulic effect due to the shape of the catalyst particles and the compression of the catalyst bed due to the pressure can be reduced. It has been. This method aims to increase the volume and time yield of the fixed bed reactor. This design provides improved throughput and yield by improving overall bed stiffness while taking advantage of the low cross-linking catalyst profile of 2% at the top where most of the reactants are converted. The composite catalyst bed described in US Pat. No. 5,395,857 has higher selectivity and activity than others, and a resin-based catalyst having a high degree of crosslinking is desirable because it tends to deactivate and become inactive. For example, in the downflow process, the possibility of the catalyst bed collapsing at a high flow rate due to the low degree of crosslinking and its effect on the physical properties of the catalyst must be taken into account, and strategies to reduce or eliminate this problem. If there is, it is beneficial.

さらに、チャネリングとそれに起因する反応体と触媒の非効率的接触のため、充填床反応器の運転に多大な支障をきたすことが多々ある。特に、かなりのチャネリングが起こる運転では概して生成物収率が低下し、触媒床の早期交換が必要となり、反応体が効率的に利用されなくなる。その結果、新たな触媒のコストを要するだけでなく、運転休止中の生産損失が生じ、交換のための物流コスト、使用済触媒の処分コスト並びに反応体の回収及び再生利用が必要となる。さらに、触媒技術改善の努力に伴うコストの結果として多大な財政上の負担が生じかねない。かかるコストには代替反応器の幾何学的構成の開発が含まれるが、幾何学的特徴に劣る既存の反応器の問題に対処することにはならない。   In addition, channeling and the inefficient contact between the reactants and the catalyst resulting from it often results in significant hindrance to the operation of the packed bed reactor. In particular, operations where significant channeling occurs generally result in lower product yields, requiring early replacement of the catalyst bed, and less efficient utilization of the reactants. As a result, not only the cost of a new catalyst is required, but also a production loss occurs during the suspension of operation, and the distribution cost for replacement, the disposal cost of the used catalyst, and the recovery and recycling of the reactants are required. In addition, significant financial burden can arise as a result of costs associated with efforts to improve catalyst technology. Such costs include the development of alternative reactor geometries, but do not address the problems of existing reactors with inferior geometric features.

固定触媒床を有する反応器に反応体を下降流で流す構成では、選択する触媒によっては、触媒床内の圧力に起因する圧縮のため、プロセスの物理的性能及び反応の反応性・選択性が大きく損なわれるおそれがある。触媒粒子の圧縮を最小限に抑えるために、構造的に頑丈な触媒を利用する試みがなされている。しかし、触媒活性の低下、選択性の低下又は短寿命化を招くことが多い。   In a configuration in which the reactants flow downward in a reactor having a fixed catalyst bed, the physical performance of the process and the reactivity / selectivity of the reaction may be due to compression due to the pressure in the catalyst bed, depending on the catalyst selected. There is a risk of significant damage. Attempts have been made to utilize structurally rugged catalysts to minimize the compression of the catalyst particles. However, it often leads to a decrease in catalyst activity, a decrease in selectivity, or a shortened life.

さらに、触媒粒子の剛性とそれらの粒子の予測活性寿命との間には直接的な関係がある。架橋度の小さい触媒及び剛性の低い構造の触媒に特徴的な開放有効細孔構造を有する粒子は、活性酸性部位への接近を塞ぐタール状分子による樹脂触媒の汚損を低減又は解消することが期待できる。これに対して、開放有効細孔構造が少なく、剛性の高い粒子は圧縮に対する耐性は優れているが、汚損による触媒の早期失活を招きかねず、コストの増大をもたらす。
米国特許第5395857号
Furthermore, there is a direct relationship between the stiffness of the catalyst particles and the predicted active lifetime of those particles. Particles with an open effective pore structure that are characteristic of catalysts with low cross-linking and low-rigidity structures are expected to reduce or eliminate fouling of resin catalysts by tar-like molecules that block access to active acidic sites. it can. On the other hand, particles having a small open effective pore structure and high rigidity are excellent in resistance to compression, but may cause early deactivation of the catalyst due to fouling, resulting in an increase in cost.
US Pat. No. 5,395,857

現存する反応器の幾何学構成及び触媒はそれらの意図する目的に適してはいるが、依然として、特に下降流反応器における反応の有効性及び触媒自体に関して改善の必要性が残されている。従って、例えば、水圧による限界を軽減することによって、所定の樹脂触媒の潜在能力を十分に発揮させることができる反応器系に対するニーズが存在する。   While existing reactor geometries and catalysts are suitable for their intended purpose, there remains a need for improvement, particularly with respect to the effectiveness of the reaction in the downflow reactor and the catalyst itself. Thus, for example, there is a need for a reactor system that can fully exploit the potential of a given resin catalyst by reducing the water pressure limit.

本明細書では、離散した不活性要素で支持された充填イオン交換樹脂触媒床を利用する方法、反応器及び系について開示する。   Disclosed herein are methods, reactors, and systems that utilize packed ion exchange resin catalyst beds supported by discrete inert elements.

第一の実施形態として開示するのは、フェノールとケトンを下降流で反応器内に導入することを含むビスフェノールの製造方法である。反応器はイオン交換樹脂触媒床と該イオン交換樹脂床内にランダムに分布した充填物とを含んでいる。フェノールとケトンを反応させて反応混合物を形成し、この混合物からビスフェノールを回収する。   Disclosed as the first embodiment is a method for producing bisphenol, which comprises introducing phenol and ketone into the reactor in a downward flow. The reactor includes an ion exchange resin catalyst bed and packing randomly distributed within the ion exchange resin bed. Phenol and ketone are reacted to form a reaction mixture from which bisphenol is recovered.

第二の実施形態として開示するのは、フェノールとケトンを下降流で反応器系内に導入することを含むビスフェノールの製造方法であり、反応器系は下降流化学反応器と該反応器に充填された固定床イオン交換樹脂触媒とを含んでいる。樹脂触媒は、該樹脂触媒を基準にして約2重量%以下の架橋度を有するスルホン化芳香族樹脂である。反応器内でケトンとフェノールを反応させて、ビスフェノール含有反応混合物を形成し、この混合物からビスフェノールを回収する。   Disclosed as a second embodiment is a method of producing bisphenol that includes introducing phenol and ketone into the reactor system in a downflow, the reactor system filling the downflow chemical reactor and the reactor. And a fixed bed ion exchange resin catalyst. The resin catalyst is a sulfonated aromatic resin having a degree of crosslinking of about 2% by weight or less based on the resin catalyst. The ketone and phenol are reacted in a reactor to form a bisphenol-containing reaction mixture, and bisphenol is recovered from the mixture.

第三の実施形態として開示するのは、下降流で導入されるフェノールとアセトンの反応でビスフェノールAを製造するための反応器であり、当該反応器は、反応容器と、該反応容器内のイオン交換樹脂触媒床と、該イオン交換樹脂触媒床全体にランダムに分布した充填物とを含む。   Disclosed as a third embodiment is a reactor for producing bisphenol A by the reaction of phenol and acetone introduced in a downward flow, the reactor comprising a reaction vessel and ions in the reaction vessel. An exchange resin catalyst bed and a packing randomly distributed throughout the ion exchange resin catalyst bed.

別の実施形態として開示するのは、反応容器と、該容器内で下降流の反応体が流れ込むイオン交換樹脂触媒と、該イオン交換樹脂触媒全体にランダムに分布した充填物とを含む支持床反応器である。   Disclosed as another embodiment is a supported bed reaction comprising a reaction vessel, an ion exchange resin catalyst into which downflow reactants flow in the vessel, and a packing randomly distributed throughout the ion exchange resin catalyst. It is a vessel.

さらに別の実施形態として開示するのは、フェノールとアセトンからビスフェノールAを製造するための系であり、当該系は、アセトン供給流と、アセトン供給流と混合されて供給流混合物を形成するフェノール供給流(適宜ジャケットを備えていてもよい)と、供給流混合物が流入する冷却装置と、冷却装置と流体連通して接続された反応器とを備える。反応器は、供給流混合物が流入する入口を上端に及び出口を下端に有する反応容器と、上記出口と入口の中間に位置する支持触媒樹脂床とを備えている。触媒樹脂床はイオン交換触媒樹脂と該樹脂全体にランダムに分布した不活性充填物とを含んでいる。当該系は、さらに、上記容器と連通した温度検知手段と、上記容器と連通した圧力検知手段と、上記入口と出口の間のバイパス流と、上記出口で受入れ可能な第二のフェノール供給流と、反応器の下端と流体連通して配置された生成物取出ラインとを備える。生成物取出バルブは好ましくは上記入口と同じ高さにあり、生成物取出バルブの下流にはサイホンブレイクが配置される。   Disclosed as yet another embodiment is a system for producing bisphenol A from phenol and acetone that is mixed with an acetone feed stream and an acetone feed stream to form a feed stream mixture. A stream (optionally equipped with a jacket), a cooling device into which the feed stream mixture flows, and a reactor connected in fluid communication with the cooling device. The reactor comprises a reaction vessel having an inlet into which the feed mixture flows in at the upper end and an outlet at the lower end, and a supported catalyst resin bed located between the outlet and the inlet. The catalyst resin bed includes an ion exchange catalyst resin and an inert packing randomly distributed throughout the resin. The system further includes a temperature sensing means in communication with the container, a pressure sensing means in communication with the container, a bypass flow between the inlet and the outlet, and a second phenol feed stream acceptable at the outlet. A product take-off line arranged in fluid communication with the lower end of the reactor. The product removal valve is preferably at the same height as the inlet, and a siphon break is located downstream of the product removal valve.

以下、図1及び図2を参照して、ビスフェノールの製造装置及び系並びにビスフェノールの製造に関する使用方法を開示する。ここで図面を参照するが、図面は例示的な実施形態であり、類似の要素・部分は同じ数字で示す。図1は反応器の型、方式及び構成を例示し、図2はビスフェノールA又は他の所望のフェノール異性体の製造に、反応器と共に用いられる系を例示する。   Hereinafter, with reference to FIG.1 and FIG.2, the manufacturing method and system of bisphenol and the usage method regarding manufacture of bisphenol are disclosed. Reference is now made to the drawings, which are exemplary embodiments, and like elements / parts are indicated by like numerals. FIG. 1 illustrates the reactor type, scheme and configuration, and FIG. 2 illustrates the system used with the reactor to produce bisphenol A or other desired phenol isomers.

反応器は支持触媒床を含んでおり、これに反応体を流して触媒と接触させ最終ビスフェノールを生成させる。好適に用いられる流れは支持下降流であり、高所から低所に反応体が並流して床を流れ、ビスフェノール生成物を生ずる化学反応を促進する。この方法はあらゆるビスフェノール異性体の製造に応用できるが、好ましい異性体はイオン交換樹脂触媒存在下でのフェノールとアセトン(ジメチルケトン)との反応で生成するp,p′−ビスフェノールAであり、イオン交換触媒は所望に応じて例えばメルカプタン化合物のような選択された促進剤で変性されていてもよい。反応器は図1に符号10で示してあり、イオン交換樹脂触媒とランダムに分散した充填物とを含む床14を有している。この床に反応体の並流下降流が流れ込む。イオン交換樹脂触媒は充填物の周囲に分布しており、その結果、触媒が床内で支持されてチャネリングと圧縮力を最小限に抑制するとともに反応器の水力性能を最適にする。固定触媒存在下での反応体の反応に用いられるいかなるタイプの反応容器でも一般に本発明の実施に使用できる。しかし、円筒型反応器がそのシンプルさ故に好ましい。   The reactor contains a supported catalyst bed through which the reactants are flowed into contact with the catalyst to produce the final bisphenol. The flow preferably used is a supported downflow, which promotes a chemical reaction in which the reactants co-flow from high to low and flow through the bed to produce a bisphenol product. Although this method can be applied to the production of all bisphenol isomers, the preferred isomer is p, p'-bisphenol A formed by the reaction of phenol and acetone (dimethyl ketone) in the presence of an ion exchange resin catalyst. The exchange catalyst may be modified with a selected promoter, such as a mercaptan compound, as desired. The reactor is shown at 10 in FIG. 1 and has a bed 14 containing an ion exchange resin catalyst and randomly dispersed packing. A co-current downflow of reactants flows into this bed. The ion exchange resin catalyst is distributed around the packing so that the catalyst is supported in the bed to minimize channeling and compressive forces and optimize the hydraulic performance of the reactor. Any type of reaction vessel used to react the reactants in the presence of a fixed catalyst can generally be used in the practice of the present invention. However, a cylindrical reactor is preferred because of its simplicity.

入口20は管、パイプ、ジェットその他反応器の反応域に反応体を導入するための常用手段を備える。反応体は通例、多孔管、スパージャーアームその他同様又は慣用の流体分配手段によって反応域に分配される。反応器の底部42には好ましくは凝集体を充填する。かかる凝集体の量は本発明にとって重要ではない。ただし、反応器内容物を支持するのに十分な凝集体が存在すべきである。凝集体は、反応体と反応器内で生じた生成物に対して実質的に不活性な任意の物質からなるものでよい。好ましくは、凝集体は珪砂、シリカ系砂利、セラミックボール又はこれらの組合せからなる。   The inlet 20 is provided with conventional means for introducing the reactants into the reaction zone of the tube, pipe, jet or other reactor. The reactants are typically distributed to the reaction zone by perforated tubes, sparger arms or similar or conventional fluid distribution means. The bottom 42 of the reactor is preferably filled with agglomerates. The amount of such aggregates is not critical to the present invention. However, there should be sufficient agglomerates to support the reactor contents. Agglomerates may consist of any material that is substantially inert to the reactants and products produced in the reactor. Preferably, the agglomerates are composed of silica sand, silica-based gravel, ceramic balls or combinations thereof.

反応器シェル16は上端に入口20を、下端に出口24を備える。シェルの内部はベントライン(図示してない)を介して大気圧に通気してもよいが、通常はベントラインを閉鎖して運転する。またシェル16は、所望に応じて、反応体の発熱反応で発生した熱を除去するための冷却流を収容するジャケットを備えていてもよい。冷却流として使用し得る流体としては、特に限定されないが、水、塩水及び冷媒がある。   The reactor shell 16 has an inlet 20 at the upper end and an outlet 24 at the lower end. The inside of the shell may be vented to atmospheric pressure through a vent line (not shown), but normally the operation is performed with the vent line closed. Moreover, the shell 16 may be provided with a jacket for accommodating a cooling flow for removing heat generated by the exothermic reaction of the reactants, as desired. The fluid that can be used as the cooling flow is not particularly limited, and includes water, salt water, and a refrigerant.

運転の際には、入口20から反応体を流し込み、樹脂触媒床の上面に分配する。反応体は支持床を通って下方に進みながら反応して最終生成物を形成する。出口24は床及び生成物取出ライン30と流体連通しており、生成物取出ライン30は、反応器が完全に液体で満たされたままオーバーフロー方式で運転できるように入口と実質的に同じ高さにある。圧力34及び温度36を測定するためのセンサー手段を入口と出口に配置してもよく、また、反応に伴う条件を検知し、適当な反応プロフィールを得るためシェル16の選択された位置に追加のセンサー35、37を配置してもよい。工学及び設計データを収集する際の精確さを期すため充填支持床の前後で静止液面が等しくなるように入口と出口の圧力トランスミッターを開発型反応器内の同じ高さに配置すると、触媒樹脂と床支持体によるΔPのみを示すようになる。ΔPと流れの関係は圧縮性触媒では指数関数的である。こうしたセンサー手段からの情報を、例えば供給速度(及び使用している場合にはジャケットへの冷却流の流れ)のような選択されたパラメーターを調節する制御装置(図示してない)に送る。   In operation, the reactants are poured from the inlet 20 and distributed to the upper surface of the resin catalyst bed. The reactants react as they travel down through the support bed to form the final product. The outlet 24 is in fluid communication with the bed and product removal line 30 which is substantially flush with the inlet so that the reactor can be operated in an overflow manner while being completely filled with liquid. It is in. Sensor means for measuring pressure 34 and temperature 36 may be placed at the inlet and outlet, and additional conditions may be added to selected locations of shell 16 to detect conditions associated with the reaction and to obtain an appropriate reaction profile. Sensors 35 and 37 may be arranged. Placing the inlet and outlet pressure transmitters at the same height in the development reactor so that the static liquid level is equal before and after the packed support bed for accuracy when collecting engineering and design data, And only ΔP due to the floor support. The relationship between ΔP and flow is exponential for compressible catalysts. Information from such sensor means is sent to a controller (not shown) that adjusts selected parameters such as, for example, feed rate (and flow of cooling flow to the jacket, if used).

シェル内の充填物のランダムな配置は樹脂触媒の支持体となり、圧縮を最小限に抑える。触媒の「沈降」は必須であり、また触媒床内の空隙を完全に埋めるためにも望ましい。充填物は、累積圧縮力(重力で生じる力と反応体の下降流による粘性抵抗との和)を、樹脂触媒による高転化率、高選択性及び長寿命が実現できる程度まで防ぐ。圧縮力の最小化は、充填要素の「壁面効果」が顕微鏡スケールで床全体に拡がるのに十分である。   The random placement of the packing in the shell provides a support for the resin catalyst and minimizes compression. “Sedimentation” of the catalyst is essential and is also desirable to completely fill the voids in the catalyst bed. The packing prevents the cumulative compressive force (the sum of the force generated by gravity and the viscous resistance due to the descending flow of the reactants) to such an extent that a high conversion rate, high selectivity and long life by the resin catalyst can be realized. The minimization of the compressive force is sufficient for the “wall effect” of the filling element to spread across the floor on a microscopic scale.

一般に、球状触媒ビーズは、隣接ビーズでできた空隙「内」(曲面内曲面)に収まって、流れが起こり得る一定の空隙率を生じる。これに対して、これらの球状ビーズがある表面、すなわち、「壁」若しくはバッフル、プローブその他の平面に隣接して位置すると、これら2つの表面(平面対曲面)の相対的な形状から生じる空隙率は大きくなり、その結果、床全体の大部分よりも幾分不均衡な量の流れが「壁」で起きる。   In general, the spherical catalyst beads are confined within the void “inside” (curved inner curved surface) made of adjacent beads, and generate a certain porosity at which flow can occur. In contrast, when these spherical beads are located adjacent to a surface, i.e. a "wall" or baffle, probe or other plane, the porosity resulting from the relative shape of these two surfaces (plane vs. curved) Resulting in a somewhat disproportionate amount of flow at the “wall” than most of the entire floor.

床14は、シェル内に離散した複数の不活性要素を含んでいるので、下方に向かう反応体の流れに対して曲がりくねった通路を与える表面のランダムな配置を生じる。これらの離散物は、樹脂を支持しつつ、反応体が床を流れる際にそれらの最適な接触を可能にする剛性で化学的に不活性で、熱的に安定な任意の物質から製造し得る。最適な接触は一般に空隙率の大きい物体(例えば、ほとんどの体積が小さく、表面積の大きい物体)で達成される。使用するランダム充填要素の空隙率は0.6以上であればよく、例えば0.8である。特に好ましい要素は空隙率が最大0.98もしくはそれ以上である。空隙率が高いと、床を十分に支持しつつ、樹脂触媒の充填量を高めることができる。理論的には、要素の剛性と、荷重下での変形に耐える力と、リングの全体的「圧縮性」、ひいては床全体の圧縮性との間には関連がある。   The floor 14 includes a plurality of discrete inert elements within the shell, resulting in a random arrangement of surfaces that provide a tortuous path for downward reactant flow. These discretes can be made from any rigid, chemically inert, thermally stable material that supports the resin while allowing the reactants to make optimal contact as they flow through the bed. . Optimal contact is generally achieved with objects with a high porosity (eg, objects with a small volume and a large surface area). The porosity of the random filling element used may be 0.6 or more, for example 0.8. Particularly preferred elements have a maximum porosity of 0.98 or higher. When the porosity is high, the filling amount of the resin catalyst can be increased while sufficiently supporting the floor. Theoretically, there is a relationship between the stiffness of the element, the force to resist deformation under load, and the overall “compressibility” of the ring, and thus the compressibility of the entire floor.

このタイプの不活性ランダム充填物は球状樹脂粒子の充填構造を中断して大きな有効空隙率を与える。樹脂床単独での空隙率は通常約0.36であり、これを少し増すと圧力降下が劇的に減少すると期待される。空隙率の増大は反応体と触媒の接触時間を短くする「チャネリング」又は「短絡」のための通路となるので、空隙率の増大によって生じる圧力降下の減少は圧縮の防止によるものほど望ましいとはいえない。触媒内の空隙率を増大することは、ビーズの変形による空隙率の低下を単に防止することほど望ましいとはいえない。   This type of inert random packing interrupts the packing structure of the spherical resin particles and gives a large effective porosity. The porosity of the resin bed alone is usually about 0.36, and increasing this slightly is expected to reduce the pressure drop dramatically. Increased porosity provides a path for “channeling” or “short-circuiting” that shortens the contact time between the reactants and the catalyst, so the reduction in pressure drop caused by increased porosity is more desirable by preventing compression. I can't say that. Increasing the porosity in the catalyst is not as desirable as simply preventing the decrease in porosity due to bead deformation.

好ましくは、充填物はKoch−Glitsch社(米国カンザス州ウィチタ)から入手可能なCASCADE MINI−RINGS(登録商標)のような金属カスケードリングからなる。このカスケードリングは約0.97の空隙率を有する。使用できる他の物体としては、典型的な塔充填要素、例えばPallリング、Telleretteリング、Raschigリング、Berlサドル、Intaloxサドル及びこれらの所望の組合せが挙げられる。これらの幾つかの具体例は、米国特許第4041113号及び同第4086307号に開示されている。優れた水力特性に加えて、好ましい金属カスケードリング充填物材料は反応器内の温度差を改善する。これによって、同じ入口温度で運転して出口温度を低くすることもできるし、高い入口温度で運転して同純度での生産量を高めることもできる。また、これらの要素を充填した反応器の入口と出口の温度差は、充填してない反応器の入口と出口の温度差よりも小さいが、各反応器での反応体の転化率は実質的に等しい。   Preferably, the packing consists of a metal cascade ring such as CASCADE MINI-RINGS® available from Koch-Glitsch (Wichita, Kansas, USA). This cascade ring has a porosity of about 0.97. Other objects that can be used include typical column packing elements such as Pall ring, Tellerette ring, Raschig ring, Bell saddle, Interox saddle and any desired combination thereof. Some examples of these are disclosed in U.S. Pat. Nos. 4,404,113 and 4,086,307. In addition to excellent hydraulic properties, the preferred metal cascade ring packing material improves the temperature differential within the reactor. Accordingly, the outlet temperature can be lowered by operating at the same inlet temperature, or the production amount at the same purity can be increased by operating at a higher inlet temperature. Also, the temperature difference between the inlet and outlet of the reactor filled with these elements is smaller than the temperature difference between the inlet and outlet of the unfilled reactor, but the conversion rate of the reactants in each reactor is substantial. be equivalent to.

十分な反応器充填物が触媒床全体にランダムに分布している。ビスフェノールAを製造する好ましい実施形態では、触媒床の高さの(反応体の導入前にフェノールで濡らした樹脂触媒条件下で測定して)最低約25%、最も好ましくは約30%以上がランダムに分布した充填物で占められる。同様に、充填物の高さは、樹脂が経時的に膨潤したときの樹脂床の高さ全体に残るのに十分であるのが好ましい。この高さは触媒床の高さの約110%でよく、最も好ましくは120%でよい。充填物は樹脂の高さに近くすべきであり、樹脂が経時的に膨潤できるように多少(約20%まで)高くするのが好ましいが、累積圧縮力は床の底部の方が頂部より大きくなるので、充填物は樹脂よりも短くてもよいと考えられる。   Sufficient reactor charge is randomly distributed throughout the catalyst bed. In a preferred embodiment for producing bisphenol A, at least about 25%, most preferably about 30% or more of the catalyst bed height is random (measured under resin catalyst conditions wetted with phenol prior to introduction of the reactants) randomly. Occupied by packings distributed in Similarly, the height of the packing is preferably sufficient to remain throughout the height of the resin bed when the resin swells over time. This height may be about 110% of the catalyst bed height, most preferably 120%. The packing should be close to the height of the resin and is preferably slightly higher (up to about 20%) so that the resin can swell over time, but the cumulative compressive force is greater at the bottom of the floor than at the top. Therefore, it is considered that the filler may be shorter than the resin.

充填物をランダムに分配するには任意の方法が使用できる。最も容易で最も好ましい方法は、単に充填物を反応器中に入れ、触媒を反応器に入れて充填物空隙容積内に分配することである。   Any method can be used to randomly distribute the packing. The easiest and most preferred method is to simply place the charge in the reactor and place the catalyst in the reactor and distribute it within the charge void volume.

いかなる公知の酸性イオン交換樹脂触媒も酸性触媒として使用でき、触媒に特に制限はないが、通常は架橋度約8%以下のスルホン酸型陽イオン交換樹脂であり、約6%以下の架橋度のものが好ましく、約4%以下の架橋度のものが最も好ましい。また、架橋度は約1%以上が好ましく、約2%以上がさらに好ましい。この樹脂触媒は少なくとも部分的に架橋したイオン交換樹脂触媒が好ましく、ある程度のジビニルベンゼン架橋とある程度のスルホン酸官能基を有するスルホン化芳香族樹脂、例えば米国特許第5233096号に開示されているものが好ましい。   Any known acidic ion exchange resin catalyst can be used as the acidic catalyst, and the catalyst is not particularly limited, but is usually a sulfonic acid type cation exchange resin having a crosslinking degree of about 8% or less, and having a crosslinking degree of about 6% or less. Those having a degree of crosslinking of about 4% or less are most preferred. The degree of crosslinking is preferably about 1% or more, more preferably about 2% or more. The resin catalyst is preferably an ion exchange resin catalyst that is at least partially crosslinked, such as a sulfonated aromatic resin having some divinylbenzene crosslinking and some sulfonic acid functionality, such as those disclosed in US Pat. No. 5,233,096. preferable.

酸性イオン交換樹脂はフェノール類のアルキル化にも使用される(米国特許第4470809号)。陽イオン交換樹脂触媒の存在下で、α−メチルスチレンをフェノールと反応させるとp−クミルフェノールが生成し(米国特許第5185475号)、酸化メシチルをフェノールと反応させるとクロマンが生成する。使用の際、樹脂触媒の個々の粒子は水圧充填による圧縮力を受け、架橋度が低いと粒子は剛性が低く水圧変形を受け易い。イオン交換樹脂触媒の架橋度は最高約4%とし得るが、好ましくは触媒寿命を改善するため約2%以下である。   Acidic ion exchange resins are also used for alkylation of phenols (US Pat. No. 4,470,809). When α-methylstyrene is reacted with phenol in the presence of a cation exchange resin catalyst, p-cumylphenol is produced (US Pat. No. 5,185,475), and when mesityl oxide is reacted with phenol, chroman is produced. In use, the individual particles of the resin catalyst are subjected to compressive force due to hydraulic filling, and if the degree of crosslinking is low, the particles have low rigidity and are susceptible to hydraulic deformation. The degree of crosslinking of the ion exchange resin catalyst can be up to about 4%, but is preferably about 2% or less to improve catalyst life.

本発明の反応器系において、触媒剤は、複数の側鎖スルホン酸基を有する炭化水素ポリマーからなるスルホン化芳香族樹脂であるのが最も好ましい。これらは通例、2%又は4%のジビニルベンゼンで架橋されている。架橋度2%以下の触媒が最も好ましい。この点、ポリ(スチレンジビニルベンゼン)コポリマー及びスルホン化フェノールホルムアルデヒド樹脂が有用である。かかる適当な触媒の例としては、Rohm and Haas Chemical社から「AMBERLITE A−32」及び「AMBERLYST A−121」というブランドの触媒として並びにBayer Chemical社から「K1131」というブランドの触媒として市販されているスルホン化樹脂触媒がある。酸性樹脂の交換能は好ましくは乾燥樹脂1グラム当たり約2.0ミリ当量H+以上である。乾燥樹脂1グラム当たり3.0〜約5.5ミリ当量H+の範囲が最も好ましい。適宜、助触媒又は触媒促進剤を使用してもよい。バルク又は結合型触媒促進剤のいずれも使用できる。これらの多くは当技術分野で周知である。 In the reactor system of the present invention, the catalyst agent is most preferably a sulfonated aromatic resin comprising a hydrocarbon polymer having a plurality of side chain sulfonic acid groups. These are typically crosslinked with 2% or 4% divinylbenzene. Most preferred is a catalyst having a crosslinking degree of 2% or less. In this regard, poly (styrenedivinylbenzene) copolymers and sulfonated phenol formaldehyde resins are useful. Examples of such suitable catalysts are commercially available from Rohm and Haas Chemical as “AMBERLITE A-32” and “AMBERLYST A-121” brand catalysts and from Bayer Chemical as “K1131” brand catalysts. There are sulfonated resin catalysts. The exchange capacity of the acidic resin is preferably about 2.0 meq H + or more per gram of dry resin. Most preferred is a range of 3.0 to about 5.5 milliequivalent H + per gram of dry resin. A cocatalyst or catalyst promoter may be used as appropriate. Either bulk or combined catalyst promoters can be used. Many of these are well known in the art.

本発明の方法と反応器はビスフェノールA(以下、BPAと略す。)の製造に特に適している。反応器をビスフェノールAの製造に使用する場合、フェノールは通常アセトンに対して過剰量で使用し、フェノールとアセトンのモル比(フェノール/アセトン)は通常アセトン1mol当たりフェノール約6mol以上、好ましくはアセトン1mol当たりフェノール約12mol以上であり、またアセトン1mol当たりフェノール約20mol以下が好ましく、アセトン1mol当たりフェノール約16mol以下がさらに好ましい。   The process and reactor of the present invention are particularly suitable for the production of bisphenol A (hereinafter abbreviated as BPA). When the reactor is used for the production of bisphenol A, phenol is usually used in excess with respect to acetone, and the molar ratio of phenol to acetone (phenol / acetone) is usually about 6 mol or more of phenol per mol of acetone, preferably 1 mol of acetone. More than about 12 mol of phenol per mol, about 20 mol or less of phenol per mol of acetone is preferable, and about 16 mol or less of phenol is more preferable per mol of acetone.

フェノールとアセトンの反応は通常、反応器への供給原料が液体にとどまるのに十分な温度、好ましくは約55℃以上の温度で実施される。また、110℃以下の温度が好ましく、90℃以下がさらに好ましく、約85℃が最も好ましい。入口と出口の圧力を同等な高さで測定するときの床の圧力差は約0.1psig以上が好ましく、約3psigがさらに好ましい。また、圧力差は約35psig以下が好ましく、約26psig以下がさらに好ましい。   The reaction of phenol and acetone is usually carried out at a temperature sufficient to keep the feed to the reactor in a liquid, preferably above about 55 ° C. Moreover, the temperature of 110 degrees C or less is preferable, 90 degrees C or less is more preferable, and about 85 degreeC is the most preferable. The bed pressure difference when the inlet and outlet pressures are measured at the same height is preferably about 0.1 psig or more, more preferably about 3 psig. Further, the pressure difference is preferably about 35 psig or less, more preferably about 26 psig or less.

上記のフェノールとアセトンの反応において、ビスフェノールAを含有する液体反応混合物に加えて、通常、未反応フェノール、未反応アセトン及び水のような反応副生成物も反応混合物の一部である。   In the above reaction of phenol and acetone, in addition to the liquid reaction mixture containing bisphenol A, reaction by-products such as unreacted phenol, unreacted acetone and water are also part of the reaction mixture.

本明細書を通して、フェノールという用語は、次式のフェノール及び以下にさらに詳細に記載する選択された置換フェノールを表す。   Throughout this specification, the term phenol refers to phenols of the formula and selected substituted phenols described in more detail below.

Figure 2005519105
Figure 2005519105

ビスフェノールAと同様に、フェノールとケトンを反応させて得られるビスフェノールは次式で表される。   Similar to bisphenol A, bisphenol obtained by reacting phenol and ketone is represented by the following formula.

Figure 2005519105
Figure 2005519105

式中、Ra及びRbはハロゲン又は一価炭化水素基であって、同じでも異なっていてもよく、p及びqは0〜4の整数であり、Xは次式のものである。 In the formula, R a and R b are halogen or a monovalent hydrocarbon group which may be the same or different, p and q are integers of 0 to 4, and X is of the following formula.

Figure 2005519105
Figure 2005519105

c及びRdは水素原子若しくは一価炭化水素基であるか、又はRc及びRdが環構造を形成してもよく、Reは二価炭化水素基である。上記式のビスフェノールの具体例としては、1,1−ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、1,1−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)ブタン、ビス(4−ヒドロキシフェニル)フェニルメタン、2,2−ビス(4−ヒドロキシ−1−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−t−ブチルフェニル)プロパン、及び2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパンのようなビス(ヒドロキシアリール)アルカン、並びに1,1−ビス(4−ヒドロキシフェニル)シクロペンタン及び1,1−ビス(4−ヒドロキシフェニル)シクロヘキサンのようなビス(ヒドロキシアリール)シクロアルカン、6,6′−ジヒドロキシ−3,3,3′,3′−テトラメチル−1,1′−スピロ(ビス)インダン、1,3−ビスヒドロキシフェニルメタン、4,4′−ジヒドロキシ−2,2,2−トリフェニルエタン、1,1′−ビス(4−ヒドロキシフェニル)−メタ−ジイソプロピルベンゼン、1,1′−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンがある。 R c and R d are a hydrogen atom or a monovalent hydrocarbon group, or R c and R d may form a ring structure, and R e is a divalent hydrocarbon group. Specific examples of the bisphenol of the above formula include 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “1-phenol”). , Bisphenol A), 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 1,1-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) butane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) Propane, and bis (hydroxyaryl) al, such as 2,2-bis (4-hydroxy-3-bromophenyl) propane And bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) cyclopentane and 1,1-bis (4-hydroxyphenyl) cyclohexane, 6,6′-dihydroxy-3,3 , 3 ', 3'-tetramethyl-1,1'-spiro (bis) indane, 1,3-bishydroxyphenylmethane, 4,4'-dihydroxy-2,2,2-triphenylethane, 1,1 There are '-bis (4-hydroxyphenyl) -meta-diisopropylbenzene and 1,1'-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.

また、上記式中の が−O−、−S−、−SO−、又は−SO2−であるようなビスフェノールも製造できる。製造できる化合物の例としては、4,4′−ジヒドロキシジフェニルエーテル及び4,4′−ジヒドロキシ−3,3′−ジメチルフェニルエーテルのようなビス(ヒドロキシアリール)エーテル、4,4′−ジヒドロキシジフェニルスルフィド及び4,4′−ジヒドロキシ−3,3′−ジメチルジフェニルスルフィドのようなビス(ヒドロキシジアリール)スルフィド、4,4′−ジヒドロキシジフェニルスルホキシド及び4,4′−ジヒドロキシ−3,3′−ジメチルジフェニルスルホキシドのようなビス(ヒドロキシジアリール)スルホキシド、並びに4,4′−ジヒドロキシジフェニルスルホン及び4,4′−ジヒドロキシ−3,3′−ジメチルジフェニルスルホンのようなビス(ヒドロキシジアリール)スルホンがある。これらの物質の中で、ビスフェノールAの製造が特に好ましい。 In addition, bisphenols in which in the above formula is —O—, —S—, —SO—, or —SO 2 — can also be produced. Examples of compounds that can be prepared include bis (hydroxyaryl) ethers such as 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether, 4,4'-dihydroxydiphenyl sulfide and Of bis (hydroxydiaryl) sulfides such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide And bis (hydroxydiaryl) sulfones such as 4,4'-dihydroxydiphenylsulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfone. Of these substances, the production of bisphenol A is particularly preferred.

上記のようなビスフェノールは、酸性触媒存在下での適当な置換フェノールとケトンとの縮合による公知のビスフェノール合成法で得ることができる。上記式中のXによる結合がない構造を有するフェノールを使用してもよい。また、上記ビスフェノールを得ることができるのであれば、フェノールとホルムアルデヒド、スルホン酸などとの縮合を行うこともできる。   The bisphenol as described above can be obtained by a known bisphenol synthesis method by condensation of an appropriate substituted phenol and a ketone in the presence of an acidic catalyst. You may use the phenol which has a structure without the coupling | bonding by X in said formula. Moreover, if the said bisphenol can be obtained, condensation with phenol, formaldehyde, a sulfonic acid, etc. can also be performed.

反応器10内の反応体は、反応してビスフェノール(反応体がアセトンとフェノールのときはBPA)を形成し、ビスフェノール、未反応反応体、適宜助触媒、及び少量の他の物質を含む生成物流として反応器を出る。   The reactants in reactor 10 react to form bisphenol (or BPA when the reactants are acetone and phenol), and a product stream containing bisphenol, unreacted reactants, optionally a cocatalyst, and a small amount of other materials. Exit the reactor as

生成物流は分離器に送ってもよく、分離器はかかる物質の任意の慣用分離法であればよい。概して蒸留が最も簡単で最も好ましい方法である。ただし、他の周知の方法を別途独立に又は蒸留と組合せて用いて分離プロセスとすることもできる。   The product stream may be sent to a separator, which can be any conventional method for separating such materials. In general, distillation is the simplest and most preferred method. However, other well-known methods can be used separately or in combination with distillation for the separation process.

ビスフェノール生成物、ビスフェノール異性体、フェノール及び少量の各種不純物を底部生成物として分離器から取り出す。この底部生成物をさらに別の分離器に供給する。   The bisphenol product, bisphenol isomer, phenol and a small amount of various impurities are removed from the separator as the bottom product. This bottom product is fed to a further separator.

結晶化が好ましいビスフェノール分離法であるが、ビスフェノール生成物の所望の純度に応じて、母液からビスフェノールを分離するのに使用することができる任意の方法を使用することができる。分離したら、フェノールとビスフェノール異性体を含む脱水した母液を反応体として反応器10に戻す。   Crystallization is the preferred bisphenol separation method, but any method that can be used to separate bisphenol from the mother liquor can be used, depending on the desired purity of the bisphenol product. Once separated, the dehydrated mother liquor containing phenol and bisphenol isomers is returned to the reactor 10 as reactants.

分離器で母液から分離されたビスフェノールは、その後、ビスフェノール回収プロセスのさらに別の分離及び精製機に送ることができる。これは、次にポリカーボネートの製造に使用するBPAを製造するときのように非常に純粋な生成物が必要な場合には特に重要である。一般に、かかる追加の分離は、再結晶のような技術を用いて有利に行うことができる。   The bisphenol separated from the mother liquor in the separator can then be sent to yet another separation and purification machine of the bisphenol recovery process. This is especially important when a very pure product is required, such as when producing BPA which is then used to produce polycarbonate. In general, such additional separation can be advantageously performed using techniques such as recrystallization.

イオン交換樹脂触媒の圧縮に関連した問題を軽減するため、樹脂触媒床はさらに、架橋度及び変性法の異なる触媒の層又はこれらの組合せを含んでいてもよい。特に、触媒床は、架橋度の高いイオン交換樹脂触媒を床の下端に、架橋度の低いイオン交換樹脂触媒を床の上端に含む組合せから調製し得る。床の上端に近いイオン交換樹脂触媒の架橋度は好ましくは約2%以下であり、床の下端のイオン交換触媒樹脂の架橋度は好ましくは約2%超である。   In order to alleviate the problems associated with compression of ion exchange resin catalysts, the resin catalyst bed may further comprise layers of catalysts having different degrees of crosslinking and modification methods or combinations thereof. In particular, the catalyst bed may be prepared from a combination comprising an ion exchange resin catalyst with a high degree of crosslinking at the bottom of the bed and an ion exchange resin catalyst with a low degree of crosslinking at the top of the bed. The degree of crosslinking of the ion exchange resin catalyst near the top of the bed is preferably about 2% or less, and the degree of crosslinking of the ion exchange catalyst resin at the bottom of the bed is preferably more than about 2%.

使用に際しては、シェル又はシリンダー16に所定量の充填物と触媒を交互に装入することによって充填物と樹脂触媒を充填する。触媒は水で濡らし「予め」又は部分的に乾燥したビーズとすることができる。好ましくは、支持体及び/又はフィルターとして砂を最初にシェルの底部に装入する。好ましい実施形態において、反応器はその高さの約1/4までを水で、その高さの1/4を充填物要素で充填する。次に、そのカラムに水で濡らした樹脂を充填し、閉じ、フェノールを流して樹脂を脱水し、要素により占められている領域内に収縮させる。この手順を残りのカラム高さに対して繰り返す。反応中膨潤する追加の要素を床の頂部に加える。この手順は、触媒が予め乾燥されている場合はフェノールを用いて行う。   In use, the shell or cylinder 16 is filled with a filler and a resin catalyst by alternately charging a predetermined amount of the filler and the catalyst. The catalyst can be wetted with water and “pre” or partially dried beads. Preferably, sand is initially charged at the bottom of the shell as a support and / or filter. In a preferred embodiment, the reactor is filled up to about 1/4 of its height with water and 1/4 of its height with packing elements. The column is then filled with a resin wetted with water, closed, and phenol flowed to dehydrate the resin and shrink into the area occupied by the element. Repeat this procedure for the remaining column height. Additional elements that swell during the reaction are added to the top of the bed. This procedure is performed with phenol if the catalyst has been previously dried.

フェノールとアセトンからビスフェノールAを製造する本方法は、フェノールとアセトンをイオン交換樹脂触媒床内に導入して、樹脂触媒の存在下でフェノールとアセトンを反応させ、その後反応混合物からビスフェノールAを回収することを含む。このフェノールとアセトンは、反応が所定の収率と選択率で進行できるように十分な速度で(反応体の並流下降流を促進するように)床の上端に導入する。フェノールとアセトンの反応は、通常反応器への供給原料が液体のままでいるように十分な温度で、好ましくは約55℃以上の温度で行う。また好ましくは、温度は約110℃以下、好ましくは約90℃以下である。反応体の導入は、一般に乾燥触媒1ポンド当たり毎時約0.1ポンド以上の供給原料(lb供給原料/hr/lb触媒)、好ましくは約1.0lb供給原料/hr/lb触媒以上の重量時間空間速度(WHSV)である。また、約20lb供給原料/hr/lb触媒以下、好ましくは約2.0lb供給原料/hr/lb触媒以下が好ましい。また反応体の導入は一般に床の断面1平方フィート当たり毎分約0.1ガロン(gpm/ft2)以上、好ましくは約0.5gpm/ft2以上の流束速度である。また好ましい量は約2.0gpm/ft2以下、最も好ましくは約0.5gpm/ft2以下である。反応の温度は部分的に、ジャケットを流れる冷却流で反応の熱を除去することによって制御することができる。しかし、プラグフロー充填床の場合、半径方向の熱伝達が低いので、反応器は殆ど断熱的に機能する。充填物は熱伝達を改善する役目を果たし、従って断熱性を低下させ、温度制御を改善することができる。反応の温度は約110℃までであることができるが、約85℃に制限するのが好ましい。反応器の定常状態運転中、入口と出口24間の差圧はゲージ1平方インチ当たり約0.1ポンド(psig)以上、好ましくは約3psig以上である。また、約30psig以下が好ましく、約24psig以下がさらに好ましい。 In this method of producing bisphenol A from phenol and acetone, phenol and acetone are introduced into an ion exchange resin catalyst bed, the phenol and acetone are reacted in the presence of the resin catalyst, and then bisphenol A is recovered from the reaction mixture. Including that. The phenol and acetone are introduced at the top of the bed at a rate sufficient to allow the reaction to proceed with a given yield and selectivity (to facilitate co-current downflow of reactants). The reaction between phenol and acetone is usually carried out at a temperature sufficient to keep the feedstock to the reactor liquid, preferably at a temperature of about 55 ° C or higher. Also preferably, the temperature is about 110 ° C. or less, preferably about 90 ° C. or less. Reactant introduction is generally about 0.1 pounds per hour or more of feedstock per pound of dry catalyst (lb feedstock / hr / lb catalyst), preferably about 1.0 lb feedstock / hr / lb catalyst or more weight time Space velocity (WHSV). Also, about 20 lb feed / hr / lb catalyst or less, preferably about 2.0 lb feed / hr / lb catalyst or less is preferred. The introduction of the reactants typically the floor cross-section per square foot per minute to about 0.1 gallons (gpm / ft 2) or more, preferably about 0.5 gpm / ft 2 or more flux rate. A preferred amount is about 2.0 gpm / ft 2 or less, most preferably about 0.5 gpm / ft 2 or less. The temperature of the reaction can be controlled in part by removing the heat of reaction with a cooling stream flowing through the jacket. However, in the case of plug flow packed beds, the reactor functions almost adiabatically because of the low radial heat transfer. The filling serves to improve heat transfer, thus reducing thermal insulation and improving temperature control. The temperature of the reaction can be up to about 110 ° C, but is preferably limited to about 85 ° C. During steady state operation of the reactor, the differential pressure between the inlet and outlet 24 is about 0.1 pounds per square inch (psig) or more, preferably about 3 psig or more. Moreover, about 30 psig or less is preferable and about 24 psig or less is further more preferable.

ここで、図2を参照すると、フェノールとアセトンからビスフェノールAを製造するための系全体を符号50で示す。系50は、フェノール、アセトン及び脱水リサイクル母液を含有する予め混合した供給流54を含んでおり、最初にこれを冷却装置58に供給する。次に、この冷却された供給原料混合物を、入口ライン59を介して反応器10に導入する。次いでこの混合物を、反応器の充填触媒床14に下向きに流してビスフェノールA生成物を形成させる。所望のビスフェノールAの外に未反応物質及び若干の副生成物を含む生成物流は反応器出口ライン63を介して流れる。第二のフェノール供給流62が出口ライン63に接続されており、反応器に装入するのに使用できる。この出口ライン63は生成物取出ライン30に接続されている。図1に関して既に説明したように、反応器10は、反応器のシェルに沿って様々な位置に圧力検知手段35及び温度検知手段37を備える。冷却装置58からの戻りライン64は流れ追跡ライン72を備えているのが好ましい。(加工処理される材料は周囲温度で固体であるので、配管、反応器及び必要な場合には所望の流体温度を維持するための装置に、制御された熱を加える。これは配管及び装置に対する「追跡」又は「ジャケット付」として知られている。)。系50はさらに、生成物取出ライン30の下流に配置されたサイホンブレイク70を有していてもよい。反応器はライン65を介して通気されている。フェノール及びアセトンの供給流のいずれか又は両方が最初の反応からリサイクルされた不純物を含んでいてもよい。フェノールとアセトンの反応に由来する不純物は、リサイクル流内で異性化され得る。   Referring now to FIG. 2, the entire system for producing bisphenol A from phenol and acetone is shown at 50. System 50 includes a premixed feed stream 54 containing phenol, acetone and dehydrated recycle mother liquor, which is initially fed to cooling device 58. This cooled feed mixture is then introduced into the reactor 10 via the inlet line 59. This mixture is then flowed down into the packed catalyst bed 14 of the reactor to form the bisphenol A product. A product stream containing unreacted material and some by-products in addition to the desired bisphenol A flows through the reactor outlet line 63. A second phenol feed stream 62 is connected to the outlet line 63 and can be used to charge the reactor. This outlet line 63 is connected to the product extraction line 30. As already described with respect to FIG. 1, the reactor 10 includes pressure sensing means 35 and temperature sensing means 37 at various locations along the reactor shell. The return line 64 from the cooling device 58 preferably comprises a flow tracking line 72. (Because the material being processed is a solid at ambient temperature, controlled heat is applied to the piping, the reactor and, if necessary, the device to maintain the desired fluid temperature. Known as “tracking” or “jacketed”). The system 50 may further include a siphon break 70 disposed downstream of the product removal line 30. The reactor is vented via line 65. Either or both of the phenol and acetone feed streams may contain impurities recycled from the initial reaction. Impurities originating from the reaction of phenol and acetone can be isomerized in the recycle stream.

実施例1
内径約21インチ、断面積2.377平方フィート、及び高さ15フィートの反応器シェルに、嵩密度15.3ポンド/立法フィート(lbs/ft3)の充填物(CASCADE MINI−RINGS(登録商標))と、Rohm and Haas製の2%架橋されている湿ったイオン交換樹脂触媒A−121とを所要量段階的に仕込んだ。装入と装入の間に、反応器を閉じ、水分含有率0.5%未満のフェノール流を樹脂触媒床に流して樹脂触媒を脱水した。この段階的な装入と脱水操作を、触媒床が10.5フィートの高さになるまで繰り返した。合計で329.6lbの充填物と3166lbの湿った樹脂触媒を入れた。水で湿った樹脂触媒の密度は45.8湿潤lbs/ft3(約8.5「乾燥」lbs/ft3)であり、フェノールで脱水した同じ樹脂触媒の密度は24.9「乾燥」lbs/ft3であった。樹脂触媒の脱水に際して、592lbの「乾燥」触媒が残った。
Example 1
A reactor shell having an inner diameter of about 21 inches, a cross-sectional area of 2.377 square feet, and a height of 15 feet is packed with a bulk density of 15.3 lb / ft 3 (lbs / ft 3 ) (CASCADE MINI-RINGS®). )) And 2% cross-linked wet ion exchange resin catalyst A-121 from Rohm and Haas, were charged step by step. Between the charges, the reactor was closed and the resin catalyst was dehydrated by flowing a phenol flow with a water content of less than 0.5% through the resin catalyst bed. This stepwise charging and dehydration operation was repeated until the catalyst bed was 10.5 feet high. A total of 329.6 lbs of charge and 3166 lbs of wet resin catalyst were charged. The density of the resin catalyst wet with water is 45.8 wet lbs / ft 3 (about 8.5 “dry” lbs / ft 3 ), and the density of the same resin catalyst dehydrated with phenol is 24.9 “dry” lbs. / Ft 3 . Upon dehydration of the resin catalyst, 592 lbs of “dry” catalyst remained.

様々な反応器供給速度で樹脂触媒床の垂直高さ方向(両端)の差圧を測定した。供給組成物は表IIIのA欄のものと類似していた。用いた促進剤は約800ppmのレベルの3−メルカプトプロピオン酸である。表Iに、樹脂触媒床の垂直寸法で観察された差圧に対する測定された流速を示す。   The differential pressure in the vertical height direction (both ends) of the resin catalyst bed was measured at various reactor feed rates. The feed composition was similar to that in Table A, column A. The accelerator used is 3-mercaptopropionic acid at a level of about 800 ppm. Table I shows the measured flow rate versus differential pressure observed in the vertical dimension of the resin catalyst bed.

Figure 2005519105
Figure 2005519105

表には平均値を示してあり、明らかに流速の増大と共に圧力が増大するが、この増大は支持体によって緩和されている。 The table shows the average value, obviously the pressure increases with increasing flow rate, but this increase is mitigated by the support.

実施例2
同じ型の樹脂を充填物なしで用いた対照実験で、実施例1の実験条件と供給組成物を用いた。表IIに、樹脂触媒床の垂直寸法で観察された差圧に対して測定された流速を示す。
Example 2
In a control experiment using the same type of resin without filling, the experimental conditions and feed composition of Example 1 were used. Table II shows the flow rate measured against the differential pressure observed in the vertical dimension of the resin catalyst bed.

Figure 2005519105
Figure 2005519105

ランダムな充填でもたらされる支持体がないと、増大した流れの下で支持されていない触媒床の圧縮は大きく、その結果、スループット、従って生産性が厳しく制限される。表に挙げたのは平均値である。 Without the support provided by random packing, the compression of the unsupported catalyst bed under increased flow is large, resulting in severe limitations on throughput and hence productivity. Listed are average values.

図3は、同じ条件下での実施例1の充填物を伴う樹脂と実施例2の充填物なしとの比較である。この図は、圧縮性樹脂の床を通しての差圧の増大が同じ樹脂系及び実験条件に対して充填物によって緩和されることを示している。   FIG. 3 is a comparison between the resin with the filling of Example 1 and no filling of Example 2 under the same conditions. This figure shows that the increase in differential pressure through the bed of compressible resin is mitigated by the packing for the same resin system and experimental conditions.

実施例3
異なる典型的なプロセス条件で幾つかの実験を行い、反応器の入口と出口の温度差及び反応体の転化率を測定した。これらの条件及び幾つかの測定の平均を表IIIに示す。
Example 3
Several experiments were performed at different typical process conditions to measure the temperature difference between the reactor inlet and outlet and the conversion of the reactants. These conditions and the average of several measurements are shown in Table III.

Figure 2005519105
Figure 2005519105

上記データから明らかなように、広く変化する条件に対して転化率はほぼ等しいが、リングを充填した反応器の入口と出口の温度差は、充填物のない反応器の入口と出口の温度差よりも小さい。温度差が小さい方が等しい転化率に有利に働くということはないので、これは尋常のことではない。   As can be seen from the above data, the conversion is almost the same for widely varying conditions, but the temperature difference between the inlet and outlet of the reactor filled with the ring is the temperature difference between the inlet and outlet of the reactor without packing. Smaller than. This is not unusual because smaller temperature differences do not favor equal conversions.

好ましい実施形態に関連して説明してきたが、当業者には明らかな通り、本発明の技術的範囲から逸脱することなく様々な変更をなすことができ、その要素を均等物で置換することができる。加えて、本発明の技術的範囲から逸脱することなく特定の状況又は材料を本明細書の教示に適合させるために多くの修正を行うことができる。従って、本発明は、本発明を実施する上で最良と考えられる特定の実施形態に限定されるものではなく、特許請求の範囲に属するあらゆる実施形態を包含する。   Although described in connection with the preferred embodiment, it will be apparent to those skilled in the art that various modifications can be made without departing from the scope of the invention, and that the elements may be replaced with equivalents. it can. In addition, many modifications may be made to adapt a particular situation or material to the teachings herein without departing from the scope of the invention. Accordingly, the present invention is not limited to the particular embodiment considered best for practicing the invention, but encompasses any embodiment that falls within the scope of the claims.

図1は、支持イオン交換樹脂触媒が内部に配置された下降流化学反応器の概略図である。FIG. 1 is a schematic view of a downflow chemical reactor having a supported ion exchange resin catalyst disposed therein. 図2は、支持下降流触媒床のイオン交換樹脂触媒でのフェノールとアセトンとの反応によってビスフェノールAを製造する系の概略図である。FIG. 2 is a schematic view of a system for producing bisphenol A by reaction of phenol and acetone with an ion exchange resin catalyst in a supported downflow catalyst bed. 図3は、圧縮性樹脂の床の差圧の上昇を充填物のある場合とない場合で対比して示すグラフである。FIG. 3 is a graph showing an increase in the differential pressure of the compressible resin bed in comparison with the case where there is a filler.

符号の説明Explanation of symbols

10 反応器
14 固定支持触媒床
30 生成物取出ライン
34 圧力検知手段
36 温度検知手段
50 反応器系
54 供給流混合物
58 冷却装置
62 第二フェノール供給流
70 サイホンブレイク
DESCRIPTION OF SYMBOLS 10 Reactor 14 Fixed support catalyst bed 30 Product extraction line 34 Pressure detection means 36 Temperature detection means 50 Reactor system 54 Feed stream mixture 58 Cooling device 62 Second phenol feed stream 70 Siphon break

Claims (21)

ビスフェノールの製造方法であって、
フェノールとケトンを下降流で反応器(10)内に導入し、
フェノールとケトンを反応させて反応混合物を形成し、
ビスフェノールを反応混合物から回収する
ことを含んでなり、上記反応器が、イオン交換樹脂触媒床(14)内にランダムに分布した充填物を含み、適宜含イオウ化合物の触媒促進剤を含むイオン交換樹脂触媒床(14)を備える、方法。
A method for producing bisphenol, comprising:
Phenol and ketone are introduced into the reactor (10) in a downward flow,
Reacting phenol and ketone to form a reaction mixture;
Recovering bisphenol from the reaction mixture, wherein the reactor comprises packing randomly distributed in the ion exchange resin catalyst bed (14), and optionally comprises a catalyst promoter for sulfur compounds. A method comprising a catalyst bed (14).
床(14)内のイオン交換樹脂触媒が架橋している、請求項1記載の方法。 The process of claim 1, wherein the ion exchange resin catalyst in the bed (14) is crosslinked. 前記イオン交換樹脂触媒の架橋度が樹脂の約4重量%以下である、請求項2記載の方法。 The method of claim 2, wherein the degree of crosslinking of the ion exchange resin catalyst is about 4% by weight or less of the resin. 前記樹脂の架橋度が2重量%を超える、請求項3記載の方法。 The method of claim 3, wherein the degree of crosslinking of the resin is greater than 2% by weight. 前記樹脂の架橋度が2%以下である、請求項2記載の方法。 The method according to claim 2, wherein the degree of crosslinking of the resin is 2% or less. 前記イオン交換樹脂触媒の架橋度が約2%である、請求項5記載の方法。 The method of claim 5, wherein the degree of crosslinking of the ion exchange resin catalyst is about 2%. 前記イオン交換樹脂触媒がスルホン化芳香族樹脂である、請求項1記載の方法。 The method of claim 1, wherein the ion exchange resin catalyst is a sulfonated aromatic resin. 結合した促進剤が、含イオウ化合物での中和によって変性したスルホン化芳香族樹脂のスルホン酸基の一部からなる、請求項7記載の方法。 8. The method of claim 7, wherein the bound accelerator consists of a portion of the sulfonate group of the sulfonated aromatic resin modified by neutralization with a sulfur-containing compound. バルク促進剤が、反応混合物中に自由分散した含イオウ化合物からなる、請求項7記載の方法。 8. The method of claim 7, wherein the bulk accelerator comprises a sulfur-containing compound that is freely dispersed in the reaction mixture. 前記充填物が、約0.6〜約0.98の空隙容積を有する不活性物質からなる、請求項1記載の方法。 The method of claim 1, wherein the filler comprises an inert material having a void volume of about 0.6 to about 0.98. 前記充填物が、Pallリング、Berlサドル、Intaloxパッキング、Telleretteパッキング、Hyperfillパッキング、Stedmanパッキング、Sulzerパッキング、Raschigリング、Koch−Glitschカスケードミニリング(登録商標)及びこれらの混合物からなる群から選択される、請求項10記載の方法。 The filling is selected from the group consisting of a Pall ring, a Berl saddle, an Intalox packing, a Tellerette packing, a Hyperfill packing, a Stetman packing, a Sulzer packing, a Raschig ring, a Koch-Glitsch cascade miniring (registered trademark) and a mixture thereof. The method according to claim 10. 前記充填物の大部分がKoch−Glitschカスケードミニリング(登録商標)からなる、請求項10記載の方法。 The method of claim 10, wherein a majority of the packing consists of a Koch-Glitsch cascade miniring®. 促進剤が3−メルカプトプロピオン酸として存在する、請求項1記載の方法。 The method of claim 1, wherein the accelerator is present as 3-mercaptopropionic acid. ビスフェノールの製造方法であって、
フェノールとケトンを下降流で反応器系(50)内に導入し、
ケトンとフェノールを反応器(10)内で反応させてビスフェノール含有反応混合物を形成し、
ビスフェノールを混合物から回収する
ことを含んでなり、反応器系(50)が、下降流式化学反応器(10)と、該反応器(10)に充填した固定床(14)イオン交換樹脂触媒内にランダムに分布した充填物を有する固定床(14)イオン交換樹脂触媒を含み、上記樹脂触媒が、該樹脂触媒を基準にして約2重量%以下の架橋度を有するスルホン化芳香族樹脂である、方法。
A method for producing bisphenol, comprising:
Phenol and ketone are introduced into the reactor system (50) in a downward flow,
Reacting ketone and phenol in reactor (10) to form a bisphenol-containing reaction mixture;
Recovering bisphenol from the mixture, wherein the reactor system (50) comprises a downflow chemical reactor (10) and a fixed bed (14) ion exchange resin catalyst packed in the reactor (10). A fixed bed (14) having a randomly distributed packing, wherein the resin catalyst is a sulfonated aromatic resin having a degree of cross-linking of about 2% by weight or less based on the resin catalyst. ,Method.
下降流方式で導入されるフェノールとアセトンの反応でビスフェノールAを製造するための反応器(10)であって、
反応容器(10)、
反応容器(10)内のイオン交換樹脂床であって、適宜促進剤を含むイオン交換樹脂触媒床(14)、及び
イオン交換樹脂触媒床(14)全体にランダムに分布した充填物
を備える反応器(10)。
A reactor (10) for producing bisphenol A by reaction of phenol and acetone introduced in a downward flow manner,
Reaction vessel (10),
A reactor comprising an ion exchange resin bed in a reaction vessel (10), the ion exchange resin catalyst bed (14) including an appropriate promoter, and a packing randomly distributed throughout the ion exchange resin catalyst bed (14). (10).
床(14)内のイオン交換樹脂触媒の少なくとも一部が架橋している、請求項15記載の反応器(10)。 The reactor (10) of claim 15, wherein at least a portion of the ion exchange resin catalyst in the bed (14) is crosslinked. フェノールとアセトンからビスフェノールAを製造するための系(50)であって、
アセトン供給流、
アセトン供給流と混合されて供給流混合物(54)を形成するフェノール供給流、
供給流混合物(54)を受け入れる冷却装置(58)、
冷却装置(58)と流体連通して接続された反応器(10)であって、供給流混合物(54)が流入する入口を上端に及び出口を下端に有する反応容器(10)を備えていて、上記出口と入口の中間に支持触媒樹脂床(14)が配置されており、触媒樹脂床(14)がイオン交換触媒樹脂と該樹脂全体にランダムに分布した不活性充填物を含む、反応器(10)、
容器(10)と連通した温度検知手段(36)、
容器(10)と連通した圧力検知手段(34)、
上記入口と出口の間のバイパス流、
上記出口で受入れ可能な第二のフェノール供給流(62)、
反応器の下端と流体連通して配置され、反応器(10)が完全に液体で満たされたままオーバーフロー方式で運転できるように上記入口と同じ高さにある生成物取出ライン(30)、
生成物取出バルブの下流に配置されたサイホンブレイク(70)
を備える系。
A system (50) for producing bisphenol A from phenol and acetone,
Acetone feed stream,
A phenol feed stream that is mixed with an acetone feed stream to form a feed stream mixture (54);
A cooling device (58) for receiving a feed stream mixture (54),
A reactor (10) connected in fluid communication with a cooling device (58), comprising a reaction vessel (10) having an inlet into which a feed stream mixture (54) flows in at an upper end and an outlet at a lower end. A reactor in which a supported catalyst resin bed (14) is disposed between the outlet and the inlet, the catalyst resin bed (14) comprising an ion exchange catalyst resin and an inert packing randomly distributed throughout the resin. (10),
Temperature sensing means (36) in communication with the container (10);
Pressure sensing means (34) in communication with the container (10);
A bypass flow between the inlet and outlet,
A second phenol feed stream (62) acceptable at the outlet;
A product removal line (30) located in fluid communication with the lower end of the reactor and at the same level as the inlet so that the reactor (10) can be operated in an overflow manner while being completely filled with liquid;
Siphon break (70) located downstream of the product removal valve
A system with
触媒樹脂が、入口と出口の間の床の垂直寸法全域で実質的に均一な空隙率を画成する、請求項17記載の系(50)。 The system (50) of claim 17, wherein the catalyst resin defines a substantially uniform porosity across the vertical dimension of the bed between the inlet and outlet. 反応器が、ビスフェノールAの製造中約65〜約85℃の温度に維持される、請求項18記載の系(50)。 The system (50) of claim 18, wherein the reactor is maintained at a temperature of about 65 to about 85 ° C during the production of bisphenol A. 請求項1記載の方法によって製造されるビスフェノールA。 Bisphenol A produced by the method according to claim 1. 促進剤とイオン交換樹脂触媒床(14)内にランダムに分布した充填物とを含むイオン交換樹脂触媒床(14)を備える反応器内に、フェノールとアセトンを下降流で導入し、
フェノールとアセトンを反応させて反応混合物を形成し、
ビスフェノールを反応混合物から回収する
ことを含んでなる方法によって製造されるビスフェノールA。
Phenol and acetone are introduced in a downward flow into a reactor comprising an ion exchange resin catalyst bed (14) comprising a promoter and packing randomly distributed in the ion exchange resin catalyst bed (14);
Reacting phenol and acetone to form a reaction mixture;
Bisphenol A produced by a process comprising recovering bisphenol from the reaction mixture.
JP2003572930A 2002-02-28 2003-01-30 Method, reactor and system for producing bisphenol Withdrawn JP2005519105A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/683,898 US6703530B2 (en) 2002-02-28 2002-02-28 Chemical reactor system and process
PCT/US2003/002589 WO2003074457A1 (en) 2002-02-28 2003-01-30 Process, reactor and system for preparing a bisphenol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010161873A Division JP2010229161A (en) 2002-02-28 2010-07-16 Method, reactor and system for producing bisphenol

Publications (2)

Publication Number Publication Date
JP2005519105A true JP2005519105A (en) 2005-06-30
JP2005519105A5 JP2005519105A5 (en) 2006-03-16

Family

ID=27789355

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003572930A Withdrawn JP2005519105A (en) 2002-02-28 2003-01-30 Method, reactor and system for producing bisphenol
JP2010161873A Pending JP2010229161A (en) 2002-02-28 2010-07-16 Method, reactor and system for producing bisphenol

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010161873A Pending JP2010229161A (en) 2002-02-28 2010-07-16 Method, reactor and system for producing bisphenol

Country Status (11)

Country Link
US (2) US6703530B2 (en)
EP (1) EP1480933B1 (en)
JP (2) JP2005519105A (en)
KR (1) KR20040095238A (en)
CN (1) CN100486948C (en)
AT (1) ATE358662T1 (en)
AU (1) AU2003214928A1 (en)
DE (1) DE60312967T2 (en)
ES (1) ES2285105T3 (en)
TW (1) TWI289476B (en)
WO (1) WO2003074457A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508134A (en) * 2003-10-15 2007-04-05 ビーエーエスエフ アクチェンゲゼルシャフト Catalyst layer comprising a molded body that is inactive and has a rounded external rubbing surface
WO2007046338A1 (en) * 2005-10-20 2007-04-26 Idemitsu Kosan Co., Ltd. Fixed-bed reactor and process for producing 2,2-bis(4-hydroxyphenyl)propane with the same
WO2007058234A1 (en) * 2005-11-21 2007-05-24 Mitsubishi Chemical Corporation Process for producing bisphenol a and vertical fixed-bed reactor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005722A1 (en) * 2004-02-05 2005-08-25 Bayer Materialscience Ag Process for the preparation of bisphenols with optimal filling of the reactor with catalyst
KR20130048274A (en) * 2005-01-28 2013-05-09 다우 글로벌 테크놀로지스 엘엘씨 Method for stabilizing a cation exchange resin prior to use as an acid catalyst and use of said stabilized cation exchange resin in a chemical process
US20060204414A1 (en) * 2005-03-11 2006-09-14 Saint-Gobain Ceramics & Plastics, Inc. Bed support media
US7566428B2 (en) 2005-03-11 2009-07-28 Saint-Gobain Ceramics & Plastics, Inc. Bed support media
EP1728554A1 (en) * 2005-06-02 2006-12-06 Research Institute of Petroleum Industry A process for removing sulfur particles from an aqueous catalyst solution and for removing hydrogen sulfide and recovering sulfur from a gas stream
JP5160181B2 (en) * 2006-11-21 2013-03-13 三菱マテリアル株式会社 Trichlorosilane production equipment
DE102007058991A1 (en) * 2007-12-07 2009-06-25 Bayer Materialscience Ag The use of low-chloride, low-carbonate silica sand as retention material for solid acid catalysts, especially in solid-bed reactors for condensation reactions, preferably for production of Bisphenol A
EP2090562A1 (en) * 2008-02-06 2009-08-19 Maciej Kiedik A method to obtain polycarbonate-grade bisphenol A
US20110076207A1 (en) * 2009-09-29 2011-03-31 Lanxess Sybron Chemicals Inc. Method and apparatus for protecting and monitoring the kinetic performance of an esterification catalyst material
TWI494163B (en) 2011-12-28 2015-08-01 Rohm & Haas Process of producing and use of a treated, promoted ion exchange resin catalyst
TWI494296B (en) 2011-12-28 2015-08-01 Rohm & Haas Use of a treated, promoted ion exchange resin catalyst
CN103285783B (en) * 2013-06-14 2015-06-17 吴嘉 Oscillatory flow reactor of packed bed
CN112007588A (en) * 2020-08-31 2020-12-01 江苏永大化工机械有限公司 Bisphenol A reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320009A (en) * 1993-04-13 1994-11-22 Bayer Ag Ion-exchanging resin floor optimized for synthetic production of bisphenol a
JPH07224002A (en) * 1993-12-13 1995-08-22 Kao Corp Production of fatty acid lower alkyl esters
JP2002537116A (en) * 1999-02-26 2002-11-05 ゼネラル・エレクトリック・カンパニイ Mixed bed ion exchange resin bed for bisphenol A synthesis

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029294A (en) 1959-02-27 1962-04-10 Hercules Powder Co Ltd Purification of phenol
GB1148907A (en) 1965-11-26 1969-04-16 Ici Ltd Purification of phenol
US3957931A (en) 1970-12-18 1976-05-18 Mass Transfer Limited Fluid-fluid contact method and apparatus
US3914351A (en) 1973-03-02 1975-10-21 Mass Transfer Ltd Packed tower and method of operation
US4041113A (en) 1973-05-30 1977-08-09 Mass Transfer Limited Tower packing elements
ZA762830B (en) 1975-05-21 1977-04-27 Norton Co Trickling filters media for biological filters
US4086307A (en) 1976-05-28 1978-04-25 Glitsch, Inc. Tower packing saddle
US4107456A (en) * 1976-09-27 1978-08-15 General Electric Company Electrical penetration assembly
US4167456A (en) 1978-10-06 1979-09-11 Phillips Petroleum Co. Extractive distillation to separate cyclohexylbenzene from phenol-cyclohexanone mixture containing the same
DE2928443A1 (en) 1979-07-13 1981-01-29 Bayer Ag METHOD FOR PRODUCING MIXED ALKYLATED AROMATIC HYDROXY COMPOUNDS
DE2931036A1 (en) 1979-07-31 1981-02-26 Bayer Ag CATALYST FOR THE PRODUCTION OF BISPHENOLS
DE2935316A1 (en) 1979-08-31 1981-03-26 Bayer Ag, 51373 Leverkusen METHOD FOR PRODUCING PURE 4,4'-DIHYDROXYDIPHENYLALKANE OR -CYCLOALKANE
US4423252A (en) 1980-08-07 1983-12-27 Mitsubishi Chemical Industries Limited Process for preparing bisphenols
DE3173985D1 (en) 1980-09-30 1986-04-10 Gen Electric Method and catalyst for making bisphenol
US4461915A (en) 1982-11-15 1984-07-24 General Electric Company Purification of bisphenol-A
US4447655A (en) 1982-11-24 1984-05-08 General Electric Company Purification of bisphenol-A
US4455409A (en) 1982-12-02 1984-06-19 General Electric Company Method for making bisphenol catalysts
DE3312001A1 (en) * 1983-04-02 1984-10-04 Waggon Union Gmbh, 1000 Berlin Und 5900 Siegen RAILWAY WAGON
US4492807A (en) 1983-04-22 1985-01-08 General Electric Company Method for purification of bisphenol A
US4584416A (en) 1983-11-14 1986-04-22 General Electric Company Method and catalyst for making bisphenol
US4590303A (en) 1985-06-03 1986-05-20 General Electric Company Method for making bisphenol
US4638102A (en) 1985-12-30 1987-01-20 The Dow Chemical Company Recrystallization of bisphenol A by azeotropically drying the solvent
DE3619450A1 (en) 1986-06-10 1987-12-17 Bayer Ag ION EXCHANGERS MODIFIED WITH MERCAPTOAMINES
US4740635A (en) 1986-10-20 1988-04-26 General Electric Company Process for crystallizing bisphenol-A
US4820740A (en) 1986-10-30 1989-04-11 Shell Oil Company Process and catalyst for production of bisphenol-A
JPH066542B2 (en) 1987-05-06 1994-01-26 三井東圧化学株式会社 Method for producing bisphenol A
DE3727641A1 (en) 1987-08-19 1989-03-02 Bayer Ag ION EXCHANGERS MODIFIED WITH THIAZOLINES
US4766254A (en) 1987-10-05 1988-08-23 General Electric Company Method for maximizing yield and purity of bisphenol A
CA1318687C (en) 1987-10-19 1993-06-01 Simon Ming-Kung Li Process for isomerizing the by-products of the bis-phenol synthesis
DE3736814A1 (en) 1987-10-30 1989-05-11 Roehm Gmbh METHOD FOR PRODUCING BISPHENOL AROMATS
JPH07103058B2 (en) 1987-12-04 1995-11-08 三井東圧化学株式会社 Method for producing bisphenol A
US4847432A (en) 1987-12-28 1989-07-11 General Electric Company Method for the purification of ion exchange resins used in the production of bisphenol A
JPH01211543A (en) 1988-02-17 1989-08-24 Mitsui Toatsu Chem Inc Production of bisphenol a
JPH029832A (en) 1988-02-19 1990-01-12 Mitsui Toatsu Chem Inc Washing and recovery of solid
US4950806A (en) 1988-02-22 1990-08-21 Mitsui Toatsu Chemicals, Inc. Process for crystallizing adduct of bisphenol A with phenol
US4954661A (en) 1988-03-11 1990-09-04 Mitsui Toatsu Chemicals, Inc. Process for preparing high-purity bisphenol A
US4931146A (en) 1988-04-05 1990-06-05 Mitsui Toatsu Chemicals, Inc. Process for obtaining high-purity bisphenol A
US4859803A (en) 1988-05-16 1989-08-22 Shell Oil Company Preparation of bisphenols
US4847433A (en) 1988-05-23 1989-07-11 General Electric Company Process for preparing bisphenol-A
EP0426846A4 (en) 1988-07-04 1991-06-12 Mitsui Petrochemical Industries, Ltd. Fluorinated-aromatic sulfonic acid catalyst, process for its production, and its use
US4876391A (en) 1988-09-15 1989-10-24 General Electric Company Process for preparation and purification of bisphenols
DE3835204A1 (en) 1988-10-15 1990-04-19 Bayer Ag METHOD FOR PRODUCING DIHYDROXIDIARYLALKANES
US4927978A (en) 1988-12-16 1990-05-22 Shell Oil Company Method of purifying bisphenols
US4927973A (en) 1988-12-16 1990-05-22 Shell Oil Company Process for continuous purification of bisphenols
IT1229476B (en) 1989-03-10 1991-09-03 Eniricerche Spa SOLID CATALYST FUNCTIONALIZED WITH SULPHONIC GROUPS, PROCEDURE FOR ITS PREPARATION AND USE.
US5244929A (en) 1989-09-13 1993-09-14 Veba Oel Aktiengesellschaft Molded bodies comprised of macroporous ion exchange resins, and use of said bodies
DE3930515A1 (en) 1989-09-13 1991-03-21 Veba Oel Ag FORMKOERPER OF MACROPOROESIS ION EXCHANGER RESINS AND USE OF FORMKOERPER
US5087767A (en) 1989-12-25 1992-02-11 Mitsui Toatsu Chemicals, Inc. Method for preparing bisphenol a
FR2658814B1 (en) 1990-02-28 1993-12-31 Rhone Poulenc Chimie PROCESS FOR THE MANUFACTURE OF BISPHENOL-A.
US5059721A (en) 1990-07-31 1991-10-22 Shell Oil Company Process for preparing a bisphenol
WO1992003399A1 (en) 1990-08-21 1992-03-05 Mitsui Toatsu Chemicals, Inc. Method of preparing bisphenol a
US5245088A (en) 1990-08-21 1993-09-14 Mitsui Toatsu Chemicals, Inc. Process for crystallizing adduct of bisphenol a with phenol
US5243093A (en) 1990-09-07 1993-09-07 General Electric Company Process and composition
US5105026A (en) 1990-11-15 1992-04-14 Shell Oil Company Process for preparing a bisphenol
CA2054386A1 (en) 1990-11-16 1992-05-17 Eric Gustave Lundquist Acidic catalyst for condensation reactions
US5233096A (en) 1990-11-16 1993-08-03 Rohm And Haas Company Acidic catalyst for condensation reactions
DE4105428A1 (en) 1991-02-21 1992-08-27 Bayer Ag METHOD FOR CLEANING BISPHENOLS
DE69217133T2 (en) 1991-07-10 1997-07-17 Chiyoda Chem Eng Construct Co Process for the preparation of a crystalline adduct of bisphenol A with phenol and device therefor
DE69217393T2 (en) 1991-07-16 1997-05-28 Chiyoda Chem Eng Construct Co Condensation process for the recovery of bisphenol A and phenol
ES2093780T3 (en) 1991-08-05 1997-01-01 Chiyoda Chem Eng Construct Co PROCEDURE FOR THE PRODUCTION OF BISPHENOL A.
ES2078650T3 (en) 1992-01-14 1995-12-16 Gen Electric BISPHENOL-A RECOVERY PROCEDURE FOR EFFLUENT CURRENTS OF THE PREPARATION PROCESS.
US5210329A (en) 1992-02-18 1993-05-11 General Electric Company Process for preparing bisphenol-A
GB9204490D0 (en) 1992-03-02 1992-04-15 Dow Deutschland Inc Process for preparing bisphenol a
DE4213872A1 (en) 1992-04-28 1993-11-04 Bayer Ag METHOD FOR PRODUCING HIGH PURITY BISPHENOL-A
DE4213870C2 (en) 1992-04-28 1996-07-04 Bayer Ag Bisphenol synthesis on modified ion exchange resins using specially purified carbonyl compounds
US5185475A (en) 1992-06-01 1993-02-09 General Electric Company Process for preparing paracumylphenol
CA2139104A1 (en) * 1992-06-26 1994-01-06 Michael P. Deninno Steroidal glycosides for treating hypercholesterolemia
DE4227520A1 (en) 1992-08-20 1994-02-24 Bayer Ag Process for the preparation of bisphenols
DE4234779A1 (en) 1992-10-15 1994-04-21 Veba Oel Ag Supported catalyst and use of the same
CN1050828C (en) 1993-02-16 2000-03-29 中国石油化工总公司 Method of dephenolization for preparing high quality polycarbonic ester grade bisphenol A
US5315042A (en) 1993-03-22 1994-05-24 General Electric Company Use of partial acetone conversion for capacity increase and quality/yield improvement in the bisphenol-A reaction
DE4312038A1 (en) 1993-04-13 1994-10-20 Bayer Ag Multiple regenerable ion exchange resins with low alkyl SH group occupancy
JP2885606B2 (en) 1993-05-12 1999-04-26 出光石油化学株式会社 Method for producing 2,2-bis (4-hydroxyphenyl) propane
DE4322712A1 (en) 1993-07-08 1995-01-12 Huels Chemische Werke Ag Process for carrying out chemical reactions in reaction distillation columns
RU2111203C1 (en) 1993-12-01 1998-05-20 Закошанский Владимир Михайлович Method of removing organic impurities from phenol
US5475154A (en) 1994-03-10 1995-12-12 Rohm And Haas Company Method for producing high-purity bisphenols
DE4408008A1 (en) 1994-03-10 1995-09-14 Bayer Ag Process for the continuous production of high-purity bisphenol-A
GB9405015D0 (en) 1994-03-15 1994-04-27 Dow Deutschland Inc Process for purifying a bisphenol
US5589517A (en) 1994-04-08 1996-12-31 Mitsubishi Chemical Corporation Modified ion exchange resins and use thereof
DE4413396A1 (en) 1994-04-18 1995-10-19 Bayer Ag Process for the preparation of ultra-pure bisphenol-A and its use
US5428075A (en) 1994-05-02 1995-06-27 General Electric Company Method for regenerating a sulfonated aromatic organic polymeric ion-exchange resin bed having deactivated aminoorganomercaptan groups with phenol
US5414151A (en) 1994-05-02 1995-05-09 General Electric Company Method for making bisphenol
US5414152A (en) 1994-05-10 1995-05-09 General Electric Company Method for extending the activity of acidic ion exchange catalysts
US5414154A (en) 1994-06-06 1995-05-09 Alliedsignal Inc. Phenol with low levels of methylbenzofuran
US5434316A (en) 1994-07-28 1995-07-18 General Electric Company Purification of bisphenol-A
CN1038395C (en) 1994-10-25 1998-05-20 中国石油化工总公司 Ion exchange resin catalyzer for synthesising bisphenol and preparation thereof
EP0720976B2 (en) 1994-12-09 2005-05-18 The Dow Chemical Company Process for preparing an adduct of a bisphenol with a phenolic compound
DE19526088A1 (en) 1995-07-18 1997-01-23 Bayer Ag Process for the preparation of bis (4-hydroxyaryl) alkanes
DE19529855A1 (en) 1995-08-14 1997-02-20 Bayer Ag Process for the purification of bisphenol
EP0848693A4 (en) 1995-08-24 1999-03-17 Dow Chemical Co Isomerization of bisphenols
US5723691A (en) 1995-08-31 1998-03-03 General Electric Company Method for preparing ion-exchange resin for use as a catalyst in the synthesis of bisphenols
DE19536366A1 (en) 1995-09-29 1997-04-03 Degussa Production of 2,2'-bis (4-hydroxyphenyl) propanes in the presence of organopolysiloxanes containing sulfonate and mercapto groups
DE19539444A1 (en) 1995-10-24 1997-04-30 Bayer Ag Process for the preparation of bisphenols using new cocatalysts
CH689881A8 (en) 1995-12-13 2000-02-29 Bauer Eric Concurrent access management method and device for its implementation.
US5723689A (en) 1996-01-16 1998-03-03 General Electric Company Process for recovering bisphenols
ZA972382B (en) 1996-03-21 1997-09-25 Shell Int Research Fixed bed reactor packing.
US5783733A (en) 1996-06-13 1998-07-21 General Electric Company Process for manufacture of bisphenol
US5786522A (en) 1996-09-13 1998-07-28 General Electric Company Manufacture of bisphenol-A
DE19701278A1 (en) 1997-01-16 1998-07-23 Bayer Ag Process for the preparation of bis (4-hydroxyaryl) alkanes
US5986866A (en) * 1997-04-11 1999-11-16 Siemens Energy & Automation, Inc. Solid state overload relay
DE19720541A1 (en) 1997-05-16 1998-11-19 Bayer Ag Process for the continuous production of dihydroxydiphenylalkanes
DE19720539A1 (en) 1997-05-16 1998-11-19 Bayer Ag Process for the continuous production of dihydroxydiarylalkanes
JP4039534B2 (en) 1997-11-19 2008-01-30 Sabicイノベーティブプラスチックスジャパン合同会社 Method for producing bisphenols
DE19756771A1 (en) 1997-12-19 1999-06-24 Bayer Ag Production of bis:4-hydroxyaryl-alkane from phenolic and ketone compounds
JP3946845B2 (en) 1997-12-24 2007-07-18 日本ジーイープラスチックス株式会社 Method for producing bisphenols and method for producing polycarbonate
IT1298996B1 (en) * 1998-04-01 2000-02-07 Manuela Fornari DEVICE TO PROTECT A BRAKING RHEOSTAT OF RAILWAY LOCOMOTIVES
EP1097915B1 (en) 1998-06-26 2003-10-08 Nippon Steel Chemical Co., Ltd. Process for producing bisphenol a
DE19848026A1 (en) 1998-10-17 2000-04-20 Bayer Ag Production of bis(4-hydroxyaryl)alkane, useful in production of polymer, e.g. polycarbonate or epoxide, involves using circulating inert gas for stripping aromatic hydroxyl compound from adduct
DE19860144C1 (en) 1998-12-24 2000-09-14 Bayer Ag Process for the preparation of bisphenol A
TW530045B (en) 1999-04-13 2003-05-01 Idemitsu Petrochemical Co Method of producing bisphenol A
CN1153621C (en) * 1999-11-23 2004-06-16 拜尔公司 Method for regulating ion exchanging agents
US20030028055A1 (en) 1999-12-03 2003-02-06 Hideaki Nakamura High quality bisphenol a and preparation process thereof
BR0008837A (en) 2000-01-07 2001-12-18 Idemitsu Petrochemical Co Process for the production of bisphenol a
JP2001199919A (en) 2000-01-18 2001-07-24 Idemitsu Petrochem Co Ltd Method for producing bisphenol a
US6229037B1 (en) 2000-04-04 2001-05-08 Mitsui Chemicals, Inc. Polyorganosiloxane catalyst
US6364288B1 (en) * 2000-06-30 2002-04-02 Benjamin L. Laughlin Air-driven nail puller device
US6496363B1 (en) * 2001-05-29 2002-12-17 Compucase Enterprise Co., Ltd. Mounting device for mounting a peripheral device on an electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320009A (en) * 1993-04-13 1994-11-22 Bayer Ag Ion-exchanging resin floor optimized for synthetic production of bisphenol a
JPH07224002A (en) * 1993-12-13 1995-08-22 Kao Corp Production of fatty acid lower alkyl esters
JP2002537116A (en) * 1999-02-26 2002-11-05 ゼネラル・エレクトリック・カンパニイ Mixed bed ion exchange resin bed for bisphenol A synthesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508134A (en) * 2003-10-15 2007-04-05 ビーエーエスエフ アクチェンゲゼルシャフト Catalyst layer comprising a molded body that is inactive and has a rounded external rubbing surface
WO2007046338A1 (en) * 2005-10-20 2007-04-26 Idemitsu Kosan Co., Ltd. Fixed-bed reactor and process for producing 2,2-bis(4-hydroxyphenyl)propane with the same
JP2007112745A (en) * 2005-10-20 2007-05-10 Idemitsu Kosan Co Ltd Fixed bed reactor and method for producing 2,2-bis(4-hydroxyphenyl)propane therewith
TWI426957B (en) * 2005-10-20 2014-02-21 Idemitsu Kosan Co A fixed bed reactor and a method for producing the 2,2-bis (4-hydroxyphenyl) propane using the same
WO2007058234A1 (en) * 2005-11-21 2007-05-24 Mitsubishi Chemical Corporation Process for producing bisphenol a and vertical fixed-bed reactor
JP2007161709A (en) * 2005-11-21 2007-06-28 Mitsubishi Chemicals Corp Method for producing bisphenol a and vertical-type stationary bed reactor

Also Published As

Publication number Publication date
JP2010229161A (en) 2010-10-14
CN1639098A (en) 2005-07-13
EP1480933A1 (en) 2004-12-01
US6891073B2 (en) 2005-05-10
TWI289476B (en) 2007-11-11
TW200305458A (en) 2003-11-01
ATE358662T1 (en) 2007-04-15
KR20040095238A (en) 2004-11-12
US20040136887A1 (en) 2004-07-15
CN100486948C (en) 2009-05-13
US20030166976A1 (en) 2003-09-04
ES2285105T3 (en) 2007-11-16
US6703530B2 (en) 2004-03-09
EP1480933B1 (en) 2007-04-04
AU2003214928A1 (en) 2003-09-16
DE60312967T2 (en) 2008-01-17
WO2003074457A1 (en) 2003-09-12
DE60312967D1 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP2010229161A (en) Method, reactor and system for producing bisphenol
JP5498967B2 (en) Fixed bed reactor with fluid distributor and fluid collector
KR100479387B1 (en) Upflow Fixed Bed Reactor with Packing Element
US6486222B2 (en) Combination ion exchange resin bed for the synthesis of bisphenol A
JP2005519105A5 (en)
KR20210089743A (en) Ion-Exchange Resin Core-Shell Catalyst Particles
JP6184696B2 (en) Method for producing bisphenol compound
WO2011055819A1 (en) Catalyst for production of bisphenol compound and method for producing bisphenol compound
JPH04264047A (en) Preparation of methyl-t-butyl ether
US20240042406A1 (en) Method for carrying out a chemical reaction in an upflow reactor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20071101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100811